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The nature of semantic knowledge – conceptual information
stored in the brain – is highly debated in the field of cognitive
science. Experimental and clinical data specify various cortical
regions involved in the processing of meaning. Those include se-
mantic hubs that take part in semantic processing in general as
well as sensorimotor areas that process specific conceptual cat-
egories according to their modality. Biologically inspired neu-
rocomputational models can help adjudicate between different
theories about the exact roles of those regions in the functioning
of the semantic system.
Here, we used an existing neuroanatomically constrained model
of frontotemporal brain areas implicated in language acquisi-
tion and grounding. We adapted it to replicate and explain the
effects of semantic dementia on word processing abilities. Se-
mantic dementia is a disease characterized by semantic knowl-
edge deterioration that correlates with neural damage in the
anterior temporal lobe. The behavior of our model is in ac-
cordance with clinical data – namely, word recognition per-
formance decreases as SD lesions progress, whereas word rep-
etition abilities remain preserved, or are less affected. Fur-
thermore, our model makes novel predictions about category-
specific effects of SD – namely, our simulation results indicate
that word processing should be more impaired for object- than
for action-related words, and that white matter degradation
should lead to more severe consequences than the same propor-
tion of grey matter degradation.
The present results provide a mechanistic, cortical-level ex-
planatory account of a range of language impairments as ob-
served in clinical populations during the onset and progress of
semantic dementia.
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Introduction

Semantic knowledge is information about the meaning of
concepts and words accumulated by an individual throughout
their lifetime (1, 2). We constantly use it to behave properly
in different situations, express our thoughts, understand oth-
ers, and for many more purposes. Difficulties experienced by
people with semantic memory impairments can be of a di-
verse nature — they can fail to recognize or produce speech

(3, 4); they can forget how to use ordinary things, for exam-
ple, an umbrella (5); or they can fail to understand and ex-
plain the source of the pain that they feel (4). This shows the
importance of understanding the nature of such impairments
and the nature of semantic knowledge itself.
Although conceptual information processing in the brain has
been one of the central research topics in recent decades, its
neural substrate, processing mechanisms, or even the sub-
stance of conceptual information remain an open debate (6).
One line of reasoning posits that the sensorimotor system
plays only a secondary role in semantic representations (7, 8)
and that it is important to have one higher-order brain area
where all concepts are stored in an amodal way (9, 10). Other
groups claim that when we process a concept, our brain sim-
ulates the perceptual experience of the interaction with this
concept (11). Finally, multiple scholars propose hybrid the-
ories that suggest both the necessity of symbol grounding
in perceptual and motor experiences and the existence of
‘higher order’ convergence areas that link together experi-
ences from different modalities (1, 12–14).
A huge amount of evidence on the functioning of the se-
mantic system comes from clinical studies. Semantic de-
mentia (SD) is an exemplar semantic disorder that gave birth
to numerous insights into conceptual information processing
mechanisms (5, 15, 16). It is characterized by deterioration of
semantic knowledge, the degree of which correlates with the
severity of anterior temporal lobe (ATL) atrophy (3, 4, 17).
Furthermore, according to some computational models of SD
(15, 18) and transcranial magnetic stimulation (TMS) studies
(19), ATL atrophy is considered as the cause of impairments
of semantic memory. Several researchers have suggested that
this evidence supports the existence of an amodal core of con-
cept representations and diminishes the importance of con-
cepts embodiment (9, 20, 21). This line of thinking stems
from the observation that semantic memory decline in SD
patients is not concept selective (i.e. different semantic cat-
egories are affected) and ATL is not part of the sensory and
motor systems, therefore ATL may be the core place where
concepts from different categories are stored in an amodal
way.
On the other hand, amodal representations cannot fully ex-
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plain the data on the correlation between activation of differ-
ent cortical sites and comprehension of specific conceptual
categories. Patients with lesions in the motor and premotor
cortex often suffer from impaired comprehension of action-
related words compared with object-related ones, while pa-
tients with lesions in the visual cortex have problems with
comprehension of object-related words (for a review, see
(1, 22). Furthermore, it was shown that TMS of the hand mo-
tor areas could enhance comprehension of the hand-related
words, while stimulation of the leg areas could have a simi-
lar effect on the leg-related words (23). Other TMS studies
show that comprehension and retrieval of different categories
of concepts (e.g., animals versus tools) correlate with differ-
ent cortical stimulation sites (in this example, occipital and
inferior temporal areas versus premotor areas, accordingly;
for reviews see (24, 25). This line of reasoning posits that
the neuronal networks integrating sensory and motor patterns
that emerge as a result of concomitant action and percep-
tion experiences during word meaning and concept acquisi-
tion could be the basis for semantic representations. More
specifically, Kiefer and Pulvermüller (1) suggest that concept
representations are distributed over modality-specific senso-
rimotor areas and non-specific (or modality general) “con-
nector hubs”, which provide the neuroanatomical “bridge”
between the different modality-specific cortices. Brain con-
nectivity data show that relevant primary motor and sensory
areas are not directly linked, but can only communicate by
virtue of mediating areas (connector hub). Therefore, con-
ceptual representations must necessarily be distributed over
modality-specific sensorimotor areas and general connector
hubs. They argue that this hypothesis follows directly from
the perceptual origin of semantic knowledge acquisition and
the neurobiological properties of the brain (14, 25). When
we acquire the meaning of a new concrete word or concept,
this usually occurs through different perceptual modalities si-
multaneously (for example, a mother teaches her child ‘This
is an apple’ by showing an apple, so in this case, auditory
and visual perception occurs at the same time). This co-
occurrence could establish robust links between neural net-
works subserving different perceptual and motor modalities
through Hebbian learning mechanisms (26).

