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Summary  
Microbes affect plant health, stress tolerance1 and life history2. In different regions of the globe, plants are 
colonized by distinct pathogenic and commensal microbiomes, but the factors driving their geographic 
variation are largely unknown3. We identified and measured the core leaf microbiome of Arabidopsis 
thaliana in its native range, from almost 300 populations across Europe. Comparing the distribution of the 
approximately 500 major bacterial phylotypes, we discovered marked, geography-dependent differences 
in microbiome composition within A. thaliana and between A. thaliana and other Brassicaceae, with two 
distinct microbiome types segregating along a latitudinal gradient. The differences in microbiome 
composition mirror the spatial genetics of A. thaliana, with 52-68% of variance in the first two principal 
coordinates of microbiome type explained by host genotype. Microbiome composition is best predicted 
by drought-associated metrics that are well known to be a major selective agent on A. thaliana populations. 
The reproducible and predictable associations between specific microbes and water availability raise the 
possibility that drought not only directly shapes genetic variation in A. thaliana, but does so also indirectly 
through its effects on the leaf microbiome.  

Results 
The crucifer Arabidopsis thaliana is an annual species that today can be found on at least six continents4, 
residing in environments with disparate temperatures, water availability, salinity and surrounding 
ecosystems. These distinct environments have imposed strong selection on A. thaliana, leaving 
environment-associated signatures of selection throughout its genome5. While spatial differences in abiotic 
factors are well-appreciated, differences in the resident microbiota are also likely to influence plant fitness 
and the course of local adaptation, and concrete evidence is beginning to emerge that there is regional 
variation in the microbiota that is associated with A. thaliana6. A recent survey of root microbiomes3 found 
regional differentiation between populations, with microbes in the roots reflecting the composition of 
microbes in the soil. Host location was similarly significantly correlated with both root- and leaf-associated 
microbial composition of another Brassicaceae species, Boechera stricta7.  

 
Figure 1 | Representative sampling 
of A. thaliana phyllosphere 
microbiomes across Europe. 
Arabidopsis thaliana plants were collected 
from distinct ecosystems across Europe. a, 
b. c, Images taken at each site enabled the 
assessment of plant health and 
development. The x-axis represents 
qualitative values, as described in Methods, 
except for rosette diameter, which is 
classified in intervals of 0-1 cm (1), 1-2 cm 
(2), 2-3 cm (3) etc. Developmental state 
and herbivory index are ordered in 
increasing progression. Disease index 
corresponds to different macroscopic 
disease symptoms. The central horizontal 
line in each box indicates the median, the 

bounds of the box the upper and lower quartiles. The number of individuals in each group are indicated above the 
boxes. 
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These and other studies have reproducibly demonstrated that plant populations vary in the 
presence and relative abundance of microbes8, but little is known about what drives these differences. 
There are many possible factors and it is often infeasible to tease apart proximal from distal causes. Host 
genetics can influence microbiome composition7,9, and spatial structuring of host genetic variation may in 
turn result in spatial structuring of the resident microbiome, but the two might also be independently 
affected by physical distance, including abiotic factors that vary geographically3,7. Numerous abiotic 
variables including temperature, rainfall, humidity, sun exposure and soil composition could impact 
microbial abundance in plants. For example, Thiergart and colleagues3 found pH to be a significant 
predictor of A. thaliana rhizosphere bacterial composition, consistent with pH as a major explanatory 
variable of soil bacterial composition10.  

Because previous studies have typically been limited in the number of populations3 or the 
geographic range surveyed6, it has been difficult to disentangle these multifarious influences. In general, we 
still have a poor understanding of which environmental factors are the best predictors (and likely the 
causative agents) of differences in plant-associated microbial communities. We also do not know how 
much of their composition is explained by the relative contributions of host genetics versus environmental 
variables.  

In this study, through continental-scale assessment of the bacteria that colonize the leaves of A. 
thaliana in Europe, we identify environmental and host genetic factors that are strongly associated with 
distinct bacterial microbiomes. We further determine the environmental variables that best predict 
microbiome composition, we test the relative contributions of host genetics and abiotic factors to these 
predictable patterns, and we characterize the association between soil microbiomes, host genetics and 
companion species and the phyllosphere microbiota.  

From February to May 2018, we visited 267 A. thaliana populations across Europe at the end of 
their vegetative growth period and onset of flowering2 (Figure 1a). In each population we collected whole 
rosettes from two A. thaliana plants, a neighboring Brassicaceae (primarily Capsella bursa pastoris), if 
present, and two soil samples. We evaluated A. thaliana life history traits including developmental state 
and rosette diameter (Figure 1c, Figure S1), and extracted information on climate variables for the 
collection sites11. We assessed the microbial composition of the leaf and soil samples by sequencing the 
v3-v4 region of the 16S rRNA locus (hereafter rDNA) and classifying distinct 16S sequences as alternative 
sequence variants (ASV) using DADA2 (ref. 12). Each ASV was considered a distinct bacterial lineage which 
we term here a phylotype. Host genetics and absolute microbial load were assessed by shotgun sequencing 
plant tissue which generate metagenomic sequences of host and microbial genomes13.  

