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Abstract

The standard neutral model of molecular evolution has traditionally been used as the null model for

population genomics. We gathered a collection of 45 genome-wide site frequency spectra from a diverse set

of species, most of which display an excess of low and high frequency variants compared to the expectation

of the standard neutral model, resulting in U-shaped spectra. We show that multiple merger coalescent

models often provide a better fit to these observations than the standard Kingman coalescent. Hence, in

many circumstances these under-utilized models may serve as the more appropriate reference for genomic

analyses. We further discuss the underlying evolutionary processes that may result in the widespread

U-shape of frequency spectra.
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1 Introduction

The Kingman coalescent, [Kin82], a stochastic process describing the distribution of random, bifurcating

genealogical trees in a Wright-Fisher population, has been enormously impactful in the study of natural

genetic variation in populations [Wak09]. Under the standard neutral theory [Kim68, Kim83], the coalescent

can be used to derive expectations of neutral diversity by tracking mutations along the branches of random

genealogies, and extensions can accommodate complex processes such as recombination [Hud83], population

structure [WH98], and natural selection [KDH88]. The power of this approach relies on being able to compare

deviations observed in real data from expectations under the coalescent model.

One common metric used to study the consistency between the assumptions of this model and the observed

data is the Site Frequency Spectrum (SFS) - that is, the distribution of mutational frequencies, typically

computed for a sample of n haploid genomes. Under the assumptions of the Standard Neutral Model (SNM)

- including constant population size and panmixia - the expected SFS, averaged across the tree space, is given

by E[ξi] = θ/i, where ξi is the number of sites that carry a derived variant of frequency i/n [Fu95]. The θ

parameter of the SNM is defined as θ = 2pNµ, where p is the ploidy (typically 1 or 2), N the population

size, and µ the mutation rate.

Observed SFS in natural populations are often poorly fit by this expectation, owing to violations of one

or more of the underlying assumptions of the SNM, including varying population sizes, population structure,

direct selection, and linkage with selected sites [JPS+19]. A standard procedure in population genetics is

thus to first statistically test for the SNM (treated as H0, a null statistical model) and then, when rejected,

fit a variety of alternative demographic and/or selection models.

In this article, we show that among a collection of genome-wide SFS from a diverse set of species,

many show an unexpected excess of low and high frequency variants, resulting in a U-shaped SFS. Many

possible factors may result in such a pattern of variation. These include recent migration from non-sampled

populations [ME20], population structure [LBL+16], misorientation of ancestral and derived alleles [BD03],

biased gene conversion [PATE18], recent positive selection at many targets across the genome [BWSH01],

background selection [CGD18], [JCJ20], temporally-fluctuating selection [HSDB08], and various reproductive

strategies [TL14].

A number of these scenarios result in an important general violation of Kingman assumptions: the

presence of multiple mergers in genealogies (i.e., a node with more than two descendants). Under such

scenarios, these distributions are better described by a more general class of models known as the Multiple

Merger Coalescent (MMC) [Sag99, Pit99, DK99, MS01, Sch00]. Briefly, MMCs may arise when the number

of offspring per individual has very high variance across the population. Such effects of concentrations of

ancestrality (resulting in polytomies in the trees) have been reported in various species across all kingdoms

of life [Mon16], and MMC-like genealogies have been observed for species ranging from bacteria (e.g. for

Mycobacterium tuberculosis [MASSJ20, MGF20]) to viruses (e.g. for influenza [SHJ19]) to animals (e.g. for

the nematode Pristionchus pacificus [RNW+14], multiple fish species, e.g. [ÁH14, NNY16, VPC+21]) and

even to cancer cells [KVS+17].

