Single-deletion-mutant, third-generation rabies viral vectors allow nontoxic retrograde targeting of projection neurons with greatly increased efficiency

Lei Jin ${ }^{1}$, Heather A. Sullivan ${ }^{1}$, Mulangma Zhu ${ }^{1}$, Nicholas E. Lea ${ }^{1}$, Thomas K. Lavin ${ }^{1}$, Makoto Matsuyama ${ }^{1}$, YuanYuan Hou ${ }^{1}$, and lan R. Wickersham ${ }^{1 *}$

1. McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
*Correspondence.

SUMMARY

Rabies viral vectors have become important components of the systems neuroscience toolkit, allowing both direct retrograde targeting of projection neurons and monosynaptic tracing of inputs to defined postsynaptic populations, but the rapid cytotoxicity of firstgeneration ($\Delta \mathrm{G}$) vectors limits their use to short-term experiments. We recently introduced second-generation, double-deletion-mutant ($\Delta \mathrm{GL}$) rabies viral vectors, showing that they efficiently retrogradely infect projection neurons and express recombinases effectively but with little to no detectable toxicity; more recently, we have shown that $\Delta \mathrm{GL}$ viruses can be used for monosynaptic tracing with far lower cytotoxicity than the first-generation system. Here we introduce third-generation ($\Delta \mathrm{L}$) rabies viral vectors, which, like first-generation vectors, have only a single gene deleted from their genomes (in this case the viral polymerase gene L) but which appear to be as nontoxic as second-generation ones: using longitudinal structural and functional two-photon imaging in mouse visual cortex in vivo, we found that they did not kill labeled neurons or noticeably perturb their response properties over the entire months-long courses of imaging. Although third-generation vectors are therefore phenotypically very similar to second-generation ones, we show that they have the major advantage of growing to much higher titers, and this key difference results in 25\% 525% increased numbers of retrogradely labeled neurons in vivo. These $\Delta \mathrm{L}$ rabies viral vectors therefore constitute a new state of the art for minimally perturbative, pathwayspecific expression of recombinases and transactivators in mammalian neurons selected on the basis of their axonal projections. Because replication of deletion-mutant rabies viruses within complementing cells is precisely the process that underlies monosynaptic tracing, the higher replication efficiency of this new class of rabies viral vectors furthermore suggests the potential to provide the foundation of an improved nontoxic monosynaptic tracing system.

INTRODUCTION

Since their introduction to neuroscience in 2007 (Wickersham et al., 2007a; Wickersham et al., 2007b), recombinant rabies viral vectors have become widely-adopted tools in neuroscience, allowing "monosynaptic tracing" of direct inputs to genetically-targeted starting postsynaptic neuronal populations (Jin et al., 2021b; Wall et al., 2010; Wickersham et al., 2007b) as well as simple retrograde targeting of projection neurons when injected at the sites of these projection neurons' axonal arborizations (Chatterjee et al., 2018; Wickersham et al., 2007a). These vectors are now used in a large number of laboratories worldwide and have contributed to many high-impact studies of a wide variety of neural systems (Foster et al., 2021; Miyamichi et al., 2011; Reardon et al., 2016; Schwarz et al., 2015; Siu et al., 2021; Smith et al., 2021; Stephenson-Jones et al., 2016; Wu et al., 2021; Yao et al., 2021).

Because first generation (" $\Delta \mathrm{G}$ ") rabies viral vectors (which have only the glycoprotein gene G deleted from their genomes) are cytotoxic (Chatterjee et al., 2018; Jin et al., 2021a; Jin et al., 2021b; Wickersham et al., 2007a), we recently introduced second-generation, " $\Delta \mathrm{GL}$ " rabies viral vectors, which have both the glycoprotein gene G and the viral polymerase gene L (for "large" protein) deleted from their genomes (Chatterjee et al., 2018). Because the viral polymerase is absolutely required for transcription of all genes
from the rabies viral genome as well as for replication of the viral genome itself (Albertini et al., 2011; Finke and Conzelmann, 2005; Horwitz et al., 2020; Morin et al., 2013; Ogino and Green, 2019; Te Velthuis et al., 2021), this additional deletion, by design, reduces gene expression to a minimal level (provided by the few starting copies of the polymerase protein that are copackaged in each viral particle) that appears to be completely harmless to the "infected" cells. Because transgene expression is reduced by the same degree, we inserted the genes for Cre and Flpo recombinase, of which even low levels of expression are sufficient to cause neuroscientifically-useful downstream effects such as expression of fluorophores or calcium indicators in labeled cells (Chatterjee et al., 2018). We originally showed that these $\Delta \mathrm{GL}$ vectors are useful tools for retrograde targeting of projection neurons (Chatterjee et al., 2018), and they have since been used as such for applications including optogenetics and transcriptomic profiling (Ren et al., 2021; Roy et al., 2021; Tasic et al., 2018). More recently, we have also shown that $\Delta G L$ vectors can be complemented in vivo by expression of both G and L in trans, yielding a second-generation monosynaptic tracing system with far lower cytotoxicity than the first-generation version (Jin et al., 2021a).

Here we show that deletion of L alone appears to make rabies viral vectors as nontoxic as $\Delta G L$ ones, with labeled neurons surviving for at least months with apparently unperturbed visual response properties. We find that these $\Delta \mathrm{L}$ vectors have a major growth advantage over $\Delta \mathrm{GL}$ ones in cell culture, attaining much higher titers in complementing cells in culture. This higher replication efficiency translates into the practical advantage of retrogradely labeling many more projection neurons when injected into these neurons' target sites in vivo.

RESULTS

Construction and characterization of $\Delta \mathrm{L}$ rabies virus

We began by constructing rabies viral vectors with only the polymerase gene deleted and characterized their gene expression levels and growth dynamics in cell culture (Figure 1). Beginning with the genome plasmid of a $\Delta \mathrm{GL}$ virus (Chatterjee et al., 2018), we reinserted the native glycoprotein gene in its original location, followed by the gene for Cre recombinase (codon-optimized for mouse (Koresawa et al., 2000)) in an additional transcriptional unit, then produced infectious virus by standard techniques (see Methods). We then compared the gene expression levels of the resulting virus, RV $\Delta \mathrm{L}-\mathrm{Cr}$, to those of first- and secondgeneration versions (RVAG-Cre and RVAGL-Cre, respectively) in cell culture (HEK 293T/17 cells) using immunostaining for Cre as well as for the viral nucleoprotein, the highest-expressed rabies viral protein.

As shown in Figure 1A-D, whereas the first-generation ($\Delta \mathrm{G}$) virus expressed high levels of nucleoprotein (which accumulated in cytoplasmic inclusions) and Cre (which localized to the nuclei), the $\Delta \mathrm{GL}$ and ΔL viruses had very low expression levels of both Cre and nucleoprotein, with the amount of label for these proteins appearing much more similar to that seen in uninfected control cells than in cells infected with the $\Delta \mathrm{G}$ virus. We also found similarly low transgene expression levels for $\Delta \mathrm{L}$ and $\Delta \mathrm{GL}$ viruses expressing EGFP (Figure S1). However, just as we found previously for $\Delta \mathrm{GL}$ viruses (Chatterjee et al., 2018), the Cre expressed by RV $\Delta \mathrm{L}$-Cre was sufficient to result in bright labeling of Cre reporter cells (bottom row in panels A-D).

These results led us to predict that $\Delta \mathrm{L}$ viruses would be as nontoxic as $\Delta G L$ ones, because of their similarly low expression levels, and also that they would be similarly able to recombine reporter alleles in vivo in order to allow downstream expression of useful transgene products such as fluorophores, activity indicators, or opsins.

It remained to be seen, however, whether $\Delta \mathrm{L}$ viruses would have any particular advantage over $\Delta \mathrm{GL}$ ones for purposes of retrogradely targeting neurons. Specifically, if they could not be produced at significantly higher titers, they could be expected to label similar numbers of projection neurons, making $\Delta \mathrm{L}$ vectors a mere curiosity of purely academic interest and with no relevance to neuroscientists. However, if they could be grown to much higher titers than $\Delta \mathrm{GL}$ vectors, that could be expected to translate to the ability to retrogradely label many more projection neurons, a desirable characteristic indeed for a tool for retrograde targeting.

To examine this, we directly compared the ability of $\Delta \mathrm{L}$ virus to replicate in complementing cells with that of $\Delta G L$ and ΔG viruses (Figure 1E-F). We infected cell lines expressing L, G, or both with the three different generations of virus, at two different multiplicities of infection (MOI, measured in infectious units per cell): either very low (MOI = 0.01, "multi-step growth curves" (Gomme et al., 2010; Wang and Bushman, 2006)) or high (MOI = 1, "single-step growth curves". Following a one-hour incubation in the presence of the
viruses, we washed the cells twice with DPBS and applied fresh medium, then collected supernatant samples every 24 hours for five days after infection, then titered the samples on reporter cells.

As seen in Figure 1E-F, the results were clear: whereas the $\Delta \mathrm{GL}$ virus (on cells expressing both G and L) never accumulated to titers higher than $2.37 \mathrm{e} 6 \mathrm{iu} / \mathrm{mL}$ in either experiment, the $\Delta \mathrm{L}$ virus grew to maximal titers of $6.51 \mathrm{e} 6 \mathrm{iu} / \mathrm{mL}$ (at MOI of 0.01) and $1.96 \mathrm{e} 7 \mathrm{iu} / \mathrm{mL}$ (at MOI of 1) on the same cell line (expressing both G and L) and considerably higher (maximal titers of $1.31 \mathrm{e} 7 \mathrm{iu} / \mathrm{mL}$ at $\mathrm{MOI}=0.01$ and 2.60 e 7 $\mathrm{iu} / \mathrm{mL}$ at $\mathrm{MOI}=1$) on cells expressing L alone. The $\Delta \mathrm{G}$ virus grew to similarly high (or slightly higher, in the $\mathrm{MOI}=1$ case) titers to the $\Delta \mathrm{L}$ one: $6.83 \mathrm{e} 6 \mathrm{iu} / \mathrm{mL}$ at $\mathrm{MOI}=0.01$ and $3.03 \mathrm{e} 7 \mathrm{iu} / \mathrm{mL}$ at $\mathrm{MOI}=1$, suggesting that single-deletion-mutant rabies viruses may in general be easier to make at high titers than viruses with multiple deleted genes. In non-complementing cells, by contrast, no such replication of any of these viruses ($\Delta \mathrm{L}, \Delta \mathrm{GL}$, or $\Delta \mathrm{G}$) occurred (Figure S2).

These findings that a $\Delta \mathrm{L}$ rabies virus could be grown to 11 -fold higher titer than a matched $\Delta \mathrm{GL}$ one led us to predict that $\Delta \mathrm{L}$ viruses would be superior tools for retrograde targeting in vivo, because their much higher titers would result in retrograde infection of many more projection neurons.

Retrograde targeting in vivo

To test this prediction, we made matched preparations of $\Delta \mathrm{GL}$ and $\Delta \mathrm{L}$ viruses expressing either Cre or Flpo (mouse-codon-optimized Flp recombinase (Raymond and Soriano, 2007)), then injected each of the four viruses in the somatosensory thalami of reporter mice (Ai14 (Madisen et al., 2010) for the Cre viruses, Ai65F (Daigle et al., 2018) for the Flpo ones; both lines express tdTomato following recombination by the respective recombinase). We sacrificed the mice at either 7 days or 4 weeks after injection, sectioned and imaged the brains by confocal microscopy, and counted the numbers of retrogradely labeled cells in cortex. Figure 2 shows the results.

As seen in panels 2B-E, for both recombinases, and at both timepoints, the $\Delta \mathrm{L}$ viruses significantly outperformed the $\Delta G L$ ones. For the Flpo viruses, the difference was dramatic: at the 1 -week timepoint, the $\Delta \mathrm{L}$ virus labeled 24 times as many cells as the $\Delta \mathrm{GL}$ one (although this difference was not statistically significant due to high variance in the $\Delta \mathrm{L}$ cohort: single factor ANOVA, $\mathrm{p}=0.275, \mathrm{n}=8$ mice each group); by the 4 -week timepoint, the $\Delta \mathrm{L}$-Flpo virus had labeled 6.25 times as many cells as the $\Delta \mathrm{GL}$ counterpart, a difference that was extremely significant (single factor ANOVA, $\mathrm{p}=3.21 \mathrm{E}-04, \mathrm{n}=8$ mice each group). For the Cre viruses, the difference was smaller, presumably due a ceiling effect (see Discussion), but still highly significant: at 1 week, the $\Delta \mathrm{L}$-Cre virus had labeled 1.40 times as many cells as $\Delta \mathrm{GL}$-Cre (single factor ANOVA, $p=4.20 \mathrm{E}-03$; $\mathrm{n}=4$ mice each group); at the 4 -week timepoint, the $\Delta \mathrm{L}$-Cre virus had labeled 1.25 times as many cells as $\Delta \mathrm{GL}$-Cre (single factor ANOVA, $\mathrm{p}=7.38 \mathrm{E}-04, \mathrm{n}=4$ mice per group).

We also made some injections of RV $\Delta \mathrm{L}-\mathrm{Cre}$, in thalami of Ai14 mice, with the much longer survival times of 4 or 6 months (Fig 2F-G). The results at both of these longer survival times appeared very similar to those at the shorter ones. Consistent with extensive prior literature on corticothalamic neurons (Alitto and Usrey, 2003; Rockland, 2021; Rouiller and Welker, 2000) and with our previous results with corticothalamic injections of $\Delta \mathrm{G}$ and $\Delta \mathrm{GL}$ viruses (Chatterjee et al., 2018; Wickersham et al., 2007a), the cells labeled in cortex by both viruses at all timepoints were pyramidal neurons in layer 6 , with a few in layer 5 . Furthermore, labeled neurons all appeared morphologically normal even months after injection, with the fine processes of axons and dendrites, including individual spines (rightmost images in 2F-G) clearly visible and without blebbing or other obvious abnormalities.

As a further test of the flexibility of $\Delta \mathrm{L}$ vectors, we made a version expression the tetracycline transactivator (tTA) and injected it in the thalamus of Ai63 reporter mice (in which TRE-tight drives tdTomato expression) (Daigle et al., 2018). As seen in Figure S3, thousands of cortical thalamic cells were found retrogradely labeled at both 1 -week and 4 -week survival times, with no significant difference between the numbers at the two timepoints (single factor ANOVA, $\mathrm{p}=0.772, \mathrm{n}=4$ mice per group).

Longitudinal structural two-photon imaging in vivo

Because examining only postmortem tissue can be very misleading when attempting to determine whether a virus is nontoxic (see Jin et al. '21 (Jin et al., 2021a) for a detailed case study), we conducted longitudinal two-photon imaging of RV ΔL-labeled neurons in vivo (Figure 3). We injected either RV Δ GL-Cre (Chatterjee et al., 2018) or RV $\Delta \mathrm{L}$-Cre in primary visual cortex (V1) of Ai14 reporter mice, then imaged the resulting tdTomato-expressing neurons at or near the injection site beginning 7 days after injection and continuing every 7 or 14 days until 16 weeks postinjection. As seen in Figure 3, the results using the two viruses were very similar. For both $\Delta \mathrm{GL}$ and $\Delta \mathrm{L}$ viruses, the numbers of visibly labeled neurons increased significantly
between 1 week and 4 weeks postinjection (Figure 3D, G), by 56.27% for $\Delta G L$ and by 67.77% for ΔL (paired t-tests, $\mathrm{p}=1.319 \mathrm{E}-04$ for $\Delta \mathrm{GL}, \mathrm{p}=1.003 \mathrm{E}-05$ for $\Delta \mathrm{L}, \mathrm{n}=8 \mathrm{FOVs}$ for each virus). Also for both viruses, the numbers of visibly labeled neurons remained nearly completely constant from the 4 -week timepoint onward through all remaining imaging sessions (Figure 3E, H) (with the number of labeled cells at the 4-week timepoint being not significantly different than that at the 12 -week timepoint for the $\Delta \mathrm{L}$ virus (paired t -test, p $=0.1327, n=8$ FOVs) and slightly (0.5%) lower for the $\Delta G L$ virus (paired t-test, $p=0.0056, n=8$ FOVs). See File S3 for all counts and statistical comparisons; see also Video S1 for a rendering of a group of $\Delta \mathrm{L}$ labeled neurons at 2 weeks and again at 10 weeks.

Longitudinal functional two-photon imaging in vivo

We went on to examine the functional properties of RVDL-labeled neurons in vivo. As for the structural imaging (see above), we injected RV $\Delta \mathrm{L}-$ Cre in the primary visual cortices of reporter mice, in this case mice that express the calcium indicator GCaMP6s (Chen et al., 2013) after Cre recombination (Figure 4). Beginning one week later, we began imaged the calcium signals in the labeled neurons in a series of imaging sessions that continued until 16 weeks postinjection, in the awake mice viewed visual stimuli consisting of drifting gratings of different orientations and frequencies. Just as we found previously for $\Delta G L$ viruses (Chatterjee et al., 2018; Jin et al., 2021b), we found no signs of dysfunction in cells labeled by the thirdgeneration vector for as long as we followed them (Figure 4; see also Figures S4 and S5. See File S4 for all counts and statistical comparisons and Video S2 for an example of calcium responses in a group of cortical neurons 16 weeks after injection of RV $\Delta L-C r e$).

DISCUSSION

Here we have shown that deletion of just the polymerase gene renders rabies viral vectors nontoxic, like second-generation ($\Delta \mathrm{GL}$) vectors, but makes them much more efficient at replicating within complementing cells in culture. This ability to be grown to much higher titers results in significantly increased transduction of projection neurons within a given pathway. This more comprehensive access to projection neurons will increase the yield and efficacy of systems neuroscience experiments that depend on the retrograde targeting approach.

In the corticothalamic pathway that we have examined here, the advantage of a $\Delta \mathrm{L}$ vector over the $\Delta G L$ equivalent was clearest in the case of the Flpo-expressing versions, with the ΔL vector labeling 6.25 times as many neurons as the $\Delta \mathrm{GL}$ one did at four weeks postinjection. This ratio is of the same order of magnitude as the ratio of the titers of the injected Flpo viruses (14.4: see Methods). By contrast, for the Creexpressing versions, the advantage of the $\Delta \mathrm{L}$ vector over the $\Delta \mathrm{GL}$ one was more modest, labeling 1.25 times as many cells, even though the ratio of the titers of these Cre vectors was even higher (20.5). Because the absolute numbers of retrogradely labeled neurons, as well as the titers, were much higher for the Cre viruses than for the corresponding Flpo ones, we presume that the smaller advantage of the $\Delta \mathrm{L}$ version seen in this case was because of a ceiling effect, with the Δ GL-Cre virus already labeling most of the available neurons in this pathway.

One could certainly argue that the much higher titers that we are easily able to obtain with ΔL vectors could also, in theory, potentially be achieved with $\Delta \mathrm{GL}$ vectors, if enough effort were put into generating and testing producer cell lines expressing both G and L in order to find one that expressed the two genes at just the right ratio and levels. In practice, however, this hypothetical future research effort does not detract from the fact that the best currently-existing preparations of $\Delta \mathrm{L}$ rabies viral vectors label many more cells than do $\Delta \mathrm{GL}$ ones, making them the better choice for retrograde targeting applications.

We note that, although here we have only demonstrated the use of $\Delta \mathrm{L}$ rabies viral vectors in mice, they are also highly likely to work in a wide variety of mammalian species, because, apart from their shorter RNA genomes, the structural properties of second- and third-generation rabies viral particles are identical to those of first-generation ones, which have been successfully used in diverse mammalian species including rats (Cruz et al., 2021), cats (Connolly et al., 2012; Liu et al., 2013), ferrets (Hasse et al., 2019), and macaques (Bragg et al., 2017; Briggs et al., 2016; Lyon et al., 2010; Nassi and Callaway, 2006, 2007; Nassi et al., 2006; Siu et al., 2021; Yarch et al., 2017) (and even in fish (Dohaku et al., 2019; Satou et al., 2021; Zhu et al., 2009) and frogs (Faulkner et al., 2021)).

