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Abstract
Techniques for genome-wide epigenetic profiling have been undergoing rapid development
toward recovery of high quality data from bulk and single cell samples. DNA-protein
interactions have traditionally been profiled via chromatin immunoprecipitation followed by next
generation sequencing (ChIP-seq), which has become the gold standard for studying histone
modifications or transcription factor binding. Cleavage Under Targets & Tagmentation
(CUT&Tag) is a promising new technique, which enables profiling of such interactions in situ at
high sensitivity and is adaptable to single cell applications. However thorough evaluation and
benchmarking against established ChIP-seq datasets are still lacking. Here we
comprehensively benchmarked CUT&Tag for H3K27ac and H3K27me3 against published
ChIP-seq profiles from ENCODE in K562 cells. Across a total of 30 new and 6 published
CUT&Tag datasets we found that no experiment recovers more than 50% of known ENCODE
peaks, regardless of the histone mark. We tested peak callers MACS2 and SEACR, identifying
optimal peak calling parameters. Balancing both precision and recall of known ENCODE peaks,
SEACR without retention of duplicates showed the best performance. We found that reducing
PCR cycles during library preparation lowered duplication rates at the expense of ENCODE
peak recovery. Despite the moderate ENCODE peak recovery, peaks identified by CUT&Tag
represent the strongest ENCODE peaks and show the same functional and biological
enrichments as ChIP-seq peaks identified by ENCODE. Our workflow systematically evaluates
the merits of methodological adjustments and will facilitate future efforts to apply CUT&Tag in
human tissues and single cells.
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Background
In recent years the field of epigenetics has garnered immense interest as a source of new
insights into the mechanisms underlying human disease. Human disease risk variants identified
through genome-wide association studies (GWAS) overwhelmingly localise to non-coding
regions of the genome1–3. These risk variants appear to be enriched in gene regulatory regions.
Chromatin dynamics at regulatory regions are governed by nucleosomes and their
post-translational modifications, as well as interacting chromatin-associated complexes and
transcription factors. Chromatin marks can define regions of activation and silencing, and mark
transcriptional regulatory elements. These can be cell type-specific and are known to be
dynamic during the course of embryonic development, aging, and disease progression4.
Disease risk variants appear to be specifically enriched in active regulatory elements, which
can be mapped using histone marks, such as H3K27ac. H3K27ac is a highly cell type specific
histone modification and a marker of active enhancers and promoters5. In the brain it has been
implicated in neurodegenerative and neuropsychiatric disorders, including Alzheimer’s
disease6–8. However, understanding the precise regulatory mechanisms underlying epigenetic
regulation in brain disease and linking non-coding variants to disease phenotypes has been
impeded by a lack of epigenomic annotations in disease and control tissue. Furthermore, the
resources that do exist tend to use bulk tissues of heterogeneous organs, which is
predominantly influenced by cell type composition and obscures cell type specific regulatory
landscapes.

For many years, chromatin immunoprecipitation followed by next generation
sequencing (ChIP-seq) has served as the gold standard method for epigenomic profiling. In
ChIP-seq, chromatin is first cross-linked and solubilised, after which a primary antibody
specific for the histone mark of interest enables immunoprecipitation of bound DNA9. However,
it has potential limitations, such as low signal-to-noise ratio, epitope masking from fixation and
cross-linking, and heterochromatin bias from chromatin sonication10,11. ChIP-seq poses
challenges when working with low cell numbers, requiring approximately 1-10 million cells as
input, with high demands on sequencing coverage, due to the low signal-to-noise ratio. In
addition, ChIP-seq does not adapt well to single-cell applications due to its high cell input
requirements and poor signal specificity. Cleavage Under Targets & Tagmentation (CUT&Tag) is
a novel enzyme-tethering approach that has been presented as a streamlined, easily scalable,
and cost-effective alternative to ChIP-seq. CUT&Tag has been reported to have superior
chromatin mapping capabilities as compared to ChIP-seq at approximately 200-fold reduced
cellular input and 10-fold reduced sequencing depth requirements12. CUT&Tag uses
permeabilised nuclei to allow antibodies to bind chromatin associated factors, which enables
tethering of protein A-Tn5 transposase fusion protein (pA-Tn5). Upon activation of pA-Tn5,
cleavage of intact DNA and insertion of adapters (tagmentation) occurs for paired-end DNA
sequencing. Following tagmentation, DNA fragments remain inside the nucleus making the
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method amenable to single cell chromatin profiling applications, for example enabling
individual sorting of nuclei and PCR barcoding. The increased signal-to-noise ratio of CUT&Tag
for histone marks is attributed to the direct antibody tethering of pA-Tn5 and its integration of
adapters in situ while it stays bound to the antibody target of interest during incubation. The
process involves minimal sample loss with direct enzymatic end-polishing and ligation
compared to regular library preparation protocols that result in sample loss, e.g. in ChIP-seq
and CUT&RUN12.

For ChIP-seq, experimental and analytical guidelines as well as datasets generated by
the Encyclopedia of DNA Elements (ENCODE) consortium have served as a de facto gold
standard reference panel to the field for years13. In contrast, as a relatively new method,
CUT&Tag lacks equivalent systematic optimisation or benchmarking against existing datasets
and there is little established consensus regarding experimental recommendations and data
analysis workflows. Systematic benchmarking of bulk CUT&Tag will serve as a foundation to
optimally guide experimental design and analysis of its single cell applications. Here we
undertook experimental optimisations and systematic benchmarking of CUT&Tag against
ENCODE in human K562 cells for histone modifications H3K27ac and H3K27me3 to serve as a
guide for the design and analysis of future CUT&Tag studies. Since the development of
CUT&Tag has primarily assessed methyl marks14, we focused in-depth on underexplored
H3K27ac, testing multiple ChIP-grade antibody sources6,7,15,16, antibody dilutions, histone
deacetylase inhibitors (HDACi), as well as PCR parameters, and DNA extraction methods for
library preparation (Fig. 1a). Experimental outcomes were evaluated by quantitative polymerase
chain reaction (qPCR) and paired-end genomic sequencing. Our computational workflow
served to iteratively guide experimental optimisations, appraise CUT&Tag data quality, and
benchmark CUT&Tag performance against ENCODE ChIP-seq profiles (Fig. 1b). We explored
the suitability of different peak calling approaches (SEACR and MACS2), and the effects of
inclusion versus exclusion of duplicate reads. We characterised the similarities and differences
between CUT&Tag and ENCODE based on parameters including read- and peak-level
correlation, regulatory element annotation, gene ontology enrichment, and transcription factor
binding motif (TFBM) analysis.

Results

Overview of systematic H3K27 CUT&Tag experimental design
and analysis
To benchmark the performance of CUT&Tag against established ENCODE ChIP-seq, we
profiled histone modifications H3K27ac, a marker of active enhancers and promoters, and
H3K27me3, associated with heterochromatin and assessed in the original series of papers
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introducing CUT&Tag12,14,17. Both histone modifications were characterized in K562 cells,
generating a total of 30 new CUT&Tag sequencing datasets. We undertook systematic
experimental optimisations for H3K27ac CUT&Tag testing multiple ChIP-grade antibody
sources6,7,15,16, antibody dilutions (1:50, 1:100, 1:200), as well as different PCR cycle numbers,
DNA extraction methods for library preparation, and histone deacetylase inhibitors (HDACi)
(Fig. 1a). Primary conditions were first validated by performing qPCR using positive and
negative control primers designed based on ENCODE ChIP-seq peaks (Table 1). The best
conditions were subsequently subjected to paired-end sequencing. Our computational
workflow iteratively guided experimental optimisations, assessed data quality, and
benchmarked CUT&Tag performance against ENCODE ChIP-seq (Fig. 1b).