Multiple neutral and selective processes can produce MMC genealogies in natural populations. Generally,

the term sweepstake reproduction has been proposed for species that have rare individuals with a high

reproduction rate coupled with high early-life mortality. In these species, a single or few individuals can

become ancestors of a macroscopic fraction of the population by chance, thus resulting in MMC genealogies

(for a review, see [Eld20]). Multiple models featuring the recurrent and rapid emergence of genotypes with

high fitness also result in MMC genealogies, often modeled by the Bolthausen-Sznitman coalescent or related

models, e.g. [BD13, NH13, DWF13, BBS13, Sch17]. Importantly, other biological factors can also lead to
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MMC-like genealogies, including large rapid demographic deviations [BBM+09], seed banks [CCSWB22],

extinction-recolonisation in metapopulations [TV09] and range expansions [BHK21]. Yet, the frequency of

MMC genealogies in nature, and more generally whether MMC models ought to be employed as a more

appropriate null for certain species, remains an open question.

In this study, we collected 45 species (Table 2) from across the tree of life (bacteria, plants, invertebrates

and vertebrates), for which genome-wide polymorphism data (with sample sizes of n > 10) were available

together with an outgroup to assign ancestral and derived states. We show that MMC genealogies provide

a better fit than the Kingman coalescent in many cases, even when both are combined with non-constant

demography and misorientation of ancestral and derived alleles. For several species, the fit is excellent. For

each species, we tested two simple MMC models: Beta-MMC [Sch03] and Psi-MMC [EW06], both tuned by a

single parameter that interpolates between pure radiation to a Kingman-like tree. Demography is here tuned

by a single parameter (a simple exponential growth), as is the frequency of misorientation errors. Using

composite-likelihood maximization [Nie00] on genome-wide data, we explore statistical power to distinguish

between these contributing factors. Finally, we discuss how MMCs may be better utilized in future population

genetic analysis, and what evolutionary forces may contribute to the pervasive observation of U-shaped SFS.

2 Materials and Methods

2.1 Coalescent and allele misorientation models

We compared the empirically observed SFS to the theoretical SFS expected under a variety of models. The

genealogical models emerge from a discrete generation reproduction model. Each is a (random) tree with

n leaves which approximates the genealogy for a sample of size n in a reproduction model in which the

population size N is very large (N → ∞). One unit of time in the coalescent tree corresponds to many

generations in the underlying reproduction model: for Kingman’s coalescent one time unit corresponds to

N generations of a haploid Wright-Fisher model, or order of N2 time steps of an haploid Moran model.

This correspondence affects how population size changes are reflected in the coalescent approximation (see

definition below, for mathematical justification and details see [GT94, MHAJ18, Fre20]). On the genealogical

tree, mutations are placed randomly via a Poisson process with rate θ/2.

We compared three coalescent models: Kingman’s n-coalescent, Psi-n-coalescent (also called Dirac-n-

coalescent) with parameter Ψ ∈ [0, 1] and Beta(2 − α,α)-n-coalescent with α ∈ [1, 2]. The parameters α

or Ψ regulate the strength and frequency of multiple mergers: the smaller α or the larger the Ψ, the more

frequently coalescence events are multiple mergers of increasing size. Both MMCs incorporate Kingman’s

n-coalescent as a special case (α = 2 or Ψ = 0).

Both MMC coalescent models can be defined for demographic variation that stays of the same order,

i.e. where the populations size ratio νt = Nt/N0 of the population size at time t in the past (in coalescent

time units) is positive and finite (for large population sizes N). The coalescent merges any k of b (ancestral)

lineages present at a time t with rate

λn,k(t) = ν(t)−η
∫ 1

0

xk−2(1− x)n−kΛ(dx), (1)

where

• Λ could be any probability distribution on [0, 1] but is here either the Dirac distribution (point mass)

in Ψ (Psi-coalescent) or the Beta(2− α,α) distribution (Beta coalescent).
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• η is a scaling factor reflecting how many time steps from the discrete reproduction model form one unit

of coalescent time. More precisely, it is the power of N of the scaling factor: e.g. η = 2 for a Moran

model and η = 1 for a Wright-Fisher model.