Our findings here that $\Delta \mathrm{L}$ rabies viruses have extremely low expression levels and do not replicate within (or spread beyond, in vivo) non-complementing cells are entirely consistent with similar findings in cell culture in a recent report on an L-deficient rabies virus encoding firefly luciferase (Nakagawa et al., 2017).

A note about safety: our results strongly suggest that $\Delta \mathrm{L}$ rabies viruses are unable to replicate in the absence of complementation and moreover are harmless to any cells that they transduce. However, a mixture of ΔL and ΔG viruses could pose a safety risk, because such viruses will be mutually complementary. Care must therefore be taken to avoid contamination between $\Delta \mathrm{L}$ and $\Delta \mathrm{G}$ constructs - either packaged viruses or the genome plasmids used to make them - which would have the potential to create a selfcomplementing replication-competent mixture (see Hidaka et al. (Hidaka et al., 2018) for an example of such a self-complementing mixture).

Finally, we have recently shown (Jin et al., 2021b) that second-generation ($\Delta \mathrm{GL}$) rabies viral vectors can spread transsynaptically when complemented by provision of both G and L in trans. That is, complementation of an L-deficient rabies virus (in that case, a G- and L-deficient virus that is also complemented by G) allows it to spread beyond initially infected cells in vivo. It is therefore reasonable to infer that provision of L in trans should allow third-generation, ΔL rabies viral vectors to spread beyond initially infected cells, given that we have shown here that such complementation in cell culture allows $\Delta \mathrm{L}$ viruses to replicate very efficiently. We have also shown here, with the longitudinal two-photon imaging of labeled neurons, that $\Delta \mathrm{L}$ viruses do not spread beyond initially infected cells in vivo in the absence of complementation. Collectively, our results therefore suggest the outlines of a third-generation monosynaptic tracing system based on ΔL vectors complemented with L expression in trans. However, genetic targeting of a ΔL vector to specific starting cell types might appear elusive: in the first- and second-generation systems (Jin et al., 2021b; Wickersham et al., 2007b), this targeting is achieved by packaging the rabies viral particles with an avian retroviral envelope protein (EnvA) instead of its own envelope glycoprotein, so that they can only infect cells that have been engineered to express EnvA's cognate receptor. On the face of it, this pseudotyping strategy requires that G be deleted from the rabies viral genome, because expression of G by the virus within the EnvA-expressing producer cells would result in the production of virions with membranes populated by a mixture of EnvA and the rabies viral glycoprotein. If this challenge could be overcome, our present findings that $\Delta \mathrm{L}$ viruses replicate more readily in complementing cells, which is the fundamental process central to monosynaptic tracing (Wickersham et al., 2007b), suggest that a third-generation monosynaptic tracing system could be more efficient than the second-generation one.

METHODS

All experiments involving animals were conducted according to NIH guidelines and approved by the MIT Committee for Animal Care. Mice were housed 1-5 per cage under a normal light/dark cycle for all experiments.

Cloning

The third-generation rabies viral vector genome plasmids $p R V \Delta L-5 C r e, p R V \Delta L-5 F l p o$, and $p R V \Delta L-5 t T A$ (Addgene 182964, 182965, and 182966) (the " 5 " denoting the position of the transgene relative to the other genes in the viral genome) was made by replacing the mCre gene in pRV Δ GL-4Cre (Chatterjee et al., 2018) (Addgene 98039) with the SAD B19 glycoprotein gene from pCAG-B19G (Chatterjee et al., 2018) (Addgene 59921) and either the mCre, Flpo (from pRV Δ G-4Flpo (Addgene 98040)), or tTA (from pAAV-syn-FLEX-splitTVA-EGFP-tTA (Liu et al., 2017) (Addgene 100798)) gene, separated by endogenous rabies viral transcriptional stop and start signals, using seamless cloning (InFusion (Takara) or HiFi (NEB)).

The piggyBac vector pB-TREtight-EGFP (Addgene 182967) was made by cloning the TRE-tight element from pAAV-TREtight-mTagBFP2-B19G (Liu et al., 2017) and the EGFP gene into pB-CAG-TEVp-IRES-mCherry (Addgene 174377) in place of the CAG-TEVp-IRES-mCherry sequences using HiFi seamless cloning (NEB).

The piggyBac plasmid pB-CAG-B19G-IRES-EGFP-WPRE-BGHpA (Addgene 178517) was made by cloning the CAG promoter from pCAG-B19G (Addgene 59921), the SAD B19 L gene, the EMCV IRES (Gallardo et al., 1997), the mCherry (Shaner et al., 2004) gene, and the woodchuck post-transcriptional regulatory element and bovine growth hormone polyadenylation signal from pCSC-SP-PW-GFP (Addgene 12337), into PB-CMV-MCS-EF1-Puro (System Biosciences \#PB510B-1).

Cell lines

The BHK-B19G3 cell line, expressing the SAD B19 strain rabies virus glycoprotein gene, was made by resorting BHK-B19G2 cells (Wickersham et al., 2010) on a BD Facs Aria cell sorter and retaining the
brightest 2\% of EGFP-positive cells as well as the next-brightest 18\%. Following the sort, both populations were expanded and refrozen, then thawed and tested for their efficacy at supporting replication of $\Delta \mathrm{G}$ virus; the second-brightest population ("BHK-B19G3_2") was found to result in higher titers and is referred to here as BHK-B19G3.

The BHK-B19L cell line, expressing the SAD B19 strain rabies virus polymerase gene, was made by transfecting BHK-21 cells (ATCC CCL-10) with pCAG-hypBase (Jin et al., 2021a) and pB-CAG-B19L-IRES-mCherry-WPRE-BGHpA (Jin et al., 2021b) using Lipofectamine 2000 (Thermo Fisher 11668019), then expanding the cells and sorting on a FACS Aria sorter (BD) to collect the brightest 5%, as well as the next brightest 5%, of mCherry-expressing cells. The two collected populations were expanded and refrozen, then thawed and tested for their efficacy at supporting replication of $\Delta \mathrm{L}$ virus; the second-brightest population ("BHK-B19L_2") was found to result in higher titers and is referred to here as BHK-B19L.

The BHK-B19L-G cell line, expressing the SAD B19 strain rabies virus polymerase and glycoprotein genes, was made by transfecting BHK-B19L cells (see above) with pCAG-hypBase and pB-CAG-B19G-IRES-EGFP-WPRE-BGHpA (see above), then expanding and sorting on a BD FACS Aria, keeping the brightest 5%, as well as the next brightest 5%, of EGFP-expressing cells which also expressed mCherry. The sorted cells were expanded and refrozen, then thawed and tested for their efficacy at supporting replication of $\Delta G L$ virus; the brightest population ("BHK-B19L-G_1") was found to result in higher titers and is referred to here as BHK-B19L-G.

The 293T-TREtight-EGFP cell line for titering tTA-expressing viruses was made by transfecting HEK 293T/17 cells with pCAG-hypBase and pB-TREtight-EGFP (described above), then expanded and sorted on a BD FACS Aria, excluding the brightest 2% of EGFP cells, and keeping four of the next brightest EGFP cell populations. The sorted cells were expanded, frozen, and then thawed for testing their efficacy at titering $\Delta \mathrm{L}$-tTA virus. The fourth-brightest tranche of cells was used for subsequent titering of $\Delta \mathrm{L}$-tTA virus.

Rabies virus production and titering

The first-generation vector RV $\Delta G-4$ Cre, the second-generation vectors RV $\Delta G L-4 C r e$ and $R V \Delta G L-4 F I p o$, and the third-generation vectors RV $\Delta \mathrm{L}-5 \mathrm{Cre}, \mathrm{RV} \Delta \mathrm{L}-5 \mathrm{Flpo}$, and $\mathrm{RV} \Delta \mathrm{L}-5 \mathrm{tTA}$ were rescued as described previously (Chatterjee et al., 2018) using genome plasmids pRV Δ GL-4Cre, pRV Δ GL-4Flpo, pRV $\Delta L-5 C r e$, $p R V \Delta L-5 F l p o$, and $p R V \Delta L-5 t T A$, respectively. For simplicity, these viruses are referred to in this manuscript as RV $\Delta \mathrm{G}-\mathrm{Cre}, \mathrm{RV} \Delta \mathrm{GL}-\mathrm{Cre}, \mathrm{RV} \Delta \mathrm{GL}-\mathrm{Flpo}$, RV $\Delta \mathrm{L}-\mathrm{Cre}, \mathrm{RV} \Delta \mathrm{L}-\mathrm{Flpo}$, and RV , L-tTA, omitting the numbers denoting the positions of the transgenes within the viral genomes. Rescue supernatants were collected and filtered as described (Wickersham and Sullivan, 2015), titered on the reporter cell lines 293T-FLEX BC (for Cre viruses) or 293T-F14F15S-BC (for Flpo viruses) (Jin et al., 2021a) as described (Wickersham et al., 2010), then used to infect BHK-B19G3, BHK-B19L-G, or BHK-B19L cells (see above) at multiplicities of infection ranging from 0.1 to 1 . Supernatants from these "P1" plates were collected and titered as described (Wickersham and Sullivan, 2015); in some cases, these were used for a similar second passage ("P2"). Purification and concentration of either P1 or P2 supernatants was as described (Wickersham et al., 2010), with supernatants treated with benzonase (Sigma 71206) (25 minute incubation at $37^{\circ} \mathrm{C}$ with 30 units $/ \mathrm{ml}$ at) before ultracentrifugation. Concentrated viruses were aliquoted and frozen at $-80^{\circ} \mathrm{C}$. Rabies viruses were titered on reporter cells (293T-FLEX-BC for Cre viruses, 293T-F14F15S-BC for Flpo viruses, 293T-TREtight-EGFP (see above) for RVAL-tTA) as described (Wickersham et al., 2010), using a LUNA-II cell counter (Logos Biosystems) instead of a hemocytometer for counting cells, and in some cases using two-fold (as opposed to ten-fold) dilution series for more precise comparisons of titers.

Immunostaining, imaging, and flow cytometry of cultured cells

For anti-nucleoprotein and anti-Cre staining (for Figure 1): HEK 293T/17 (ATCC 11268) cells were plated on poly-L-lysine-coated coverslips in 24 -well plates, then infected the following day with serial dilutions of RV $\Delta \mathrm{G}-4$ Cre (Chatterjee et al., 2018), RV $\Delta \mathrm{GL}-4$ Cre (Chatterjee et al., 2018), or RV $\Delta L-5 C r e$. Three days after infection, cells were fixed with 2% paraformaldehyde, washed repeatedly with blocking/permeabilization buffer (0.1% Triton-X (Sigma) and 1\% bovine serum albumin (Sigma) in PBS), then labeled with a 1:100 dilution of anti-nucleoprotein monoclonal antibody blend (Light Diagnostics Rabies DFA Reagent, EMD Millipore 5100) as well as a 1:250 dilution of rabbit anti-Cre polyclonal antibody (Millipore Sigma 69050) followed by a 1:200 dilution of Alexa Fluor 594-conjugated donkey anti-rabbit secondary (Jackson Immuno 711-585-152).

For anti-EGFP staining (for Figure S1), HEK cells were plated as above, then infected the following day with serial dilutions of RV Δ G-4EGFP (Wickersham et al., 2010), RV Δ GL-4EGFP (Chatterjee et al., 2018), or RV $\Delta L-5 E G F P$, with immunostaining three days postinfection, using a 1:1000 dilution of chicken anti-GFP polyclonal antibody (Aves Labs, GFP-1020) and a 1:500 dilution of Alexa Fluor 594-conjugated donkey anti-chicken secondary antibody (Jackson Immuno 703-585-155).

Immunostained cells on coverslips were mounted on slides using Prolong Diamond Antifade mounting medium (Thermo P36970) and imaged on a Zeiss LSM 900 confocal microscope using a 20x objective.

For matched flow cytometric analysis of immunostained cells, cells were plated in 24 -well plates without poly-L-lysine-coated coverslips but otherwise immunostained as described above, then analyzed on an LSR II flow cytometer (BD) using FACS Diva software (BD). Histograms displayed in Figure 1 were smoothed using the FACS Diva "Smooth histogram" setting.

Viral growth analysis

For determining growth curves, BHK-B19G3, BHK-B19L-G, and BHK-B19L cells (see above) were plated in 10 cm plates coated in poly-L-lysine in normal medium (10% fetal bovine serum (VWR 16777-014) and antibiotic-antimycotic (Thermo 15240096) in DMEM (Thermo 11995073)) (Wickersham et al., 2010). The following day, cells were infected with RVAG-4Cre(B19G), RV $\Delta \mathrm{GL}-4 \operatorname{Cre}$ (B19G), or RV $\Delta L-5 C r e(B 19 G)$ at an MOI of either 1 (for single-step growth curves) or 0.01 (for multi-step growth curves), with viruses diluted in normal medium at a total volume of 2 ml per plate, with each condition in triplicate. Following a one-hour incubation, the virus-containing medium was aspirated, plates were washed twice in DPBS (Thermo 14190144), and 12 ml fresh medium was added to each plate before they were returned to the incubator. Every 24 hours for the following five days, 200μ l of supernatant was collected from each plate; these supernatant samples were filter-sterilized using a 96 -well 0.45 um PVDF filter plate (Millipore MSHVN4510), then frozen at $-80^{\circ} \mathrm{C}$ before all samples were thawed and titered on HEK 293T-FLEX-BC cells as described above.

Mouse strains

The Cre-dependent tdTomato reporter line Ai14 (Madisen et al., 2010) was purchased from Jackson Laboratory (catalog \# 007914). The Flp-dependent tdTomato reporter line Ai65F was obtained by crossing the Cre- and Flp-dependent tdTomato double-reporter line Ai65D (Madisen et al., 2015) (Jackson Laboratory 021875) to the Cre deleter line Meox2-Cre (Tallquist and Soriano, 2000) (Jackson Laboratory 003755), then breeding out the Meox2-Cre alleel. An equivalent Ai65F line, made using a different Cre deleter line, was described in Daigle et al. '18 (Daigle et al., 2018) and is now available from Jackson Laboratory (catalog \# 032864). The tTA-dependent tdTomato reporter line Ai63 (Daigle et al., 2018) was a generous gift from Hongkui Zeng and Tanya Daigle. Mice used for the functional two-photon imaging experiments were crosses of the Cre- and tTA-dependent GCaMP6s line Ai94D (Jackson Laboratory 024104) with the Cre-dependent tTA line ROSA:LNL.:TTA (Wang et al., 2008) (Jackson Laboratory 011008). All mice were maintained in a C57BL/6J (Jackson Laboratory 000664) background.

For experiments, adult mice of both sexes were used, of the following mouse strains. For retrograde targeting using Cre-expressing viruses (Figure 2) and structural two-photon imaging (Figure 3): Ai14 heterozygotes. For retrograde targeting using Flpo-expressing viruses (Figure 2): Ai65F heterozygotes. For retrograde targeting using RVAL-TTA (Figure S3): Ai63 heterozygotes. For functional two-photon imaging (Figures 4, S4, and S5): Ai94D x ROSA:LNL:tTA double homozygotes.

Stereotaxic injections

200 nl of rabies virus was injected into either somatosensory thalamus (VPM/Po, for figure 2) or primary visual cortex (for two-photon experiments) of anesthetized adult mice using a stereotaxic instrument (Stoelting Co., 51925) and a custom injection apparatus consisting of a hydraulic manipulator (Narishige, MO-10) with headstage coupled via custom adaptors to a wire plunger advanced through pulled glass capillaries (Drummond, Wiretrol II) back-filled with mineral oil and front-filled with viral vector solution (Lavin et al., 2019). We have described this injection system in detail previously. Injection coordinates for VPM/Po were: anteroposterior (AP) $=-1.82 \mathrm{~mm}$ with respect to (w.r.t.) bregma, lateromedial $(\mathrm{LM})=+1.54 \mathrm{~mm}$ w.r.t bregma, dorsoventral (DV) $=-3.15 \mathrm{~mm}$ w.r.t the brain surface; injection coordinates for V 1 cortex were: AP $=-2.70 \mathrm{~mm}$ w.r.t. bregma, $\mathrm{LM}=2.50 \mathrm{~mm}$ w.r.t. bregma, $\mathrm{DV}=-0.26 \mathrm{~mm}$ w.r.t the brain surface .

For mice to be used for two-photon imaging, a 3 mm craniotomy was opened over primary visual cortex (V1). Glass windows composed of a 3mm-diameter glass coverslip (Warner Instruments CS-3R) glued (Optical Adhesive 61, Norland Products) to a 5mm-diameter glass coverslip (Warner Instruments CS-5R) were affixed over the craniotomy with Metabond (Parkell) after virus injection.

For the $\Delta \mathrm{GL}$ vs. $\Delta \mathrm{L}$ experiments (Figure 2), the four viruses were produced in parallel for direct comparison, and RV $\Delta \mathrm{L}-\mathrm{Cre}(6.16 \mathrm{E}+10 \mathrm{i} . \mathrm{u} . / \mathrm{ml})$ or $\mathrm{RV} \Delta \mathrm{GL}-\mathrm{Cre}$ (3.01E+09 i.u./ml) was injected into Ai14
 (het) mice. For the 4 -month and 6 -month experiments for Figure 2, RV $\Delta \mathrm{L}-\mathrm{Cre}(1.66 \mathrm{E}+10$ i.u. $/ \mathrm{ml}$) was injected into Ai14 (het) mice. For Figure S3, RV $\Delta \mathrm{L}-\mathrm{tTA}(3.63 \mathrm{E}+10 \mathrm{iu} / \mathrm{ml}$) was injected into Ai63 (het) mice.

For two-photon structural experiments (Figure 3), RV Δ GL-Cre (1.19E $+10 \mathrm{iu} / \mathrm{ml}$) or RV $\Delta \mathrm{L}-\mathrm{Cre}$ $(1.66 \mathrm{E}+10 \mathrm{iu} / \mathrm{ml}$ diluted to $1.19 \mathrm{E}+10 \mathrm{iu} / \mathrm{ml}$ for matching to $\mathrm{RV} \Delta \mathrm{GL}-\mathrm{Cre}$) was injected into Ai14 (het) mice. For two-photon functional experiments in Figure 4, RV $\Delta L-C r e ~(2.61 \mathrm{E}+10 \mathrm{iu} / \mathrm{ml})$ was injected into homo/homo Ai94D x ROSA:LNL:tTA mice.

Perfusions, histology, and confocal imaging

1 week to 6 months (see main text) after injection of rabies virus, anesthetized mice were transcardially perfused with 4% paraformaldehyde. Brains were postfixed overnight in 4% paraformaldehyde in PBS on a shaker at $4^{\circ} \mathrm{C}$ and cut into $50 \mu \mathrm{~m}$ coronal sections on a vibrating microtome (Leica, VT-1000S). Sections were collected sequentially into 6 tubes containing cryoprotectant, so that each tube contained every sixth section, then frozen at $-20^{\circ} \mathrm{C}$. Sections to be imaged were washed to remove cryoprotectant, then mounted with Prolong Diamond Antifade mounting medium (Thermo Fisher P36970) and imaged on a confocal microscope (Zeiss, LSM 900). To ensure that the confocal images included in the figures are representative of each group, the images were taken after the counts were conducted, and the mouse with the next higher number of labeled neurons than the average number for its group was selected for confocal imaging.

Quantification of retrograde targeting

Coronal sections between 0.43 mm anterior and 4.07 mm posterior to bregma were imaged with an epifluorescence microscope for cell counting (Zeiss, Imager.Z2). Due to the high density of retrogradely labeled tdTomato neurons in the cortex at the injection site (VPM/Po), cells were counted using the Analyze Particle function in ImageJ (size in micron^2: 20-400; circularity: 0.20-1.00). Only one of the six series of sections (i.e., every sixth section: see above) was counted for each mouse. P-values for all comparisons were obtained using single-factor ANOVAs.