 
Phyllosphere composition is distinct from the soil and is host species-specific  
There is considerable debate as to the origin of the microbes that colonize plant tissues, although soil 
often has a measurable influence3,14,15. A study across 17 European A. thaliana populations3 found significant 
differentiation between root and non-root-associated microbes, but no significant differences between A. 
thaliana and neighboring grasses3. Intra-species comparisons in a common-garden experiment had 
suggested that host genetics can explain about 10% of the variance in composition of the A. thaliana leaf 
bacterial microbiome9. At the basis of these comparisons is the question of how much host influence there 
is in microbiome assembly, either because of active recruitment of specific microbes from the 
environment, or because of differential ability of microbes to grow in and on plant hosts.  
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Figure 2 | Two distinct microbiome types in A. thaliana along a latitudinal cline. a, b, The A. 
thaliana leaf microbiome is significantly differentiated from that of surrounding soil (a) and less so (though still 
significant) from surrounding Brassicaceae (b). c, d. k-means clustering (k=2) (c) identified two microbiome types 
that turned out to have a North-South latitudinal cline (c). e, Distribution of higher taxonomic levels across the 
Southern and Northern clusters. f, Comparison of seasonal variation in microbiome composition in southwest 
Germany (winter and spring samples) with the European variation (Cluster 1 and 2). g, Absence of correlation in 
fold-changes (FC) in phylotype abundance between the Southern and Northern clusters (y-axis) and between the 
winter and spring samples from southwestern Germany (x-axis). Phylotypes that are significantly associated with the 
geographic clusters are indicated. 
 

To explicitly test for enrichment of microbes in the phyllosphere, we compared soil, leaves of A. 
thaliana plants as well as leaves from neighboring Brassicaceae across all 267 sites via multidimensional 
scaling (Hellinger transformation). As expected, there was broad-scale separation between the 
microbiomes of the phyllosphere and the soil (Figure 2a). Modeling16 the effect of host versus soil on the 
abundance of core microbial phylotypes revealed that 91% (524/575) of phylotypes were differentially 
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abundant between the A. thaliana phyllosphere and soil (False Discovery Rate FDR<0.01), indicating 
extensive filtering of microbes that colonize the plant, whether from soil or from another environmental 
source. Because we collected A. thaliana in parallel with other Brassicaceae species, we could assess the 
role of host identity in microbial composition at the plant species level. Differential abundance testing16 
identified 205 out of 575 phylotypes (36%) that distinguished the phyllospheres of A. thaliana and those of 
neighboring Brassicaceae (Figure S2, S3). These results indicate that inter-species genetic or phenological 
differences have a strong influence on microbiome composition. On a phylotype-by-phylotype basis, the 
abundance of a phylotype in A. thaliana was poorly predicted by the phylotype’s abundance in soil or in 
the surrounding Brassicaceae companion species (Figure S3).  
 
Phyllosphere microbial composition exhibits a latitudinal gradient 
We tested the geographic differentiation of A. thaliana microbiomes and their constituent members using 
dimensionality reduction techniques for the entire community and through independent testing of the 
spatial distribution for each bacterial phylotype (ASV). The former can reveal overarching trends in 
composition, while the latter provides information on which microbes contribute to observed trends. 
Dimensionality reduction suggested spatial variation in the composition of the phyllosphere microbiome, 
with loading on the first and second principal coordinate axes (Fig 2c) correlated with latitude (Pearson’s 
R = 0.75, p = 2.2x10-16, and R = -0.24, p = 1.35x10-7, respectively). Silhouette scoring17 indicated that the 
microbiomes were best characterized as two distinct groups or types, and we used k-means clustering to 
categorize our samples into two distinct groups (Figure 2c, Figure S4). Clustering with k=2 revealed two 
microbiome types that were strongly differentiated by geography, with one dominating on plants in 
Northern Europe and the other on plants in Southern Europe (Figure 2d). Among individual phylotypes, 
the relative abundance of a third (33%) of phylotypes was significantly associated with latitude (linear 
regression, FDR < 0. 01), but only 2% were correlated with longitude, confirming that Northern European 
A. thaliana populations reproducibly harbor a different microbiota than those in the South.  
 Phyllosphere composition is not static throughout the lifetime of a plant, but changes with the 
season and developmental stage18. To test whether the latitudinal gradient in microbiota we observed 
could be explained by seasonal and host developmental differences, we compared our spatial phyllosphere 
dataset with a multi-year dataset collected from a single location in Southern Germany19. Projecting the 
seasonal phylotype compositional data into the MDS biplots of the spatial data did not reveal any 
preferential association of the season of collection with microbiome cluster type (Figure 2f). Comparing 
changes in the abundance of single phylotypes between seasons and between the two cluster types (Figure 
2g) similarly did not point to the observed large-scale geographic variation reflecting environmental 
variation that aligns with different seasons in a single geographic region (Wald-test of multinomial 
frequency estimates, p > 0. 01).  