Figure 1. Overview of experimental design and computational benchmarking. a, Summary
of experimental design: Five antibodies were tested at dilutions 1:50, 1:100 and 1:200, and 11,
13, or 15 PCR cycles for library preparation. H3K27ac libraries were assessed with and without
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HDAC inhibitor Trichostatin A (TSA; 1 µM), or sodium butyrate (NaB; 5 mM). Column- and
SDS-based DNA extraction methods were compared. Antibody performance was assessed by
qPCR and sequencing, and sequenced reads were processed with and without duplicates
using peak callers SEACR and MACS2. b, Summary of analytical approaches: Analysis
comprised quality control of sequencing data, optimisation of peak calling approaches with
both peak callers, and comparison between CUT&Tag and ENCODE datasets at the level of
reads, peaks, and functional annotation.

Quality control of CUT&Tag data
We first assessed four ChIP-seq grade H3K27ac antibodies across three dilutions (1:50, 1:100
and 1:200) by qPCR, using primers designed to amplify regions corresponding to genes falling
into the most significant ENCODE peaks (positive controls: ARGHAP22, COX4I2, MTHFR,
ZMYND8) versus least significant ENCODE peaks (negative controls: KLHL11, SIGIRR)
(Methods; Table 1; Fig. 2a). Based on the outcome, we selected Abcam-ab4729 (1:100),
Diagenode C15410196 (1:50 and 1:100), Abcam-ab177178 (1:100), and Active Motif 39133
(1:100) for sequencing. These antibodies will be henceforth referred to as Abcam-ab4729,
Diagenode, Abcam-ab177178, and Active Motif. H3K27me3 CUT&Tag was profiled using
ChIP-grade antibody Cell Signaling Technology-9733 at dilution 1:100 as previously
recommended14. In house samples were compared with published CUT&Tag14 and CUT&RUN18

data from the research group who originally developed these methods.

Preliminary analysis of sequencing data revealed high duplication rates across samples
(min: 55.49%; max: 98.45%; mean: 82.25%; Supplementary Table 1). We therefore asked
whether such data could still be interpreted by CUT&Tag analysis, as high duplication rates
have been observed with different sample types, for example mouse frozen brain tissue
(assessed in house). We first quantified fragment length as a quality control metric. Fragment
sizes observed in our samples were comparable to CUT&Tag in human nuclei, with an
abundance of fragments at around 180bp in size, reflecting the length of DNA from a single
nucleosome (Fig. 2b; Supplementary Fig. 1a)19,20. We also observed short fragments (<100bp)
similar to previous CUT&Tag data14, potentially caused by tagmentation of open chromatin21.
Shorter fragments were not more abundant in duplicate-containing samples, suggesting that
these are not a consequence of PCR amplification bias22.

We next evaluated signal-to-noise quality by calculating the fractions of reads in peaks
(FRiPs) using peaks we defined with our dataset, as well as pre-defined ENCODE peaks.
Specifically, we compared our data with ENCODE H3K27ac narrow and H3K27me3 broad
peak sets (Fig. 2c). To identify peaks in our CUT&Tag data we used two analytical approaches:
1) MACS2, a standard peak caller for ChIP-seq data used by ENCODE and also applied to
recent CUT&Tag datasets, and 2) SEACR, an algorithm developed specifically to detect peaks
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in high signal-to-noise data, such as CUT&RUN and CUT&Tag23,24. With few exceptions, the
fractions of reads in CUT&Tag called peaks and ENCODE peaks of the same mark were
comparable. Of the antibodies tested, Abcam-ab4729 and Diagenode at 1:50 dilution showed
the highest percentage of reads falling into published ENCODE H3K27ac peaks (29.9% and
27.4%, respectively), as well as newly identified CUT&Tag peaks (SEACR: 35.3% and 32.9%,
MACS: 34.1% and 30.9%, respectively; Fig. 2c; Supplementary Fig. 1b). However, all
H3K27ac CUT&Tag FRiP scores were markedly lower than the ENCODE H3K27ac ChIP-seq
score of 42%. Only H3K27me3 CUT&Tag FRiPs in ENCODE peaks slightly outperformed
ENCODE H3K27me3’s FRiP score of 66%, but this was not reflected in the enrichment across
empirically identified SEACR and MACS2 peaks (Fig. 2c). Of note, H3K37me3 CUT&Tag shows
highly specific enrichment for ENCODE H3K27me3 peaks, while H3K27ac shows more
unspecific enrichment at ENCODE H3K27ac and H3K27me3 peaks, both for in house and
published data. Duplicate inclusion did not make a significant difference to peak calling except
in cases where peaks of highly duplicated samples were called using MACS2. Visualisation in
the Integrative Genomics Viewer25 showed variable noise levels for H3K27ac CUT&Tag relative
to ENCODE ChIP-seq, while H3K27me3 CUT&Tag exhibited consistently lower background
noise (Fig. 2d).