Structural two-photon imaging and image analysis

Beginning seven days after injection of each rabies virus and recurring at the subsequent indicated timepoints (see main text) up to a maximum of 16 weeks following rabies virus injection, fields of view (FOVs) were imaged on a Prairie/Bruker Ultima IV In Vivo two-photon microscope driven by a Spectra Physics Mai-Tai Deep See laser with a mode locked Ti:sapphire laser emitting at a wavelength of 1020 nm for excitation of tdTomato. In order to distinguish individual labeled neurons, FOVs were chosen some distance away from the area of brightest tdTomato labeling. Two well-separated areas were chosen in each mouse. For each imaging session, mice were reanesthetized and mounted via their headplates to a custom frame, with ointment applied to protect their eyes and with a handwarmer maintaining body temperature. Imaging parameters were as follows: image size 512×512 pixels ($282.6 \mu \mathrm{~m} \times 282.6 \mu \mathrm{~m}$), 0.782 Hz frame rate, dwell time $4.0 \mu \mathrm{~s}, 2 \mathrm{x}$ optical zoom, Z-stack step size $1 \mu \mathrm{~m}$. Image acquisition was controlled with Prairie View 5.4 software. Laser power exiting the 20x water-immersion objective (Zeiss, W plan-apochromat, NA 1.0) varied between 20 and 65 mW depending on focal plane depth (Pockels cell value was automatically increased from 450 at the top section of each stack to 750 at the bottom section). For the example images of labeled cells, maximum intensity projections (stacks of 100-200 $\mu \mathrm{m}$) were made with ImageJ software. Cell counting was automated using the "Analyze Particles" function in ImageJ. Plots of cell counts were made with Prism 9 (GraphPad Software, San Diego, California).

Functional two-photon imaging and image analysis

For functional two-photon imaging of RV $\Delta \mathrm{L}$-Cre-labeled cells, FOVs were slightly offset from the regions of brightest GCaMP6s label in left-hemisphere V1 in order to allow separate identification of individual cells. This imaging was performed using the same microscope ($5.356-\mathrm{Hz}$ frame rate, 1024X 128 pixels, 565.1
$\mu \mathrm{m} \times 565.1 \mu \mathrm{~m}$, dwell time $0.8 \mu \mathrm{~s}$, 1x optical zoom, scan angle 45 degree) with the same objective and laser (at 920 nm) as for the structural imaging experiments. Laser power at the objective ranged from 10 to 65 mW . Calcium imaging data were acquired in supragranular layers (100 to $200 \mu \mathrm{~m}$ deep). Surface vasculature provided coarse fiducial markers for finding the same FOVs in different imaging sessions. For these experiments, mice were awake and head-fixed. No behavioral training or reward was given. Visual stimuli were generated in Matlab (R2015R version) with custom software based on Psychtoolbox (http://psychtoolbox.org) and shown on the same LCD screen as in the widefield mapping experiments. Each condition consisted of 2 s of a full-field sine wave grating drifting in one direction, presented at 80% contrast with spatial frequency of 0.04 cycles/ degree, followed by 2 s of uniform mean luminance (gray). All permutations of 12 directions (30° steps) and 5 temporal frequencies ($1,2,4,8$ and 15 Hz) were shown, in randomized order. The complete set was repeated 10 times, for a total stimulation period of 40 min per FOV per session. Cells were then manually segmented, and single-cell fluorescence traces were extracted by averaging the fluorescence of all pixels masking the soma, using ImageJ (version 2-0-0-rc-69) software. The mean $\Delta F / F$ over the full 2 s of each stimulus condition was used to calculate orientation tuning curves, with background fluorescence (F) in $\Delta F / F$ taken as the value of the trace immediately preceding a condition, averaged over all conditions. The raw calcium traces from cells within individual FOVs (not across FOVs, given different imaging conditions across animals and time points) were sorted by mean fluorescence. Randomly colored ROI view images were created by suite2p (https://www.suite2p.org). For 'tuned' cells in Figure 4 panels F and G, the counts are based on all imaged neurons' individual tuning curves, plotted in MATLAB; any cell showing response to a preferred orientation (including narrowly tuned neurons and broadly tuned neurons) at any temporal frequency ($1 \mathrm{~Hz}, 2 \mathrm{~Hz}, 4 \mathrm{~Hz}, 8 \mathrm{~Hz}$, or 15 Hz) was counted manually as a tuned cell.

RESOURCE AVAILABILITY

All cell counts and statistical analyses are provided in Supplemental Information. The novel plasmids described in this paper have been deposited with Addgene with the accession numbers given in Methods.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online.
A preprint version of this paper is available on bioRxiv.

ACKNOWLEDGMENTS

We thank Tanya Daigle and Hongkui Zeng for sharing the Ai63 mouse line, Jacque Ip, Chloe Delepine, and Mriganka Sur for sharing mice, Chang Liu for assistance with optimizing MATLAB code for analysis of the functional imaging data, and Sara Beach for helpful suggestions on the manuscript. Research reported in this publication was supported by BRAIN Initiative awards RF1MH120017, U01MH106018, U01MH114829, and U19MH114830 from the National Institute of Mental Health.

AUTHOR CONTRIBUTIONS

L.J., N.E.L., M.M., Y.H., and M.Z. cloned constructs; H.A.S. produced viruses with assistance from L.J. and M.Z.; H.A.S. conducted cell culture assays and immunocytochemistry; L.J., N.E.L., and T.K.L. performed surgeries; L.J. and M.Z. performed histology and confocal imaging; L.J. performed two-photon imaging; L.J., M.Z., T.K.L., and N.E.L. managed mouse breeding; I.W. planned and supervised all work; I.W. and L.J. wrote the manuscript with input from the other authors.

DECLARATION OF INTERESTS

I.R.W. is a consultant for Monosynaptix, LLC, advising on design of neuroscientific experiments.

REFERENCES

Albertini, A.A., Ruigrok, R.W., and Blondel, D. (2011). Rabies virus transcription and replication. Advances in virus research 79, 1-22.
Alitto, H.J., and Usrey, W.M. (2003). Corticothalamic feedback and sensory processing. Curr Opin Neurobiol 13, 440-445.
Bragg, E.M., Fairless, E.A., Liu, S., and Briggs, F. (2017). Morphology of visual sector thalamic reticular neurons in the macaque monkey suggests retinotopically specialized, parallel stream-mixed input to the lateral geniculate nucleus. J Comp Neurol 525, 1273-1290.
Briggs, F., Kiley, C.W., Callaway, E.M., and Usrey, W.M. (2016). Morphological Substrates for Parallel Streams of Corticogeniculate Feedback Originating in Both V1 and V2 of the Macaque Monkey. Neuron 90, 388-399.
Chatterjee, S., Sullivan, H.A., MacLennan, B.J., Xu, R., Hou, Y., Lavin, T.K., Lea, N.E., Michalski, J.E., Babcock, K.R., Dietrich, S., et al. (2018). Nontoxic, double-deletion-mutant rabies viral vectors for retrograde targeting of projection neurons. Nat Neurosci 21, 638-646.
Chen, T.W., Wardill, T.J., Sun, Y., Pulver, S.R., Renninger, S.L., Baohan, A., Schreiter, E.R., Kerr, R.A., Orger, M.B., Jayaraman, V., et al. (2013). Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295-300.
Connolly, J.D., Hashemi-Nezhad, M., and Lyon, D.C. (2012). Parallel feedback pathways in visual cortex of cats revealed through a modified rabies virus. J Comp Neurol 520, 988-1004.
Cruz, A.M., Kim, T.H., and Smith, R.J. (2021). Monosynaptic Retrograde Tracing From Prelimbic Neuron Subpopulations Projecting to Either Nucleus Accumbens Core or Rostromedial Tegmental Nucleus. Front Neural Circuits 15, 639733.
Daigle, T.L., Madisen, L., Hage, T.A., Valley, M.T., Knoblich, U., Larsen, R.S., Takeno, M.M., Huang, L., Gu, H., Larsen, R., et al. (2018). A Suite of Transgenic Driver and Reporter Mouse Lines with Enhanced Brain-Cell-Type Targeting and Functionality. Cell 174, 465-480 e422.
Dohaku, R., Yamaguchi, M., Yamamoto, N., Shimizu, T., Osakada, F., and Hibi, M. (2019). Tracing of Afferent Connections in the Zebrafish Cerebellum Using Recombinant Rabies Virus. Front Neural Circuits 13, 30.
Faulkner, R.L., Wall, N.R., Callaway, E.M., and Cline, H.T. (2021). Application of Recombinant Rabies Virus to Xenopus Tadpole Brain. eNeuro.
Finke, S., and Conzelmann, K.K. (2005). Replication strategies of rabies virus. Virus Res.
Foster, N.N., Barry, J., Korobkova, L., Garcia, L., Gao, L., Becerra, M., Sherafat, Y., Peng, B., Li, X., Choi, J.H., et al. (2021). The mouse cortico-basal ganglia-thalamic network. Nature 598, 188-194.

Gallardo, H.F., Tan, C., and Sadelain, M. (1997). The internal ribosomal entry site of the encephalomyocarditis virus enables reliable coexpression of two transgenes in human primary T lymphocytes. Gene Ther 4, 1115-1119.
Gomme, E.A., Faul, E.J., Flomenberg, P., McGettigan, J.P., and Schnell, M.J. (2010). Characterization of a single-cycle rabies virus-based vaccine vector. Journal of virology 84, 2820-2831.
Hasse, J.M., Bragg, E.M., Murphy, A.J., and Briggs, F. (2019). Morphological heterogeneity among corticogeniculate neurons in ferrets: quantification and comparison with a previous report in macaque monkeys. J Comp Neurol 527, 546-557.
Hidaka, Y., Lim, C.K., Takayama-Ito, M., Park, C.H., Kimitsuki, K., Shiwa, N., Inoue, K.I., and Itou, T. (2018). Segmentation of the rabies virus genome. Virus Res 252, 68-75.
Horwitz, J.A., Jenni, S., Harrison, S.C., and Whelan, S.P.J. (2020). Structure of a rabies virus polymerase complex from electron cryo-microscopy. Proc Natl Acad Sci U S A 117, 2099-2107.
Jin, L., Matsuyama, M., Sullivan, H.A., Zhu, M., Lavin, T.K., Hou, Y., Lea, N.E., Pruner, M.T., Ferdínez, M.L.D., and Wickersham, I.R. (2021a). Rabies virus with a destabilization domain added to its nucleoprotein spreads between neurons only if the domain is removed. bioRxiv, 550640.
Jin, L., Sullivan, H.A., Zhu, M., Lavin, T.K., Matsuyama, M., Lea, N.E., Xu, R., Hou, Y., Rutigliani, L., Pruner, M., et al. (2021b). Long-term labeling and imaging of synaptically-connected neuronal networks in vivo using nontoxic, double-deletion-mutant rabies viruses. bioRxiv, 2021.2012.2004.471186.
Koresawa, Y., Miyagawa, S., Ikawa, M., Matsunami, K., Yamada, M., Shirakura, R., and Okabe, M. (2000). Synthesis of a new Cre recombinase gene based on optimal codon usage for mammalian systems. J Biochem 127, 367-372.
Lavin, T.K., Jin, L., and Wickersham, I.R. (2019). Monosynaptic tracing: a step-by-step protocol. J Chem Neuroanat, 101661.

Liu, K., Kim, J., Kim, D.W., Zhang, Y.S., Bao, H., Denaxa, M., Lim, S.A., Kim, E., Liu, C., Wickersham, I.R., et al. (2017). Lhx6-positive GABA-releasing neurons of the zona incerta promote sleep. Nature 548, 582587.

Liu, Y.J., Ehrengruber, M.U., Negwer, M., Shao, H.J., Cetin, A.H., and Lyon, D.C. (2013). Tracing inputs to inhibitory or excitatory neurons of mouse and cat visual cortex with a targeted rabies virus. Curr Biol 23, 1746-1755.
Lyon, D.C., Nassi, J.J., and Callaway, E.M. (2010). A disynaptic relay from superior colliculus to dorsal stream visual cortex in macaque monkey. Neuron 65, 270-279.
Madisen, L., Garner, A.R., Shimaoka, D., Chuong, A.S., Klapoetke, N.C., Li, L., van der Bourg, A., Niino, Y., Egolf, L., Monetti, C., et al. (2015). Transgenic mice for intersectional targeting of neural sensors and effectors with high specificity and performance. Neuron 85, 942-958.
Madisen, L., Zwingman, T.A., Sunkin, S.M., Oh, S.W., Zariwala, H.A., Gu, H., Ng, L.L., Palmiter, R.D., Hawrylycz, M.J., Jones, A.R., et al. (2010). A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nature neuroscience 13, 133-140.
Miyamichi, K., Amat, F., Moussavi, F., Wang, C., Wickersham, I., Wall, N.R., Taniguchi, H., Tasic, B., Huang, Z.J., He, Z., et al. (2011). Cortical representations of olfactory input by trans-synaptic tracing. Nature 472, 191-196.
Morin, B., Kranzusch, P.J., Rahmeh, A.A., and Whelan, S.P. (2013). The polymerase of negative-stranded RNA viruses. Current opinion in virology 3, 103-110.
Nakagawa, K., Kobayashi, Y., Ito, N., Suzuki, Y., Okada, K., Makino, M., Goto, H., Takahashi, T., and Sugiyama, M. (2017). Molecular Function Analysis of Rabies Virus RNA Polymerase L Protein by Using an L Gene-Deficient Virus. J Virol 91.
Nassi, J.J., and Callaway, E.M. (2006). Multiple circuits relaying primate parallel visual pathways to the middle temporal area. J Neurosci 26, 12789-12798.
Nassi, J.J., and Callaway, E.M. (2007). Specialized circuits from primary visual cortex to V2 and area MT. Neuron 55, 799-808.
Nassi, J.J., Lyon, D.C., and Callaway, E.M. (2006). The parvocellular LGN provides a robust disynaptic input to the visual motion area MT. Neuron 50, 319-327.
Ogino, T., and Green, T.J. (2019). Transcriptional Control and mRNA Capping by the GDP Polyribonucleotidyltransferase Domain of the Rabies Virus Large Protein. Viruses 11.
Raymond, C.S., and Soriano, P. (2007). High-efficiency FLP and PhiC31 site-specific recombination in mammalian cells. PLoS One 2, e162.
Reardon, T.R., Murray, A.J., Turi, G.F., Wirblich, C., Croce, K.R., Schnell, M.J., Jessell, T.M., and Losonczy, A. (2016). Rabies Virus CVS-N2c(DeltaG) Strain Enhances Retrograde Synaptic Transfer and Neuronal Viability. Neuron 89, 711-724.
Ren, W., Centeno, M.V., Wei, X., Wickersham, I., Martina, M., Apkarian, A.V., and Surmeier, D.J. (2021). Adaptive alterations in the mesoaccumbal network after peripheral nerve injury. Pain 162, 895-906.
Rockland, K.S. (2021). A Closer Look at Corticothalamic "Loops". Front Neural Circuits 15, 632668.
Rouiller, E.M., and Welker, E. (2000). A comparative analysis of the morphology of corticothalamic projections in mammals. Brain Res Bull 53, 727-741.
Roy, D.S., Zhang, Y., Aida, T., Choi, S., Chen, Q., Hou, Y., Lea, N.E., Skaggs, K.M., Quay, J.C., Liew, M., et al. (2021). Anterior thalamic dysfunction underlies cognitive deficits in a subset of neuropsychiatric disease models. Neuron 109, 2590-2603 e2513.
Satou, C., Neve, R.L., Oyibo, H.K., Zmarz, P., Huang, K.-H., Bouldoires, E.A., Mori, T., Higashijima, S.-i., Keller, G.B., and Friedrich, R.W. (2021). A viral toolbox for conditional and transneuronal gene expression in zebrafish. bioRxiv, 2021.2003.2025.436574.
Schwarz, L.A., Miyamichi, K., Gao, X.J., Beier, K.T., Weissbourd, B., DeLoach, K.E., Ren, J., Ibanes, S., Malenka, R.C., Kremer, E.J., et al. (2015). Viral-genetic tracing of the input-output organization of a central noradrenaline circuit. Nature.
Shaner, N.C., Campbell, R.E., Steinbach, P.A., Giepmans, B.N., Palmer, A.E., and Tsien, R.Y. (2004). Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22, 1567-1572.
Siu, C., Balsor, J., Merlin, S., Federer, F., and Angelucci, A. (2021). A direct interareal feedback-tofeedforward circuit in primate visual cortex. Nat Commun 12, 4911.
Smith, M.L., Asada, N., and Malenka, R.C. (2021). Anterior cingulate inputs to nucleus accumbens control the social transfer of pain and analgesia. Science 371, 153-159.

Stephenson-Jones, M., Yu, K., Ahrens, S., Tucciarone, J.M., van Huijstee, A.N., Mejia, L.A., Penzo, M.A., Tai, L.H., Wilbrecht, L., and Li, B. (2016). A basal ganglia circuit for evaluating action outcomes. Nature 539, 289-293.
Tallquist, M.D., and Soriano, P. (2000). Epiblast-restricted Cre expression in MORE mice: a tool to distinguish embryonic vs. extra-embryonic gene function. Genesis 26, 113-115.
Tasic, B., Yao, Z., Graybuck, L.T., Smith, K.A., Nguyen, T.N., Bertagnolli, D., Goldy, J., Garren, E., Economo, M.N., Viswanathan, S., et al. (2018). Shared and distinct transcriptomic cell types across neocortical areas. Nature 563, 72-78.
Te Velthuis, A.J.W., Grimes, J.M., and Fodor, E. (2021). Structural insights into RNA polymerases of negative-sense RNA viruses. Nat Rev Microbiol 19, 303-318.
Wall, N.R., Wickersham, I.R., Cetin, A., De La Parra, M., and Callaway, E.M. (2010). Monosynaptic circuit tracing in vivo through Cre-dependent targeting and complementation of modified rabies virus. P Natl Acad Sci USA.
Wang, G.P., and Bushman, F.D. (2006). A statistical method for comparing viral growth curves. J Virol Methods 135, 118-123.
Wang, L., Sharma, K., Deng, H.X., Siddique, T., Grisotti, G., Liu, E., and Roos, R.P. (2008). Restricted expression of mutant SOD1 in spinal motor neurons and interneurons induces motor neuron pathology. Neurobiol Dis 29, 400-408.
Wickersham, I.R., Finke, S., Conzelmann, K.K., and Callaway, E.M. (2007a). Retrograde neuronal tracing with a deletion-mutant rabies virus. Nature Methods 4, 47-49.
Wickersham, I.R., Lyon, D.C., Barnard, R.J., Mori, T., Finke, S., Conzelmann, K.K., Young, J.A., and Callaway, E.M. (2007b). Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron 53, 639-647.
Wickersham, I.R., and Sullivan, H.A. (2015). Rabies viral vectors for monosynaptic tracing and targeted transgene expression in neurons. Cold Spring Harb Protoc 2015, 375-385.
Wickersham, I.R., Sullivan, H.A., and Seung, H.S. (2010). Production of glycoprotein-deleted rabies viruses for monosynaptic tracing and high-level gene expression in neurons. Nature protocols 5, 595-606.
Wu, X., Morishita, W., Beier, K.T., Heifets, B.D., and Malenka, R.C. (2021). 5-HT modulation of a medial septal circuit tunes social memory stability. Nature 599, 96-101.
Yao, S., Wang, Q., Hirokawa, K.E., Ouellette, B., Ahmed, R., Bomben, J., Brouner, K., Casal, L., Caldejon, S., Cho, A., et al. (2021). A whole-brain monosynaptic input connectome to neuron classes in mouse visual cortex. bioRxiv, 2021.2009.2029.459010.
Yarch, J., Federer, F., and Angelucci, A. (2017). Local Circuits of V1 Layer 4B Neurons Projecting to V2 Thick Stripes Define Distinct Cell Classes and Avoid Cytochrome Oxidase Blobs. J Neurosci 37, 422-436.
Zhu, P., Narita, Y., Bundschuh, S.T., Fajardo, O., Scharer, Y.P., Chattopadhyaya, B., Bouldoires, E.A., Stepien, A.E., Deisseroth, K., Arber, S., et al. (2009). Optogenetic Dissection of Neuronal Circuits in Zebrafish using Viral Gene Transfer and the Tet System. Front Neural Circuits 3, 21.