The association between latitude and phylotype abundance was phylotype-specific, differing within 
and between bacterial families (Figure 3a). Previous studies demonstrated that Pseudomonas and 
Sphingomonas were reproducibly abundant genera across A. thaliana populations19–21, and strains of both 
genera can affect A. thaliana health19,22,23. Focusing on these two abundant genera, linear regression 
assessing the relationship between each core phylotype and latitude revealed that four of the five most 
abundant Sphingomonads exhibited latitudinal clines (Figure 3a, b, FDR<0. 01) while the most abundant 
Pseudomonad phylotypes were not distributed along latitudinal gradients (Figure 3a, b, c). A result of the 
phylotype specificity of association with latitude was that the differentiation between microbiome clusters 
was significant at the phylotype level, but not at higher levels of taxonomic classification (Figure 2e). Thus, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 10, 2022. ; https://doi.org/10.1101/2022.04.08.487684doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.08.487684
http://creativecommons.org/licenses/by-nc-nd/4.0/


Karasov et al. Drought and microbiome types 

 6 

even though A. thaliana plants are colonized by different phylotypes in Northern and Southern Europe, 
the composition of microbiomes at the level of bacterial classes is broadly the same (Figure 2e). 
 
Common A. thaliana pathogens are patchily distributed and do not correlate with 
latitude  
Arabidopsis thaliana exhibits extensive genetic variation at loci involved in immunity, and these loci may 
participate in shaping microbial composition, especially those of pathogens. Immune loci, however, vary 
often within each population, but little across large geographic distances24,25. If there is pervasive selection 
for immune variation within populations, why do many bacterial microbes then show latitudinal gradients 
in their association with A. thaliana? To test whether a similar cline exists specifically for bacterial 
pathogens, we focused on a bacterial lineage that is known to be a prevalent pathogenic threat for A. 
thaliana. A previous study19 had identified a single Pseudomonas phylotype, ATUE5 (previously OTU5), that 
was very common in local populations in Southwest Germany, and that was highly pathogenic in the lab. 
ATUE5 turned out to be also the most abundant Pseudomonadaceae phylotype across all of Europe. 
Because ATUE5 is an important driver of total microbial load19, we wanted to learn whether distribution 
of this phylotype was spatially structured and perhaps a contributor to the observed microbiome types 
(Figure 3c). The phylotype that matched exactly to ATUE5 was the seventh most common phylotype 
overall, ranging in relative abundance from 0-64% of the microbial community (mean = 1.8%). ATUE5 was 
present across the continent, without significant latitudinal differentiation (Pearson’s R = 0. 01, p = 0. 92).  

While ATUE5 was ubiquitously present, its distribution was not uniform. Interpolation by ordinary 
Kriging of its abundance across the collection range indicated instead a very patchy presence (Figure 3c). 
In contrast, the most frequent Sphingomonas phylotype (and most frequent phylotype overall) showed a 
significant latitudinal cline (Figure 3c). High levels of ATUE5 colonization were largely limited to single 
populations or populations that were very close to each other, with a spatial autocorrelation restricted 
to distances under 50 km (Figure S5). In total, the spatial autocorrelation analyses revealed that the 
Pseudomonas pathogen ATUE5 is widely distributed, but in contrast to the overall leaf-associated 
microbiota does not show obvious latitudinal patterns. We conclude that ATUE5 likely acts as a common, 
though not uniform, selective pressure across the A. thaliana range.  
 
Host genetics is associated with differences in microbiome composition 
Arabidopsis thaliana, a globally distributed species, exhibits strong population structure across Eurasia, with 
a pattern of isolation by distance26 and greater differentiation along latitudinal than along longitudinal 
gradients4. Since the geographic genetic differentiation is almost certainly the result of both demographic 
and adaptive processes, a central challenge is to decipher how much of the spatial genetic variation is 
adaptive. Recent work has suggested that appreciable fractions of geographically structured genetic 
diversity in A. thaliana are associated with climate-driven selective pressures, particularly water availability 
and drought27, but also with different groups of insect predators28. Whether this extends to microbial 
threats is unknown, but our observation of distinct microbiome types in different parts of the A. thaliana 
range is compatible with different microbiota affecting host genetic differentiation, spatially structured 
genetics selecting different microbiomes, or both.  
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Figure 3 | Latitudinal clines in 
microbial abundances and 
association of a host immune gene 
with microbiome type. a, Linear 
relationships between relative abundance 
(RA %) of the most common phylotypes. The 
y-axis represents -log10-transformed FDR-
corrected p-value from regressing the 
abundance of the phylotype on latitude. b, 
There is a significant latitudinal cline for the 
relative abundance (RA %) of the most abun-
dant Sphingomonads (top), but not for the 
most abundant Pseudomonads (bottom). c, 
Interpolation of the abundance of the top 
Sphingomonadaceae phylotype and the top 
Pseudomonadaceae phylotype, the known 
opportunistic pathogen ATUE5, revealed a 
continuous spatial gradient for the top 
Sphingomonad (left), but a patchy distribution 
with regional hotspots for the Pseudomonad 
(right). d, The relationship between 
microbiome type and polymorphism in plant 

immune genes was assessed with the Fst population differentiation index. The most extreme Fst values were found in 
the immune regulator ACD6. 

