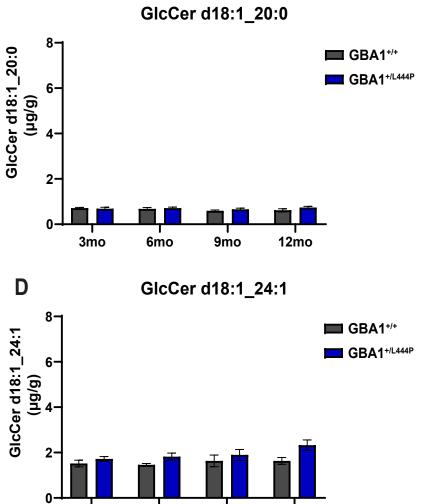
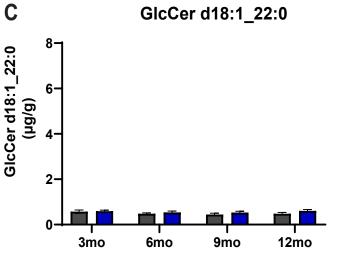


Extended figure 1-1: Determination of Eliglustat Concentration based on lipid quantification.


GBA1^{+/+} and GBA1^{+/L444P} Primary cortical neurons were treated at DIV14 with varying concentrations of eliglustat (0, 1, 10, and 100 nM). Neurons were quantified by mass spectrometry for A. GlcCer (Threeway ANOVA; Interaction: $F_{(3,151)} = 1.524$, p=0.2106, Dose x α -syn Treatment: $F_{(3,151)} = 0.3454$, p=0.7926, Dose x Genotype: $F_{(3,151)} = 0.7284$, p=0.5365, Genotype x a-syn Treatment: $F_{(1,151)} = 3.856$, p=0.0514, *Dose*: F_(3,151)= 28.06, ****p<0.0001, α-syn Treatment: F_(1,151)= 1.454, p=0.2299, Genotype: F_(1,151)= 0.1898, p=0.6637) and **B.** sphingomyelin (*Interaction*: $F_{(3,151)} = 0.2265$, p=0.8778, *Dose x a-syn Treatment*: F_(3,151)= 0.3922, p=0.7588, *Dose x Genotype*: F_(3,151)= 0.3684, p=0.7759, *Genotype x a-syn Treatment*: $F_{(1,151)} = 0.7365$, p=0.3921, *Dose*: $F_{(3,151)} = 11.11$, ****p<0.0001, *a-syn Treatment*: $F_{(1,151)} = 11.11$, ****p<0.0001, ***p<0.0001, ***p>0.0001, * 0.6928, p=0.4065, Genotype: F_(1,151)= 0.08458, p=0.7716,) C. sphingosine (Interaction: F_(3,157)= 1.152, p=0.3302, Dose x a-syn Treatment: $F_{(3,157)} = 0.4860$, p=0.6925, Dose x Genotype: $F_{(3,157)} = 1.166$, p=0.3245, Genotype x α -syn Treatment: F_(1,157)= 1.259, p=0.2636, Dose: F_(3,157)= 1.922, p=0.1283, α -syn *Treatment*: $F_{(1,157)} = 0.05604$, p=0.8132, *Genotype*: $F_{(1,157)} = 0.5954$, p=0.4415) and **D**. Ceramide (Interaction: $F_{(3,151)} = 1.515$, p=0.2128, Dose x a-syn Treatment: $F_{(3,151)} = 0.2502$, p=0.8611, Dose x *Genotype*: $F_{(3,151)} = 0.2116$, p=0.8882, Genotype x α -syn Treatment: $F_{(1,151)} = 5.610$, *p=0.0191, *Dose*: $F_{(3,151)} = 4.115$, **p=0.0077, *a-syn Treatment*: $F_{(1,151)} = 0.01056$, p=0.9183, *Genotype*: $F_{(1,151)} = 0.08041$, p=0.7771). Error bars represent SEM. For GlcCer, Sphingomyelin, and Ceramide in control treated neurons, GBA1^{+/+} N=18, GBA1^{+/L444P} N=24, fibril treated GBA1^{+/+} N=18, and fibril treated GBA1^{+/L444P} neurons N=24. To analyze sphingosine for control-treated neurons, GBA1^{+/+} fibril-treated neurons N=24. For all lipid quantitation for eliglustat treated neurons (1nM, 10nM, and 100nM), GBA1^{+/+} N=6, GBA1^{+/L444P} N=8, fibril treated GBA1^{+/+} N=6, and fibril treated GBA1^{+/L444P} N=8, apart from fibril treated GBA1+/+ at 100nM where N=5. All sample sizes depict the number of individual mice. *p<0.05, **p<0.01, and ****<0.0001.