FIGURES

Figure 1. Rabies virus with just the polymerase gene deleted ($\Delta \mathrm{L}$) is phenotypically similar to double-deletion-mutant ($\Delta \mathrm{GL}$) virus but replicates to much higher titers within complementing cells. (A-D) Deletion of just the polymerase gene L reduces transgene expression to levels that are very low but still sufficient to support reporter allele recombination in Cre reporter cells.
(A) Negative controls (uninfected cells). Top: Uninfected HEK 293T cells stained for rabies virus nucleoprotein (green) and for Cre (red). Histograms to right of panels show flow cytometric quantification of baseline fluorescence of uninfected cells in these channels. Bottom: Uninfected reporter cells which express mCherry following Cre recombination. Little signal is seen in these negative controls.
(B) Cells infected with a first-generation ($\Delta \mathrm{G}$) vector expressing Cre. Both Cre and N are expressed at very high levels, and infected Cre reporter cells brightly express mCherry (note that dilutions at which roughly half of cells were infected were chosen for this figure).
(C) Consistent with our previous findings (Chatterjee et al., 2018), expression of both nucleoprotein and Cre from a second-generation ($\Delta \mathrm{GL}$) vector is drastically reduced with respect to the first-generation vector, with expression levels comparable to those seen in negative controls. Despite this, the low Cre levels are still high enough to activate mCherry expression in reporter cells.
(D) A third-generation ($\Delta \mathrm{L}$) vector expresses nucleoprotein and Cre at similarly very low levels, but again Cre expression is nonetheless high enough to successfully activate mCherry expression in reporter cells. (E-F) Third-generation ($\Delta \mathrm{L}$) vectors grow to much high titers in cultured cells than second-generation ($\Delta \mathrm{GL}$) ones do.
(E) Viral titers in supernatants of complementing cells (expressing L, G, or both) infected with $\Delta \mathrm{L}, \Delta \mathrm{GL}$, or ΔG viruses at a multiplicity of infection (MOI) of 0.01 ("multi-step growth curves"), with supernatants collected every 24 hours for five days. Whereas a Δ GL virus only achieves $1.05 \mathrm{E}+06$ infectious units (i.u.)/ml over the duration of the experiment, the $\Delta \mathrm{L}$ virus grows to 6.2 -fold higher on the same cell line, and 12.5 -fold higher on a line expressing L alone. The highest ΔL titers obtained in this experiment were significantly higher than the highest obtained with a first-generation (ΔG) virus (single-factor ANOVA, $p=$ $3.24 \mathrm{E}-03, \mathrm{n}=3$ replicates per condition).
(F) Similarly, at a MOI of 1 ("single-step" growth curves), the $\Delta \mathrm{GL}$ virus titer peaks at $2.37 \mathrm{E}+06 \mathrm{i} . \mathrm{u} . / \mathrm{ml}$, whereas the peak titer of the $\Delta \mathrm{L}$ virus is $2.60 \mathrm{E}+07 \mathrm{i} . \mathrm{u} . / \mathrm{ml}, 11.0$-fold higher than that of the $\Delta \mathrm{GL}$ virus and not significantly different from that of the ΔG virus (single-factor ANOVA, $p=0.105, n=3$ replicates per condition). Graphs in (E-F) show means \pm s.e.m.

A

F

G at least six months. $=0.0608, \mathrm{n}=8$ mice per group).

Figure 2. Third-generation ($\Delta \mathrm{L}$) rabies viral vectors retrogradely label many more projection neurons in vivo than do second-generation ($\Delta \mathrm{GL}$) ones and leave cells morphologically normal for
(A) Design of experiments retrogradely targeting corticothalamic cells in reporter mice. Either secondgeneration vector RV Δ GL-Flpo or $R V \Delta$ GL-Cre, or third-generation vector $R V \Delta L-F l p o$ or $R V \Delta L-C r e$, was injected into somatosensory thalamus (VPM/Po) of either Ai65F (Flpo reporter) or Ai14 (Cre reporter). Mice were perfused 1 week (b, d), 4 weeks (c, e), 4 months (f), or 6 months later (g).
(B-E) Efficacy comparison of Flpo- and Cre-expressing $\Delta G L$ and ΔL vectors.
(B) Corticothalamic neurons in S1 of Ai65F mice labeled with RV Δ GL-Flpo (left) or RV Δ L-Flpo (center) at 1 week postinjection. Scale bar: $200 \mu \mathrm{~m}$, applies to both images. Counts of labeled cortical neurons are shown at right (each data point is the total number in one series consisting of every sixth $50 \mu \mathrm{~m}$ section from a given brain - see Methods). The $\Delta \mathrm{L}$ virus labeled 24 times as many cortical neurons than the $\Delta \mathrm{GL}$ virus did, although the difference in this case is not significant due to high variance (single-factor ANOVA, p
(C) Corticothalamic neurons in S1 of Ai65F mice labeled with RV Δ GL-Flpo (left) or RV Δ L-Flpo (center) at 4 weeks postinjection. Scale bar: $200 \mu \mathrm{~m}$, applies to both images. Counts of labeled cortical neurons are shown at right. The $\Delta \mathrm{L}$ virus labeled 6.25 times as many cortical neurons than the $\Delta \mathrm{GL}$ virus did, an extremely significant difference (single-factor ANOVA, $p=0.000321, n=8$ mice per group).
(D) Corticothalamic neurons in S1 of Ai14 mice labeled with RV Δ GL-Cre (left) or RV $\Delta \mathrm{L}$-Cre (center) at 1 week postinjection. Scale bar: $200 \mu \mathrm{~m}$, applies to both images. Counts of labeled cortical neurons are
shown at right. The $\Delta \mathrm{L}$ virus labeled 1.4 times as many cortical neurons than the $\Delta \mathrm{GL}$ virus did, a highly significant difference (single-factor ANOVA, $\mathrm{p}=0.00420, \mathrm{n}=8$ mice per group).
(E) Corticothalamic neurons in S1 of Ai14 mice labeled with RV Δ GL-Cre (left) or RV $\Delta \mathrm{L}$-Cre (center) at 4 weeks postinjection. Scale bar: $200 \mu \mathrm{~m}$, applies to both images. Counts of labeled cortical neurons are shown at right. The $\Delta \mathrm{L}$ virus labeled 1.25 times as many cortical neurons than the $\Delta \mathrm{GL}$ virus did, an extremely significant difference (single-factor ANOVA, $p=0.000738, n=8$ mice each group).
(F) Corticothalamic neurons in S1 of Ai14 mice labeled with RV $\Delta \mathrm{L}-\mathrm{Cre}$ at 4 months postinjection. Cells appear morphologically completely normal, with no blebbing or decomposition of processes. Scale bars: $200 \mu \mathrm{~m}$ (left image) and $2 \mu \mathrm{~m}$ (right image).
(G) Corticothalamic neurons in S1 of Ai14 mice labeled with RV $\Delta \mathrm{L}-\mathrm{Cre}$ at 6 months postinjection. Cells still appear morphologically completely normal. Scale bars: $200 \mu \mathrm{~m}$ (left image) and $2 \mu \mathrm{~m}$ (right image).

A

Ai14 mice
C

D

E

B

F

G

Figure 3. Neurons labeled by $\Delta \mathrm{L}$ rabies virus survive for at least 16 weeks.
(A) Experimental design for longitudinal structural two-photon imaging in vivo. Second-generation ($\Delta \mathrm{GL}$) or third-generation $(\Delta \mathrm{L})$ virus expressing Cre was injected in primary visual cortex of reporter mice, then the injection sites were imaged repeatedly for the following 16 weeks.
(B) Example renderings of the same volume of cortex labeled by RV $\Delta \mathrm{L}-\mathrm{Cre}$ and imaged with a two-photon microscope at two different timepoints, 2 weeks (left) and 10 weeks (right). Every labeled neuron visible at 2 weeks is still present at 10 weeks. Scale bar: $50 \mu \mathrm{~m}$. See also Video S1.
(C) \& (F), Example two-photon images of single fields of view (FOV) of cortex labeled by either the secondgeneration vector RV Δ GL-Cre (C) or the third-generation vector RV $\Delta L-C r e(F)$, imaged at different timepoints, from 1 week (top left) to 12 weeks (bottom right). All labeled neurons visible at earlier timepoints are still present at later ones, for both viruses. Scale bars: $50 \mu \mathrm{~m}$, apply to all images.
(D) \& (G), Absolute numbers of cells visibly labeled by RV Δ GL-Cre (D) or RV ΔL-Cre (G) for all structural FOVs in the study, at the 1 -week and 4 -week timepoints. Numbers of visibly labeled cells increased by 56.27% for $\Delta \mathrm{GL}$ and by 67.77% for $\Delta \mathrm{L}$, as we found previously for second-generation vectors (Chatterjee et al., 2018)), suggesting accumulation and persistent activity of recombinase on this timescale. These increases were both extremely significant (one-tailed paired t-tests, $p=0.000132$ ($\Delta \mathrm{GL}$) and 0.00001003 $(\Delta L), n=8$ FOVs each virus), but there was no significant difference between the increases seen for the two viruses (two-tailed unpaired t-test, $\mathrm{p}=0.5187, \mathrm{n}=8$ FOVs per group).
(E) \& (H), Percentages of cells visibly labeled by RV Δ GL-Cre (E) and RV $\Delta L-C r e(H)$ over time, relative to the numbers visible at 1 week after rabies injection; each connected set of dots represents numbers seen in a given FOV at the different time points. For both viruses, the numbers of labeled neurons remain nearly

Figure 4. $\Delta \mathrm{L}$ rabies virus does not appear to perturb neurons' visual response properties for at least 16 weeks.
(A) Experimental design for longitudinal functional two-photon imaging in vivo. $\Delta \mathrm{L}$ virus expressing Cre was injected in primary visual cortex of reporter mice expressing GCaMP6s (Chen et al., 2013) after Cre recombination, then the injection sites were imaged while the awake mice were presented with drifting grating stimuli of different orientations and temporal frequencies, repeatedly for 16 weeks following virus injection.
(B) Example FOV from a GCaMP6s imaging session 16 weeks after RV injection. Individual analyzed cells are randomly pseudocolored. This is the same FOV as shown in Video S2. Scale bar: $50 \mu \mathrm{~m}$.
 top rows show maximum intensity projections of the imaged GCaMP6s signal in two different FOVs at three different timepoints for each FOV. Scale bars: $20 \mu \mathrm{~m}$, apply to all images. Visual response tuning curves of the two circled cells in each FOV at the corresponding timepoint, obtained with drifting gratings presented at 12 directions of motion and 5 temporal frequencies (TF) (mean $\Delta F / F \pm$ s.e.m., averaged over 10 repeats), are shown under each image. More examples from the same FOV are shown in Figure S5.
(E) Single-cell fluorescence time courses for 120 cells at the 12-week timepoint, showing activity over all five temporal frequencies (mean $\Delta F / F$, averaged over 10 repeats). Cells are ranked in descending order of total activity. Scale bar: 10 s .
(F) Percentages of labeled cells that were visually tuned (see Methods), from 6 different FOVs in 3 mice imaged over 14 weeks. Connected sets of dots in a given color indicate data from a single mouse (data from 2 FOVs are shown per mouse).
(G) Comparison of the percentages of labeled cells that were visually tuned at 2 weeks and 14 weeks. The percentages increased moderately but significantly between the two timepoints, from 60% to 68% (paired two-sample t-test, $\mathrm{p}=0.0178, \mathrm{n}=6$).

SUPPLEMENTAL INFORMATION

Figure S1. $\Delta \mathrm{L}$ and Δ GL viruses express EGFP at similarly low levels, Related to Figure 1 Confocal images and flow cytometric histograms showing native and immunostained EGFP signal in uninfected cells (A) and cells infected with first-generation (ΔG) virus (B), second-generation ($\Delta G L$) virus (C), or third-generation virus (D) expressing EGFP. Scale bar: $50 \mu \mathrm{~m}$, applies to all images.

A Multi-step growth curves (MOI=0.01)

B \quad Single-step growth curves (MOI=1)

Figure S2. $\Delta \mathbf{G}, \Delta \mathbf{G L}$, and $\Delta \mathbf{L}$ viruses do not propagate in non-complementing cells, Related to Figure 1 Viral titers in supernatants of BHK-21 cells not expressing any rabies viral genes, infected with $\Delta \mathrm{L}, \Delta \mathrm{GL}$, or $\Delta \mathrm{G}$ viruses at a multiplicity of infection (MOI) of 0.01 ("multi-step growth curves", panel A) or 1 ("singlestep" growth curves, panel B), with supernatants collected every 24 hours for five days. Graphs show mean \pm s.e.m. .Black lines show negative control "titers" calculated from uninfected reporter cells (mean \pm s.e.m. of 10 samples). Note that the titers in these graphs are 3-4 orders of magnitude lower than those obtained on complementing cells (Figure 1).

File S1. Titers and statistics for growth dynamics experiments, Related to Figure 1
See following pages.
bioRxiv preprint doi: https://doi.org/10.1101/2022.02.23.481706; this version posted April 5, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

FACS data from Single-step growth curves (Infectious units/mL)	24hr	48hr	72hr	96hr	120hr
(1) RVAGL-Cre (on B19L-G_01 cells)	$1.89 \mathrm{E}+05$	$1.99 \mathrm{E}+06$	$2.39 \mathrm{E}+06$	$1.76 \mathrm{E}+06$	$1.94 \mathrm{E}+06$
(2) RVAGL-Cre (on B19L-G_01 cells)	$1.48 \mathrm{E}+05$	$1.97 \mathrm{E}+06$	$2.46 \mathrm{E}+06$	$1.77 \mathrm{E}+06$	$1.92 \mathrm{E}+06$
(3) RVAGL-Cre (on B19L-G_01 cells)	$1.55 \mathrm{E}+05$	$1.89 \mathrm{E}+06$	$2.25 \mathrm{E}+06$	$1.55 \mathrm{E}+06$	$1.73 \mathrm{E}+06$
(7) RVAL-Cre (on B19L_02 cells)	$8.60 \mathrm{E}+05$	$1.84 \mathrm{E}+07$	$2.60 \mathrm{E}+07$	$2.71 \mathrm{E}+07$	$2.10 \mathrm{E}+07$
(8) RVAL-Cre (on B19L_02 cells)	$7.05 \mathrm{E}+05$	$1.35 \mathrm{E}+07$	$2.11 \mathrm{E}+07$	$2.54 \mathrm{E}+07$	$1.92 \mathrm{E}+07$
(9) RVAL-Cre (on B19L_02 cells)	$1.17 \mathrm{E}+06$	$1.65 \mathrm{E}+07$	$2.25 \mathrm{E}+07$	$2.56 \mathrm{E}+07$	$1.70 \mathrm{E}+07$
(13) RVAL-Cre (on B19L-G_01 cells)	$1.31 \mathrm{E}+06$	$1.92 \mathrm{E}+07$	$2.02 \mathrm{E}+07$	$1.87 \mathrm{E}+07$	$1.79 \mathrm{E}+07$
(14) RVDL-Cre (on B19L-G_01 cells)	$1.88 \mathrm{E}+06$	$1.96 \mathrm{E}+07$	$1.92 \mathrm{E}+07$	$1.67 \mathrm{E}+07$	$1.79 \mathrm{E}+07$
(15) RVAL-Cre (on B19L-G_01 cells)	$1.61 \mathrm{E}+06$	$1.89 \mathrm{E}+07$	$1.94 \mathrm{E}+07$	$1.51 \mathrm{E}+07$	$1.70 \mathrm{E}+07$
(19) RVAG-Cre (on B19G3-2 cells)	$2.13 \mathrm{E}+06$	$3.12 \mathrm{E}+07$	$3.22 \mathrm{E}+07$	$3.02 \mathrm{E}+07$	$2.71 \mathrm{E}+07$
(20) RVAG-Cre (on B19G3-2 cells)	$1.89 \mathrm{E}+06$	$3.22 \mathrm{E}+07$	$3.24 \mathrm{E}+07$	$2.63 \mathrm{E}+07$	$2.92 \mathrm{E}+07$
(21) RVAG-Cre (on B19G3-2 cells)	$1.39 \mathrm{E}+06$	$2.19 \mathrm{E}+07$	$2.64 \mathrm{E}+07$	$2.01 \mathrm{E}+07$	$2.35 \mathrm{E}+07$
(25) RVAG-Cre (on B19L-G_01 cells)	$1.71 \mathrm{E}+05$	$2.04 \mathrm{E}+06$	$1.14 \mathrm{E}+07$	$1.36 \mathrm{E}+07$	$1.37 \mathrm{E}+07$
(26) RVAG-Cre (on B19L-G_01 cells)	$1.84 \mathrm{E}+05$	$2.40 \mathrm{E}+06$	$1.09 \mathrm{E}+07$	$1.18 \mathrm{E}+07$	$1.36 \mathrm{E}+07$
(27) RVAG-Cre (on B19L-G_01 cells)	$1.65 \mathrm{E}+05$	$2.01 \mathrm{E}+06$	$9.61 \mathrm{E}+06$	$1.02 \mathrm{E}+07$	$1.14 \mathrm{E}+07$
FACS data from Multi-step growth curves (Infectious units/mL)	24hr	48hr	72 hr	96hr	120hr
(4) RVAGL-Cre (on B19L-G_01 cells)	$6.22 \mathrm{E}+03$	$4.36 \mathrm{E}+04$	$5.17 \mathrm{E}+05$	$7.09 \mathrm{E}+05$	$1.21 \mathrm{E}+06$
(5) RVAGL-Cre (on B19L-G_01 cells)	7.77E+03	$4.39 \mathrm{E}+04$	$4.47 \mathrm{E}+05$	$7.78 \mathrm{E}+05$	$9.81 \mathrm{E}+05$
(6) RVAGL-Cre (on B19L-G_01 cells)	$5.91 \mathrm{E}+03$	$6.31 \mathrm{E}+04$	$4.30 \mathrm{E}+05$	$6.82 \mathrm{E}+05$	$9.70 \mathrm{E}+05$
(10) RVDL-Cre (on B19L_02 cells)	$6.84 \mathrm{E}+03$	$5.48 \mathrm{E}+05$	$5.50 \mathrm{E}+06$	$9.25 \mathrm{E}+06$	$1.26 \mathrm{E}+07$
(11) RVAL-Cre (on B19L_02 cells)	$5.28 \mathrm{E}+03$	$2.96 \mathrm{E}+05$	$4.67 \mathrm{E}+06$	$9.18 \mathrm{E}+06$	$1.34 \mathrm{E}+07$
(12) RVAL-Cre (on B19L_02 cells)	$5.59 \mathrm{E}+03$	$6.57 \mathrm{E}+05$	$6.63 \mathrm{E}+06$	$1.07 \mathrm{E}+07$	$1.34 \mathrm{E}+07$
(16) RVAL-Cre (on B19L-G_01 cells)	$8.71 \mathrm{E}+03$	$1.31 \mathrm{E}+06$	$7.69 \mathrm{E}+06$	$5.80 \mathrm{E}+06$	$6.84 \mathrm{E}+06$
(17) RVDL-Cre (on B19L-G_01 cells)	$4.04 \mathrm{E}+03$	$1.38 \mathrm{E}+06$	$6.40 \mathrm{E}+06$	$6.33 \mathrm{E}+06$	$6.57 \mathrm{E}+06$
(18) RVAL-Cre (on B19L-G_01 cells)	$5.91 \mathrm{E}+03$	$1.11 \mathrm{E}+06$	$5.39 \mathrm{E}+06$	$5.40 \mathrm{E}+06$	$6.11 \mathrm{E}+06$
(22) RVAG-Cre (on B19G3-2 cells)	$3.31 \mathrm{E}+04$	$1.70 \mathrm{E}+06$	$7.96 \mathrm{E}+06$	$8.63 \mathrm{E}+06$	$7.39 \mathrm{E}+06$
(23) RVAG-Cre (on B19G3-2 cells)	$2.24 \mathrm{E}+04$	$6.82 \mathrm{E}+05$	$4.13 \mathrm{E}+06$	$5.36 \mathrm{E}+06$	$4.99 \mathrm{E}+06$
(24) RVAG-Cre (on B19G3-2 cells)	$2.43 \mathrm{E}+04$	$8.56 \mathrm{E}+05$	$4.41 \mathrm{E}+06$	$6.52 \mathrm{E}+06$	$5.61 \mathrm{E}+06$
(28) RVAG-Cre (on B19L-G_01 cells)	$6.84 \mathrm{E}+03$	$6.25 \mathrm{E}+04$	$5.56 \mathrm{E}+05$	$2.23 \mathrm{E}+06$	$5.91 \mathrm{E}+06$
(29) RVAG-Cre (on B19L-G_01 cells)	$5.28 \mathrm{E}+03$	$3.23 \mathrm{E}+04$	$3.33 \mathrm{E}+05$	$1.27 \mathrm{E}+06$	$4.70 \mathrm{E}+06$
(30) RVAG-Cre (on B19L-G_01 cells)	$8.40 \mathrm{E}+03$	$4.24 \mathrm{E}+04$	$4.88 \mathrm{E}+05$	$1.67 \mathrm{E}+06$	$5.21 \mathrm{E}+06$