 
Based on the type of genes that are associated with some of the most obvious signatures of 

selection, interactions with pathogens seem to be a major force shaping variation in the genomes of A. 
thaliana and its relatives29–31, even though it remains largely a matter of speculation which pathogens are 
responsible for these observed signatures of selection. It is also still unknown whether selection on host 
genes involved in pathogen responses has led to knock-on effects on microbiome composition at large. 
Moreover, while it is clear that differences in microbial exposure between plants have led to the 
maintenance of immune diversity, much of this diversity is maintained within populations24, and there is 
little if any geographic structuring of polymorphisms in these genes, suggesting the widespread distribution 
of the selective pathogens.  

If variation in most immune genes is not geographically structured, what then explains the 
geographic differentiation in microbiome types of A. thaliana? Is it variation in other genes than members 
of the immune system, or is it purely driven by the environment? One possible explanation is that the 
different microbiome types belie similarity in community function, with microbial communities selecting 
for similar traits across populations, even if the constituent members differ. Such a scenario is also 
consistent with the same host proteins often being targeted by disparate microbes32. Another possibility 
is that the majority of microbes does not impose strong selective pressures on their hosts but instead 
colonizes them at low levels without extractive or beneficial interactions. In our study we were able to 
determine microbiome composition, microbiome load and host genotype from the same wild individuals, 
and we could therefore assess the relationship between host genotype and microbiome composition in 
an unbiased manner.  
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The observed host genetic diversity was consistent with previous surveys (Figure S6), indicating 
that we had sampled a broad diversity of A. thaliana genotypes across Europe. To determine the 
relationship between host genotype and microbiome composition, we fitted a mixed-effect model that 
included relatedness as a random effect and the loading on the first axis of the decomposition of the 
microbiome composition as the phenotypic response variable, finding that plant genotype alone explains 
68% of the variance in the loading on the first principle coordinate axis, MDS1, and 52% of the variance in 
the loading on MDS2 (pseudo-h2 = 0.68, s.e=0.10 for MDS1 and pseudo-h2 = 0.52, s.e.=0.12 for MDS2).  

Because immune genes are prime targets for interactions with pathogenic microbes, we tested 
for differentiation, as measured with the fixation index Fst, in immune gene alleles present in plants 
colonized by the different microbiome types. Among a generous, though not exhaustive, list of 1,103 genes 
with connection to pathogen response and defense33, the top three SNPs were in the coding region or 
introns of the immune regulator ACD6 (empirical p = 0. 0001) (Figure 3d, S7). Alleles at the ACD6 locus 
can differentially confer resistance to Pseudomonas syringae and Hyaloperonospora pathogens in a 
greenhouse environment through constitutive effects on immunity34. The full ACD6 haplotypes associated 
with each microbiome type have not yet been reconstructed, as the short reads used for genotypic 
comparisons did not allow for resolution of the full-length alleles. Nonetheless, our results demonstrate 
a striking association between microbiome type and polymorphisms in a known central regulator of 
immune activation. Whether resident microbiota select for ACD6 allele type or instead ACD6 allele type 
influences microbiome type remains to be determined.  

 
Drought Indices are the strongest predictors of microbiome composition 
While it was satisfying to have discovered that ACD6, an immune regulator with known major allelic 
variation, is associated with microbiome composition, common-garden experiments had suggested that 
host genetics plays only a minor role in shaping bacterial microbiome composition9. Assuming that the 
core members of the A. thaliana phyllosphere have dispersed over large geographic regions, the most 
obvious candidates for geographic structuring of microbiome types are abiotic, especially climate-related 
factors.  

We took advantage of curated public data on climate variables to investigate effects of climate on 
microbiome composition. Since the microbiome might at least in part reflect overall plant growth and 
health35, we included plant growth and health traits as potential confounders. Altogether, we considered 
39 covariates that could influence microbiome composition (Figure S8, Table S1). To identify those 
covariates that most significantly predict microbiome composition, we first removed covariates that were 
highly correlated with others and then performed random forest classification using the two microbiome 
types as response variables (Figure 4). The resulting model indicated the covariate with greatest 
explanatory power to be the mean annual Palmer Drought Severity Index (PDSI) for the six months 
predating collection, a metric of the dryness of the local environment based on recent precipitation and 
temperature36. PDSI was similarly the best predictor for the loading of a sample on MDS1. In general, 
environmental covariates were stronger predictors than were plant health and life history traits. In 
contrast, environmental covariates (including PDS1) had poor explanatory power for soil microbiome 
composition, explaining less than 1% of the variance in the loading on the first principal coordinate axis.  