Since CUT&Tag and other Tn5 transposase-based methods may be susceptible to open
chromatin bias26, we assessed the proportion of reads falling into open chromatin ATAC-seq
peaks (Fig. 2e; Supplementary Fig. 1c). Nearly 70% of ENCODE H3K27ac peaks overlapped
with ATAC-seq peaks. Therefore ENCODE H3K27ac peaks were further subset to obtain those
exclusive to the histone modification, exclusive to ATAC, and shared by both (Fig. 2e). This
revealed that nearly all H3K27ac regions profiled by CUT&Tag fall into open chromatin regions
shared with ATAC, but not into ATAC-only regions. For H3K27me3, around 8% of reads fell into
ATAC peaks and this percentage was similar across comparison data. Removing short
fragments (<100 bp) reduced the proportion of overlap with ATAC peaks to 4.6% for
H3K27me3 (42.5% reduction), while short fragment exclusion had a negligible effect on
H3K27ac/ATAC overlap.
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Figure 2. Quality control metrics for CUT&Tag and comparison data. a, Results of qPCR
amplification of genes falling into most significant ENCODE H3K27ac peak regions in CUT&Tag
samples; b, CUT&Tag fragment size distributions; c, Fractions of reads in peaks (FRiPs) called
on each sample with SEACR and MACS2, as well as in ENCODE reference H3K27ac and
H3K27me3 peaks; d, Integrative Genomics Viewer (IGV)25 tracks showing sample read pileups;
e, Fractions of sample reads in ENCODE H3K27ac ChIP-seq and ATAC-seq peaks.
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CUT&Tag peak calling with SEACR and MACS2
We next assessed different peak callers and their settings to identify which would be most
suitable for CUT&Tag. We evaluated the performance of both SEACR and MACS2, which were
developed for CUT&RUN24 and ChIP-seq27, respectively. Parameter optimisation was
conducted based on precision (the proportion of CUT&Tag peaks falling into ENCODE peaks of
the same histone modification) and recall (the proportion of ENCODE peaks captured by
CUT&Tag) (Fig. 3a; Supplementary Fig. 2), with the aim of maximising ENCODE capture while
maintaining high precision (>80%). SEACR peaks were called using the stringent setting and
thresholds of 0.01, 0.03, 0.05 and 0.1, as the relaxed setting was found to be too permissive,
with precision scores consistently falling below the 80% threshold. MACS2 peaks were called
using the narrow peak setting, with p- and q-values between 1x10⁻⁵ and 0.1. These settings
were also tested with local lambda deactivated to replicate the global background
approximation employed by SEACR. On the basis of precision and recall analysis, optimum
SEACR H3K27ac peaks were called using the stringent setting and a threshold of 0.01. For
MACS2, H3K27ac narrow peaks were called with local lambda deactivated and a q-value of
1x10⁻⁵. As a broader histone mark, H3K27me3 peaks were called with the same settings, but
using the broad flag in MACS2, or by increasing the SEACR threshold to 0.1. Based on these
parameters, SEACR peaks were called with slightly higher precision compared to MACS2.
Furthermore, analysis of FRiPs revealed that SEACR peak calling was unaffected by duplicate
inclusion, while MACS2 showed very high duplicate sensitivity, identifying an excessive number
of spurious peaks despite stringent parameters (Supplementary Table 2). CUT&Tag peaks
identified with both peak callers appeared to miss some ENCODE peaks of lower signal
intensity, particularly in regions of elevated background noise (Fig. 3b). While levels of noise in
H3K27ac samples were variable and elevated relative to ENCODE, H3K27me3 CUT&Tag
showed lower background compared to both H3K27ac CUT&Tag and H3K27me3 ChIP-seq.
Another difference between the peak callers was that SEACR defines wider peaks than
MACS2, where multiple MACS2 peaks can correspond to a single SEACR peak (Fig. 3b). This
might make it difficult to detect subtle, local changes in histone modifications, but produces
peak ranges more suitable for broader marks such as H3K27me3. Peak correlations, quantified
with DiffBind28, revealed that SEACR calls peaks with higher consistency than MACS2, whereas
MACS2 CUT&Tag peaks show greater similarity to ENCODE peaks, which are also called using
MACS2 (Fig. 3c). Following subsampling to the same read depths, read profiles around peak
summits confirmed that at the selected settings, peaks called by SEACR and MACS2
possessed similar read densities (Fig. 3d). Furthermore, the best-performing CUT&Tag samples
showed greater peak read enrichment compared to ENCODE. However, this does not
necessarily translate to higher FRiPs, which depend on abundance of reads, a metric not
incorporated into peaks (Fig. 3d). From this overall assessment, we chose to call peaks
predominantly using SEACR from this point onward.
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Figure 3. Peak calling with SEACR and MACS2. a, Panel showing precision/recall plots for
SEACR and one of several MACS2 tests employed with different parameters; b, Select
H3K27ac sample tracks visualised alongside called SEACR and MACS2 peak ranges; c,
Correlations between sample peaks called with both peak callers (pink corresponds to MACS2,
and blue corresponds to SEACR peaks); d, Average read enrichments around summits of
select peaks called with SEACR and ENCODE H3K27ac, all subsampled to 2 million reads.
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Benchmarking of CUT&Tag against ENCODE ChIP-seq
We next proceeded to benchmark CUT&Tag against current gold standard ENCODE ChIP-seq
profiles. First, in an attempt to minimise any bias potentially incurred by peak calling, samples
were correlated on the basis of read counts in different genomic regions: ENCODE H3K27ac
peak ranges (Fig. 4a), the hg19 reference genome29 partitioned into 500bp bins
(Supplementary Fig. 3a), and ENCODE H3K27me3 peak ranges (Supplementary Fig. 3b).
While genome-wide correlation revealed that similarity between CUT&Tag (and CUT&RUN)
samples was markedly higher than that between CUT&Tag and ENCODE ChIP-seq,
CUT&Tag-ENCODE correlations were much enhanced when the analysis was restricted to
ENCODE H3K27ac and H3K27me3 peak regions for the corresponding mark. This is likely
because genome-wide comparison factors in many regions that are devoid of true signal or
contain noise, adding unwanted variability to the correlation analysis. On the whole, there was
good correspondence between read- (Fig. 4a) and peak-level (Fig. 3c) correlations. To
determine the extent to which CUT&Tag recovers known ChIP-seq peaks, the
GenomicRanges30 package was used to calculate the proportion of ENCODE peaks
overlapping with CUT&Tag (recall), and the proportion of sample peaks overlapping with
ENCODE (precision; Fig. 4b; Supplementary Fig. 3c, 3d). Overall, MACS2 achieved slightly
higher recall at the expense of precision, which could be matched by marginally raising the
SEACR threshold. The maximum ENCODE capture for H3K27ac was approximately 45%
attained using the best-performing antibody Abcam-ab4729. This empirical ceiling was also
observed across the comparison of previously published H3K27ac CUT&Tag and CUT&RUN
samples (Supplementary Fig. 3c, 3d). Despite the much greater number of peaks called,
H3K27me3 CUT&Tag only reached an ENCODE coverage ceiling of approximately 50%.
Therefore CUT&Tag recovers up to half of ENCODE ChIP-seq peaks.

To facilitate comparison between different samples, precision and recall were
compounded into a single metric representing a weighted average of the two measures, the
F1-score (Methods; Supplementary Fig. 3e). This approach excludes true negative peaks,
which might distort the score since they occupy the vast majority of the genome. We confirmed
Abcam-ab4729 as the best performing antibody, followed by Diagenode at 1:50 dilution, while
also highlighting that peak calling with SEACR resulted in better F1-scores than MACS2 on
average (Supplementary Fig. 3e). For antibody selection, ENCODE coverage was
re-calculated with all samples subsampled to the same read depth. This confirmed that
Abcam-ab4729 still outperformed other tested antibodies (Supplementary Fig. 3f). Duplicates
in CUT&Tag data may have biological relevance, potentially arising from tagmentation events
that recur in the same place by chance. Thus, peaks were called with versus without
duplicates. Duplicate inclusion in samples with relatively low duplication rates had little to no
effect on precision or recall; however, in samples more abundant in duplicates, peak calling
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with duplicates using MACS2 was compromised by detection of abundant spurious peaks (Fig.
4b). Any improvements seen for ENCODE recall came at the expense of detection of a large
number of false positive peaks. We thus recommend exclusion of duplicates.

To further characterise the ENCODE H3K27ac peaks that were captured and missed by
each CUT&Tag sample, the -log(q) values (significance) of the ENCODE peaks (from original
peak calling performed in ENCODE) falling into these groups were compared (Fig. 4c). This
revealed that CUT&Tag captures the most significant peaks, i.e. those with lower q-values. We
supplemented this by analysing ATAC-seq read counts (Fig. 4d), as in principle the H3K27ac
mark should coincide with open chromatin regions. This showed that the ENCODE peaks
captured by CUT&Tag samples contain more ATAC reads even when corrected for total base
count of the captured and missed ENCODE peak sets, supporting the notion that CUT&Tag
detects more prominent H3K27ac peaks, or at least those that are more likely to also be
detected by an orthogonal epigenomic method. In all cases the differences between the
q-values and ATAC-seq read counts in captured and missed ENCODE peaks were statistically
significant (p<0.0001 across all q-value pairs and p=0.0002, respectively; t-test). Due to lower
background, CUT&Tag should allow for higher data quality at read depths lower than those
required for ChIP-seq, as previously shown for methyl histone marks14. To test whether
H3K27ac CUT&Tag might have an advantage at lower read depths, FRiPs were calculated at
0.5, 1, 1.5 and 2 million unique reads (Fig. 4e). This analysis showed that the best H3K27ac
CUT&Tag antibodies still produced fewer reads in peaks than ENCODE ChIP-seq at low read
depth, although CUT&Tag peaks showed greater read enrichment around peak summits
compared to ChIP-seq peaks (Fig. 4f). Cumulative sample read enrichments at equal read
depths revealed that the read distributions of H3K27ac CUT&Tag and H3K27ac ENCODE
ChIP-seq samples were comparable, while H3K27me3 CUT&Tag samples showed more
constrained read distributions than ENCODE H3K27me3 (Fig. 4g). In agreement with the FRiPs
analyses, this indicates that even at equal read depths, H3K27ac – but not H3K27me3 –
CUT&Tag samples contain more off-target reads than ENCODE ChIP-seq.
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Figure 4. Benchmarking of CUT&Tag against ENCODE. a, Correlation of sample read counts

across ENCODE H3K27ac peak ranges; b, Percentages of CUT&Tag peaks falling into

ENCODE H3K27ac, and of ENCODE H3K27ac peaks captured by CUT&Tag, with and without

duplicates; c, Comparison of -log10(q) values of ENCODE H3K27ac peaks captured and not

captured by CUT&Tag; d, Measures of relative abundance of ATAC-seq reads in ENCODE

