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Abstract 

Transmembrane proteins span the lipid bilayer and are divided into two major structural 

classes, namely alpha helical and beta barrels. We introduce DeepTMHMM, a deep 

learning protein language model-based algorithm that can detect and predict the topology 

of both alpha helical and beta barrels proteins with unprecedented accuracy. 

DeepTMHMM (https://dtu.biolib.com/DeepTMHMM) scales to proteomes and covers 

all domains of life, which makes it ideal for metagenomics analyses. 

 

Main 

Transmembrane (TM) proteins typically account for ~30% in a proteome1 and are 

involved in many vital cellular processes2. Because of their importance, TM proteins like 

G-protein coupled receptors (GPCRs), transporters and ion channels pose a great 

pharmaceutical interest as drug targets3.  

TM proteins are difficult to crystallize and obtain good quality 3D structures of, thus 

they are greatly underrepresented in PDB4. This creates the need for computational tools 

that can accurately identify them amongst the other types of proteins and predict their 

topology, i.e., the position and orientation of TM segments in the protein sequence as well 

as their N-terminal.  

Furthermore, given that signal peptides are often falsely predicted as TM segments5, 

methods that predict the topology of the protein and the presence of a signal peptide at the 

same time have been developed. The majority of prokaryotic beta barrels also encode an 

N-terminal export signal peptide in the translated precursor, which signals secretion across 

the inner membrane via the Sec translocon machinery6. 
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TMHMM, one of the first and the most widely used methods since 20011, focused on 

alpha helical TM topology. Here, we introduce DeepTMHMM, which compared to its 

predecessor, has three main improvements: (i) it has improved topology prediction, (ii) it 

can predict the presence of a signal peptide and (iii) it can predict the topology of beta-

barrels.  

DeepTMHMM is based upon a deep learning encoder-decoder sequence-to-sequence 

model that takes a protein sequence as input and outputs the corresponding per-residue 

sequence of labels. The per-residue labels are signal peptide (S), inside cell/cytosol (I), 

alpha membrane (M), beta membrane (B), periplasm (P) and outside cell/lumen of 

ER/Golgi/lysosomes (O). The sequence of residue labels defines the topology of the 

protein. 

Briefly, the encoder consists of three components: a pre-trained language model (ESM-

1b)7, a bi-directional LSTM and a dense layer with drop-out. The large-scale pre-training 

task of prediction of masked-out amino acids trained on 250 million protein sequences, 

equips the encoder’s representations of the protein sequence with a lot of implicit structural 

and evolutionary information, thus easing the need for labeled data derived from TM 3D 

structures. The encoder’s representations are fed into a conditional random field (CRF).  

The CRF is closely related to the hidden Markov model used in TMHMM. The CRF 

decoder assigns a probability to the entire output sequence rather than treating each position 

in the sequence as an independent classification task. Furthermore, by expanding the 

dimensionality of the state space beyond the five per-residue labels and constraining the 

learned “interaction” matrix, it is possible to reproduce properties of TM proteins such as 

the length distribution of segments and let label sequences obey a basic transmembrane 
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grammar. The CRF allows for decoding of the most probable sequence (Viterbi decoding) 

and calculation of marginal probabilities at each position. We can use either type of 

decoding as the final topology prediction (see Supplementary Information). 

We used five types of proteins for training and testing DeepTMHMM, namely alpha 

helical transmembrane proteins without a signal peptide (alpha TM), alpha helical 

transmembrane proteins with signal peptide (SP + alpha TM), beta-barrel transmembrane 

proteins (Beta), globular proteins with signal peptide (SP + Globular) and globular proteins 

without signal peptide (Globular). Because of the very limited availability of eukaryotic 

beta barrel structures, DeepTMHMM is primarily set up to predict the topology of 

prokaryotic beta barrels. However, small scale testing on the limited eukaryotic beta barrel 

TM structural data available indicates that DeepTMHMM can correctly identify them and 

capture the main features of their topology. 