Because PDSI is correlated with latitude, one possible explanation for the predictive capacity of 
PDSI is that PDSI itself is not causatively associated with microbiome differences, but instead is a proxy 
for other variables correlated with latitude. While we cannot exclude this possibility with the current 
data, we tested whether inclusion of information about latitude and PDSI improves prediction outcomes 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 10, 2022. ; https://doi.org/10.1101/2022.04.08.487684doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.08.487684
http://creativecommons.org/licenses/by-nc-nd/4.0/


Karasov et al. Drought and microbiome types 

 9 

beyond models that include latitude alone. We found significant improvement in predictive capacity (p =4. 
2*10-7 for logistic regression with cluster identity and p=2. 7*10-7 for linear regression on MDS1) when 
PDSI was included in the model, indicating that the association between microbiome type and PDSI 
extends beyond latitudinal correlation. The predictive relationship between microbiome composition and 
PDSI was further found within regions and sampling tours (p =2. 3*10-7 for logistic regression with cluster 
identity, and p =0. 047 for linear regression on MDS1).  

 
Figure 4 | PDSI is the best predictor of 
microbiome type. a, Random forest 
modeling was used to determine environmental 
variables associated with microbiome type. 
Abbreviations explained in Methods. b, PDSI of 
the location was the best predictor of 
microbiome type, explaining more than 50% of 
the variance. c, Mean PDSI throughout Europe 
for January to April 2018.  

 
Previous work on non-host 

associated soils supports the importance of 
water availability in determining microbiome 
composition10. Together with our findings, 
this implicates water availability as one of the 
most, if not the most important 
environmental factor to determine which 
microbes colonize different sites. To probe 
for possible relative contributions of 
genotype and drought, we performed mixed 
effect modeling and estimated the marginal 
R2 for PDSI to be 50%. In comparison, all 
environmental covariates explained only 1% 
of the variance in total microbiome 
composition in soil, as measured by the 

loading on the first principal coordinate axis. We conclude that drought is very likely to affect which 
microbes can access the host plant or proliferate in and on the host. Drought might do so directly, by 
affecting the physiological state of the plant, indirectly by shaping host genetics, or both.  
 

Discussion 
Our results reveal several robust trends. Firstly, colonization of A. thaliana leaves serves as a strong filter 
from the surrounding environment, with the majority of microbes differing in abundance between the soil 
and A. thaliana leaves, and more than a quarter differing between A. thaliana and its neighboring plant 
species. Plant genetics clearly matters for determining which microbes manage to establish in and on the 
plant. While these trends have been observed before, the strength of our study is the demonstration of 
how reproducible and ubiquitous these effects are on a continental scale. Secondly, geography and its 
corresponding abiotic factors significantly influence the microbes that colonize A. thaliana populations: a 
plant in Spain will very likely be colonized by a different suite of microbes than a plant in Sweden. These 
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parallel differences in geography and microbiomes also correlate with plant genetics, though the 
geographic distribution of microbiome composition is likely simpler than is the population structure of A. 
thaliana4. A major task for future work will be to disentangle the direct contribution of geography-
dependent climate differences on the microbiome and those that are mediated by adaptive differences in 
plant genetics. We identify polymorphisms in an immunity gene, ACD6, that are associated with 
microbiome type and with PDSI. Specific alleles of ACD6 confer drought tolerance37, adding further 
complexity to our understanding of the relationship between drought, microbes and plant genetics. Lastly, 
our analyses suggest that which microbial community colonizes a plant is primarily dictated by water 
availability or rain and its associated microbiota. This again raises the question of how the different 
microbial communities influence plant phenotype. Drought not only plays a major selective role in A. 
thaliana populations27, but it is also known to affect the ability of plants to withstand pathogen attack. An 
important question will be whether different background microbiomes in plants that are more likely to 
experience drought in the wild will help or hamper defense against pathogens38. Conversely, we need to 
learn whether the resident microbiome aids in protection against drought stress, or whether it 
exacerbates the effects of limited water availability. Future manipulative work that examines reciprocal 
transplants of plants and their microbial communities can shed light on the adaptive consequences of the 
reproducible shifts in microbiome composition that we have observed across Europe in natural 
populations of A. thaliana.  
 

Methods 
Sample collection 
Arabidopsis thaliana and other Brassicaceae were sampled during local Springtime in 2018. Most 
Brassicaceae companion samples were Capsella bursa-pastoris, and the rest were Cardamine hirsuta. A full 
list of sampling locations and dates is provided in Table S1. Rosettes were separated from the roots using 
alcohol-wipe-sterilized scissors and forceps, then washed with water and ground with a sharp disposable 
spatula (Roth) in RNAlater (Sigma, now ThermoFisher). For each A. thaliana plant for which soil was 
accessible, 1-3 tablespoons of soil were collected from the location where the plant had been removed, 
and placed in a clean airtight bag. Samples were then maintained in electrical coolers (Severin Kühlbox 
KB2922) until the end of the sampling trip (between 1-7 days). In the lab, samples were stored at 4°C. 
Within 0-3 days RNAlater was removed from plant samples. Samples were centrifuged for 1 min at 1000 
g, the supernatant was removed and samples were washed with 1 ml autoclaved water. For storage at -
80°C, plant tissue was transferred with ethanol sterilized forceps to screw cap freezer tubes containing 
1.0 mm Garnet Sharp Particles (BioSpec Products, Cat. No. 11079110GAR). A ~200 mg aliquot from each 
soil sample was transferred to a screw cap freezer tube using an ethanol sterilized spatula, with great 
effort to exclude plant and insect pieces. Prior to aliquoting, soil bags were kept at -80˚C and defrosted 
at 4˚C overnight, unless aliquoting was done immediately upon arrival in the lab at the end of the sampling 
trip.  
 