Average titers for Single-step growth curves (Infectious units/mL)	24hr	48hr	72hr	96hr	120hr
(1-3) RVAGL-Cre (on B19L-G_01 cells)	$1.64 \mathrm{E}+05$	$1.95 \mathrm{E}+06$	$2.37 \mathrm{E}+06$	$1.69 \mathrm{E}+06$	$1.86 \mathrm{E}+06$
(7-9) RVAL-Cre (on B19L_02 cells)	$9.12 \mathrm{E}+05$	$1.61 \mathrm{E}+07$	$2.32 \mathrm{E}+07$	$2.60 \mathrm{E}+07$	$1.91 \mathrm{E}+07$
(13-15) RVAL-Cre (on B19L-G_01 cells)	$1.60 \mathrm{E}+06$	$1.92 \mathrm{E}+07$	$1.96 \mathrm{E}+07$	$1.68 \mathrm{E}+07$	$1.76 \mathrm{E}+07$
(19-21) RVAG-Cre (on B19G3-2 cells)	$1.81 \mathrm{E}+06$	$2.85 \mathrm{E}+07$	$3.03 \mathrm{E}+07$	$2.55 \mathrm{E}+07$	$2.66 \mathrm{E}+07$
(25-27) RVAG-Cre (on B19L-G_01 cells)	$1.73 \mathrm{E}+05$	$2.15 \mathrm{E}+06$	$1.06 \mathrm{E}+07$	$1.19 \mathrm{E}+07$	$1.29 \mathrm{E}+07$
Standard error of the mean for Single-step growth curves (Infectious units/mL)	24hr	48hr	72hr	96hr	120hr
(1-3) RVAGL-Cre (on B19L-G_01 cells)	$1.27 \mathrm{E}+04$	$3.12 \mathrm{E}+04$	$6.11 \mathrm{E}+04$	$7.25 \mathrm{E}+04$	$6.73 \mathrm{E}+04$
(7-9) RVAL-Cre (on B19L_02 cells)	$1.37 \mathrm{E}+05$	$1.42 \mathrm{E}+06$	$1.45 \mathrm{E}+06$	$5.43 \mathrm{E}+05$	$1.16 \mathrm{E}+06$
(13-15) RVAL-Cre (on B19L-G_01 cells)	$1.64 \mathrm{E}+05$	$2.12 \mathrm{E}+05$	$3.21 \mathrm{E}+05$	$1.04 \mathrm{E}+06$	$3.02 \mathrm{E}+05$
(19-21) RVAG-Cre (on B19G3-2 cells)	$2.18 \mathrm{E}+05$	$3.29 \mathrm{E}+06$	$1.99 \mathrm{E}+06$	$2.94 \mathrm{E}+06$	$1.66 \mathrm{E}+06$
(25-27) RVAG-Cre (on B19L-G_01 cells)	$5.71 \mathrm{E}+03$	$1.24 \mathrm{E}+05$	$5.38 \mathrm{E}+05$	$9.85 \mathrm{E}+05$	$7.57 \mathrm{E}+05$
Average titers for Multi-step growth curves (Infectious units/mL)	24hr	48hr	72hr	96hr	120hr
(4-6) RVAGL-Cre (on B19L-G_01 cells)	$6.63 \mathrm{E}+03$	$5.02 \mathrm{E}+04$	$4.65 \mathrm{E}+05$	$7.23 \mathrm{E}+05$	$1.05 \mathrm{E}+06$
(10-12) RVAL-Cre (on B19L_02 cells)	$5.91 \mathrm{E}+03$	$5.00 \mathrm{E}+05$	$5.60 \mathrm{E}+06$	$9.72 \mathrm{E}+06$	$1.31 \mathrm{E}+07$
(16-18) RVAL-Cre (on B19L-G_01 cells)	$6.22 \mathrm{E}+03$	$1.27 \mathrm{E}+06$	$6.49 \mathrm{E}+06$	$5.84 \mathrm{E}+06$	$6.51 \mathrm{E}+06$
(22-24) RVAG-Cre (on B19G3-2 cells)	$2.66 \mathrm{E}+04$	$1.08 \mathrm{E}+06$	$5.50 \mathrm{E}+06$	$6.83 \mathrm{E}+06$	$6.00 \mathrm{E}+06$
(28-30) RVAG-Cre (on B19L-G_01 cells)	$6.84 \mathrm{E}+03$	$4.57 \mathrm{E}+04$	$4.59 \mathrm{E}+05$	$1.72 \mathrm{E}+06$	$5.27 \mathrm{E}+06$
Standard error of the mean for Multi-step growth curves	24hr	48hr	72hr	96hr	120hr
(4-6) RVAGL-Cre (on B19L-G_01 cells)	$5.78 \mathrm{E}+02$	$6.45 \mathrm{E}+03$	$2.69 \mathrm{E}+04$	$2.87 \mathrm{E}+04$	7.74E+04
(10-12) RVAL-Cre (on B19L_02 cells)	$4.75 \mathrm{E}+02$	$1.07 \mathrm{E}+05$	$5.70 \mathrm{E}+05$	$5.06 \mathrm{E}+05$	$2.77 \mathrm{E}+05$
(16-18) RVAL-Cre (on B19L-G_01 cells)	$1.36 \mathrm{E}+03$	$8.07 \mathrm{E}+04$	$6.63 \mathrm{E}+05$	$2.71 \mathrm{E}+05$	$2.13 \mathrm{E}+05$
(22-24) RVAG-Cre (on B19G3-2 cells)	$3.28 \mathrm{E}+03$	$3.16 \mathrm{E}+05$	$1.23 \mathrm{E}+06$	$9.57 \mathrm{E}+05$	$7.18 \mathrm{E}+05$
(28-30) RVAG-Cre (on B19L-G_01 cells)	$8.98 \mathrm{E}+02$	$8.87 \mathrm{E}+03$	$6.60 \mathrm{E}+04$	$2.80 \mathrm{E}+05$	$3.51 \mathrm{E}+05$

Conditions with the highest average titers for Single-step growth curves	Infectious units/mL
(1-3) RVAGL-Cre (on B19L-G_01 cells): 72hr	$2.39 \mathrm{E}+06$
	$2.46 \mathrm{E}+06$
(7-9) RVAL-Cre (on B19L_02 cells): 96hr	$2.25 \mathrm{E}+06$
	$2.71 \mathrm{E}+07$
	$2.54 \mathrm{E}+07$
(19-21) RVAG-Cre (on B19G3-2 cells): 72hr	$2.56 \mathrm{E}+07$
	$3.22 \mathrm{E}+07$
	$3.24 \mathrm{E}+07$

Conditions with the highest average titers for Multi-step growth curves	Infectious units/mL
(4-6) RVAGL-Cre (on B19L-G_01 cells): 120 hr	$1.21 \mathrm{E}+06$
	$9.81 \mathrm{E}+05$
	$9.70 \mathrm{E}+05$
	$10-12)$ RVAL-Cre (on B19L_02 cells): 120 hr
	$1.26 \mathrm{E}+07$
	$1.34 \mathrm{E}+07$
(22-24) RVAG-Cre (on B19G3-2 cells): 96hr	$1.34 \mathrm{E}+07$
	$8.63 \mathrm{E}+06$
	$5.36 \mathrm{E}+06$

Column1	Column2
average "titer" of BC-FLEX cells:	
$3.63 \mathrm{E}+03$	
Individual	
BC-FLEX negative "titers"	
NEG_01	$5.28 \mathrm{E}+03$
NEG_03	$5.91 \mathrm{E}+03$
NEG_04	$3.11 \mathrm{E}+03$
NEG_05	$2.80 \mathrm{E}+03$
NEG_06	$2.17 \mathrm{E}+03$

A

4 weeks

B

Figure S3. Retrograde targeting with third-generation ($\Delta \mathrm{L}$) rabies virus expressing the tetracycline transactivator, Related to Figure 2
(A) Corticothalamic neurons retrogradely labeled by a ΔL virus expressing tTA injected in the somatosensory thalamus of Ai63 reporter mice (Daigle et al., 2018) (tdTomato driven by TRE-tight) 1 week (left image) or 4 weeks (right image) prior to perfusion. Scale bar: $200 \mu \mathrm{~m}$, applies to both images.
(B) Counts of total labeled cortical neurons across every sixth section (see Methods) of each mouse brain. Numbers are not significantly different between the two time points (single factor ANOVA, $p=0.772, n=4$ mice per group).

File S2. Cell counts and statistics for retrograde targeting experiments, Related to Figure 2
See following pages.

Condition	Mouse number	Section number	Cell counts
RVIGL-Flpo: 1 week	21021505L	10	5
RVAGL-Flpo: 1 week	21021505L	11	8
RVAGL-Flpo: 1 week	21021505L	12	9
RVAGL-Flpo: 1 week	21021505L	total:	22
RVAGL-Flpo: 1 week	21021506L	9	5
RVAGL-Flpo: 1 week	21021506L	10	6
RVAGL-Flpo: 1 week	21021506L	11	4
RVAGL-Flpo: 1 week	21021506L	12	3
RVAGL-Flpo: 1 week	21021506L	total:	18
RVAGL-Flpo: 1 week	21021507ப	5	1
RVAGL-Flpo: 1 week	21021507ப	6	27
RVAGL-Flpo: 1 week	21021507ப	7	29
RVAGL-Flpo: 1 week	21021507L	8	25
RVAGL-Flpo: 1 week	21021507ப	9	20
RVAGL-Flpo: 1 week	21021507ப	10	10
RVAGL-Flpo: 1 week	21021507L	11	4
RVAGL-Flpo: 1 week	21021507ப	12	3
RVAGL-Flpo: 1 week	21021507	13	2
RVAGL-Flpo: 1 week	21021507ப	total:	121
RVAGL-Flpo: 1 week	21021508L	11	1
RVAGL-Flpo: 1 week	21021508L	15	1
RVAGL-Flpo: 1 week	21021508L	total:	2
RVAGL-Flpo: 1 week	21052505L	9	1
RVAGL-Flpo: 1 week	21052505L	10	5
RVAGL-Flpo: 1 week	21052505L	11	1
RVAGL-Flpo: 1 week	21052505L	total:	7
RVAGL-Flpo: 1 week	21052506L	11	4
RVAGL-Flpo: 1 week	21052506L	12	4
RVAGL-Flpo: 1 week	21052506L	total:	8
RVAGL-Flpo: 1 week	21052507L	6	2
RVAGL-Flpo: 1 week	21052507L	7	20
RVAGL-Flpo: 1 week	21052507ப	8	45
RVAGL-Flpo: 1 week	21052507	9	26
RVIGL-Flpo: 1 week	21052507ப	10	5
RVAGL-Flpo: 1 week	21052507ப	total:	98
RVAGL-Flpo: 1 week	21052508L	8	1
RVIGL-Flpo: 1 week	21052508L	10	1
RVAGL-Flpo: 1 week	21052508L	11	1
RVAGL-Flpo: 1 week	21052508L	12	1
RVAGL-Flpo: 1 week	21052508L	14	2
RVAGL-Flpo: 1 week	21052508L	total:	6
RVIL-Flpo: 1 week	21021805L	1	57
RVAL-Flpo: 1 week	21021805L	2	20
RVDL-Flpo: 1 week	21021805L	3	11
RVAL-Flpo: 1 week	21021805L	4	115
RVDL-Flpo: 1 week	21021805L	5	270
RVDL-Flpo: 1 week	21021805L	6	399
RVAL-Flpo: 1 week	21021805L	7	428
RVDL-Flpo: 1 week	21021805L	8	542
RVDL-Flpo: 1 week	21021805L	9	416
RVAL-Flpo: 1 week	21021805L	10	368
RVDL-Flpo: 1 week	21021805L	11	240
RVAL-Flpo: 1 week	21021805L	12	106
RVAL-Flpo: 1 week	21021805L	13	42

RVAL-Flpo: 1 week	21021805L	14	52
RVAL-Flpo: 1 week	21021805L	15	27
RVAL-Flpo: 1 week	21021805L	total:	3093
RVAL-Flpo: 1 week	21021806L	1	1
RVAL-Flpo: 1 week	21021806L	4	5
RVAL-Flpo: 1 week	21021806L	5	3
RVAL-Flpo: 1 week	21021806L	6	4
RVAL-Flpo: 1 week	21021806L	7	16
RVAL-Flpo: 1 week	21021806L	8	35
RVAL-Flpo: 1 week	21021806L	9	93
RVAL-Flpo: 1 week	21021806L	10	74
RVAL-Flpo: 1 week	21021806L	11	40
RVAL-Flpo: 1 week	21021806L	12	24
RVAL-Flpo: 1 week	21021806L	13	11
RVAL-Flpo: 1 week	21021806L	14	7
RVAL-Flpo: 1 week	21021806L	15	7
RVAL-Flpo: 1 week	21021806L	total:	320
RVAL-Flpo: 1 week	21021807	5	1
RVAL-Flpo: 1 week	21021807ப	6	2
RVAL-Flpo: 1 week	21021807	7	6
RVAL-Flpo: 1 week	21021807ப	8	8
RVAL-Flpo: 1 week	21021807	9	35
RVAL-Flpo: 1 week	21021807 J	10	64
RVAL-Flpo: 1 week	21021807ப	11	80
RVAL-Flpo: 1 week	21021807	12	55
RVAL-Flpo: 1 week	21021807	13	34
RVAL-Flpo: 1 week	21021807ப	14	13
RVAL-Flpo: 1 week	21021807	15	13
RVAL-Flpo: 1 week	21021807ப	total:	311
RVAL-Flpo: 1 week	21021808L	6	7
RVAL-Flpo: 1 week	21021808L	7	13
RVAL-Flpo: 1 week	21021808L	8	48
RVAL-Flpo: 1 week	21021808L	9	74
RVAL-Flpo: 1 week	21021808L	10	57
RVAL-Flpo: 1 week	21021808L	11	20
RVAL-Flpo: 1 week	21021808L	12	13
RVAL-Flpo: 1 week	21021808L	13	13
RVAL-Flpo: 1 week	21021808L	14	14
RVAL-Flpo: 1 week	21021808L	15	4
RVAL-Flpo: 1 week	21021808L	total:	263
RVAL-Flpo: 1 week	21052607ப	4	3
RVAL-Flpo: 1 week	21052607ப	5	2
RVAL-Flpo: 1 week	21052607ப	6	4
RVAL-Flpo: 1 week	21052607ப	7	11
RVAL-Flpo: 1 week	21052607ப	8	10
RVAL-Flpo: 1 week	21052607ப	9	4
RVAL-Flpo: 1 week	21052607ப	11	6
RVAL-Flpo: 1 week	21052607ப	12	7
RVAL-Flpo: 1 week	21052607ப	total:	47
RVAL-Flpo: 1 week	21052608L	1	105
RVAL-Flpo: 1 week	21052608L	2	116
RVAL-Flpo: 1 week	21052608L	3	110
RVAL-Flpo: 1 week	21052608L	4	192
RVAL-Flpo: 1 week	21052608L	5	395
RVAL-Flpo: 1 week	21052608L	6	389

RVAL-Flpo: 1 week	21052608L	7	421
RVAL-Flpo: 1 week	21052608L	8	340
RVDL-Flpo: 1 week	21052608L	9	72
RVDL-Flpo: 1 week	21052608L	10	14
RVDL-Flpo: 1 week	21052608L	11	5
RVDL-Flpo: 1 week	21052608L	12	2
RVDL-Flpo: 1 week	21052608L	total:	2161
RVAL-Flpo: 1 week	21060302L	1	8
RVAL-Flpo: 1 week	21060302L	2	10
RVAL-Flpo: 1 week	21060302L	3	17
RVDL-Flpo: 1 week	21060302L	4	24
RVDL-Flpo: 1 week	21060302L	5	22
RVAL-Flpo: 1 week	21060302L	6	29
RVDL-Flpo: 1 week	21060302L	7	34
RVAL-Flpo: 1 week	21060302L	8	59
RVAL-Flpo: 1 week	21060302	9	78
RVAL-Flpo: 1 week	21060302L	10	46
RVAL-Flpo: 1 week	21060302L	11	16
RVDL-Flpo: 1 week	21060302L	12	12
RVDL-Flpo: 1 week	21060302L	13	6
RVDL-Flpo: 1 week	21060302L	14	2
RVDL-Flpo: 1 week	21060302L	15	2
RVDL-Flpo: 1 week	21060302L	total:	365
RVAL-Flpo: 1 week	21060303L	1	7
RVDL-Flpo: 1 week	21060303L	2	9
RVDL-Flpo: 1 week	21060303L	3	10
RVAL-Flpo: 1 week	21060303L	4	16
RVDL-Flpo: 1 week	21060303L	5	22
RVDL-Flpo: 1 week	21060303L	6	27
RVAL-Flpo: 1 week	21060303L	7	25
RVDL-Flpo: 1 week	21060303L	8	27
RVAL-Flpo: 1 week	21060303L	9	36
RVAL-Flpo: 1 week	21060303L	10	30
RVDL-Flpo: 1 week	21060303L	11	15
RVDL-Flpo: 1 week	21060303L	12	7
RVDL-Flpo: 1 week	21060303L	14	6
RVDL-Flpo: 1 week	21060303L	15	1
RVAL-Flpo: 1 week	21060303L	total:	238
RVAGL-Flpo: 4 weeks	21021501L	7	2
RVAGL-Flpo: 4 weeks	21021501LJ	8	12
RVAGL-Flpo: 4 weeks	21021501LJ	9	25
RVAGL-Flpo: 4 weeks	21021501L	10	26
RVAGL-Flpo: 4 weeks	21021501L	11	7
RVAGL-Flpo: 4 weeks	21021501L	12	3
RVAGL-Flpo: 4 weeks	21021501L	13	3
RVAGL-Flpo: 4 weeks	21021501L	14	1
RVAGL-Flpo: 4 weeks	21021501L	15	1
RVAGL-Flpo: 4 weeks	21021501L	total:	80
RVAGL-Flpo: 4 weeks	21021502 \downarrow	9	2
RVAGL-Flpo: 4 weeks	21021502 J	10	25
RVAGL-Flpo: 4 weeks	21021502L	11	26
RVAGL-Flpo: 4 weeks	21021502L	12	5
RVAGL-Flpo: 4 weeks	21021502 $Ј$	13	4
RVAGL-Flpo: 4 weeks	21021502L	total:	62
RVAGL-Flpo: 4 weeks	21021503L	1	88