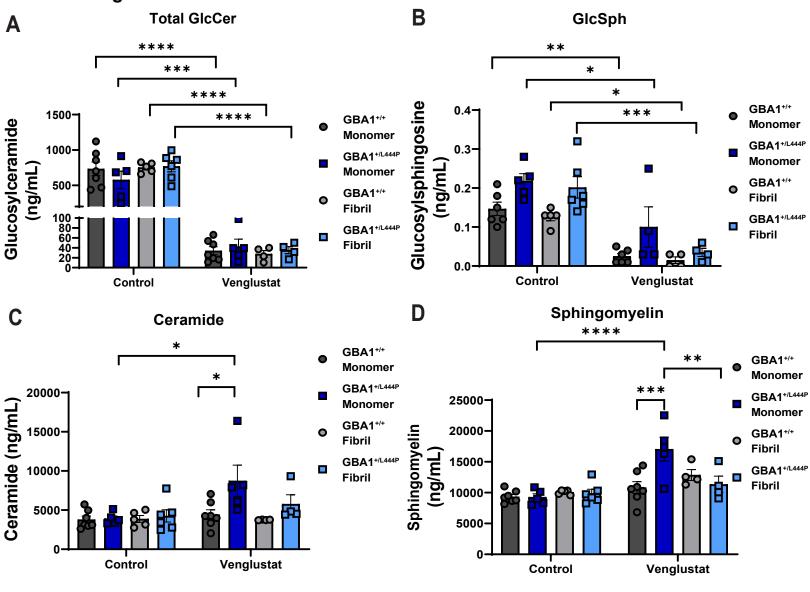
Extended Figure 4-1

В

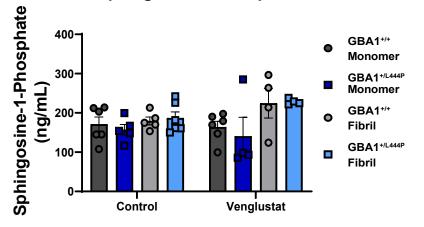


9mo

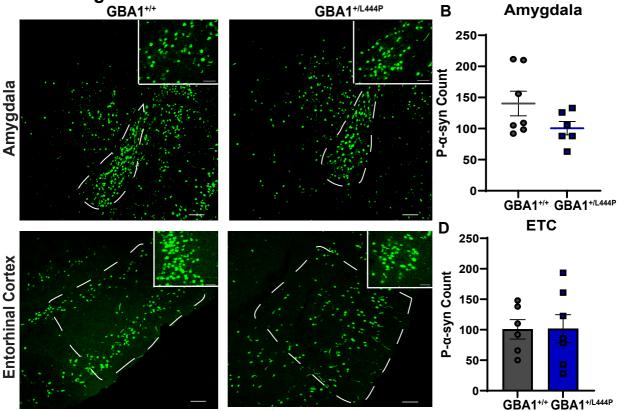
12mo


6mo

3mo


Extended Data 4-1: Evaluation of GlcCer isoform quantification. Four isoforms of GlcCer A. GlcCer C18:0 (Two-way ANOVA; *Interaction*: $F_{(3,50)} = 2.173$, p=0.1028, *Age*: $F_{(3,50)} = 12.77$, ****p<0.0001, and *Genotype*: $F_{(1,50)} = 0.2353$, p=0.6297) **B.** GlcCer C20:0 (*Interaction*: $F_{(3,48)} = 0.6806$, p=0.5682, *Age*: $F_{(3,48)} = 0.7990$, p=0.5005, and *Genotype*: $F_{(1,48)} = 1.619$, p=0.2094) **C.** GlcCer C22:0 (*Interaction*: $F_{(3,50)} = 0.3007$, p=0.8247, *Age*: $F_{(3,50)} = 1.027$, p=0.3886, and *Genotype*: $F_{(1,50)} = 2.898$, p=0.0949) and **D.** GlcCer C24:1 (*Interaction*: $F_{(3,50)} = 0.7606$, p=0.5215, *Age*: $F_{(3,50)} = 1.821$, p=0.1554, *Genotype*: $F_{(1,50)} = 9.377$, ***p=0.0035) were examined in the striatum of the same mice groups and time points. Error bars represent SEM. For all lipids, 3mo GBA1^{+/+} N= 8, 3mo GBA1^{+/L444P} N=7 except C18:0 N=5 and C20:0 N=6, 6mo GBA1^{+/+} N= 8 except C18=10 and C20 =7, 6mo GBA1^{+/L444P} N=8, 9mo GBA1^{+/+} N= 6, 9mo GBA1^{+/L444P} N=7, 12mo GBA1^{+/+} N=7, and 12mo GBA1^{+/L444P} N=7.*p<0.05, **p<0.01, ***p<0.001, and ****<0.0001.