Plant phenotyping 
Scores presented in Figure 1 and Figure S1 are: 
Developmental state: vegetative (1), just bolting (2), flowering (3), mature (4), drying (5) 
Herbivory index: no (1), weak (2), strong (3), very strong (4) herbivory.  
Disease index: no disease (1), visible H. arabidopsidis spores (2), necrosis (3), leaf coloration suggesting 
infection (4), Albugo ssp. pustules (5).  
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For rosette diameter, a 1cm rosette diameter listing corresponds to any rosette diameter less than or 
equal to 1cm. 
 
DNA extraction 
Plant DNA was extracted from plant samples according to the protocol from ref.19. Soil DNA was 
extracted using Qiagen Mag Attract PowerSoil DNA EP Kit (384) (Cat. 27100-4-EP). On dry ice, soil 
samples were transferred from tubes to PowerBead DNA plates using sterile individual funnels. Plates 
were stored up to two weeks at -80°C until processing. The Qiagen protocol was adapted to a 96-well-
pipette (Integra Viaflo96). PowerBead solution and SL Solution were pre-warmed at 55-60°C to avoid 
precipitation. RNase A was added to the PowerBead solution just prior to use. From step 17 of the 
protocol, instead of starting epMotion protocol, the following steps were performed: To each well of the 
2 ml deep-well-plate containing maximum 850 µl of supernatant, 750 µl of Bead Solution were added and 
mixed with Eppendorf MixMate at 650 rpm for 10-20 minutes. Plates were placed on a magnet for 5 
minutes, the supernatant solution discarded, and the beads washed three times with 500 µl Wash solution. 
Beads were eluted with 100 µl Elution Buffer. The eluate was transferred to PCR plates and stored at -
20°C until library preparation.  
 
16S rDNA ASV identification 
Primers targeting the consensus v3-v4 rDNA region from 341 bp (5’-CCTACGGGAGGCAGCAG-3’) to 
806 bp (5’-GGACTACNVGGGTWTCTAAT-3’) were used to amplify 16S rDNA sequences with the 
protocol described in ref.19. Briefly, amplification was achieved with a two-step PCR protocol in which 
100uM PNA was used in the initial PCR to block amplification of chloroplast. Amplicons were sequenced 
on the MiSeq (Illumina) platform using the MiSeq Reagent Kit v3 (600 cycle). Samples with lower coverage 
were preferentially sequenced to greater depth in subsequent runs in a total of four runs of the Miseq. 
Output from all runs was pooled for downstream analysis. Primer sequences were removed prior to 
analysis with a combination of usearch (version 1139) and custom bash scripting. 16S rDNA sequences 
were quality-trimmed using DADA212 (version 1.10.1). The forward read was truncated at position 260, 
the reverse read at position 210 due to decreased quality of the second read. Reads were truncated when 
the quality score dropped to less than or equal to 2 (trunQ=2). Chimeras were removed with the 
removeBimeraDenovo function (method=’consensus’) and ASVs called denovo using DADA2. The 
resulting reads were then aligned using AlignSeqs from the DECIPHER package40 (version 2.8.1). A 
phylogenetic tree of the de novo called ASVs was constructed using fasttreeMP 41. Taxonomic assignment 
of reads was performed with comparisons of 16S rDNA sequences to the Silva database42 (nr v132 training 
set).  

Only samples with 1,000 or more reads after filtering for mitochondria and chloroplast were 
included. We began with 939 samples, in which we found 195,545 ASVs. 918 samples had a sufficient 
number of reads, and removing ASVs that were not found in any single sample with more than 50 reads, 
we were left with 10,566 ASVs. We identified a core set of 575 ASVs by filtering for those ASVs that were 
present in at least 5% of A. thaliana samples. ASVs classified as belonging to the taxonomic class 
Cyanobacteria were removed from the dataset to eliminate possible misassignment of plant chloroplast 
DNA that can vary between plant genotypes and skew subsequent analyses. 
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Climate variable data acquisition 
The majority of climate variables were obtained from Terraclimate11 using the data for 2018 (http://www. 
climatologylab. org/terraclimate. html), a dataset with approximately 4 km spatial resolution. For random 
forest modeling and climate associations, we calculated the average value of each climate metric over the 
six months preceding the date of collection. The following variables were included in the random forest 
modeling from the Terraclimate dataset: tmax, maximum temperature; tmin, minimum temperature; vp, 
vapor pressure: ppt, precipitation accumulation; srad, downward surface shortwave radiation; ws, wind-
speed; pet, reference evapotranspiration (ASCE Penman-Montieth); q, runoff; aet, actual 
evapotranspiration; def, climate water deficit soil, soil moisture; swe, snow water equivalent; PDSI, Palmer 
Drought Severity Index; vpd, vapor pressure deficit.  