In this study, we extend a neuroanatomically constrained
computational model of word acquisition and grounding (14)
to reflect neural mechanisms associated with semantic de-
mentia. Using this model, we attempt to explain existing
data about SD syndrome, namely, why word recognition abil-
ities decline with an increase in the disease severity while
word repetition abilities remain relatively preserved. In the
extended model, we implement two types of neural anoma-
lies reported to be associated with SD —damage to the grey
matter and white matter of the ATL (3, 4, 17) — and com-
pare the model dynamics resulting from these two alterations.
We also compare the degradation dynamics of object-related
words with the degradation dynamics of action-related words
during the simulated SD progression.

Fig. 1. Macrostructure of the model. Depicted here are 12 areas of the network
and corresponding brain areas (coded by color). There are four ‘zones’ of three
different modalities, with three areas in each zone. The ‘auditory’ zone comprises
the superior and lateral auditory areas: primary auditory area (A1), auditory belt
(AB) and auditory parabelt (PB). The ‘visual’ zone comprises the inferior temporo-
occipital areas: primary visual area (V1), temporo-occipital area (TO) and anterior
temporal area (AT). The motor cortex is represented by two zones – one corre-
sponds to the articulatory movements, and the other (which we refer to as just the
‘motor’ zone) to nonarticulatory movements. The ‘articulatory’ zone comprises the
inferior frontal areas: inferior primary motor area (M1i), inferior premotor area (PMi)
and inferior prefrontal area (PFi). The motor zone comprises the superior-lateral
frontal areas: lateral primary motor area (M1L), lateral premotor area (PML), and
dorsolateral prefrontal cortex (PFL). We differentiate between the perisylvian cortex
(auditory and articulatory areas) and the extrasylvian cortex (visual and motor ar-
eas). Black arrows indicate connections between adjacent areas, while the purple
arrows indicate long-distance connections.

Methods
Overview of the model. To address the question of ATL
involvement in the process of semantic knowledge deterio-
ration during SD, we implemented a neurobiologically con-
strained model that replicates selected cortical areas and their
connectivity. The model simulates 12 areas of the left hemi-
sphere cortex (Fig.1). Six of them are perisylvian areas that
are involved in language production and comprehension. The
other six areas are believed to be involved in transferring and
processing semantically relevant information during word
meaning acquisition and comprehension / recognition – in the
remainder of this article, they are referred to as extrasylvian
areas (9, 11, 27, 28). The model is further divided into four
modality-specific ‘zones’, with each zone containing three
cortical areas: a primary sensorimotor cortex and adjacent
‘higher’ secondary and multimodal regions that have strong
neuroanatomical links with this primary cortex (see subsec-
tion ‘Connectivity of the Simulated Brain Areas’ below).
Each area consists of two neuronal layers — an excitatory
(e-cells) layer and an inhibitory (i-cells) one — with 625
(25x25) cells in each layer. Each i-cell corresponds to exactly
one e-cell; a combination of an e-cell and an i-cell reflects
approximately one cortical column that consists of pyrami-

2 | bioRχiv Efremov, Kuptsova et al. | Simulating SD

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 8, 2022. ; https://doi.org/10.1101/2022.03.03.482066doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.03.482066
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 2. Schematics of microconnectivity of one of the 7,500 excitatory neural
elements (labelled ‘e’). Within-area excitatory links (in grey) to and from ‘cell’
e are random and sparse, and limited to a local (19x19) neighborhood (light-pink
shaded area).Lateral inhibition between e and neighboring excitatory elements is
realized as follows: the underlying cell ‘i’ inhibits e, while its activity depends on the
total excitatory input it receives from the 5x5 neighborhood around e (dark-purple
shaded area); by means of analogous connections (not depicted), e can inhibit its
neighbors.