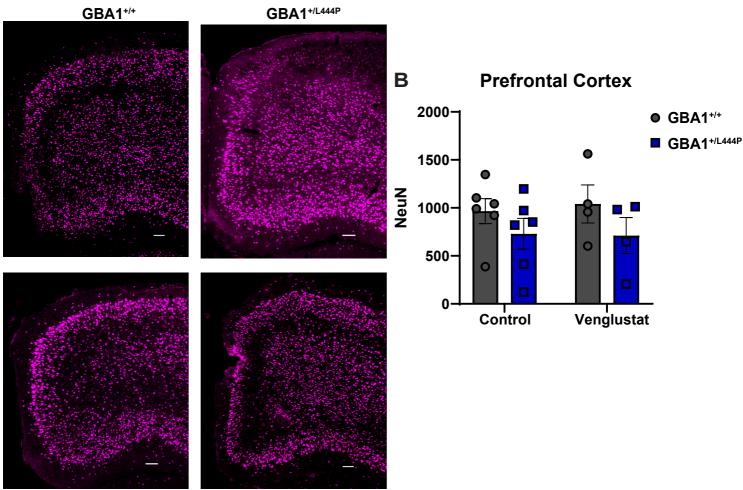
Extended Figure 5-1


Sphingosine-1-Phosphate

Ε

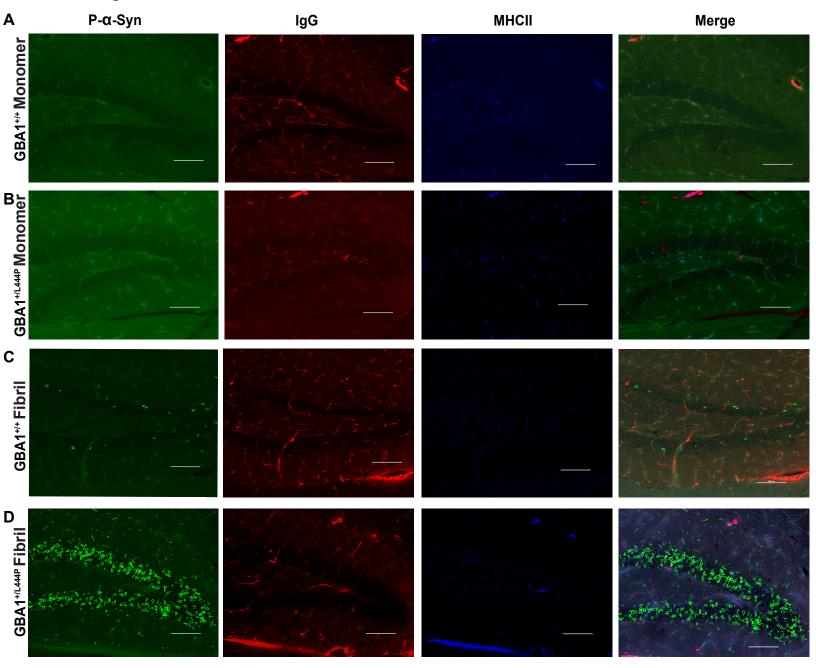
Extended Data 5-1: Evaluation of lipid plasma concentrations. Plasma was collected from GBA1^{+/+} and GBA1^{+/L444P} at 10-months post-monomer or fibril injection. Mass Spectrometry was used to quantify A. Total GlcCer levels (Three-way ANOVA; Interaction: $F_{(1,35)}=0.7606$, p=0.3891, Drug Treatment x asyn Treatment: $F_{(1,35)}=1.268$, p=0.2677, Drug Treatment x Genotype: $F_{(1,35)}=0.6130$, p=0.4389, a-syn *Treatment x Genotype:* F_(1,35)= 0.7431, p=0.3945, *Drug Treatment:* F_(1,35)= 181.7, ****P<0.0001, α-syn *Treatment*: $F_{(1,35)} = 0.9673$, p=0.3321, *Genotype*: $F_{(1,35)} = 0.3836$, p=5394), **B**. GlcSph (*Interaction*: $F_{(1,$ 0.8940, p=0.3515, Drug Treatment x α -syn Treatment: F_(1.35)= 0.3667, p=0.5491, Drug Treatment x Genotype: $F_{(1,35)}=0.6867$, p=0.4134, a-syn Treatment x Genotype: $F_{(1,35)}=0.6519$, p=0.4254, Drug *Treatment*: $F_{(1,35)} = 67.97$, ****p<0.0001, *a-syn Treatment*: $F_{(1,35)} = 3.186$, p=0.0838, *Genotype*: $F_{(1,35)} = 67.97$, ****p<0.0001, *a-syn Treatment*: $F_{(1,35)} = 3.186$, p=0.0838, *Genotype*: $F_{(1,35)} = 67.97$, ****p<0.0001, *a-syn Treatment*: $F_{(1,35)} = 3.186$, p=0.0838, *Genotype*: $F_{(1,35)} = 67.97$, ****p<0.0001, *a-syn Treatment*: $F_{(1,35)} = 3.186$, p=0.0838, *Genotype*: $F_{(1,35)} = 67.97$, ****p<0.0001, *a-syn Treatment*: $F_{(1,35)} = 3.186$, p=0.0838, *Genotype*: $F_{(1,35)} = 67.97$, ****p<0.0001, *a-syn Treatment*: $F_{(1,35)} = 3.186$, p=0.0838, *Genotype*: $F_{(1,35)} = 67.97$, ****p<0.0001, *a-syn Treatment*: $F_{(1,35)} = 3.186$, p=0.0838, *Genotype*: $F_{(1,35)} = 67.97$, ****p<0.0001, *a-syn Treatment*: $F_{(1,35)} = 67.97$, ****p<0.0001, *a-syn Treatment*: $F_{(1,35)} = 67.97$, ****p<0.0001, *a-syn Treatment*: $F_{(1,35)} = 67.97$, **** 14.87, ***p=0.0005). C. Ceramide (Interaction: $F_{(1,35)}=0.9955$, p=0.3253, Drug Treatment x α -syn *Treatment:* $F_{(1,35)}$ = 2.536, p=0.1203, *Drug Treatment x Genotype:* $F_{(1,35)}$ = 5.255, *p=0.0280, *a-syn Treatment x Genotype:* F_(1,35)= 0.6352, p=0.4308, *Drug Treatment:* F_(1,35)= 7.185, *p=0.0111, α-syn *Treatment*: $F_{(1,35)}$ = 1.582, p=0.2168, *Genotype*: $F_{(1,35)}$ = 7.241, *p=0.0109) **D.** Sphingomyelin (*Interaction*: $F_{(1,35)} = 7.734$, **p=0.0087, Drug Treatment x α -syn Treatment: $F_{(1,35)} = 3.327$, p=0.0767, Drug Treatment x Genotype: $F_{(1,35)}$ = 3.289, p=0.0783, a-syn Treatment x Genotype: $F_{(1,35)}$ = 8.184, **p=0.0071, Drug *Treatment*: $F_{(1,35)} = 24.29$, ****p<0.0001, *a-syn Treatment*: $F_{(1,35)} = 0.7393$, p=0.3957, *Genotype*: $F_{(1,35)} = 0.7393$, p=0.3957, *Genotype*; $F_{(1,35)} = 0.7393$, p=0.3957, *Genotype* 2.626, p=1141), and E. Sphingosine 1-Phosphate (Interaction: F_(1,32)= 0.008874, p=0.9255, Drug Treatment x α -syn Treatment: F_(1,32)= 3.188, p=0.0836, Drug Treatment x Genotype: F_(1,32)= 0.04317, p=0.8367, α -syn Treatment x Genotype: F_(1,32)= 0.6178, p=0.4376, Drug Treatment: F_(1,32)= 1.016, p=0.3209, α -syn Treatment: F_(1,32)= 9.109, **p=0.0050, Genotype: F_(1,32)= 0.1771, p=0.6767). GlcCer, ceramide, and sphingomyelin had GBA1^{+/+} N=7, GBA1^{+/L444P} N=5, fibril treated GBA1^{+/+} N=5, and fibril treated GBA1^{+/L444P} N=6 for control treated groups and GBA1^{+/+} N=7, GBA1^{+/L444P} N=5, fibril treated GBA1^{+/+} and GBA1^{+/L444P} N=4 for venglustat treated groups. GlcSph and sphingosine 1-Phosphate had GBA1^{+/+} N=6, GBA1^{+/L444P} N=4, fibril treated GBA1^{+/+} and GBA1^{+/L444P} N=4 venglustat treated mice. For GlcSph and sphingosine 1-phosphate, GBA1^{+/+} N=6, GBA1^{+/L444P} N=5, and fibril treated GBA1^{+/+} N=5. GlcSph had fibril treated GBA1^{+/L444P} mice N=5, whereas sphingosine 1-phosphate had N=6 for the same group. *p<0.05, **p<0.01, ***p<0.001, and ****<0.0001.