H3K27ac peaks captured and not captured by CUT&Tag; e, FRiPs of select top H3K27ac

13

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 31, 2022. ; https://doi.org/10.1101/2022.03.30.486382doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.30.486382
http://creativecommons.org/licenses/by-nc-nd/4.0/


CUT&Tag sample peaks and ENCODE H3K27ac peaks at different read depths, and at the

original sequencing depth (‘Max’); f, Average read enrichments around peak summits of top

H3K27ac CUT&Tag and ENCODE ChIP-seq peaks; g, Fingerprint plots of H3K27ac (left) and

H3K27me3 (right) CUT&Tag and ENCODE, all subsampled to 2 million reads. The bin with the

highest coverage refers to the 1000bp interval containing the most reads; graphs show the

cumulative read counts within ranked 1000bp bins, as a fraction of the read count in the

highest-scoring bin.

Experimental optimisation of CUT&Tag
Since H3K27ac is dynamically deposited and removed by histone acetylases and deacetylases
(HDACs), its chromatin mapping methods can potentially benefit from adding HDAC inhibitors
(HDACi) to eliminate residual deacetylase activity and thereby stabilise acetyl marks. This is
particularly relevant for CUT&Tag, which is carried out under native conditions where residual
HDAC activity may have a greater impact. To test whether the addition of a potent HDAC
inhibitor improves data quality and ENCODE coverage of previously tested antibodies,
H3K27ac CUT&Tag was performed with addition of Trichostatin A (TSA; 1 µM). This data was
compared to original samples scaled to the same read depths. Addition of HDACi TSA
improved neither signal to noise ratio (Fig. 5a) nor ENCODE coverage (Fig. 5b, 5c). H3K27ac
CUT&Tag was also attempted with addition of sodium butyrate (NaB; 5mM) and libraries were
evaluated by qPCR amplification to find no improvement in CUT&Tag binding signal
(Supplementary Fig. 4).

CUT&Tag library preparation was initially carried out with 15 PCR cycles, as per the
original protocol14. To test whether this contributed to high numbers of duplicate reads we
carried out CUT&Tag library preparation at 11 and 13 PCR cycles. In addition to varying cycle
numbers, we also appraised SDS-based vs column-based methods of DNA extraction (see
methods). All samples were downsampled to the shared minimum read depth (2.6 million
paired-end reads) to compare duplication rates and ENCODE coverage, while total unique
fragments were compared at maximum read depth (Fig. 6). Varying PCR cycles while
employing SDS-based DNA extraction produced mixed changes in duplication rate, whereas
samples obtained with column-based extraction predominantly showed an increase in
duplication rate from 11 to 13 PCR cycles (Fig. 6a). Overall, the greatest numbers of unique
fragments were generated using 15 PCR cycles and SDS-based DNA extraction (Fig. 6b).
Almost all samples captured ENCODE peaks with high precision (Fig. 6c) while the superior
unique fragment yield at 15 PCR cycles did not translate into improved ENCODE coverage after
downsampling (Fig. 6d).
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Figure 5. H3K27ac CUT&Tag performance with and without TSA. a) Comparisons between

fractions of reads in sample peaks called with SEACR, and in ENCODE H3K27ac ChIP-seq

peaks; b) and c) show ENCODE H3K27ac capture metrics with and without TSA. Reads from

each antibody tested without TSA were subsampled to the same read depth as the same

antibody tested with TSA.
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Figure 6. CUT&Tag performance using different numbers of PCR cycles during library

amplification. a, Duplication rates obtained with different PCR cycles comparing SDS-based

and column-based extraction, without downsampling; b, Total unique fragments obtained using

the two extraction methods and 11, 13 or 15 PCR cycles, without downsampling; c,

Duplication rates of reads across antibodies, PCR cycles and DNA extraction methods; d,

Proportion of CUT&Tag peaks falling into ENCODE H3K27ac; e, Proportion of ENCODE

H3K27ac peaks captured by CUT&Tag. Samples in c-e were subsampled to the same read

depth.
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Functional analysis of CUT&Tag peaks
To investigate functional similarities of peaks identified by CUT&Tag compared to ENCODE
ChIP-seq, we assessed the genomic distribution of CUT&Tag peaks in relation to genes and
chromatin states. Using ChIPseeker, peaks were annotated with and mapped in relation to their
proximal genes. This revealed a strong skew towards promoter proximal regions for H3K27ac
CUT&Tag samples, and a corresponding depletion in promoter regions for H3K27me3 (Fig. 7a).
H3K27ac CUT&Tag exhibited a stronger promoter preference than H3K27ac ENCODE
ChIP-seq, particularly for peaks called by SEACR (Supplementary Fig. 5a). H3K27ac
CUT&Tag also showed enrichments for distal intergenic regions, which likely harbour a
significant fraction of enhancers31. Next we explored an alternative gene-independent
breakdown of functional genomic elements by assigning peaks to ChromHMM-derived
chromatin states32 using the genomation R package33. This confirmed a predominance of
promoters and enhancers amongst the regions mapped by H3K27ac CUT&Tag (Fig. 7b;
Supplementary Fig. 5b). In contrast, H3K27me3 overwhelmingly localised to heterochromatic
and repressed chromatin regions, as would be expected. The two peak callers showed slight
differences in regulatory element enrichment. While MACS2 corresponded better to ENCODE
H3K27ac, SEACR peaks were more enriched at weak enhancers, weak promoters, weakly
transcribed regions, and regions of transcriptional transition from initiation to elongation than
their MACS2-called counterparts (Fig. 7b). This could be in part attributed to the fact that
SEACR peaks are broader than MACS2 peaks and thus more likely to extend to neighbouring
elements.

Peaks specific to duplicate-containing samples were functionally annotated to reveal
that a significant portion of excess MACS2 peaks called upon inclusion of duplicates fall into
heterochromatic regions, even among H3K27ac CUT&Tag samples (Supplementary Fig. 5c).
This suggests that duplicates should not be retained when calling peaks with MACS2, as it can
lead to artifacts. On the other hand, the few extra peaks called by including duplicates in
SEACR match the regulatory element distribution of the corresponding deduplicated peaks.
Finally, CUT&Tag peaks that did not overlap with ENCODE spanned diverse element types,
with tested antibodies showing an enrichment in areas of weak transcription, weak enhancers
and heterochromatin, while published CUT&Tag and CUT&RUN data showed an enrichment for
transcription elongation, weak transcription, weak enhancer and transcription transition
categories (Supplementary Fig. 5d). For H3K27me3, these peaks were still almost exclusively
located in heterochromatic regions. Read distributions around transcription start sites (TSS)
obtained from NCBI RefSeq34 were visualised with heatmaps, which showed enrichment
around TSS for H3K27ac (Supplementary Fig. 5e). Although CUT&Tag was found to capture
slightly fewer promoters overall compared to ChIP-seq when subsampled to the same read
depth (not shown), it showed higher average read densities in these regions for H3K27ac
(Supplementary Fig. 5e). Reads from H3K27me3 samples did not co-localise with promoters.
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Finally, we performed gene ontology enrichment analysis visualising the top 10 enriched
categories with clusterProfiler35. Overall, CUT&Tag recovered almost all top ENCODE K562
H3K27ac ChIP-seq ontology terms, including cell adhesion molecule binding, RNA-acting
catalytic activity, and cadherin binding, with the exception of the most poorly performing
antibodies (Fig. 7c). The correspondence of enriched terms indicates that although CUT&Tag
may not recover all K562 ChIP-seq peaks, it performs sufficiently well to approximate the K562
regulatory landscape. We further conducted motif analysis using HOMER36. Plotting the union
of the top 15 enriched transcription factors in each sample revealed that most CUT&Tag
samples detected key ENCODE H3K27ac TFBM, including those for the TFs Bach1, Bach2,
Elk1, Elk4, Gata1, Gata2, Gata4, Gata6, Jun-AP1, Nrf2 and NF-E2 (Fig. 7d), which relate to cell
growth37 and hematological cell fate38,39. H3K27me3 samples showed more variable and
modest TFBM enrichment, which is expected given that the vast majority of transcription
factors bind in regions of open chromatin.
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Figure 7. Functional analysis of CUT&Tag peaks. a, ChIPseeker assignment of peaks with