We further analyzed associations with Koeppen-Geiger climatic zones43,44 which were inferred in 
R using the package kgc and the regional classifications from ref. 45. Initial assessments of the density of 
microbes throughout Europe were calculated via ordinary Kriging using the R package automap46 (version 
1.0-14). Four models were tested during variogram fitting, “Sph”, “Exp”, “Gau” and “Ste”. Interpolation 
was performed either on the abundance data untransformed or on log10 transformed values with 0. 0001 
added to allow for zero counts to be included. Global information on the major vegetation types was 
obtained using the Globcover 2009 map (released December 2010) from the European Space Agency 
(http://due. esrin. esa. int/page_globcover. php). Measures of soil properties were obtained using the ISRIC 
(global gridded soil information) Soil Grids (https://soilgrids. org/#!/?layer=geonode:taxnwrb_250m).  

At the time of collection we took several measurements of the soil and air temperature and 
humidity (Soil temp; Air temp; Soil hum; Air hum), the surrounding plant community and the location type: 
distance between the focal and the closest neighboring A. thaliana plant (Ath.Ath); distance between the 
focal and the closest other plant (Ath.other); immediate plant density (Ground cover); visible H. 
arabidopsidis infection on focal plant (HpA plant) or at site (HpA site); visible Albugo spp. infection on focal 
plant (Albugo tour); fraction of herbal plants in the surrounding (Strata herb); estimated sun exposure 
(Sun), slope (Slope) and ground humidity (Humidity ground). Measurements are listed and detailed in 
Supplementary Table 1. 

 
Feature selection and random forest modeling 
Features of interest were first identified by feature selection in the R package caret47 (version 6.0-86) using 
repeated cross-validation (3 repeats). Prediction variables were preprocessed by centering, scaling and 
nearest-neighbor imputation for samples that lacked data for a variable. A training set was generated with 
75% of the data. Random forest regression was performed to minimize the root mean squared error with 
repeated cross validation. Variable importance was assessed via generalized cross-validation in the package 
caret47.  
 
Differential abundance  
Differential abundance of ASVs in soil vs. A. thaliana, and A. thaliana vs. other Brassicaceae was assessed 
using the edgeR16 package in R (version 3.28.1). We estimated a common negative binomial dispersion 
parameter, and abundance-dispersion trends by Cox-Reid approximate profile likelihoods48. We then fit 
a quasi-likelihood negative binomial generalized log-linear model to the count data. We tested for 
differential abundance by a likelihood ratio test.  
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Classification and regression 
Phylotypic clusters were identified by k-means clustering of Hellinger-transformed ASV count matrices. 
The optimal number of clusters was determined through both partitioning around medioids49 using the 
pamk function in the R package fpc50 (version 2.2.9) and through silhouette analysis17 in the cluster (version 
2.1.2) package in R51 .  

To determine the relative effect sizes of drought, latitude and plant identity on MDS loadings, 
phenotypes were modeled with the gaston52 package in R. The model was Yi ~ PDSIi + Lati + ki,j + εi where 
Yi is the phenotype for each ith accession, ki,j is the genetic relatedness between the ith and jth accessions52, 
Lati is the Latitude of the collection location of the ith accession, and εi is the unaccounted error. The 
kinship matrix was constructed using several methods including the R package gaston52 as well as the 
centered kinship matrix in gemma (version 0.98.3)53. The different methods yielded unstable estimates of 
kinship, likely due to the low coverage of the plant genomes. To account for the low coverage, we 
employed a method designed for kinship estimation in low coverage data, SEEKIN 54 using the 
homogeneous parameter. Mixed effect modeling with a kinship matrix was computed both with lmekin55 
and with gemma. The proportion of phenotypic variance explained by the environmental covariates was 
estimated with the function “r.squaredLR” from the package MuMIn (version 1.43.1) and the pseudo-
heritability was estimated using the kinship matrix and lmekin as well as in gemma (-gk=1, maf=0.1). In the 
manuscript we report the lower estimate for pseudo-heritability as estimated in gemma with the centered 
kinship matrix also estimated in gemma. 
 
Plant polymorphism calling and filtering 
Raw reads were mapped to the TAIR10 reference genome of A. thaliana with bwa-mem (bwa 0. 7. 15)56. 
Single nucleotide polymorphism (SNP) calling was performed using GATK (version 3. 5) HaplotypeCaller 
using recommended best practices57 with some modifications. Filtering for individuals with greater than 
25% missing data (across all the SNPs) and bi-allelic SNPs with greater than 25% missing data (across all 
the individuals) resulted in a final set of 527 individuals with 409,850 bi-allelic SNPs for further analysis.  
 