dal excitatory neurons and inhibitory interneurons. Cells
are modeled as graded-response neurons (see Appendix (De-
tailed Model Implementation) for specifications).
Functional and structural features of the model reflect well-
documented properties of the human cortex such as:
1) known structure of the neuroanatomical links between the
modeled brain systems;
2) sparse, patchy, and topographic between- and within-area
connections, with the probability of the existence of a synap-
tic link between two cells falling off with their distance
(29, 30) (see Appendix (Detailed Model Implementation) for
specifications);
3) local lateral inhibition (Fig.2) and area-specific global reg-
ulation mechanisms (31);
4) Hebbian learning mechanisms that represent phenomena
of long-term potentiation and depression (32);
5) neurophysiological dynamics of single cells including
temporal summation of inputs, sigmoid transformation of
membrane potentials into neuronal outputs, and adaptation
(33);
6) presence of uniform white noise (simulating spontaneous
baseline neuronal firing) in all parts of the network at all time
points (34).

Connectivity of the simulated brain areas. Neu-
roanatomical studies show that adjacent cortical areas tend
to be connected with each other (35, 36). We implemented
such connections in all of the four zones of our model, be-
tween (1) inferior frontal areas PFi–PMi–M1i; (2) dorsolat-
eral frontal areas PFL–PML–M1L (see also (37–40); (3) su-
perior and lateral auditory areas A1–AB–PB (41–43); and (4)
inferior temporo-occipital areas V1–TO–AT (44, 45).
Implementation of long-distance cortico-cortical links (pur-
ple arrows in Fig.1) that connect distant areas with each other
is abundantly supported by evidence. Arcuate and uncinate
fascicles provide the connections between anterior, inferior,
and posterior-superior parts of the temporal cortex (areas AT
and PB) and the inferior prefrontal cortex (PFi; (46–55). The
extreme capsule connects the dorsolateral prefrontal cortex
(PFL) to anterior and inferior temporal regions (AT; (56–58)

Fig. 3. Example of activity patterns presented to the network’s primary ar-
eas to simulate word learning. A – The acquisition of object-related words was
simulated by providing input patterns simultaneously to the model correlates of the
auditory (A1), articulatory (M1i) and visual (V1) areas; B – Similarly, the simulation
of action-related words acquisition involved presenting concomitant inputs to the
auditory (A1), articulatory (M1i) and motor (M1L) areas. See text for details.

and to the superior temporal cortex (PB; (54, 56, 59–61).

Learning words of different semantic categories. As in
(14), the model was taught to differentiate between two se-
mantic categories: action- and object-related words. The
model simulates the acquisition of a word having object-
related semantics by means of co-experiencing and associat-
ing auditory, articulatory, and visual patterns, as inputs to A1,
M1i, and V1 are presented simultaneously during the learn-
ing phase (Fig.3A). To teach action-related semantics, input
patterns are provided to auditory (A1), articulatory (M1i),
and motor (M1L) primary areas (Fig.3B). Presenting a “pat-
tern” as input involves activating 19 pre-specified cells in
each of the aforementioned areas. The set of cells to be ac-
tivated was randomly assigned for each word. Six word pat-
terns for each of the two semantic categories were generated
and taught; therefore, the model learned 12 different word
patterns.

During the learning procedure, each word pattern is presented
for 3000 trials. One trial lasts 16 time-steps. The next trial
starts as soon as the activity in the network falls below the
threshold but not earlier than 30 time-steps from the previ-
ous trial end. Trials are randomly shuffled. To reflect larger
variability of activity in noninvolved primary areas (V1 for
action-related words and M1L for object-related words), a
randomly generated 19-cell noise pattern is provided to them
in each trial. Finally, in addition to the uniform white noise
constantly present in all areas of the network (simulating
spontaneous neuronal activity), four primary areas are pre-
sented with additional “environmental” white noise both dur-
ing training and testing.
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Fig. 4. Simulated semantic dementia lesions. Schematic representation indi-
cating the type and location of the model lesions applied to simulate grey matter
semantic dementia (GM SD, A) and white matter semantic dementia (WM SD, B).
Dotted area represents inactivation of some portion of e-cells in AT area. Dashed
lines represent inactivation of some portion of corresponding links.

Implementation of semantic dementia. Neuronal,
anatomical and functional changes during SD can be de-
scribed as a bilateral and asymmetric pattern of progressive
atrophy and hypometabolism in white and grey matter
(3, 4, 17). Grey matter changes are detected in the anterior
temporal lobes — superior, middle, inferior temporal gyri,
fusiform gyrus, temporal pole, parahippocampal gyrus —
and progress to the basal ganglia and the medial orbitofrontal
cortex during the course of the disease (for a review, see
(17, 62). Changes in white matter are detected in regions that
are connected to or are adjacent to the temporal lobes: left
inferior fronto-occipital fasciculus; uncinate fasciculus and
inferior longitudinal fasciculus bilaterally (for a review, see
(17, 62). The most severe and the most robust atrophy in SD
patients is detected in the anterior temporal pole and ventral
parts of the ATL (20).
Following that evidence, we apply two types of degradation
to simulate SD — grey matter degradation (GM SD) and
white matter degradation (WM SD). To simulate GM SD we
inactivate e-cells in the AT area (Fig.4A) and to simulate WM
damage we remove connections to and from those cells (both
within-area and between-areas; Fig.4B). We also use three
severity levels for each degradation type — 30%, 60%, and
90% loss of matter — to simulate effects of the progressive
nature of this disorder (3, 4, 17).
First, we trained 13 nets using the learning procedure de-
scribed above, then we copied the resulting trained nets, and
then the copies underwent one of the two degradation types
(GM SD or WM SD) of the particular severity level (30%,
60%, or 90% loss of matter). Thus, we replicated the sit-
uation with SD patients who acquired semantic knowledge