In order to account for possible overfitting and over-optimistic assessment of predictive 

performance, we performed a within-type homology reduction using the CD-HIT8 

algorithm at 30% sequence identity cut-off. This means that, within each of the five types, 

there are no proteins that share more than >30% sequence identity. The total number of 

sequences in our training set is 3,574, of which 2,000 Globular, 1,000 SP+Globular, 106 

SP+alpha TM, 387 alpha TM, and 81 prokaryotic beta barrels (see Supplementary 

Material). 

We compared DeepTMHMM to several topology prediction methods that are currently 

available (Supplementary Table 1). The performance of DeepTMHMM was assessed in a 

five-fold cross validation setup with three folds for training, one for validation and one for 

testing. The test performance was assessed only once after the completion of training and 
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model optimization steps. For benchmarking we used our full set, which inevitably favors 

the compared methods a priori because of overlap our set with their training sets. Further, 

only DeepTMHMM predicts all five protein types.  

For the overall type classification, DeepTMHMM outperforms all other methods as seen 

in Figure 2a and Supplementary Tables 2a-c. Only in the case of alpha TM proteins 

TMHMM is slightly superior. This is mainly because TMHMM is very conservative in 

predicting TM proteins and only predicts two types.  Supplementary Table 2a shows the 

performance of DeepTMHMM against methods that can operate in a proteome-wide 

manner, and there, DeepTMHMM shows superior performance. The same applies to beta 

barrel protein detection, where DeepTMHMM is better than all other methods we tested. 

Regarding topology prediction accuracy (Figure 2b), in the alpha TM set, 

DeepTMHMM performs slightly worse than TOPCONS29 and slightly better than 

CCTOP10 and DMCTOP11, which, however include more than 30% of the test set proteins 

in their training sets (Supplementary Table 4a). All other methods perform substantially 

worse. In the alpha SP+TM set, DeepTMHMM is better than all other methods, with a 

marginal improvement over TOPCONS2 and substantial over the remaining methods 

(Supplementary Table 4b). Finally, for beta barrels, DeepTMHMM ranks first, followed 

closely by BOCTOPUS212 and PRED-TMBB213 (whose respective training sets also  

substantially overlap with ours).  DeepTMHMM gives a sensible prediction for the 

eukaryotic beta barrel proteins as well, like the human voltage-dependent anion channel 

VDAC (PDB: 2JK4). VDAC14 has 19 beta strands and DeepTMHMM, which is 

constrained by the state space model to predict an even number of strands, predicts 18. The 
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prediction overlaps with the ones from the solved structure except the first beta strand that 

is predicted as signal peptide in accordance with the DeepTMHMM’s state space model.  

Another substantial improvement that DeepTMHMM brings about is the accurate 

detection of the cleavage site (CS) of signal peptides (when present). Existing topology 

prediction methods are good at detecting signal peptides, but not as good in pinpointing 

their CS. As shown on Figure 2c and Supplementary Tables 5a-d, DeepTMHMM is far 

better than all other methods in CS detection and even slightly better than SignalP 6.015. 

DeepTMHMM is also conservative in not over-predicting signal peptides. 

As an overall conclusion, we can confidently state that DeepTMHMM is currently the 

most complete software to facilitate proteome-wide topology predictions of both alpha 

helical and beta barrel transmembrane proteins.  

DeepTMHMM is available at https://dtu.biolib.com/DeepTMHMM/ and allows for up 

to 10,000 protein sequences per submission. For large-scale analyses, we recommend that 

users run DeepTMHMM locally on their own machine. DeepTMHMM is free for all 

academic users and provided for a fee to commercial users. 
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Figure 1: a. State space model of the protein topology for the considered protein types. 1a top 
generates Alpha TM, SP+TM, Glob and SP+Glob topologies and the bottom plot prokaryotic Beta 
barrels and SP+Glob. The protein sequence begins in the N-terminus (for clarity split in the plot), 
ends in the C-terminus and the arrows indicate transitions to other “compartments”. The model 
can stay in each compartment for a number of residues in a pre-specified range. b. The 
DeepTMHMM Neural Network architecture consists of the ESM1-b model (shown as 
“Embedding”), a bi-directional LSTM, a dense layer with dropout and, finally, a CRF decoder 
layer. 
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Figure 2: DeepTMHMM accuracy benchmarked against other methods on (a) type classification, 
(b) topology prediction and (c) signal peptide cleavage site prediction.  
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