A common way of constructing the Λ-coalescent, which provides a nice interpretation of Eq (1), is the

paintbox process [Pit99]: at rate x−2Λ(dx) per time unit, paint each lineage independently with probability

x and merge all painted lineages simultaneously. Note that when Λ is the Dirac mass at 0, λn,k(t) is nonzero

only when k = 2, recovering Kingman’s coalescent.

We focused on exponentially growing populations, i.e. a population size ratio ν(t) = exp(−gt) for growth

rate g ≥ 0 (see Appendix A.1 for interpretation of g in the initial reproduction model). As underlying

reproduction models, we use modified Moran models [HM13, EW06, MHAJ18]. At each time step, in a

population of size N , a single random individual has U +G offspring while N − U random individuals have

1 offspring (leaving U − 1 individuals devoid of offspring). As a consequence, the population grows from N

to N +G individuals and G is chosen to fit the desired growth rate.

In a standard Moran model, U = 2 and G = 0 leaving the population size constant. However, for both

MMCs, U is set to different values. In both cases, the mean of U does not grow indefinitely with N (for all

parameters α and Ψ), but the resulting variance does (for α 6= 2 and Ψ 6= 0).

• In the Psi-n-coalescent (essentially [EW06, MHAJ18]), we have U = 2, except when a sweepstake event

occurs with a small probability of order N−γ (1 < γ ≤ 2); in this case, U = bNΨc. In the coalescent

time scale, one unit of time corresponds to an order of Nγ time steps; this is the expected time to a

sweepstake event so that η must equal γ. We chose γ = η = 1.5 for Ψ > 0, and γ = η = 2 for Ψ = 0

(standard Moran model) with U = 2 in every time step.

• In the Beta-n-coalescent [HM13, Fre20], U has distribution P (U = j) = λ−1
N

(
N
j

)B(j−α,α+N−j)
B(2−α,α) , where B

is the Beta function and λN is the normalizing constant. Consequently, although the random variable

U has a finite mean of at most α
α−1 , it can take large values with high probability when α < 2. See

Appendix A.1 for more details. On the coalescent time scale, one unit of time corresponds to an order

of Nα time steps, so η = α. Note that α = 2 is the classical Moran model and thus leads to Kingman’s

coalescent.

For statistical inference, we treat the observed SFS of s mutations as s independent multinomial draws

from the expected SFS (see [Nie00] and [EBBF15, Eq. 11] [MHAJ18, Eq. 14]). This computes an approximate

composite likelihood function of the data for any combination of growth rate (g) and coalescent parameter

(α or ψ). However, to include the effect of misorienting the ancestral allele with the derived allele, we

introduced another parameter e. On average, a misorientation probability of e lets a fraction e of the derived

allele carried by i sequences to be falsely seen as appearing in n− i sequences. Additionally, as described in

[Lap17, Section 4.2] or [BD03, p. 1620], as misorientation stems from double-mutated sites, e also relates to

the number of sites that cannot be oriented when compared with the outgroup owing to the presence of a

third allele (see Appendix A.3). We account for these two effects of e by swapping a fraction e of the variants

at frequency i/n to 1 − i/n and we assume a Jukes-Cantor substitution model [JC+69] to predict for the

number s6= of non-polarizable tri-allelic variants. This leads to a slight variant of [MHAJ18, Eq. 14]. For

any coalescent model with a specific set of coalescent, exponential growth and misorientation parameters,
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the pseudolikelihood is:

PsL(s1, . . . , sn−1, s, s 6=) = (2)

s!

s1! · · · sn−1!

n−1∏
i=1

(
E[Ti](1− e) + E[Tn−i]e

E[Ttot]

)si (s+ s6=
s6=

)(
2e

1 + 2e

)s 6= ( 1

1 + 2e

)s
︸ ︷︷ ︸

from non-polarizable variants

,

where s1, . . . , sn−1 is the observed SFS (so we observe si sites with derived allele frequency i/n), s =
∑
i si

is the total number of polarizable polymorphic sites and s6= is the number of non-polarizable sites. E[Ti]

is the expected sum of branch lengths that support i leaves in the genealogy and E[Ttot] is the sum of all

branch lengths. For e = 0, we set the term estimated from non-polarizable variants to 1. See Appendix A.3

for details on the derivation.