regulatory elements; b, ChromHMM assignment of peaks with chromatin states, showing the
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relative percentages of total peaks falling into each category (note that peaks can fall into

multiple categories simultaneously); c, Gene ontology enrichment analysis results of genes

assigned to sample peaks (‘gene ratio’ reflects the proportion of total differentially expressed

genes falling into a particular GO term); d, Top significantly enriched motifs across all samples.

Discussion
Here we optimised conditions for the execution and analysis of CUT&Tag for H3K27 histone
marks, benchmarking its performance against matched ENCODE ChIP-seq reference datasets.
We studied H3K27ac in depth, due to its functional co-localisation with active promoters and
enhancers, relevance for mapping risk variants in complex human disease, and the lack of
previous literature optimising CUT&Tag for acetylation marks. We systematically assessed
experimental optimisations including antibody selection, antibody concentration, DNA
extraction method, use of enzymatic inhibitors of deacetylases and PCR cycles. We assessed
analysis methods exploring the performance of different peak callers SEACR and MACS2, peak
calling parameters, and inclusion versus exclusion of duplicates, as a consensus regarding
these has been lacking in the field.

On the whole, H3K27ac CUT&Tag successfully recovers many features of ENCODE
ChIP-seq and captures the most significant ENCODE peaks. However, overall CUT&Tag only
recovers up to half of ENCODE peaks. Additionally, CUT&Tag appears to generate distinct
peak profiles that favor H3K27ac domains coinciding with open chromatin regions and does
not capture less significant ENCODE peaks, which are less enriched in open chromatin. It is
uncertain whether this is a result of CUT&Tag failing to capture some finer but nevertheless
relevant ChIP-seq peaks, or an indicator that ENCODE ChIP-seq may detect less relevant
H3K27ac domains that have lower incidence of open chromatin, an important feature of active
regulatory elements. Thus, although ENCODE ChIP-seq is often used as a dataset to
benchmark against, it is unclear exactly how well ENCODE data reflects the ground truth.
Investigation into new methods of chromatin profiling would significantly benefit from inclusion
of orthogonal approaches to mapping chromatin modifications and regulatory elements. It
would also be helpful to determine whether H3K27ac ChIP-seq peaks that are not captured
can be functionally validated. Benchmarking was attempted with massively parallel reporter
assay (MPRA) data40, but the most significant regulatory assay quantitative trait loci (raQTLs)
did not appear to be enriched in enhancer and promoter elements, and their coordinates could
not be used as proxies for their genomic locations. Thus currently available MPRA data cannot
serve this benchmarking purpose.

The capabilities of CUT&Tag likely also vary depending on histone mark, given the
better performance of H3K27me3 (Fig. 2d). Both current and comparison data suggest that
(despite only achieving a maximum of ~50% ENCODE coverage across all samples) this
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method performs better for methyl marks than for H3K27ac, and in the literature, the superiority
of CUT&Tag over ChIP-seq was demonstrated on methyl marks14. We noted that peak calling
parameters can greatly influence quality measures, such as FRiPs, and should be adjusted
depending on histone modification. Nevertheless, it is uncertain why H3K27ac did not yield
itself as well to CUT&Tag, and why it may be a more challenging mark to profile even when
using an HDACi. It would be interesting to see whether the same issues are encountered when
profiling other acetyl marks, which has not yet been systematically addressed.

Presence of high duplication rates could be a result of overamplification during library
preparation or over-sequencing. In either case duplicates can be removed without
compromising data quality. An advantage of high sequencing depths is sample saturation,
meaning that the vast majority of unique fragments present in each sample was recovered;
however, one intended advantage of CUT&Tag relative to methods such as ChIP-seq is the
ability to recover comparable or superior levels of information at lower sequencing depths.
Fractions of reads in ENCODE H3K27ac peaks were approximately equal with and without
duplicates, suggesting that they are evenly distributed. Consequently, duplicates made little to
no difference when calling peaks with SEACR, since genuine H3K27ac reads contributed to
peaks that would in any case be called without duplicates, and reads outside genuine peaks
did not meet the peak calling threshold. However, duplicates resulted in the detection of a
significant number of spurious peaks with MACS2, many of which fell into heterochromatic
regions, which should not be marked by H3K27ac5. Using fewer PCR cycles during library
preparation appears to modestly reduce duplication rates without significantly influencing
ENCODE capture.

Peak calling settings can have a significant effect on the perceived outcomes of
chromatin profiling experiments. In this study, multiple peak calling parameters were tested and
selected on the basis of precision and recall against matched ENCODE ChIP-seq profiles.
MACS2 and SEACR performed similarly in spite of the marked differences in peak definition
between the two peak callers. However, achieving optimal performance with MACS2 required
significantly more optimisation. Which approach is correct is debatable because there is no
strict definition as to what qualifies as a ‘peak’, but one concern is that peak calling with
SEACR might make it difficult to detect subtle changes in histone marks, due to its tendency to
call wider peaks and combine multiple potentially distinct H3K27ac domains into single peaks.
With regards to differences in precision, MACS2 was optimised specifically for ChIP-seq.
ChIP-seq samples are normally sequenced to much higher read depths and tend to possess
higher levels of background, which is why MACS2 is designed to identify signal in data with
high levels of noise27,41. In principle, CUT&Tag and CUT&RUN have reduced background as the
only DNA fragments that are released are those bound by the protein of interest14,42. For a peak
caller like MACS2, any off-target reads in samples with low background might be perceived as
legitimate peaks, and this may explain why the inclusion of duplicates gave rise to spurious
peaks. Notably, our analyses did not confirm higher signal-to-noise ratio for H3K27ac
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CUT&Tag compared to ENCODE ChIP-seq profiles. Rather we found H3K27ac CUT&Tag to
display higher noise, in contrast to what is seen for H3K27me3 and other methyl marks in our
analyses and previously reported by others. Whether this represents a general challenge for
CUT&Tag of histone acetylation marks remains to be explored further. In the future, more
specific peak calling methods designed for CUT&Tag data, such as the recently reported
method GoPeaks43, are likely to improve performance of CUT&Tag profiling and should be
included in comparisons for benchmarking analysis.