RVAGL-Flpo: 4 weeks	21021503L	2	129
RVAGL-Flpo: 4 weeks	21021503L	3	199
RVAGL-Flpo: 4 weeks	21021503L	4	254
RVAGL-Flpo: 4 weeks	21021503L	5	312
RVAGL-Flpo: 4 weeks	21021503L	6	396
RVAGL-Flpo: 4 weeks	21021503L	7	351
RVAGL-Flpo: 4 weeks	21021503L	8	391
RVAGL-Flpo: 4 weeks	21021503L	9	359
RVAGL-Flpo: 4 weeks	21021503L	10	295
RVAGL-Flpo: 4 weeks	21021503L	11	133
RVAGL-Flpo: 4 weeks	21021503L	12	216
RVAGL-Flpo: 4 weeks	21021503L	13	59
RVAGL-Flpo: 4 weeks	21021503L	14	40
RVAGL-Flpo: 4 weeks	21021503L	15	32
RVAGL-Flpo: 4 weeks	21021503L	total:	3254
RVAGL-Flpo: 4 weeks	21021504 ${ }^{\text {J }}$	3	1
RVAGL-Flpo: 4 weeks	21021504 J	4	4
RVAGL-Flpo: 4 weeks	21021504L	5	22
RVAGL-Flpo: 4 weeks	21021504 J	6	24
RVAGL-Flpo: 4 weeks	21021504 J	7	56
RVAGL-Flpo: 4 weeks	21021504 J	8	78
RVAGL-Flpo: 4 weeks	21021504 J	9	32
RVAGL-Flpo: 4 weeks	21021504 J	10	18
RVAGL-Flpo: 4 weeks	21021504 ${ }^{\text {d }}$	11	1
RVAGL-Flpo: 4 weeks	21021504 J	12	1
RVAGL-Flpo: 4 weeks	21021504L	total:	237
RVAGL-Flpo: 4 weeks	21052501L	2	1
RVAGL-Flpo: 4 weeks	21052501L	4	1
RVAGL-Flpo: 4 weeks	21052501L	7	2
RVAGL-Flpo: 4 weeks	21052501L	8	6
RVAGL-Flpo: 4 weeks	21052501L	9	9
RVDGL-Flpo: 4 weeks	21052501L	10	9
RVAGL-Flpo: 4 weeks	21052501L	11	2
RVAGL-Flpo: 4 weeks	21052501L	12	6
RVAGL-Flpo: 4 weeks	21052501L	13	4
RVAGL-Flpo: 4 weeks	21052501L	14	1
RVAGL-Flpo: 4 weeks	21052501L	15	2
RVAGL-Flpo: 4 weeks	21052501L	total:	43
RVAGL-Flpo: 4 weeks	21052502 J	6	2
RVAGL-Flpo: 4 weeks	21052502L	7	1
RVAGL-Flpo: 4 weeks	21052502L	8	4
RVAGL-Flpo: 4 weeks	21052502 J	11	1
RVAGL-Flpo: 4 weeks	21052502 J	14	3
RVAGL-Flpo: 4 weeks	21052502 J	15	3
RVAGL-Flpo: 4 weeks	21052502 J	total:	14
RVAGL-Flpo: 4 weeks	21052503L	6	2
RVAGL-Flpo: 4 weeks	21052503L	8	1
RVAGL-Flpo: 4 weeks	21052503L	9	9
RVAGL-Flpo: 4 weeks	21052503L	10	45
RVAGL-Flpo: 4 weeks	21052503L	11	33
RVAGL-Flpo: 4 weeks	21052503L	12	17
RVAGL-Flpo: 4 weeks	21052503L	13	10
RVAGL-Flpo: 4 weeks	21052503L	14	7
RVAGL-Flpo: 4 weeks	21052503L	15	6
RVAGL-Flpo: 4 weeks	21052503L	total:	130

RVAGL-Flpo: 4 weeks	21052504L	7	2
RVAGL-Flpo: 4 weeks	21052504L	8	13
RVAGL-Flpo: 4 weeks	21052504L	9	18
RVAGL-Flpo: 4 weeks	21052504L	10	16
RVAGL-Flpo: 4 weeks	21052504L	11	8
RVAGL-Flpo: 4 weeks	21052504L	12	3
RVAGL-Flpo: 4 weeks	21052504L	13	3
RVAGL-Flpo: 4 weeks	21052504L	14	1
RVAGL-Flpo: 4 weeks	21052504L	15	1
RVAGL-Flpo: 4 weeks	21052504LJ	total:	65
RVAL-Flpo: 4 weeks	21021801L	1	36
RVAL-Flpo: 4 weeks	21021801L	2	18
RVAL-Flpo: 4 weeks	21021801L	3	2
RVAL-Flpo: 4 weeks	21021801L	4	28
RVAL-Flpo: 4 weeks	21021801L	5	180
RVAL-Flpo: 4 weeks	21021801L	6	415
RVAL-Flpo: 4 weeks	21021801L	7	622
RVAL-Flpo: 4 weeks	21021801L	8	649
RVAL-Flpo: 4 weeks	21021801L	9	739
RVAL-Flpo: 4 weeks	21021801L	10	577
RVAL-Flpo: 4 weeks	21021801L	11	431
RVAL-Flpo: 4 weeks	21021801L	12	211
RVAL-Flpo: 4 weeks	21021801L	13	166
RVAL-Flpo: 4 weeks	21021801L	14	170
RVAL-Flpo: 4 weeks	21021801L	15	370
RVAL-Flpo: 4 weeks	21021801L	total:	4614
RVAL-Flpo: 4 weeks	21021802 $Ј$	1	3
RVAL-Flpo: 4 weeks	21021802 J	2	6
RVAL-Flpo: 4 weeks	21021802 $Ј$	3	8
RVAL-Flpo: 4 weeks	21021802 $Ј$	5	32
RVAL-Flpo: 4 weeks	21021802 J	6	224
RVAL-Flpo: 4 weeks	21021802 J	7	279
RVAL-Flpo: 4 weeks	21021802 $Ј$	8	287
RVAL-Flpo: 4 weeks	21021802 J	9	457
RVAL-Flpo: 4 weeks	21021802 $Ј$	10	501
RVAL-Flpo: 4 weeks	21021802 J	11	491
RVAL-Flpo: 4 weeks	21021802	12	211
RVAL-Flpo: 4 weeks	21021802 $Ј$	13	287
RVAL-Flpo: 4 weeks	21021802 J	14	220
RVAL-Flpo: 4 weeks	21021802 J	total:	3006
RVAL-Flpo: 4 weeks	21021803L	2	6
RVAL-Flpo: 4 weeks	21021803L	3	9
RVAL-Flpo: 4 weeks	21021803L	4	48
RVAL-Flpo: 4 weeks	21021803L	5	177
RVAL-Flpo: 4 weeks	21021803L	6	247
RVAL-Flpo: 4 weeks	21021803L	7	339
RVAL-Flpo: 4 weeks	21021803L	8	316
RVAL-Flpo: 4 weeks	21021803L	9	322
RVAL-Flpo: 4 weeks	21021803L	10	205
RVAL-Flpo: 4 weeks	21021803LJ	11	78
RVAL-Flpo: 4 weeks	21021803L	12	46
RVAL-Flpo: 4 weeks	21021803L	13	41
RVAL-Flpo: 4 weeks	21021803L	14	13
RVAL-Flpo: 4 weeks	21021803L	total:	1847
RVAL-Flpo: 4 weeks	21021804 ${ }^{\text {J }}$	1	6

RVAL-Flpo: 4 weeks	21021804 J	2	14
RVAL-Flpo: 4 weeks	21021804 ${ }^{\text {J }}$	3	2
RVAL-Flpo: 4 weeks	21021804 5	4	57
RVAL-Flpo: 4 weeks	21021804 J	5	359
RVAL-Flpo: 4 weeks	21021804 J	6	414
RVAL-Flpo: 4 weeks	21021804 J	7	469
RVAL-Flpo: 4 weeks	21021804 ${ }^{\text {J }}$	8	576
RVAL-Flpo: 4 weeks	21021804 J	9	533
RVAL-Flpo: 4 weeks	21021804 J	10	383
RVAL-Flpo: 4 weeks	21021804 $\sqrt{\text { d }}$	11	283
RVAL-Flpo: 4 weeks	21021804 J	12	114
RVAL-Flpo: 4 weeks	21021804 J	13	34
RVAL-Flpo: 4 weeks	21021804 J	14	87
RVAL-Flpo: 4 weeks	21021804 J	total:	3331
RVAL-Flpo: 4 weeks	21052601L	2	1
RVAL-Flpo: 4 weeks	21052601L	3	1
RVAL-Flpo: 4 weeks	21052601L	5	16
RVAL-Flpo: 4 weeks	21052601L	6	10
RVAL-Flpo: 4 weeks	21052601L	7	28
RVAL-Flpo: 4 weeks	21052601L	8	92
RVAL-Flpo: 4 weeks	21052601L	9	161
RVAL-Flpo: 4 weeks	21052601L	10	232
RVAL-Flpo: 4 weeks	21052601L	11	280
RVAL-Flpo: 4 weeks	21052601L	12	201
RVAL-Flpo: 4 weeks	21052601L	13	143
RVAL-Flpo: 4 weeks	21052601L	14	106
RVAL-Flpo: 4 weeks	21052601L	15	98
RVAL-Flpo: 4 weeks	21052601L	total:	1369
RVAL-Flpo: 4 weeks	21052602 J	1	49
RVAL-Flpo: 4 weeks	21052602L	2	12
RVAL-Flpo: 4 weeks	21052602 J	3	17
RVAL-Flpo: 4 weeks	21052602 J	4	51
RVAL-Flpo: 4 weeks	21052602 J	5	163
RVAL-Flpo: 4 weeks	21052602 J	6	418
RVAL-Flpo: 4 weeks	21052602 J	7	489
RVAL-Flpo: 4 weeks	21052602 J	8	526
RVAL-Flpo: 4 weeks	21052602L	9	510
RVAL-Flpo: 4 weeks	21052602 J	10	319
RVAL-Flpo: 4 weeks	21052602 J	11	179
RVAL-Flpo: 4 weeks	21052602L	12	72
RVAL-Flpo: 4 weeks	21052602L	13	48
RVAL-Flpo: 4 weeks	21052602 J	14	32
RVAL-Flpo: 4 weeks	21052602 J	15	34
RVAL-Flpo: 4 weeks	21052602 J	total:	2919
RVAL-Flpo: 4 weeks	21052603L	1	38
RVAL-Flpo: 4 weeks	21052603L	2	33
RVAL-Flpo: 4 weeks	21052603L	3	16
RVAL-Flpo: 4 weeks	21052603L	4	44
RVAL-Flpo: 4 weeks	21052603L	5	302
RVAL-Flpo: 4 weeks	21052603L	6	648
RVAL-Flpo: 4 weeks	21052603L	7	636
RVAL-Flpo: 4 weeks	21052603L	8	666
RVAL-Flpo: 4 weeks	21052603L	9	582
RVAL-Flpo: 4 weeks	21052603L	10	409
RVAL-Flpo: 4 weeks	21052603L	11	207

RVAL-Flpo: 4 weeks	21052603L	12	79
RVAL-Flpo: 4 weeks	21052603L	13	26
RVAL-Flpo: 4 weeks	21052603L	14	25
RVAL-Flpo: 4 weeks	21052603L	15	19
RVAL-Flpo: 4 weeks	21052603L	total:	3730
RVAL-Flpo: 4 weeks	21052606L	1	43
RVAL-Flpo: 4 weeks	21052606L	2	23
RVAL-Flpo: 4 weeks	21052606L	3	14
RVAL-Flpo: 4 weeks	21052606L	4	32
RVAL-Flpo: 4 weeks	21052606L	5	220
RVAL-Flpo: 4 weeks	21052606L	6	503
RVAL-Flpo: 4 weeks	21052606L	7	616
RVAL-Flpo: 4 weeks	21052606L	8	622
RVAL-Flpo: 4 weeks	21052606L	9	560
RVAL-Flpo: 4 weeks	21052606L	10	403
RVAL-Flpo: 4 weeks	21052606L	11	179
RVAL-Flpo: 4 weeks	21052606L	12	82
RVAL-Flpo: 4 weeks	21052606L	13	56
RVAL-Flpo: 4 weeks	21052606L	14	68
RVAL-Flpo: 4 weeks	21052606L	15	33
RVAL-Flpo: 4 weeks	21052606L	total:	3454
RVAGL-Cre: 1 week	21021703L	1	422
RVAGL-Cre: 1 week	21021703L	2	395
RVAGL-Cre: 1 week	21021703L	3	606
RVAGL-Cre: 1 week	21021703L	4	543
RVAGL-Cre: 1 week	21021703L	5	637
RVAGL-Cre: 1 week	21021703L	6	848
RVAGL-Cre: 1 week	21021703L	7	1145
RVAGL-Cre: 1 week	21021703L	8	1183
RVAGL-Cre: 1 week	21021703L	9	1292
RVAGL-Cre: 1 week	21021703L	10	1311
RVAGL-Cre: 1 week	21021703L	11	1377
RVAGL-Cre: 1 week	21021703L	12	1251
RVAGL-Cre: 1 week	21021703L	13	998
RVAGL-Cre: 1 week	21021703L	14	835
RVAGL-Cre: 1 week	21021703L	15	641
RVAGL-Cre: 1 week	21021703L	total:	13484
RVAGL-Cre: 1 week	21021704L	1	918
RVAGL-Cre: 1 week	21021704L	2	975
RVAGL-Cre: 1 week	21021704L	3	1144
RVAGL-Cre: 1 week	21021704L	4	1404
RVAGL-Cre: 1 week	21021704L	5	1491
RVAGL-Cre: 1 week	21021704L	6	1377
RVAGL-Cre: 1 week	21021704 J	7	1231
RVAGL-Cre: 1 week	21021704L	8	1337
RVAGL-Cre: 1 week	21021704 J	9	1135
RVAGL-Cre: 1 week	21021704L	10	1058
RVAGL-Cre: 1 week	21021704	11	711
RVAGL-Cre: 1 week	21021704	12	568
RVAGL-Cre: 1 week	21021704 J	13	443
RVAGL-Cre: 1 week	21021704L	14	432
RVAGL-Cre: 1 week	21021704L	15	411
RVAGL-Cre: 1 week	21021704L	total:	14635
RVAGL-Cre: 1 week	21021707ப	1	497
RVAGL-Cre: 1 week	21021707ப	2	568

RVAGL-Cre: 1 week	21021707】	3	454
RVAGL-Cre: 1 week	21021707ப	4	454
RVAGL-Cre: 1 week	21021707ப	5	583
RVAGL-Cre: 1 week	21021707ப	6	873
RVAGL-Cre: 1 week	21021707ப	7	973
RVAGL-Cre: 1 week	21021707ப	8	1133
RVAGL-Cre: 1 week	21021707ப	9	1220
RVAGL-Cre: 1 week	21021707ப	10	1176
RVAGL-Cre: 1 week	21021707ப	11	994
RVAGL-Cre: 1 week	21021707ப	12	645
RVAGL-Cre: 1 week	21021707ப	13	467
RVAGL-Cre: 1 week	21021707ப	14	330
RVAGL-Cre: 1 week	21021707ப	15	280
RVAGL-Cre: 1 week	21021707ப	total:	10647
RVAGL-Cre: 1 week	21021708L	1	271
RVAGL-Cre: 1 week	21021708L	2	303
RVAGL-Cre: 1 week	21021708L	3	386
RVAGL-Cre: 1 week	21021708L	4	634
RVAGL-Cre: 1 week	21021708L	5	805
RVAGL-Cre: 1 week	21021708L	6	931
RVAGL-Cre: 1 week	21021708L	7	1029
RVAGL-Cre: 1 week	21021708L	8	1186
RVAGL-Cre: 1 week	21021708L	9	1227
RVAGL-Cre: 1 week	21021708L	10	1102
RVAGL-Cre: 1 week	21021708L	11	1019
RVAGL-Cre: 1 week	21021708L	12	666
RVAGL-Cre: 1 week	21021708L	13	431
RVAGL-Cre: 1 week	21021708L	14	369
RVAGL-Cre: 1 week	21021708L	15	486
RVAGL-Cre: 1 week	21021708L	total:	10845
RVDL-Cre: 1 week	21021905L	1	1161
RVDL-Cre: 1 week	21021905L	2	1093
RVDL-Cre: 1 week	21021905L	3	1072
RVDL-Cre: 1 week	21021905L	4	1079
RVDL-Cre: 1 week	21021905L	5	1318
RVIL-Cre: 1 week	21021905L	6	1417
RVDL-Cre: 1 week	21021905L	7	1541
RVDL-Cre: 1 week	21021905L	8	1510
RVIL-Cre: 1 week	21021905L	9	1500
RVDL-Cre: 1 week	21021905L	10	1549
RVDL-Cre: 1 week	21021905L	11	1381
RVDL-Cre: 1 week	21021905L	12	1109
RVDL-Cre: 1 week	21021905L	13	532
RVDL-Cre: 1 week	21021905L	14	380
RVDL-Cre: 1 week	21021905L	15	265
RVDL-Cre: 1 week	21021905L	total:	16907
RVDL-Cre: 1 week	21021906L	1	985
RVDL-Cre: 1 week	21021906L	2	1012
RVDL-Cre: 1 week	21021906L	3	1020
RVDL-Cre: 1 week	21021906L	4	1060
RVDL-Cre: 1 week	21021906L	5	1082
RVDL-Cre: 1 week	21021906L	6	1515
RVDL-Cre: 1 week	21021906	7	1808
RVAL-Cre: 1 week	21021906L	8	1675
RVDL-Cre: 1 week	21021906L	9	1538

RVAL-Cre: 1 week	21021906 $\sqrt{\text { J }}$	10	1728
RVDL-Cre: 1 week	21021906L	11	955
RVDL-Cre: 1 week	21021906L	12	1018
RVDL-Cre: 1 week	21021906L	13	993
RVDL-Cre: 1 week	21021906L	14	701
RVDL-Cre: 1 week	21021906L	15	483
RVDL-Cre: 1 week	21021906L	16	350
RVDL-Cre: 1 week	21021906L	total:	17923
RVDL-Cre: 1 week	21021907ப	1	1207
RVDL-Cre: 1 week	21021907ப	2	1083
RVDL-Cre: 1 week	21021907ப	3	1152
RVDL-Cre: 1 week	21021907ப	4	1225
RVDL-Cre: 1 week	21021907ப	5	1336
RVDL-Cre: 1 week	21021907ப	6	1558
RVDL-Cre: 1 week	21021907ப	7	1498
RVDL-Cre: 1 week	21021907ப	8	1709
RVDL-Cre: 1 week	21021907ப	9	1547
RVDL-Cre: 1 week	21021907ப	10	1718
RVDL-Cre: 1 week	21021907ப	11	1503
RVDL-Cre: 1 week	21021907 ل	12	1249
RVDL-Cre: 1 week	21021907ப	13	845
RVDL-Cre: 1 week	21021907ப	14	626
RVDL-Cre: 1 week	21021907ப	15	495
RVDL-Cre: 1 week	21021907ப	total:	18751
RVIL-Cre: 1 week	21021908L	1	1011
RVDL-Cre: 1 week	21021908L	2	892
RVDL-Cre: 1 week	21021908L	3	896
RVDL-Cre: 1 week	21021908L	4	957
RVDL-Cre: 1 week	21021908L	5	1243
RVDL-Cre: 1 week	21021908L	6	1448
RVDL-Cre: 1 week	21021908L	7	1568
RVDL-Cre: 1 week	21021908L	8	1459
RVDL-Cre: 1 week	21021908L	9	1573
RVDL-Cre: 1 week	21021908L	10	1313
RVDL-Cre: 1 week	21021908L	11	1146
RVDL-Cre: 1 week	21021908L	12	1046
RVAL-Cre: 1 week	21021908L	13	774
RVDL-Cre: 1 week	21021908L	14	483
RVDL-Cre: 1 week	21021908L	15	448
RVDL-Cre: 1 week	21021908L	total:	16257
RVIGL-Cre: 4 weeks	21021701L	1	1314
RVAGL-Cre: 4 weeks	21021701L	2	1246
RVIGL-Cre: 4 weeks	21021701L	3	1351
RVIGL-Cre: 4 weeks	21021701L	4	1601
RVIGL-Cre: 4 weeks	21021701L	5	1668
RVIGL-Cre: 4 weeks	21021701L	6	1618
RVIGL-Cre: 4 weeks	21021701L	7	1593
RVIGL-Cre: 4 weeks	21021701L	8	1757
RVIGL-Cre: 4 weeks	21021701L	9	1730
RVAGL-Cre: 4 weeks	21021701L	10	1600
RVIGL-Cre: 4 weeks	21021701L	11	1268
RVIGL-Cre: 4 weeks	21021701L	12	931
RVAGL-Cre: 4 weeks	21021701L	13	652
RVIGL-Cre: 4 weeks	21021701L	14	491
RVIGL-Cre: 4 weeks	21021701】	15	336