Fig. 5. Formation of cell assembly circuits in the network as a result of simu-
lated word learning and semantic grounding. A – example of an object-related
word CA circuit. B – example of an action-related word CA circuit. Note the differen-
tial cortical distribution of the two semantic types of word circuits in the extrasylvian
(but not perisylvian) areas of the model.

before the onset of the disease.

Cell assemblies and word recognition procedure. Pre-
vious results obtained with analogous architectures (14, 63,
64) showed that the learning procedure described above leads
to the formation of distributed associative circuits or ‘cell as-
semblies’ (CA, Fig.5). CAs are sets of cells that are “...more
strongly connected to each other than to other” cells (65).
Once developed, they behave as discrete functional units with
two quasi-stable states: ‘on’ and ‘off’ (63, 64, 66). Thus, CAs
are stable stimulus-specific distributed memory circuits that
emerge in the network as a result of learning and exhibit com-
plete reactivation (or ‘ignition’) in response to the presenta-
tion of the stimulus, or part of it (or even spontaneously, due
to noise-driven activity accumulation (67). After the train-
ing phase (see section ‘Learning words of different semantic
categories’), we applied a standard procedure to identify and
quantify the cells that make up the CA circuits correspond-
ing to each word stimulus (14, 63, 68). In the present model,
spontaneously formed CAs linked word forms to aspects of
those words meaning acquired through (simulated) sensory-
motor areas (14).
Crucially, before and after lesions we assessed the ability of
the network to “recognize” words. To do that, the auditory
component of each word pattern was presented once (for 2
time-steps) to the A1 area only while no other input was pro-
vided. The activity of each e-cell was recorded during stim-
ulus presentation and for the following 15 time-steps. An
e-cell was considered as a responsive CA cell if its time-
averaged activity during this period reached a given thresh-
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Fig. 6. Network response during simu-
lated auditory word recognition. The av-
erage number (in 13 simulations) of input-
specific cells exhibiting above threshold ac-
tivity in response to presentation of a learned
auditory stimulus (“word sound”) to the
model correlate of auditory cortex is plotted
as a function of area, for intact networks (no
SD) and three different degrees of simulated
SD lesions. A, B: responses to object words.
C, D: responses to action words. A, C: sim-
ulated grey-matter (GM) SD. B, D: simulated
white-matter (WM) SD. See main text for de-
tails. Error bars indicate standard error of
the mean. * – difference between no SD and
90% SD cases, p<0.001, t-test.

old (θ); this threshold is specified for each word (w) and each
area (a) separately in the following way:

θ(ω,a) = γ max
e∈a

O(e, t)ω (1)

meaning that the time-averaged output is calculated for each
e-cell (e) in each area (a) per each word (w). The threshold
for the area for the word is equal to the fraction (γ) of the
time-averaged output of the most active cell in this area for
this word.
Further details of model implementation are given in the Ap-
pendix (Detailed Model Implementation).

Results

Main Hypothesis Testing. Figure 6 shows the number of
CA cells in the extrasylvian and perisylvian areas of the
network exhibiting a significant response (as defined by the
recognition procedure, see ‘Methods’) as a function of SD
severity. As can be seen, these results suggest that the ex-
trasylvian portions of the CA circuits degrade more rapidly
than the perisylvian portions. This difference was expected
and is a direct consequence of the WM and GM lesions be-
ing applied to the AT area, which is an important component
of the extrasylvian system. The qualitatively observed dif-
ferential severity of degradation in the extrasylvian CA cir-
cuit was confirmed by a 2-way RM ANOVA with factors Ex-
traPeri (two levels — extrasylvian and perisylvian areas) and
Severity (four levels — no SD, 30% SD, 60% SD, and 90%
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Fig. 7. Per-system network response dur-
ing simulated auditory word recognition.
Same data as in Figure 6 but grouped by
extra- (semantic) or peri- (phonological) -
sylvian system. The ratios plotted are
the percentage of word-circuit-specific reac-
tivated cells relative to the total number of
CA cells (across the system) reactivated in
the intact-network (no-SD) condition. See
the text for details. Error bars indicate the
standard error of the mean.