The lack of established metrics to standardise performance makes it challenging to
compare peak callers. Precision cutoffs are arbitrary and there is opportunity to significantly
increase recall at the expense of precision even within a predetermined boundary. Going
forward, it might be worth characterising the CUT&Tag peaks that could be obtained without
strict limits on precision to determine whether they could be legitimate peaks that are not
captured by H3K27ac ChIP-seq. For example, it has been suggested that the relatively low
correlation between CUT&RUN and ChIP-seq may be due to CUT&RUN’s superior ability to
map repetitive, difficult regions that are typically not covered by ChIP-seq44. There is some
indication of this as CUT&Tag and CUT&RUN samples processed with SEACR were far more
enriched in weak enhancers and weakly transcribed regions than ENCODE ChIP-seq, but
MACS2 ChromHMM profiles differed minimally from ENCODE and this analysis indicated that
this effect is more likely a result of peak caller selection rather than being intrinsic to CUT&Tag.
One limitation associated with the use of ChromHMM annotations is that chromatin states are
inferred on the basis of broad ENCODE ChIP-seq peaks, which introduces some circularity into
overlap analysis with ENCODE H3K27ac peaks. Thus, states which occur in CUT&Tag but not
in ENCODE H3K27ac are those that should in principle not contain the H3K27ac mark.
However, these annotations draw upon combinations of histone marks45, and still give some
indication as to where a particular modification might or might not be expected to occur.

The improved sensitivity of CUT&Tag compared to ChIP-seq is due to the use of pA-Tn5
to streamline library preparation through direct insertion of PCR sequencing adapters via in situ
tagmentation. However, its sensitivity is inherently limited by PCR, since pA-Tn5 inserts its
adapters in random orientations such that approximately half of the targets do not have
adapters in the correct orientation to amplify. In addition, PCR library preparation is highly
sensitive to size variations of amplicons. When two adjacent transposition events occur too far
apart, they will not amplify efficiently during PCR or sequencing cluster generation. However,
when they are too close, they will exponentially bias library coverage due to increased PCR
amplification and clustering efficiency of shorter fragments. One recent approach that may help
overcome some of these issues is linear amplification by Targeted Insertion of Promoters
(TIP-seq15,46). In TIP-seq, a pA-Tn5 fusion protein is used to insert a T7 RNA polymerase
promoter near sites occupied by transcription factor or histone mark of interest. The promoter
facilitates linear amplification of DNA in its vicinity using a T7 polymerase to create 1,000-fold
RNA copies of insertion sites. The distance between two transposition sites does not bias
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library preparation since only one T7 promoter is needed to amplify the site of interest. Linear
amplification generates greater fidelity and uniformity, as mistakes made during amplification
do not themselves become templates to exponentially propagate errors – this results in higher
mappability of single cell sequencing reads47. TIP-seq was shown to generate single cell
libraries with higher read coverage, greater library complexity, and contain lower background
with a higher proportion of unique, non-duplicated reads per cell compared to CUT&Tag46.
Comprehensive optimisation and benchmarking of this novel technique will be essential
moving forward.

Conclusions
CUT&Tag has been promoted as a more streamlined, cost-effective approach to chromatin
profiling, but despite a definite correspondence with ENCODE ChIP-seq, CUT&Tag consistently
achieves an ENCODE coverage ceiling of approximately 50%. Furthermore, the performance of
this method appears to vary by histone mark. Additional analysis will be required to better
characterise the inconsistencies between CUT&Tag and ENCODE ChIP-seq. Optimising
experimental parameters, our analysis established Abcam-ab4729 as the top-performing
antibody and demonstrated that the use of an HDACi does not improve H3K27ac CUT&Tag
performance. Duplicates can and should be discarded, particularly beyond a threshold at
which they start to contribute more off-target than on-target information. The optimal choice of
peak caller is debatable, but SEACR attains the best possible performance with very little
optimisation and is more impervious to identification of spurious peaks. There is also some
evidence that it calls peaks with greater consistency than MACS2, even on the basis of
poorer-quality reads and lower sequencing depths. We observe that fewer PCR cycles reduced
duplication rates, but at the expense of ENCODE recovery and capture. We hope that our
systematic optimisations of CUT&Tag will help to facilitate its more widespread adaptation in
the field and expedite its application in understanding the epigenetic causes and
consequences of complex diseases.

Methods

Biological materials
Human K562 cells were obtained from ATCC (Manassas, VA, Catalog #CCL-243) and cultured
according to the supplier’s protocol. Mycoplasma was tested to be negative for all cellular input
reported using Mycoplasma Detection Kit (Jena Bioscience PP-401) following manufacturer’s
instructions. The following antibodies were used: Guinea Pig anti-Rabbit IgG (Heavy & Light
Chain) Preabsorbed antibody (Antibodies-Online ABIN101961), H3K27me3 (Cell Signaling
Technology, 9733, Lot 14), H3K27ac (Abcam ab177178, Lot GR3202987-5), H3K27ac (Active
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Motif 39133, Lot 16119013), H3K27ac (Abcam ab4729, Lot G3374555-1), H3K72ac (Diagenode
C15410196, Lot A1723-0041D). The following histone deacetylase inhibitors were used:
Sodium butyrate (Merck B5887-250MG; used at 5 mM in CUT&Tag solutions with HDACi
treatment), Trichostatin A (Enzo Life Sciences BML-GR309-0001; used at 1 µM in CUT&Tag
solutions with HDACi treatment). The following commercial loaded protein A-Tn5 transposase
fusion protein (pA-Tn5) were used at recommended dilutions by the manufacturer: CUTANA™
pAG-Tn5 (Epicypher 15-1017; Lot 20142001-C1), or pA-Tn5 Transposase - loaded (Diagenode
C01070001; Lot 1/b/b).

CUT&Tag nuclei processing
Bench top CUT&Tag was performed as previously described
(https://www.protocols.io/view/bench-top-cut-amp-tag-bcuhiwt6)14. Exponentially growing
K562 cells were harvested, counted and centrifuged for 3 min at 600g at room temperature
(RT). 500,000 cells per condition were washed twice in 1 mL Wash Buffer (20 mM HEPES-KOH
pH 7.5, 150 mM NaCl, 0.5 mM Spermidine, 1x Protease inhibitor cocktail; Roche
11836170001). Nuclei were extracted by incubating cells for 10 minutes on ice in 200
µL/sample of cold Nuclei Extraction buffer (NE buffer: 20 mM HEPES-KOH pH 7.9, 10 mM KCl,
0.1% Triton X-100, 20% Glycerol, 0.5 mM Spermidine, 1x Protease Inhibitor cocktail). Following
incubation in NE buffer, nuclei were centrifuged for 3 min at 600g at RT, then resuspended in
100 µL cold NE buffer. Concanavalin A coated magnetic beads (Bangs Laboratories BP531)
were prepared as previously described 42and 11 μL of activated beads were added per sample
into PCR strip tubes and incubated at RT with gentle rocking for 10 min. Beads were placed on
a magnetic rack and unbound supernatant was discarded. Bead bound nuclei were
resuspended in 50 µL Dig-wash Buffer (20 mM HEPES pH 7.5, 150 mM NaCl, 0.5 mM
Spermidine, 1× Protease inhibitor cocktail, 0.05% Digitonin) with 2 mM EDTA and 0.1% BSA.
1:50/1:100/1:200 dilution of primary antibody was added, followed by a gentle vortex and brief
spin. Primary antibody incubation was conducted on a rotating platform overnight at 4°C.
Primary antibody solution was removed by placing the PCR tube on a magnetic rack, allowing
the solution to fully clear, then removing the supernatant. Next, the appropriate secondary
antibody, Guinea Pig anti-Rabbit IgG antibody for a rabbit primary antibody, was added at
1:100 in Dig-Wash buffer and incubated at RT with rotation for 30-60 min. Nuclei were washed
twice in 200 µL Dig-Wash buffer using a magnetic rack to remove unbound antibodies in
supernatant. Nuclei were resuspended in 50 µL Dig-med Buffer (20 mM HEPES pH 7.5, 300
mM NaCl, 0.5 mM Spermidine, 1× Protease inhibitor cocktail, 0.05% Digitonin), then 1:20
CUTANA™ pAG-Tn5 (Epicypher 15-1017), or 1:250 pA-Tn5 Transposase - loaded (Diagenode
C01070001) was added, gently mixed and spun down. pA-Tn5 binding occurred at RT for 1
hour on a rotating platform. To remove unbound pA-Tn5, nuclei were washed twice in 200 µL
Dig-med Buffer. Nuclei were then resuspended in 50 µL Tagmentation buffer (10 mM MgCl2 in
Dig-med Buffer) and incubated at 37°C for 1 hour to activate transposase enzymatic activity.
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Next, either column or sodium dodecyl sulfate (SDS) based DNA extraction was
conducted.