RVAGL-Cre: 4 weeks	21021701L	total:	19156
RVAGL-Cre: 4 weeks	21021702L	1	957
RVAGL-Cre: 4 weeks	21021702L	2	1175
RVAGL-Cre: 4 weeks	21021702L	3	1414
RVAGL-Cre: 4 weeks	21021702ப	4	1470
RVAGL-Cre: 4 weeks	21021702L	5	1481
RVAGL-Cre: 4 weeks	21021702L	6	1654
RVAGL-Cre: 4 weeks	21021702ப	7	1616
RVDGL-Cre: 4 weeks	21021702L	8	1601
RVAGL-Cre: 4 weeks	21021702L	9	1717
RVAGL-Cre: 4 weeks	21021702L	10	1449
RVDGL-Cre: 4 weeks	21021702L	11	1132
RVAGL-Cre: 4 weeks	21021702L	12	871
RVAGL-Cre: 4 weeks	21021702L	13	587
RVAGL-Cre: 4 weeks	21021702L	14	456
RVAGL-Cre: 4 weeks	21021702L	15	355
RVAGL-Cre: 4 weeks	21021702L	total:	17935
RVAGL-Cre: 4 weeks	21021705L	1	892
RVAGL-Cre: 4 weeks	21021705L	2	824
RVAGL-Cre: 4 weeks	21021705L	3	879
RVAGL-Cre: 4 weeks	21021705L	4	1094
RVAGL-Cre: 4 weeks	21021705L	5	1182
RVDGL-Cre: 4 weeks	21021705L	6	1318
RVAGL-Cre: 4 weeks	21021705L	7	1482
RVAGL-Cre: 4 weeks	21021705L	8	1637
RVAGL-Cre: 4 weeks	21021705L	9	1666
RVAGL-Cre: 4 weeks	21021705L	10	1796
RVAGL-Cre: 4 weeks	21021705L	11	1636
RVDGL-Cre: 4 weeks	21021705L	12	1415
RVAGL-Cre: 4 weeks	21021705L	13	1121
RVAGL-Cre: 4 weeks	21021705L	14	894
RVAGL-Cre: 4 weeks	21021705L	15	703
RVDGL-Cre: 4 weeks	21021705L	total:	18539
RVDGL-Cre: 4 weeks	21021706L	1	756
RVDGL-Cre: 4 weeks	21021706L	2	817
RVAGL-Cre: 4 weeks	21021706L	3	750
RVAGL-Cre: 4 weeks	21021706L	4	798
RVDGL-Cre: 4 weeks	21021706L	5	920
RVAGL-Cre: 4 weeks	21021706L	6	1337
RVDGL-Cre: 4 weeks	21021706L	7	1485
RVDGL-Cre: 4 weeks	21021706L	8	1490
RVAGL-Cre: 4 weeks	21021706L	9	1641
RVAGL-Cre: 4 weeks	21021706L	10	2004
RVAGL-Cre: 4 weeks	21021706L	11	1955
RVAGL-Cre: 4 weeks	21021706L	12	1453
RVAGL-Cre: 4 weeks	21021706L	13	1122
RVDGL-Cre: 4 weeks	21021706L	14	769
RVAGL-Cre: 4 weeks	21021706L	15	641
RVAGL-Cre: 4 weeks	21021706L	total:	17938
RVAL-Cre: 4 weeks	21021901L	1	943
RVAL-Cre: 4 weeks	21021901L	2	1003
RVAL-Cre: 4 weeks	21021901L	3	1036
RVAL-Cre: 4 weeks	21021901L	4	1195
RVAL-Cre: 4 weeks	21021901L	5	1402
RVAL-Cre: 4 weeks	21021901L	6	1739

RVAL-Cre: 4 weeks	21021901L	7	1793
RVAL-Cre: 4 weeks	21021901L	8	1913
RVAL-Cre: 4 weeks	21021901L	9	2026
RVAL-Cre: 4 weeks	21021901L	10	1913
RVAL-Cre: 4 weeks	21021901L	11	1929
RVAL-Cre: 4 weeks	21021901L	12	1668
RVAL-Cre: 4 weeks	21021901L	13	1247
RVAL-Cre: 4 weeks	21021901L	14	1062
RVAL-Cre: 4 weeks	21021901L	15	874
RVAL-Cre: 4 weeks	21021901L	total:	21743
RVAL-Cre: 4 weeks	21021902 J	1	1357
RVAL-Cre: 4 weeks	21021902L	2	1416
RVAL-Cre: 4 weeks	21021902L	3	1287
RVAL-Cre: 4 weeks	21021902 $Ј$	4	1308
RVAL-Cre: 4 weeks	21021902L	5	1583
RVAL-Cre: 4 weeks	21021902 $Ј$	6	1850
RVAL-Cre: 4 weeks	21021902 J	7	2020
RVAL-Cre: 4 weeks	21021902L	8	2238
RVAL-Cre: 4 weeks	21021902L	9	2092
RVAL-Cre: 4 weeks	21021902 J	10	2321
RVAL-Cre: 4 weeks	21021902L	11	2241
RVAL-Cre: 4 weeks	21021902 J	12	1858
RVAL-Cre: 4 weeks	21021902 J	13	1326
RVAL-Cre: 4 weeks	21021902L	14	1083
RVAL-Cre: 4 weeks	21021902 J	15	793
RVAL-Cre: 4 weeks	21021902 J	total:	24773
RVAL-Cre: 4 weeks	21021903L	1	1543
RVAL-Cre: 4 weeks	21021903L	2	1406
RVAL-Cre: 4 weeks	21021903L	3	1303
RVAL-Cre: 4 weeks	21021903L	4	1489
RVAL-Cre: 4 weeks	21021903L	5	1825
RVAL-Cre: 4 weeks	21021903L	6	1946
RVAL-Cre: 4 weeks	21021903L	7	1924
RVAL-Cre: 4 weeks	21021903L	8	2142
RVAL-Cre: 4 weeks	21021903L	9	2077
RVAL-Cre: 4 weeks	21021903L	10	1954
RVAL-Cre: 4 weeks	21021903L	11	1672
RVAL-Cre: 4 weeks	21021903L	12	1411
RVAL-Cre: 4 weeks	21021903L	13	1020
RVAL-Cre: 4 weeks	21021903L	14	687
RVAL-Cre: 4 weeks	21021903L	15	627
RVAL-Cre: 4 weeks	21021903L	total:	23026
RVAL-Cre: 4 weeks	21021904L	1	1592
RVAL-Cre: 4 weeks	21021904 ${ }^{\text {J }}$	2	1466
RVAL-Cre: 4 weeks	21021904L	3	1355
RVAL-Cre: 4 weeks	21021904 ${ }^{\text {J }}$	4	1599
RVAL-Cre: 4 weeks	21021904 J	5	1736
RVAL-Cre: 4 weeks	21021904L	6	1862
RVAL-Cre: 4 weeks	21021904 ${ }^{\text {J }}$	7	1794
RVAL-Cre: 4 weeks	21021904 J	8	1930
RVAL-Cre: 4 weeks	21021904L	9	2047
RVAL-Cre: 4 weeks	21021904 ${ }^{\text {J }}$	10	1584
RVAL-Cre: 4 weeks	21021904	11	1755
RVAL-Cre: 4 weeks	21021904 J	12	1431
RVAL-Cre: 4 weeks	21021904 \downarrow	13	741

RVDL-Cre: 4 weeks	21021904L	14	755
RVIL-Cre: 4 weeks	21021904L	15	625
RVIL-Cre: 4 weeks	21021904L	total:	22272
RVIL-5tTA: 1 week	21042901L	3	2
RVIL-5tTA: 1 week	21042901L	6	9
RVIL-5tTA: 1 week	21042901L	7	4
RVIL-5tTA: 1 week	21042901L	8	26
RVIL-5tTA: 1 week	21042901L	9	32
RVIL-5tTA: 1 week	21042901L	10	54
RVIL-5tTA: 1 week	21042901L	11	69
RVIL-5tTA: 1 week	21042901L	12	56
RVIL-5tTA: 1 week	21042901L	13	51
RVIL-5tTA: 1 week	21042901L	14	14
RVIL-5tTA: 1 week	21042901L	15	22
RVIL-5tTA: 1 week	21042901L	total:	339
RVDL-5tTA: 1 week	21042902LJ	1	4
RVIL-5tTA: 1 week	21042902L	2	11
RVIL-5tTA: 1 week	21042902L	3	14
RVIL-5tTA: 1 week	21042902L	4	4
RVIL-5tTA: 1 week	21042902L	5	39
RVIL-5tTA: 1 week	21042902L	6	108
RVIL-5tTA: 1 week	21042902L	7	213
RVIL-5tTA: 1 week	21042902L	8	255
RVIL-5tTA: 1 week	21042902L	9	296
RVIL-5tTA: 1 week	21042902L	10	219
RVIL-5tTA: 1 week	21042902	11	134
RVDL-5tTA: 1 week	21042902L	12	64
RVIL-5tTA: 1 week	21042902L	13	29
RVIL-5tTA: 1 week	21042902L	14	14
RVIL-5tTA: 1 week	21042902L	15	7
RVIL-5tTA: 1 week	21042902L	total:	1411
RVIL-5tTA: 1 week	21042903L	2	3
RVDL-5tTA: 1 week	21042903L	3	7
RVIL-5tTA: 1 week	21042903L	4	6
RVIL-5tTA: 1 week	21042903L	5	4
RVIL-5tTA: 1 week	21042903L	6	27
RVIL-5tTA: 1 week	21042903L	7	40
RVDL-5tTA: 1 week	21042903L	8	81
RVIL-5tTA: 1 week	21042903L	9	115
RVIL-5tTA: 1 week	21042903L	10	165
RVDL-5tTA: 1 week	21042903L	11	120
RVIL-5tTA: 1 week	21042903L	12	84
RVIL-5tTA: 1 week	21042903L	13	67
RVDL-5tTA: 1 week	21042903L	14	44
RVIL-5tTA: 1 week	21042903L	15	33
RVIL-5tTA: 1 week	21042903L	total:	796
RVDL-5tTA: 1 week	21060301L	1	85
RVIL-5tTA: 1 week	21060301L	2	117
RVIL-5tTA: 1 week	21060301L	3	154
RVDL-5tTA: 1 week	21060301L	4	59
RVIL-5tTA: 1 week	21060301L	5	207
RVIL-5tTA: 1 week	21060301L	6	325
RVIL-5tTA: 1 week	21060301L	7	314
RVIL-5tTA: 1 week	21060301L	8	303
RVIL-5tTA: 1 week	21060301L	9	288

RVAL-5tTA: 1 week	21060301L	10	185
RVAL-5tTA: 1 week	21060301L	11	141
RVIL-5tTA: 1 week	21060301L	12	47
RVIL-5tTA: 1 week	21060301L	13	19
RVAL-5tTA: 1 week	21060301L	14	14
RVAL-5tTA: 1 week	21060301L	15	13
RVAL-5tTA: 1 week	21060301L	total:	2271
RVIL-5tTA: 4 weeks	21042905L	1	4
RVIL-5tTA: 4 weeks	21042905L	2	14
RVIL-5tTA: 4 weeks	21042905L	3	6
RVAL-5tTA: 4 weeks	21042905L	4	21
RVIL-5tTA: 4 weeks	21042905L	5	15
RVIL-5tTA: 4 weeks	21042905L	6	41
RVAL-5tTA: 4 weeks	21042905L	7	42
RVIL-5tTA: 4 weeks	21042905L	8	101
RVAL-5tTA: 4 weeks	21042905L	9	156
RVAL-5tTA: 4 weeks	21042905L	10	109
RVIL-5tTA: 4 weeks	21042905L	11	94
RVIL-5tTA: 4 weeks	21042905L	12	24
RVAL-5tTA: 4 weeks	21042905L	13	87
RVIL-5tTA: 4 weeks	21042905L	14	44
RVAL-5tTA: 4 weeks	21042905L	15	71
RVAL-5tTA: 4 weeks	21042905L	total:	829
RVAL-5tTA: 4 weeks	21042906L	1	9
RVIL-5tTA: 4 weeks	21042906L	2	17
RVIL-5tTA: 4 weeks	21042906L	3	28
RVAL-5tTA: 4 weeks	21042906L	4	23
RVAL-5tTA: 4 weeks	21042906L	5	24
RVIL-5tTA: 4 weeks	21042906L	6	25
RVIL-5tTA: 4 weeks	21042906L	7	93
RVAL-5tTA: 4 weeks	21042906L	8	200
RVAL-5tTA: 4 weeks	21042906L	9	305
RVAL-5tTA: 4 weeks	21042906L	10	233
RVAL-5tTA: 4 weeks	21042906L	11	200
RVIL-5tTA: 4 weeks	21042906L	12	141
RVIL-5tTA: 4 weeks	21042906L	13	74
RVIL-5tTA: 4 weeks	21042906L	14	108
RVAL-5tTA: 4 weeks	21042906L	15	94
RVAL-5tTA: 4 weeks	21042906L	total:	1574
RVAL-5tTA: 4 weeks	21042907ப	2	2
RVIL-5tTA: 4 weeks	21042907ப	4	3
RVAL-5tTA: 4 weeks	21042907	5	5
RVAL-5tTA: 4 weeks	21042907	6	24
RVAL-5tTA: 4 weeks	21042907	7	32
RVAL-5tTA: 4 weeks	21042907	8	51
RVIL-5tTA: 4 weeks	21042907ப	9	100
RVAL-5tTA: 4 weeks	21042907	10	74
RVAL-5tTA: 4 weeks	21042907	11	69
RVAL-5tTA: 4 weeks	21042907	12	54
RVIL-5tTA: 4 weeks	21042907	13	26
RVIL-5tTA: 4 weeks	21042907L	14	31
RVAL-5tTA: 4 weeks	21042907ப	15	28
RVIL-5tTA: 4 weeks	21042907U	total:	499
RVAL-5tTA: 4 weeks	21042908L	1	64
RVAL-5tTA: 4 weeks	21042908L	2	67

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.23.481706; this version posted April 5, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

RVIL-5tTA: 4 weeks	21042908L	3	66
RVIL-5tTA: 4 weeks	21042908L	4	79
RVIL-5tTA: 4 weeks	21042908L	5	151
RVAL-5tTA: 4 weeks	21042908L	6	149
RVIL-5tTA: 4 weeks	21042908L	7	166
RVIL-5tTA: 4 weeks	21042908L	8	171
RVIL-5tTA: 4 weeks	21042908L	9	184
RVIL-5tTA: 4 weeks	21042908L	10	57
RVIL-5tTA: 4 weeks	21042908L	11	48
RVAL-5tTA: 4 weeks	21042908L	12	29
RVIL-5tTA: 4 weeks	21042908L	13	14
RVIL-5tTA: 4 weeks	21042908L	14	27
RVIL-5tTA: 4 weeks	21042908L	15	57
RVAL-5tTA: 4 weeks	21042908L	total:	1329

Condition	Mouse number	Cell counts
RVAGL-Flpo: 1 week	21021505LJ	22
RVAGL-Flpo: 1 week	21021506LJ	18
RVAGL-Flpo: 1 week	21021507LJ	121
RVAGL-Flpo: 1 week	21021508L	2
RVAGL-Flpo: 1 week	21052505LJ	7
RVAGL-Flpo: 1 week	21052506LJ	8
RVAGL-Flpo: 1 week	21052507LJ	98
RVAGL-Flpo: 1 week	21052508LJ	6
RVAGL-Flpo: 1 week	Mean:	35.25
RVAL-Flpo: 1 week	21021805LJ	3093
RVAL-Flpo: 1 week	21021806LJ	320
RVAL-Flpo: 1 week	21021807L	311
RVAL-Flpo: 1 week	21021808L	263
RVAL-Flpo: 1 week	21052607LJ	47
RVAL-Flpo: 1 week	21052608LJ	2161
RVAL-Flpo: 1 week	21060302L	365
RVAL-Flpo: 1 week	21060303LJ	238
RVAL-Flpo: 1 week	Mean:	849.75
RVAGL-Flpo: 4 weeks	21021501LJ	80
RVAGL-Flpo: 4 weeks	21021502LJ	62
RVAGL-Flpo: 4 weeks	21021503LJ	3254
RVAGL-Flpo: 4 weeks	21021504LJ	237
RVAGL-Flpo: 4 weeks	21052501LJ	43
RVAGL-Flpo: 4 weeks	21052502LJ	14
RVAGL-Flpo: 4 weeks	21052503LJ	130
RVAGL-Flpo: 4 weeks	21052504LJ	65
RVAGL-Flpo: 4 weeks	Mean:	485.625
RVIL-Flpo: 4 weeks	21021801LJ	4614
RVIL-Flpo: 4 weeks	21021802 J	3006
RVIL-Flpo: 4 weeks	21021803LJ	1847
RVIL-Flpo: 4 weeks	21021804LJ	3331
RVIL-Flpo: 4 weeks	21052601LJ	1369
RVIL-Flpo: 4 weeks	21052602LJ	2919
RVIL-Flpo: 4 weeks	21052603LJ	3730
RVIL-Flpo: 4 weeks	21052606LJ	3454
RVIL-Flpo: 4 weeks	Mean:	3033.75
RVAGL-Cre: 1 week	21021703LJ	13484
RVAGL-Cre: 1 week	21021704LJ	14635
RVAGL-Cre: 1 week	21021707LJ	10647
RVAGL-Cre: 1 week	21021708LJ	10845
RVDGL-Cre: 1 week	Mean:	12402.75
RVAL-Cre: 1 week	21021905L	16907
RVAL-Cre: 1 week	21021906LJ	17923
RVAL-Cre: 1 week	21021907ப	18751
RVAL-Cre: 1 week	21021908L	16257
RVAL-Cre: 1 week	Mean:	17459.5
RVAGL-Cre: 4 weeks	21021701L	19156
RVAGL-Cre: 4 weeks	21021702LJ	17935
RVAGL-Cre: 4 weeks	21021705L	18539
RVAGL-Cre: 4 weeks	21021706LJ	17938
RVAGL-Cre: 4 weeks	Mean:	18392
RVAL-Cre: 4 weeks	21021901L	21743
RVDL-Cre: 4 weeks	21021902LJ	24773
RVAL-Cre: 4 weeks	21021903LJ	23026
RVDL-Cre: 4 weeks	21021904 J	22272
RVDL-Cre: 4 weeks	Mean:	22953.5
RVAL-5tTA: 1 week	21042901L	339
RVAL-5tTA: 1 week	21042902LJ	1411
RVAL-5tTA: 1 week	21042903LJ	796
RVAL-5tTA: 1 week	21060301L	2271
RVAL-5tTA: 1 week	Mean:	1204.25
RVDL-5tTA: 4 weeks	21042905LJ	829
RVAL-5tTA: 4 weeks	21042906L	1574
RVAL-5tTA: 4 weeks	21042907L	499
RVAL-5tTA: 4 weeks	21042908L	1329
RVILL-5tTA: 4 weeks	Mean:	1057.75

RVDGL-Flpo 4 weeks	RVDL-Flpo 4 weeks
80	4614
62	3006
3254	1847
237	3331
43	1369
14	2919
130	3730
65	3454