SD), revealing a significant interaction between these factors
(F3,36 = 1166.29, p < 0.001).
To further explore the differences between extrasylvian and
perisylvian areas, we performed an analysis of the total num-
bers of CA cells under those areas in four conditions: object
versus action words and GM SD versus WM SD. Figure 7
shows how the number of responsive cells in the CA circuits
decreases with SD progression — from no SD through 30%
and 60% SD to 90% SD — in four conditions separately.
Note that the data here are normalized by the number of CA
cells before SD. The results show that in all four conditions
the CA circuits deteriorate far more in extrasylvian areas than
in perisylvian areas. For each of the four conditions, a 2-
way RM ANOVA with factors ExtraPeri and Severity shows
a significant interaction between factors (for four conditions:
F3,36 > 307.37, p < 0.001).
Dependent samples t-tests confirm a significant difference in
the number of responsive CA cells between no SD and 90%
SD cases in each of the eight conditions (extra/peri x ob-
ject/action x GM/WM; t12 > 10.71, p < 0.001 for all condi-
tions). We also performed post hoc dependent samples t-tests
to ensure that the number of CA cells in extrasylvian areas
significantly differs from the number of CA cells in perisyl-
vian areas in the most severe SD case (90% SD) for each of
the four conditions (object/action x GM/WM; t12 > 17.88, p
< 0.001). We have made a Bonferroni correction for all 12
comparisons (p-value threshold is 0.0042).
Combining this evidence, we infer that in all four conditions
(object/action × GM/WM) the total number of CA cells in
extrasylvian areas greatly decreases with the increase of SD
severity – the average drop is 48.4% for the 90% SD case

– while in perisylvian areas this number also declines, but
much more slowly: the average drop is 8.7%.
To explore the SD impact on different areas, we performed
post hoc dependent samples t-tests on the number of CA cells
in no SD and 90% SD cases for each of the four conditions
separately: object versus action and GM SD versus WM SD.
All comparisons were Bonferroni corrected. Differences are
presented as asterisks in Figure 6. In extrasylvian areas, SD
leads to a strong decline in V1, TO, AT, and PFL areas, while
PML and M1L remain intact. In perisylvian areas, SD leads
to a strong decline in PFi and a mild but statistically signifi-
cant decline in PB and PMi, while other areas are intact.

Additional Findings: model predictions. We asked what
predictions our model would make about recognition of ob-
ject versus action words when we implemented the structural
alterations reflecting the pathology of SD. (Note that we as-
sumed here that the number of responsive CA cells can be
taken as an indicator of the network’s ability to recognize
words ). Results shown in Fig.8 suggest that the network’s
ability to respond to the presentation of the auditory part of
a learned “word” declines more dramatically for object- than
action-related words. The statistical validity of this observa-
tion was confirmed by the result of 2-way RM ANOVAs, ran
on the total number of CA cells in extrasylvian areas in GM
and WM SD, separately with factors WordType and Severity.
The ANOVA for GM SD showed a significant interaction of
the two factors (F3,36 = 7.04, p = 0.0012), but only a trend
toward significance (F3,36 = 3.04, p = 0.067) for WM SD.
However, analysis on WM SD data revealed the presence of
the main effects of both WordType (F1,12 = 18.28, p = 0.001)
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Fig. 8. Total network response during
simulated auditory word recognition for
different types of words. The ratios plotted
are the percentage of (word-circuit)-specific
reactivated cells relative to the total number
of CA cells reactivated in the intact-network
(no-SD) condition. See the text for details.

and Severity (F3,36 = 1578.12, p < 0.001). Therefore, both
for GM and WM SD, the network’s response to presentation
of a known (simulated) word sound – i.e., its ability to rec-
ognize that item – decreased significantly more for object-
than action-related words (48.3% decline for object words,
37.4% decline for action words, t12 = 4.61, p = 0.001 for
GM SD; 59.5% decline for object words, 48.5% decline for
action words, t12 = 7.82, p < 0.001 for WM SD).
We also noticed that recognition abilities appeared to decline
more dramatically in WM SD than in GM SD (see Fig.9). To
test this observation statistically, we ran 2-way RM ANOVAs
for the total number of CA cells in extrasylvian areas (sepa-
rately for object- and action-related words) with factors SD-
Type and Severity. In both cases, the interaction between
factors was significant (F3,36 > 28.52, p < 0.001), confirming
that the network’s decrease in recognition abilities for object-
and action-related words is significantly greater for WM SD
than for GM SD (for object words it is 59.5% decline in WM
SD vs 48.3% decline in GM SD, t12 = 8.49, p < 0.001; for ac-
tion words it is 48.5% decline in WM SD vs. 37.4% decline
in GM SD, t12 = 6.64, p < 0.001).