Column DNA extraction
To stop tagmentation and solubilise DNA fragments, the following were added to each 50 µL

sample: 1.68 µL 0.5M ethylenediaminetetraacetic acid (EDTA), 0.5 µL 10% SDS, 0.44 µL 10
mg/mL Proteinase K. The samples were briefly mixed and vortexed at full speed for ~2
seconds, then incubated at 55°C for 1 hour to digest the DNA. After a quick spin, tubes were
placed on a magnetic rack and solution was allowed to clear. Supernatant was carefully
transferred to a new 1.5 mL microcentrifuge tube, then sample processing protocol of ChIP
DNA Clean & Concentrator (Zymo Research D5205) was executed, eluting with 21 µL Elution
Buffer.

SDS-based DNA extraction
Following tagmentation at 37°C for 1 hour, PCR tubes were placed on a magnetic rack and
solution was allowed to clear. Supernatant was removed carefully, then beads were

resuspended thoroughly in 50 µL [tris(hydroxymethyl)methylamino]propanesulfonic acid (TAPS)
Buffer (10 mM TAPS pH 8.5, 0.2 mM EDTA) at RT. Tubes were returned to a magnetic rack and
supernatant was removed. 5 µL SDS Release Buffer (10 mM TAPS pH 8.5, 0.1% SDS) was
added at RT to each sample and tubes were vortexed at full speed for ~10 seconds. After a
quick spin, ensuring no beads are stuck to the side of the tubes, samples were incubated at
58°C for 1 hour. Next, 15 µL SDS Quench Buffer (0.67% Triton-X 100 in Molecular grade H2O)
was added at RT and vortexed at maximum speed to neutralise the SDS prior to PCR library
amplification.

CUT&Tag PCR-based library amplification
For library amplification in PCR tube format, 21 µL DNA was combined with 2 µL of universal i5
and uniquely barcoded i7 primer48 where a different barcode was used for each sample that
was intended to be pooled together. 25 µL NEBNext HiFi 2× PCR Master mix was added, then
the sample was gently mixed through and spun down. The sample was placed in a
Thermocycler with heated lid following these conditions: 72°C for 5 min (gap filling); 98°C for 30
s; 11-15 cycles of 98°C for 10 s and 63°C for 30 s; final extension at 72°C for 1 min; and hold
at 4°C. Following PCR, bead cleanup was conducted by addition of 1.1x Ampure XP beads
(Beckman Coulter). Library and beads were mixed thoroughly, then spun down and incubated
at RT for 10-15 min. Beads were gently washed twice with freshly prepared 80% ethanol using
a magnetic rack, then the library was eluted with 20-30 µL 10 mM Tris-HCl pH 8.0 at RT.
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Sequencing
Final library size distributions were assessed by Agilent 2100 Bioanalyser and Agilent 4200
TapeStation for quality control before sequencing. Libraries were pooled to achieve equal
representation of the desired final library size range (equimolar pooling based on
Bioanalyser/TapeSation signal in the 150bp to 800bp range). Paired-end Illumina sequencing
using the HiSeq 4000 PE75 strategy was conducted on barcoded libraries at Imperial
Biomedical Research Centre (BRC) Genomics Facility following manufacturer’s protocols.

qPCR
Quantitative real-time PCR (qPCR) was performed following manufacturer’s instructions
(https://www.thermofisher.com/order/catalog/product/4309155#/4309155). Positive and
negative control primers were designed based on ENCODE peaks ranked highest to lowest,
respectively.

Gene Control type Primer sequence (5’→3’)

ARHGAP22 Positive
Fw: GCTGAGAAGGAAGGGCTTAAT
Rv: GCTAGTCGGGATGATTTACAGG

COX4I2 Positive
Fw: GGATACCTCCAAGGCTTCATAC
Rv: GTAGTCACAGAACTAGGGTTGG

MTHFR Positive
Fw: GGGTGGAACATCTCGAACTATC
Rv: GAACGAAGCCAGAGGAAACA

ZMYND8 Positive
Fw: GGATCTACAAACTTCCCTTCCC
Rv: GAAGGCATCGCAGGCTAATA

KLHL11 Negative
Fw: GACAAGCAGTGGCTCTACAA
Rv: CAGTATCGGAAAGAAGCCTACC

SIGIRR Negative
Fw: CCAAGCTCAGACCTCAAAGT
Rv: TTCTTGCTGTGCTCGTATCC

Table 1. qPCR primer sequences. Control primer sequences based on ENCODE peaks.

Levels of H3K27ac CUT&Tag binding signal was determined by qPCR amplification carried out
with the QuantStudio™ 5 Real-Time PCR System (ThermoFisher A34322) using the Standard
Curve experiment type and SYBR Green Master Mix (ThermoFisher 4309155). Each qPCR
condition was conducted with triplicate repeats and the data was analysed using the 2^-ΔΔCT
method where each CUT&Tag sample was normalised to qPCR levels of K562 genomic DNA
(gDNA) run in parallel. qPCR results were calculated using the equation:
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2 −(𝐶𝑇 𝑠𝑎𝑚𝑝𝑙𝑒  − 𝐶𝑇 𝑔𝐷𝑁𝐴)

Data processing
Sequencing data was processed according to the CUT&Tag Data Processing and Analysis
Tutorial (https://yezhengstat.github.io/CUTTag_tutorial), with some alterations. Raw sequencing
reads were trimmed using TrimGalore (version 0.6.6;
https://github.com/FelixKrueger/TrimGalore) to remove adapters and low-quality reads. The
trimmed fastq files were aligned to hg19 using bowtie (version 2.2.9; 49) with the following
parameters: --local --very-sensitive --no-mixed --no-discordant --phred33 -I 10 -X 700. PCR
duplicates were removed using Picard (version 2.6.0; http://broadinstitute.github.io/picard/),
and bam and fragment bed files from original and deduplicated alignments were generated
using samtools (version 1.3.1;50) and bedtools (version 2.25.0;51), selecting for fragment lengths
under 1000 bp. Peaks were called using MACS2 (Model-based Analysis of ChIP-seq; version
2.1.4) 41 and SEACR (Sparse Enrichment Analysis for CUT&RUN; version 1.3)24. MACS2 peaks
were called as follows: macs2 callpeak -t input_bam -n sample_name -f BAMPE -g hs -q 1e-5
--keep-dup all –nolambda --nomodel --outdir out_dir. SEACR peaks were called on the basis of
fragment bedgraph files generated with bedtools genomecov. SEACR peaks were called as
follows: SEACR_1.3.sh input_bedgraph 0.01 non stringent out_name. In both bases other
combinations of peak calling settings were also tested (see Results). All peaks overlapping
with hg19 blacklisted regions (ENCODE file ID: ENCFF000KJP) were removed prior to
downstream analysis. Motifs were identified using HOMER (Hypergeometric Optimization of
Motif EnRichment; version 4.10;36) as follows: findMotifsGenome.pl input_bed hg19 out_dir
-size 1000. Downsampled bam files were generated by random sampling of original bam files
as follows, where {x} represents the seed value and {y} the fraction of total read pairs to be
sampled: samtools view -bs {x}.{y} input_bam > downsampled_bam.