Anova: Single Factor

SUMMARY

Groups	Count	Sum	Average	Variance
RV Δ GL-Flpo 4 weeks	8	3885	485.625	1255920.84
RVDL-Flpo 4 weeks	8	24270	3033.75	1062946.79

ANOVA

Source of Variation	SS	$d f$	MS	F	P-value	F crit
Between Groups	25971764.06	1	25971764.1	22.4003852	0.00032063	4.60010994
Within Groups	16232073.38	14	1159433.81			
Total	42203837.44	15				

RV Δ GL-Flpo 1 week	RV Δ GL-Flpo 4 weeks
22	80
18	62
121	3254
2	237
7	43
8	14
98	130
6	65

Anova: Single Factor

SUMMARY

Groups	Count	Sum	Average	Variance
RV Δ GL-Flpo 1 week	8	282	35.25	2180.78571
RV GL-Flpo 4 weeks	8	3885	485.625	1255920.84

ANOVA

Source of Variation	SS	$d f$	MS	F	-value	F crit
Between Groups	811350.5625	1	811350.563	1.28980131	0.27515341	4.60010994
Within Groups	8806711.375	14	629050.813			
Total	9618061.938	15				

RVAGL-Flpo 4 weeks	RVDL-Flpo 1 week
80	3093
62	320
3254	311
237	263

Anova: Single Factor

SUMMARY

Groups	Count	Sum	Average	Variance
RV Δ GL-Flpo 4 weeks	4	3633	908.25	2451752.25
RVDL-Flpo 1 week	4	3987	996.75	1953632.25

ANOVA

Source of Variation	SS	$d f$	MS	F	P-value	F crit
Between Groups	15664.5	1	15664.5	0.00711152	0.93553752	5.98737761
Within Groups	13216153.5	6	2202692.25			
Total	13231818	7				

RVDL-Flpo 4 weeks	RVAGL-Flpo 1 week
4614	22
3006	18
1847	121
3331	2

Anova: Single Factor

SUMMARY

Groups	Count	Sum	Average	Variance
RVDL-Flpo 4 weeks	4	12798	3199.5	1294933.67
RVDGL-Flpo 1 week	4	163	40.75	2936.91667

ANOVA

Source of Variation	SS	$d f$	MS	F	P-value	F crit
Between Groups	19955403.13	1	19955403.1	30.7509907	0.00145233	5.98737761
Within Groups	3893611.75	6	648935.292			
Total	23849014.88	7				

RVDL-Flpo 1 week	RVDL-Flpo 4 weeks
3093	4614
320	3006
311	1847
263	3331
47	1369
2161	2919
365	3730
238	3454

Anova: Single Factor

SUMMARY

Groups	Count	Sum	Average	Variance
RVAL-Flpo 1 week	8	6798	849.75	1274333.93
RVAL-Flpo 4 weeks	8	24270	3033.75	1062946.79

ANOVA						
Source of Variation	SS	1	MS	F	-value	F crit
Between Groups	19079424	14	19079424	16.3261724	0.00121549	4.60010994
Within Groups	16360965		1168640.36			
Total	35440389	15				

RVAGL-Flpo 1 week	RVAL-Flpo 1 week
22	3093
18	320
121	311
2	263
7	47
8	2161
98	365
6	238

Anova: Single Factor

SUMMARY

Groups	Count	Sum	Average	Variance
RV Δ GL-Flpo 1 week	8	282	35.25	2180.78571
RVDL-Flpo 1 week	8	6798	849.75	1274333.93

ANOVA

Source of Variation	SS	$d f$	MS	F	P-value	F crit
Between Groups	2653641	1	2653641	4.1576348	0.06079134	4.60010994
Within Groups	8935603	14	638257.357			
		11589244	15			
Total						

RVDGL-Cre 4 weeks	RVDL-Cre 4 weeks
19156	21743
17935	24773
18539	23026
17938	22272

Anova: Single Factor

SUMMARY

Groups	Count	Sum	Average	Variance
RV Δ GL-Cre 4 weeks	4	73568	18392	340090
RV Δ L-Cre 4 weeks	4	91814	22953.5	1748529.67

ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	41614564.5	1	41614564.5	39.8488678	0.00073769	5.98737761
Within Groups	6265859	6	1044309.83			
Total	47880423.5	7				

RVDGL-Cre 4 weeks	RVDGL-Cre 1 week
19156	13484
17935	14635
18539	10647
17938	10845

Anova: Single Factor

SUMMARY

Groups	Count	Sum	Average	Variance
RV Δ GL-Cre 4 weeks	4	73568	18392	340090
RV Δ GL-Cre 1 week	4	49611	12402.75	3887094.92

ANOVA

Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	71742231.13	1	71742231.1	33.943266	0.00112486	5.98737761
Within Groups	12681554.75	6	2113592.46			
Total	84423785.88	7				

RVDGL-Cre 4 weeks	RVDL-Cre 1 week
19156	16907
17935	17923
18539	18751
17938	16257

Anova: Single Factor

SUMMARY

Groups	Count	Sum	Average	Variance
RV Δ GL-Cre 4 weeks	4	73568	18392	340090
RV Δ L-Cre 1 week	4	69838	17459.5	1211355.67

ANOVA

Source of Variation	SS	$d f$	MS	F	P-value	F crit
Between Groups	1739112.5	1	1739112.5	2.24192511	0.1849584	5.98737761
Within Groups	4654337		6	775722.833		
Total	6393449.5	7				

RVDL-Cre 4 weeks	RV Δ GL-Cre 1 week
21743	13484
24773	14635
23026	10647
22272	10845

Anova: Single Factor

SUMMARY

Groups	Count	Sum	Average	Variance
RV Δ L-Cre 4 weeks	4	91814	22953.5	1748529.67
RV Δ GL-Cre 1 week	4	49611	12402.75	3887094.92

ANOVA

Source of Variation	SS	$d f$	MS	F	P-value	F crit
Between Groups	222636651.1	1	222636651	79.010462	0.00011291	5.98737761
Within Groups	16906873.75	6	2817812.29			
Total	239543524.9	7				

RVDL-Cre 4 weeks	RVDL-Cre 1 week
21743	16907
24773	17923
23026	18751
22272	16257

Anova: Single Factor

SUMMARY

Groups	Count	Sum	Average	Variance
RV Δ L-Cre 4 weeks	4	91814	22953.5	1748529.67
RV Δ L-Cre 1 week	4	69838	17459.5	1211355.67

ANOVA

Source of Variation	SS	$d f$	MS	F	P-value	F crit
Between Groups	60368072	1	60368072	40.790818	0.00069327	5.98737761
Within Groups	8879656		6	1479942.67		
		7				
Total	69247728					

RVDGL-Cre 1 week RVDL-Cre 1 week

13484	16907
14635	17923
10647	18751
10845	16257

Anova: Single Factor

SUMMARY

Groups	Count	Sum	Average	Variance
RV Δ GL-Cre 1 week	4	49611	12402.75	3887094.92
RV Δ L-Cre 1 week	4	69838	17459.5	1211355.67

ANOVA

Source of Variation	SS	$d f$	MS	F	P-value	F crit
Between Groups	51141441.13	1	51141441.1	20.061562	0.00419681	5.98737761
Within Groups	15295351.75	6	2549225.29			
Total	66436792.88	7				

RV $\Delta L-5 t T A ~ 1 ~ w e e k ~$	RV $\Delta L-5 t T A ~ 4 ~ w e e k s ~$
339	829
1411	1574
796	499
2271	1329

Anova: Single Factor

SUMMARY

Groups	Count	Sum	Average	Variance
RV $\Delta L-5 t T A ~ 1 ~ w e e k ~$	4	4817	1204.25	698675.583
RV Δ L-5tTA 4 weeks	4	4231	1057.75	234872.917

ANOVA

Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	42924.5	1	42924.5	0.09195987	0.77193993	5.98737761
Within Groups	2800645.5	6	466774.25			
Total	2843570					

Comparison	p-value
RVAGL-Flpo 4 weeks vs RVDL-Flpo 4 weeks	0.000320625
RVAGL-Flpo 4 weeks vs RVAGL-Flpo 1 week	0.27515341
RVAGL-Flpo 4 weeks vs RVAL-Flpo 1 week	0.93553752
RVDL-Flpo 4 weeks vs RVAGL-Flpo 1 week	0.001452333
RVAL-Flpo 4 weeks vs RVAL-Flpo 1 week	0.001215493
RVAGL-Flpo 1 week vs RVAL-Flpo 1 week	0.060791343
RVDGL-Cre 4 weeks vs RVDL-Cre 4 weeks	0.000737695
RVAGL-Cre 4 weeks vs RVDGL-Cre 1 week	0.001124862
RVDGL-Cre 4 weeks vs RVDL-Cre 1 weeks	0.184958403
RVAL-Cre 4 weeks vs RVAGL-Cre 1 week	0.000112909
RVDL-Cre 4 weeks vs RV Δ L-Cre 1 week	0.000693266
RVAGL-Cre 1 week vs RVDL-Cre 1 week	0.004196815
RVIL-5tTA 1 week vs RV ΔL-5tTA 4 weeks	0.77193993

Video S1. RV Δ L-Cre-labeled cortical neurons at 2 weeks vs 10 weeks postinjection, Related to

 Figure 3814 3-dimensional rendering of the same cortical volume shown in Figure 3, panel B.

File S3. Cell counts and statistics for structural two-photon imaging experiments, Related to Figure 3

See following pages.
bioRxiv preprint doi: https://doi.org/10.1101/2022.02.23.481706; this version posted April 5, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

RVAGL-Cre: cell counts	Animal-1 FOV-1	Animal-1 FOV-2	Animal-2 FOV-1	Animal-2 FOV-2	Animal-3 FOV-1	Animal-3 FOV-2	Animal-4 FOV-1	Animal-4 FOV-2
Week-1	300	315	219	318	435	288	203	220
Week-2	519	359	269	546	488	364	321	354
Week-3	537	390	305	569	505	443	369	427
Week-4	538	403	317	572	518	445	372	426
Week-6	537	403	319	571	515	451	370	424
Week-12	535	400	319	567	514	443	369	424
Week-14			319	567	513	442	368	421
Week-16			319					
RV \triangle GL-Cre: percentage to week-1	Animal-1 FOV-1	Animal-1 FOV-2	Animal-2 FOV-1	Animal-2 FOV-2	Animal-3 FOV-1	Animal-3 FOV-2	Animal-4 FOV-1	Animal-4 FOV-2
Week-1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Week-2	1.73	1.14	1.23	1.72	1.12	1.26	1.58	1.61
Week-3	1.79	1.24	1.39	1.79	1.16	1.54	1.82	1.94
Week-4	1.79	1.28	1.45	1.80	1.19	1.55	1.83	1.94
Week-6	1.79	1.28	1.46	1.80	1.18	1.57	1.82	1.93
Week-12	1.78	1.27	1.46	1.78	1.18	1.54	1.82	1.93
Week-14			1.46	1.78	1.18	1.53	1.81	1.91
Week-16			1.46					
RVAGL-Cre: comparison between week-1 and week-4	Animal-1 FOV-1	Animal-1 FOV-2	Animal-2 FOV-1	Animal-2 FOV-2	Animal-3 FOV-1	Animal-3 FOV-2	Animal-4 FOV-1	Animal-4 FOV-2
Week-1	300	315	219	318	435	288	203	220
Week-4	538	403	317	572	518	445	372	426
Increase (Week-4 - Week-1)	238	88	98	254	83	157	169	206
\% increase (Week-4 - Week-1)	79.33\%	27.94\%	44.75\%	79.87\%	19.08\%	54.51\%	83.25\%	93.64\%
Increase (Week-12 - Week-4)	-3	-3	2	-5	-4	-2	-3	-2
\% increase (Week-12 - Week-4)	-0.56\%	-0.74\%	0.63\%	-0.87\%	-0.77\%	-0.45\%	-0.81\%	-0.47\%

\mathbf{t}-Test: Paired Two Sample for Means		
Mean	Week-1	Week-4
Variance	287.25	448.875
Observations	5712.5	7689.267857
Pearson Correlation	8	8
Hypothesized Mean Difference	0.665513457	
df	0	
t Stat	7	
$\mathrm{P}(\mathrm{T}<\mathrm{t})$ one-tail	-6.75473154	
t Critical one-tail	$\mathbf{0 . 0 0 0 1 3 1 9 3 4}$	
$\mathrm{P}(\mathrm{T}<\mathrm{t})$ two-tail	1.894578605	
t Critical two-tail	0.000263868	

t -Test: Paired Two Sample for Means		
Mean	Week-4	Week-12
Variance	448.875	446.375
Observations	7689.267857	7407.410714
Pearson Correlation	8	8
Hypothesized Mean Difference	0.999890399	
df	0	
t Stat	7	
$\mathrm{P}(\mathrm{T}<\mathrm{t})$ one-tail	3.415650255	
t Critical one-tail	$\mathbf{0 . 0 0 5 6 0 0 7 1 6}$	
$\mathrm{P}(\mathrm{T}<\mathrm{t})$ two-tail	1.894578605	
t Critical two-tail	0.011201433	

\% increase from 1 week to 4 weeks:								
RV \triangle GL-Cre	79.33\%	27.94\%	44.75\%	79.87\%	19.08\%	54.51\%	83.25\%	93.64\%
RV $\mathrm{S}_{\text {L-Cre }}$	84.38\%	84.41\%	49.57\%	70.25\%	54.88\%	67.66\%	40.66\%	93.26\%

Unpaired t test	
Table Analyzed	\% increase
P value	0.5187
P value summary	ns
Significantly different ($\mathrm{P}<0.05$)?	No
One- or two-tailed P value?	Two-tailed
t, df	t=0.6621, df=14
How big is the difference?	
Mean of RVAGL-Cre	0.603
Mean of RVAL-Cre	0.6813
Difference between means (B-A) \pm SEM	0.07836 ± 0.1184
95\% confidence interval	-0.1755 to 0.3322
R squared (eta squared)	0.03036
F test to compare variances	
F, DFn, Dfd	2.216, 7, 7
P value	0.3158
P value summary	ns
Significantly different ($\mathrm{P}<0.05$)?	No
Data analyzed	
Sample size, RVAGL-Cre	8
Sample size, RVAL-Cre	8

\% increase from 4 weeks to 12 weeks:								
RV \triangle GL-Cre	-0.56\%	-0.74\%	0.63\%	-0.87\%	-0.77\%	-0.45\%	-0.81\%	-0.47\%
RV $\mathrm{S}_{\text {L-Cre }}$	0.48\%	-0.29\%	2.31\%	-1.46\%	3.30\%	0.00\%	0.78\%	0.58\%

Unpaired t test	
P value	0.0451
P value summary	*
Significantly different ($\mathrm{P}<0.05$)?	Yes
One- or two-tailed P value?	Two-tailed
t, df	$\mathrm{t}=2.199, \mathrm{df}=14$
How big is the difference?	
Mean of RVAGL-Cre	-0.005054
Mean of RVAL-Cre	0.007135
Difference between means (B-A) \pm SEM	. 01219 ± 0.005542
95\% confidence interval	0003030 to 0.02407
R squared (eta squared)	0.2568
F test to compare variances	
F, DFn, Dfd	9.402, 7, 7
P value	0.0085
P value summary	**
Significantly different ($\mathrm{P}<0.05$)?	Yes
Data analyzed	
Sample size, RVAGL-Cre	8
Sample size, RVAL-Cre	8

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.23.481706; this version posted April 5, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

RV \triangle L-Cre: cell counts	Animal-1 FOV-1	Animal-1 FOV-2	Animal-2 FOV-1	Animal-2 FOV-2	Animal-3 FOV-1	Animal-3 FOV-2	Animal-4 FOV-1	Animal-4 FOV-2
Week-1	224	186	232	242	215	167	182	178
Week-2	331	307	300	298	270	237	200	228
Week-3	396	340	341	378	289	279	253	304
Week-4	413	343	347	412	333	280	256	344
Week-6	409	342	347	413	342	283	255	345
Week-12	415	342	355	406	344	280	258	346
Week 14	415	342	354	406	344	280		
Week-16				406	344	280		

RVAL-Cre: percentage to week-1	Animal-1 FOV-1	Animal-1 FOV-2	Animal-2 FOV-1	Animal-2 FOV-2	Animal-3 FOV-1	Animal-3 FOV-2	Animal-4 FOV-1	Animal-4 FOV-2
Week-1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Week-2	1.48	1.65	1.29	1.23	1.26	1.42	1.10	1.28
Week-3	1.77	1.83	1.47	1.56	1.34	1.67	1.39	1.71
Week-4	1.84	1.84	1.50	1.70	1.55	1.68	1.41	1.93
Week-6	1.83	1.84	1.50	1.71	1.59	1.69	1.40	1.94
Week-12	1.85	1.84	1.53	1.68	1.60	1.68	1.42	1.94
Week 14	1.85	1.84	1.53	1.68	1.60	1.68		
Week-16				1.68	1.60	1.68		

RVAL-Cre: comparison between week-1 and week-4	Animal-1 FOV-1	Animal-1 FOV-2	Animal-2 FOV-1	Animal-2 FOV-2	Animal-3 FOV-1	Animal-3 FOV-2	Animal-4 FOV-1	Animal-4 FOV-2
Week-1	224	186	232	242	215	167	182	178
Week-4	413	343	347	412	333	280	256	344
Increase (Week-4 - Week-1)	189	157	115	170	118	113	74	166
\% increase (Week-4 - Week-1)	84.38\%	84.41\%	49.57\%	70.25\%	54.88\%	67.66\%	40.66\%	93.26\%
Increase (Week-12-Week-4)	2	-1	8	-6	11	0	2	2
\% increase (Week-12 - Week-4)	0.48\%	-0.29\%	2.31\%	-1.46\%	3.30\%	0.00\%	0.78\%	0.58\%

t -Test: Paired Two Sample for Means		
Mean	Week-1	Week-4
Variance	203.25	341
Observations	799.6428571	3040.571429
Pearson Correlation	8	8
Hypothesized Mean Difference	0.754099973	
df	0	
t Stat	7	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	-10.09862351	
$\mathrm{t} \mathrm{Critical} \mathrm{one-tail}$	$\mathbf{1 . 0 0 2 6 6 \mathrm { E } - 0 5}$	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	1.894578605	
t Critical two-tail	$2.00531 \mathrm{E}-05$	

t-Test: Paired Two Sample for Means		
	Week-4	Week-12
Mean	341	343.25
Variance	3040.571429	2928.785714
Observations	8	8
Pearson Correlation	0.995543784	
Hypothesized Mean Difference	0	
df	7	
t Stat	-1.210419877	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	0.13269902	
t Critical one-tail	1.894578605	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	0.265398039	
t Critical two-tail	2.364624252	

Figure S4. GCaMP6s signals and tuning curves of 8 example V1 neurons at 16 weeks postinjection, Related to Figure 4
These data were obtained with drifting gratings presented at 12 directions of motion and 5 temporal frequencies, repeated 10 times (tuning curve: mean $\Delta F / F \pm$ s.e.m; GCaMP6s signals: mean $\Delta F / F$) at two different FOVs at the 16-week timepoint.

A

Week 10

B

Figure S5. More examples showing long-term stability of orientation and temporal frequency tuning in RV Δ L-Cre labeled neurons, Related to Figure 4
(A) Maximum intensity projections of the same FOV at 4 weeks, 10 weeks, and 14 weeks postinjection. Scale bar: $100 \mu \mathrm{~m}$, applies to all images.
(B) Visual responses of the three circled cells in panel a measured at the three different timepoints. Data were obtained with drifting gratings presented at 12 directions of motion and 5 temporal frequencies (mean $\Delta F / F \pm$ s.e.m., averaged over 10 repeats).

843 Video S2. GCaMP6s signals of visual cortical neurons 16 weeks after injection of RV ΔL-Cre, Related to Figure 4
Video shows responses to 10 repeats of drifting gratings at 12 directions of motion at one temporal frequency (1 Hz) over a total of 480 seconds.

See external file.