Discussion
We used a neuroanatomically and biologically constrained
neural model of the areas of the brain involved in language
acquisition and semantic grounding to simulate semantic de-
mentia (SD) lesions as progressive damage to the anterior
temporal lobe – ATL –area. As a result of SD lesions, the “ex-
trasylvian” parts of the word circuits (which include the ATL)
degraded more rapidly than their perisylvian counterparts. A
second striking result is the observed category-specific ef-
fects of SD lesions – namely, our simulations indicate that
word processing abilities should be more impaired for object-
than for action-related words; furthermore, the model shows
that white matter degradations should lead to stronger deficits
than grey matter lesions of analogous severity.
These simulation results are consistent with, and explain ex-
isting data about the decline of language function in clinical
populations during onset and progress of semantic dementia.
Specifically, the observed dissociation between word recog-
nition deficits and relatively preserved word repetition abil-
ities observed in SD patients is explained here by the corti-
cally distributed character of word circuits, consisting of cell
assemblies (CA) that include neurons from both extrasylvian

(semantic) and perisylvian (language) areas. Previous mod-
eling results (14) suggested that while extrasylvian areas may
encode semantic knowledge and information pertaining to
aspects of word meaning (and hence provide a neural sub-
strate for word and concept recognition processes), perisyl-
vian areas mediate the formation and storage of associations
between acoustic and articulatory features of syllables and
words (necessary, e.g., during word – and non-word – repeti-
tion tasks). The changes in activity patterns that we observed
after introducing SD to our model speak in favor of our main
hypothesis: while the CA circuits that are needed for success-
ful word repetition (located in the perisylvian areas) remain
relatively intact, word recognition abilities are progressively
impaired as SD lesions increase due to a strong reduction in
responsive CA cells in the extrasylvian areas. We believe
that these simulated cortical changes can explain the dynam-
ics of SD patients, who experience a strong decline of word
recognition abilities but largely retain word repetition skills
(10, 69, 70). We suggest that such a dissociation between
perisylvian and extrasylvian areas can be further tested in
neuroimaging experiments in SD patients.
We should note that the above interpretation of the model re-
sults is based on a key assumption: we are postulating that a
decrease in the number of responsive extrasylvian CA cells
corresponds to a de facto deficit in the word recognition abil-
ity of the network. A large body of experimental data sug-
gests that (extrasylvian) sensorimotor areas convey informa-
tion on aspects of word meaning (71–73); thus, even if parts
of the CA circuits in extrasylvian areas are still activating in
response to a presentation of an auditory stimulus, we submit
that this partial activation contains less semantic information
about the word, and therefore this information deficit trans-
lates directly into a corresponding observable word recogni-
tion deficit.
The results of the simulations also enable us to make pre-
dictions and adjudicate between competing theories on the
question of whether SD patients have category-specific or
category-general recognition problems. Several studies have
suggested that SD leads to category-general deficits (9, 21,
74); however, our model shows that recognition of object-
related words should decrease more sharply than recognition
of action-related words as SD progresses. Some studies con-
firm that object naming is more affected in SD patients than
action naming (75), and others show similar results for le-

Efremov, Kuptsova et al. | Simulating SD bioRχiv | 7

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 8, 2022. ; https://doi.org/10.1101/2022.03.03.482066doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.03.482066
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 9. Total network response during
simulated auditory word recognition for
different types of SD. The ratios plotted are
the percentage of (word-circuit)-specific re-
activated cells relative to the total number
of CA cells reactivated in the intact-network
(no-SD) condition. See the text for details.

sions in the ATL (76). Our model predicts (and explains)
the emergence of this effect on the basis of the neuroanatom-
ical links existing between brain areas relevant for object-
and action-word processing, simulated here (see Fig.1), and
specifically of the locus of the ATL itself. The ATL acts
as the interface via which object-related information com-
ing from the visual system links up with language circuits
in perisylvian areas. If the grey matter within – or the white
matter bundles that link to – this connector hub is lesioned,
the word CA circuits that extend strongly into the visual sys-
tem (i.e., object-related word circuits – see Fig.6) are severely
affected, whereas CA circuits linking perisylvian and mo-
tor areas through the prefrontal hub area (PFL in the model
– see Fig.1), i.e., action-related word circuits, will be only
marginally affected. Unfortunately, most previous studies in-
vestigating this matter tend to group words based on gram-
matical categories – namely, nouns or verbs – rather than on
the basis of semantics properties (77); hence, to validate the
above predictions, further experimental testing is desirable.
To the best of our knowledge, this is the first brain-
constrained model of SD where both types of degradation
– white and grey matter – were implemented; previous com-
putational studies only modeled degradation of links (WM)
(15, 18). Our simulation results show that white matter degra-
dation should lead to a more severe recognition decline than
the same loss of grey matter. This additional prediction can
be tested experimentally by investigating possible correla-
tions between the grey matter / white matter loss ratio in
SD and the disease severity. The results we have obtained
on the distinction between grey and white matter degradation
address an important feature of the cell assembly concept in
our model. Although the constituent parts of CAs are indi-
vidual cells, the emergence and integrity of those CAs are
based on the links between them. Disabling a portion of cells
naturally leads to the inactivation of some part of CA, but the
same fraction of connections is more sparsely distributed and
affects more cells. We can see from the results that even if
not all links of some particular cell are inactivated – which
would be the same as disabling the cell itself – those that are
could be crucial for the cell’s functioning as a part of CA.
Another aim of this paper has been to argue computationally
that hybrid theories of semantic system organization offer the
most promising theoretical approach to explain a wide range
of experimental data. The present model can be considered