Sample comparisons
Published CUT&Tag14 and CUT&RUN18 samples were obtained as fastq files from the European
Nucleotide Archive (https://www.ebi.ac.uk/ena/browser/home; study accessions
PRJNA512492 and PRJNA522731, respectively) and processed as described above.
Peak-level correlations were obtained with the DiffBind package (version 3.0.15;28).
Genome-wide sample correlations were carried out using bedtools multicov against hg19 split
into 500bp bins. Read counts were then quantile-normalised and rounded to the nearest
integer, and heatmaps plotted in R52 based on sample-by-sample Pearson correlations of the
processed counts. Fingerprint plots were generated from sample and ENCODE bam files using
deepTools (version 3.5.1;53) plotFingerprint, setting genome-wide bin sizes of 1000bp.
Heatmaps were plotted using deeptools computeMatrix and plotHeatmap to visualise read
enrichment around hg19 transcription start sites (obtained from NCBI RefSeq) and peak
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summits. For these ends, ENCODE H3K27ac and H3K27me3 samples (ENCSR000AKP and
ENCSR000EWB, respectively) were run through the ENCODE histone ChIP-seq pipeline
(https://github.com/ENCODE-DCC/chip-seq-pipeline2), with replicates downsampled to 1
million reads per sample and pooled together. Likewise, paired-end CUT&Tag sample bam files
were downsampled to 2 million fragments (4 million reads) and only the first of the read mates
mapped to yield a total of 2 million mapped reads. As a weighted average of precision and
recall, F1-scores were calculated as follows, where tp, fp, and fn represent the numbers of true
positive, false positive, and false negative CUT&Tag peaks, respectively:

𝐹1 = 𝑡𝑝
𝑡𝑝 + 1/2(𝑓𝑝+ 𝑓𝑛)

Downstream data analysis
Downstream analysis, including quality control, ENCODE benchmarking, and regulatory
element annotation, were performed in R52. Peaks falling into mitochondrial chromosomes were
removed using BRGenomics (version 1.1.3; https://mdeber.github.io) prior to downstream
analysis. Peak overlaps were determined with the GenomicRanges package (version 1.38.0;30).
Reads in peaks were calculated using the chromVAR package (version 1.8.0;54). Regulatory
element annotation was performed using ChIPseeker (version 1.22.1;55), after annotating peaks
with genes using the TxDb.Hsapiens.UCSC.hg19.knownGene database (version 3.2.2;56).
ChromHMM annotations assigned with genomation (version 1.18.0; 33). Functional enrichment
analysis was carried out with clusterProfiler (version 3.13.4;57), using the “enrichGO” function.

Data and code availability
Fastq and peak files are available through GEO under accession GSE199611. Analysis and
code used in this study is available in the dedicated GitHub repository:
https://github.com/neurogenomics/CUT_n_TAG

Generalised code for performing comparisons between genome-wide histone modification
profiles has been made available as an R package via github at
https://github.com/neurogenomics/EpiCompare.
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Supplementary Materials

Supplementary Tables

Sample
Total

Fragments
Mapped

Fragments
Alignment

Rate
Duplicatio

n Rate
Unique

Fragments

Active Motif 34,467,445 34,246,137 99.36% 98.45% 531,603

Diagenode 1:100 13,970,902 13,884,243 99.38% 89.15% 1,506,260

Diagenode 1:50 90,812,784 83,771,834 92.25% 96.36% 3,051,389

Abcam-ab177178 7,911,303 7,839,891 99.10% 55.49% 3,489,316

Abcam-ab4729 146,621,482 134,760,046 91.91% 96.94% 4,123,523

H3K27me3 9,912,113 9,823,687 99.11% 57.12% 4,211,994

H3K27ac Kaya-Okur
SRR8383507 (C&T)

2,471,858 2,293,087 92.77% 20.18% 1,830,390

H3K27ac Kaya-Okur
SRR8383508 (C&T)

3,320,561 3,088,577 93.01% 14.87% 2,629,278

H3K27ac Meers
SRR8581604 (C&R)

6,777,196 5,523,031 81.49% 7.30% 5,120,026

H3K27me3 Kaya-Okur
SRR11074238 (C&T)

3,945,633 3,806,740 96.48% 1.43% 3,752,159

H3K27me3 Kaya-Okur
SRR11074239 (C&T)

4,159,984 4,051,439 97.39% 1.36% 3,996,319

H3K27me3 Meers
SRR9073702 (C&R)

9,047,596 8,668,833 95.81% 1.58% 8,531,865

Supplementary Table 1. Sequencing and alignment results of CUT&Tag and CUT&RUN data.
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Sample

Peaks called

SEACR MACS2

No duplicates With duplicates No duplicates With duplicates

Active Motif 2,497 3,005 1,762 95,223

Diagenode (1:100) 7,065 7,570 6,717 180,149

Diagenode (1:50) 11,094 11,364 19,672 167,500

Abcam-ab177178 15,458 15,838 9,688 93,453

Abcam-ab4729 12,657 12,924 24,076 275,284

H3K27me3 103,953 104,914 86,965 219,783

H3K27ac Kaya-Okur
SRR8383507 (C&T)

6,415 6,451 12,922 18,105

H3K27ac Kaya-Okur
SRR8383508 (C&T)

8,044 8,076 18,190 22,789

H3K27ac Meers
SRR8581604 (C&R)

16,974 16,983 20,589 23,325

H3K27me3 Kaya-Okur
SRR11074238 (C&T)

115,643 115,627 81,134 83,054

H3K27me3 Kaya-Okur
SRR11074239 (C&T)

117,329 117,282 87,095 89,009

H3K27me3 Meers
SRR9073702 (C&R)

100,777 100,842 81,465 82,758

Supplementary Table 2. Numbers of peaks called with SEACR and MACS2, with and without
duplicates included.
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Supplementary Figures

Supplementary Figure 1. Quality control metrics of all tested samples and published data.
a, Fragment length distributions; b, Percentages of reads in peaks called with SEACR or
MACS2, with or without duplicates, as well as ENCODE H3K27ac ChIP-seq narrow peaks and
ENCODE H3K27me3 ChIP-seq broad peaks; c, Percentages of sample reads in ENCODE
H3K27ac ChIP-seq and ATAC-seq peaks.
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Supplementary Figure 2. Optimisation of peak calling with MACS2, showing precision vs
recall when varying a, q value; b, p value; c, q value with local lambda deactivated; d, p value
with local lambda deactivated.
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Supplementary Figure 3. Read correlations across a, 500bp genome-wide bins and b,
ENCODE H3K27me3 ChIP-seq peak ranges; capture of ENCODE c, H3K27ac and d,
H3K27me3 ChIP-seq peaks by CUT&Tag and CUT&RUN peaks called with SEACR or MACS2,
with or without duplicates; F-measures of precision and recall of tested H3K27ac antibodies at
e, maximum read depth and f, 8 million paired-end reads each.
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Supplementary Figure 4. Results of qPCR amplification of genes falling into most significant
ENCODE H3K27ac peak regions (positive controls; green) versus least significant (negative
controls; purple) in CUT&Tag experiments performed with top-performing antibodies, with and
without HDAC inhibitor sodium butyrate (NaB; 5 mM).
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Supplementary Figure 5. a, Regulatory element assignment to CUT&Tag, CUT&RUN, and
ENCODE peaks. Chromatin state assignments of: b, all peaks, called with SEACR or MACS2,
c, CUT&Tag peaks specific to duplicate-containing samples, d, CUT&Tag peaks not in
ENCODE H3K27ac. e, Heatmaps showing average read coverage around hg19 transcription
start sites, with all samples subsampled to 2 million reads.
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