С


Extended Figure 5-2: Aggregate burden in the entorhinal cortex and basolateral amygdala. A.

Representative images of GBA1^{+/+} and GBA1^{+/L444P} fibril-injected mice of the amygdala were captured using confocal microscopy. Scale bar =100um, zoomed photos scale bar = 50um) **B**. Quantification of p- α -syn in the amygdala (N=7 for GBA1^{+/+}, N=6 for GBA1^{+/L444P}, Mann-Whitney test: W= 11, p=0.1690). The amygdala aggregate data failed the test for normality and graphed as a scatter plot without a bar using a Mann-Whitney test. Error bars represent SEM. **C**. Representative images of GBA1^{+/+} and GBA1^{+/L444P} fibril-injected mice of the entorhinal cortex were captured using confocal microscopy. Scale bar =100um, zoomed photos scale bar = 50um. **D**. Quantification of p- α -syn in the entorhinal cortex (N=6 for GBA1^{+/+}, and N=7 GBA1^{+/L444P}: Independent t-test: $t_{(11)} = 0.03628$; p=0.9717). Error bars represent SEM.

Extended Figure 5-3



Α

Extended figure 5-3: **NeuN analysis of the Prefrontal Cortex. A**. 10-months after bilateral striatal injection, immunofluorescence for NeuN was performed. Representative images of GBA1^{+/+} and GBA1^{+/L444P} fibril-injected mice fed control or venglustat chow of the dmPFC were captured using confocal microscopy. Scale bar =100um. B. Quantification of NeuN in the dmPFC (N=6 for both control chow groups, N=4 for venglustat chow groups, Two-way ANOVA: *Interaction*: $F_{(1,16)}$ = 0.07678, p=0.7853, *Drug Treatment*: $F_{(1,16)}$ = 0.02827, p=0.8686, *Genotype*: $F_{(1,16)}$ = 2.821, p=0.1124). Error bars represent SEM.

Extended Figure 5-4

Extended Figure 5-4: Neuroinflammation of the Granule Cell layer of the dentate gyrus of the hippocampus. 10-months after bilateral striatal injection, immunofluorescence for p- α -syn, IgG, and MHCII was performed. Representative images of the granule cell layer of the dentate gyrus of the hippocampus of **A**. monomer-injected GBA1^{+/+}, **B**. monomer-injected GBA1^{+/+}, **C**. fibril-injected GBA1^{+/+}, and **D**. fibril-injected GBA1^{+/+} mice were captured using confocal microscopy. Scale bar =100um. N=3 for all groups.