an example of such hybrid paradigms: the primary areas in
the action and perception brain systems are particularly im-
portant to provide sensorimotor co-experiences during word
meaning acquisition; the central (semantic hub) areas enable
these experiences to converge and be associated together into
a single (word, or conceptual) circuit; the emergent semantic
representations are distributed between the modality-specific
sensorimotor areas and convergence hubs. One of the argu-
ments of proponents of amodal theories is that ATL must be
the place where concepts are stored in an amodal way be-
cause its degradation leads to semantic system deterioration
(9, 21). However, as we show here, if word circuits are dis-
tributed across multiple diverse areas (all of which together
support word recognition and processing), ATL damage can
still lead to semantic impairments as observed in SD with-
out this hub necessarily being the locus of amodal conceptual
representations.
To conclude, the present neurobiologically constrained
model explains – in terms of cortical mechanisms and neu-
roanatomical characteristics – the existing data on language
impairments as observed in SD clinical populations. Further-
more, for the first time, simulated white or grey matter lesions
to the anterior-temporal lobe area of the model enable making
novel, theory-driven predictions about (i) differential effects
of semantic dementia on word processing deficits (specifi-
cally, on object- vs action-related word recognition) and (ii)
different degrees of language impairment depending on the
type of tissue damaged by the neurodegenerative disease.
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Supplementary Note 1: Appendix (Detailed Model Implementation)
Microstructure. Each area consists of two neuronal layers — an excitatory layer and an inhibitory one – with 625 (25x25)
cells (e-cells for the former and i-cells for the latter) in each layer. To avoid any potential edge effects, layers have a toroidal
structure: the top edge is adjacent to the bottom one, and the left edge is adjacent to the right one. I-cells and e-cells have
one-to-one correspondence. A combination of an e-cell and an i-cell reflects a population of pyramidal excitatory neurons and
inhibitory interneurons of one cortical column (grey matter under approximately 0.25 mm2 of the cortical surface). Cells are
modeled as graded-response neurons.
Each e-cell is restricted to send its projections to the 19x19 e-cell patch in the same area, 19x19 e-cell patches in connected
areas, and 5x5 i-cell patch in the same area (Fig.2). These projections are created during the first initialization of a network in a
random manner. The probability that the projection is created is derived from the Gaussian probability density function (Table
2). The highest probability is in the patch center (although, a cell cannot send projection to itself) and it is decreasing with the
distance from the center.

E-cell dynamics. The activity state of a cell is uniquely defined by its membrane potential. The change in the e-cell membrane
potential is dependent on its current membrane potential, a sum of its inputs, and uniform distribution of white noise:

τe
dV (e, t)

dt
= −V (e, t)+k1(Vin(e, t)+k2η(e, t)) (2)

where V (e, t) is a membrane potential of the E-cell
Vin(e, t) is a sum of inputs to this E-cell (see equation 3)
η(e, t) is noise
τe is the time constant
k1 and k2 are the scaling constants
(Membrane potential of the e-cell)

Note that each e-cell has noise as its property which represents the spontaneous activity of real neurons. The sum of
inputs to the e-cell is governed by the equation:

Vin =
∑

E/IPSPs−kGωG(e, t) (3)

where
∑

E/IPSPs is the sum of excitatory and inhibitory postsynaptic potentials sent to the cell of interest
ωG(e, t) is global inhibition (see equation 4)
kG is the scaling constant
(Sum of inputs to the e-cell)

Postsynaptic potential is defined as the output of the cell (see equations 5 and 10) multiplied by the synaptic weight
between this cell and the target cell. Each e-cell gets exactly one IPSP from the corresponding i-cell, which is included in this
sum with a negative sign. Note the global inhibition mechanism that is an area-specific inhibitory loop that prevents overall
network activity from falling into nonphysiological states. This inhibition is calculated as follows:

τG
dωG(e, t)

dt
= −ωG(e, t)+

∑
e∈area

O(e, t) (4)

where
∑

e∈area O(e, t) is the sum of e-cells’ outputs from the whole area (see equation 4)
τG is the time constant
(Global inhibition of the E-cell)

An output of the e-cell is some value between zero and one. It depends on the cell’s membrane potential and the
threshold that this potential needs to exceed for an output to have a non-zero value:

O(e, t) =


0, if V (e, t) ≤ ϕ(e, t)
V (e, t)−ϕ(e, t), if (V (e, t)−ϕ(e, t)) ∈ (0,1]
1, otherwise

(5)

where O(e, t) is the output of the e-cell
ϕ(e, t) is the threshold of the membrane potential (see equation 6)
(Output of the e-cell)
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The threshold of the membrane potential is not constant, it depends on the cell’s recent activity – the more active the
cell was, the higher is the threshold:

ϕ(e, t) = αω(e, t) (6)
where ω(e, t) is averaged recent activity of an e-cell (see equation 7)
α is adaptation strength
(Threshold of the membrane potential)

When the network is initiated, the recent activity of every cell is zero (ω(e, t) = 0). Then it is updated on each time
step with an increase/decrease calculated as follows:

τA
dω(e, t)

dt
= −ω(e, t)+O(e, t) (7)

where τA is the time constant
(Averaged recent activity of the e-cell)

I-cell dynamics. Change in the i-cell membrane potential is calculated similarly to those of the E-cell, but without the white
noise component:

τi
dV (i, t)

dt
= −V (i, t)+k1Vin(i, t) (8)

where V (i, t) is the membrane potential of the I-cell
Vin(i, t) is the sum of inputs to this I-cell (see equation 9)
τi is the time constant
k1 is the scaling constant
(Membrane potential of the i-cell)

There is no global inhibition mechanism for the i-cell as there is for the e-cell and its sum of inputs is just the sum of
EPSPs it received:

Vin =
∑

EPSPs (9)

where
∑

EPSPs is the sum of EPSPs to the i-cell
(Sum of the inputs to the i-cell)

Note that the i-cell can receive only excitatory inputs from the 5x5 e-cells patch.
The output of the i-cell is simply its membrane potential if it is positive or zero otherwise:

O(i, t) =
{

0, if V (i, t) ≤ 0
V (i, t), otherwise

(10)

where O(i, t) is the output of the i-cell

Synaptic weight dynamics. Initially, random weights are assigned to all established connections with the weights of the links
between two e-cells distributed uniformly and the weights of the links from e-cells to i-cells distributed normally, decreasing
with the distance between the cells. Then, those weights are dynamically changing via the Hebbian learning mechanism:

ωt+1(x,y) =


ωt(x,y)+∆ω, if O(x,t) > θpre and V (y,t) > θpost

ωt(x,y)−∆ω, if O(x,t) ≤ θpre and V (y,t) > θpost

ωt(x,y), otherwise
(11)

where ωt(x,y) is the weight of the synapse from the cell x to the cell y at time t
∆ω is the change in the synaptic weight
θpre is the presynaptic output activity threshold
θpost is the postsynaptic membrane potential threshold

If both the output of the presynaptic cell and the membrane potential of the postsynaptic cell are high enough, synaptic
weight is increased by constant number (long-term potentiation, LTP), which corresponds to the rule “fire together — wire
together”. If low presynaptic output is correlated with high postsynaptic potential, synaptic weight is weakened by the same
amount (long-term depression, LTD), which corresponds to the rule “out of sync— out of link”.
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Table 1. Parameters of the model

τe = 2.5 time constant for membrane potential of the e-cell (Eq.2)
τi = 5 time constant for membrane potential of the i-cell (Eq.8)

τG = 12 time constant for global inhibition (Eq.4)
τA = 10 time constant for averaged recent activity of the e-cell (Eq.7)

k1 = 0.01 scaling constant (Eq.2)
k2 = 100

√
3 scaling constant (Eq.2)

kG = 95 scaling constant (Eq.3)
α = 0.01 adaptation strength (Eq.6)

η ≈ U [−0.5,0.5] noise distribution (Eq.2)
∆ω = 0.0008 change in synaptic weight during Hebbian learning (Eq.11)
θpre = 0.05 threshold for presynaptic activity (Eq.11)
θpost = 0.15 threshold for postsynaptic activity (Eq.11)

γ = 0.5 fraction of the time-averaged output of the most active e-cell to determine the CA threshold (Eq.1)

Table 2. Gaussian distribution parameters. The probability that links between two cells will be created follows the Gaussian distribu-
tion, decreasing with the distance between cells.

Prec = 0.15 central probability of the Gaussian distribution for recurrent links
Pbetween = 0.28 central probability of the Gaussian distribution for links between different areas

σrec = 4.5 standard deviation for the Gaussian distribution for recurrent links
σbetween = 6.5 standard deviation for the Gaussian distribution for links between different areas

ωinitial ≈ U [0,0.1] initial weight distribution for links between two e-cells
ωinh ≈ N [0.295,0.2] weight distribution for links from the e-cell to a 5x5 patch of i-cells, decreasing with the distance between cells
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