Assessing population structure of A. thaliana plants 
Wright’s fixation index (Fst) was calculated using the method of Cockeram and Weir58. The 1001 
Genomes4 dataset (without individuals from North America) was merged with the dataset from this study 
to perform principal component analysis. Genotypes from this study were projected into the principal 
component space of the 1001 Genomes genotypes using the SmartPCA tool of EIGENSOFT (version 6)59.  
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Data and Software Availability 
v3-v4 16S rDNA sequence data were deposited in the European Nucleotide Archive (ENA) under the 
Primary Accession ENA: PRJEB44379. Metadata and processed read data sets including phyloseq objects 
are available at Zenodo under DOI 10.5281/zenodo.5140512. Scripts for data processing, analyses and 
figure generation can be accessed at https://github. com/tkarasov/pathodopsis.  
 

Acknowledgements 
We thank Jakob Keck, Timo Hagmaier, Anika Rütten, Theresa Vaupel, Karin Poersch, Nicole Vasilenko, 
Hung Vo-Gia, Julia Elis, Chrisoula Tahtsidou, Theresa Schlegel, Frank Vogt for their work in aliquoting soil. 
We thank Joy Bergelson, Fabrice Roux, Hernán Burbano, Derek Lundberg, Alejandra Duque, Maximilian 
Collenberg and Thanvi Shrikant for their comments on the manuscript. We thank Hernán Burbano, Sergio 
Lattore, Benjamin Brachi and Moises Exposito-Alonso for helpful discussions. This work was funded by an 
HFSPO Long-term Fellowship (TLK), ERC-SyG PATHOCOM and the Max Planck Society (D.W.). 
 

Author Contributions 
TLK, RS, GS and DW devised the study. TLK, RS, GS, MN and the PATHODOPSIS collection team 
collected and prepared the samples. TLK, GS and MN processed the samples. TLK, RS and GS analyzed 
the data. GM provided climate data. TLK, RS and DW wrote the manuscript.  
 

Competing interest declaration 
We declare no competing interests.  
 

Nagoya Protocol Compliance 
Respective national authorities of all sampled countries Party to the Nagoya Protocol were contacted 
ahead of collections. Where needed, advised measures were taken and resulted in sampling and export 
permit KC3M-160/11. 04. 2018 (Bulgaria), ABSCH-IRCC-FR-253846-1 (France) and ABSCH-IRCC-ES-
259169-1 (Spain).   

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 10, 2022. ; https://doi.org/10.1101/2022.04.08.487684doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.08.487684
http://creativecommons.org/licenses/by-nc-nd/4.0/


Karasov et al. Drought and microbiome types 

 17 

Figure S1: Spatial distribution of plants with various developmental and health 
states. Arbitrary scales (see Methods) except for rosette diameter.  
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Figure S2: Differential abundance of phylotypes in soil, A. thaliana phyllospheres and 
phyllospheres of other Brassicaceae. Differential abundance analysis of phylotypes identified 91% 
of phylotypes as differentially abundant between A. thaliana and soil and 36% of phylotypes differentially 
abundant between A. thaliana and other Brassicaceae. y-axis shows the -log10(FDR) for the association 
between the phylotype and latitude in linear regression.  
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Figure S3: Within-site correlation of phylotype abundance.  
Correlation coefficients were calculated for the co-occurrence of a phylotype within a site between the 
two A. thaliana collected at the site, A. thaliana x other Brassicaceae and A. thaliana x soil sample.  
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Figure S4: Silhouette width estimated for members of two clusters.  
Silhouette scores for membership assignment to each of the microbiome types. For each cluster, “number 
of individuals in the cluster | average distance between a sample and members of the other cluster” is 
indicated.  
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Figure S5: Distance-Semivariance plot for ATUE5. The relationship between the spatial 
distance between two plants, and the correlation of the abundance of ATUE5 between the two plants. 
 

 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 10, 2022. ; https://doi.org/10.1101/2022.04.08.487684doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.08.487684
http://creativecommons.org/licenses/by-nc-nd/4.0/


Karasov et al. Drought and microbiome types 

 22 

Figure S6: Projection of A. thaliana genotypes from this study projected into 
genotypic PC space from 1001 Genomes project. Individuals from this study (“Pathodopsis”) 
align well with the broader 1001 Genomes (“1001g”) population. 
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Figure S7: Fst around ACD6. The fixation index Fst was estimated for SNPs in a list of known immune-
associated genes. The most extreme values of Fst lie in the immune regulator ACD6 which has previously 
been associated with autoimmunity in A. thaliana populations. 
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Figure S8: Correlogram of relationship between environmental and developmental 
covariates used in random forest modeling. Covariates are detailed in Methods.  
 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 10, 2022. ; https://doi.org/10.1101/2022.04.08.487684doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.08.487684
http://creativecommons.org/licenses/by-nc-nd/4.0/