2.2 Statistical inference

To find the best-fitting parameters, we conduct a grid-search for the highest pseudolikelihood. The expected

branch lengths E[Ti] in Eq. (2) are computed as in [MHAJ18], using the approach from [SKS16]. We use

the following grids with equidistant steps

Beta: α ∈ [1, 2] in steps of 0.05, g ∈ [0, 25] in steps of 0.05, e ∈ [0, 0.15] in steps of 0.01.

Psi: Ψ ∈ [0, 1] in steps of 0.05, g, e as for Beta above, complemented with Ψ ∈ [0, 0.2] in steps of 0.01 (further

expanding g ∈ [0, 30] by steps of 0.05 and e ∈ [0, 0.2] by steps of 0.01) when Ψ was estimated to be

close to 0.

To perform model selection between the three coalescent models, we computed the two following log Bayes

factors:

BF1 = max(log max
α,g,e

PsL, log max
Ψ,g,e

PsL)− log max
α=2,g,e

PsL, BF2 = log max
α,g,e

PsL− log max
Ψ,g,e

PsL (3)

from the maximum pseudolikelihoods computed for the three models. We inferred a MMC genealogy when

BF1 > log(10) and further chose a Beta coalescent or a Psi-coalescent when (additionally) BF2 > log(10) or

BF2 < − log(10) respectively.

For the best fitting parameter combinations either over the full parameter space or restricted to the Kingman

coalescent with growth and allele misorientation (i.e., fixing α = 2 or Ψ = 0), we assessed the goodness-of-fit

of the observed data. First, we graphically compare the observed SFS with the expected SFS, approximated

as ( E[T1]
E[Ttot]

, . . . , E[Tn−1]
E[Ttot]

). Second, we quantified the (lack of) fit of the data by Cramér’s V , a goodness-of-fit

measure which accounts for different sample sizes and different numbers of polymorphic sites. See Appendix

A.4 for details.

2.3 Data

We collected 45 genome-wide SFS that are described in Tables 2 and A.5. The collected SFS come from

public data sets or private communications. For 20 data sets, SFS were extracted from whole genome

SNP data, including both coding and non-coding regions. For 16 data sets, they were extracted only from

transcriptomes (equivalent to coding regions). For 9 bacterial data sets, the SFS were extracted from the

core genome. Supplementary files 1 and 2 provide the shapes of the empirically-observed SFS.
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3 Results

We have first demonstrated the power of the methodology using extensive simulations, and then applied it

to 45 real SFS computed from a very large variety of taxa.

3.1 Statistical performance

Using simulations, we first assess the power of the method to retrieve the correct model and then its power to

estimate the parameters. Briefly, for each simulation, we simulated 100 independent loci for each parameter

combination, sampling over the coalescent parameter (α or Ψ), the growth rate of the demographic model

(g), and the misorientation probability (e). For each locus, we then simulate SNPs under an infinite sites

model, with a mutation rate such that on average 50 sites are segregating for each locus. This simulation

setup is described in further detail in Appendix A.5.

Applied to the simulated data, our method performs well. Even for small datasets (n = 25), the model

selection approach based on Bayes factors computed from Eq. (2) identifies the correct multiple merger model

in most cases (Table 1), as long as multiple mergers occur with reasonable frequency. As the rate of multiple

mergers becomes very low (α ≈ 2 or Ψ ≈ 0), mis-identifications are more common (Table 1). However,

even when our model prefers the beta-coalescent for data simulated with α = 2, in 96% of such cases (with

n = 100; 71% with n = 20), we estimate α ≥ 1.9, suggesting that even when model mis-idenfication occurs,

parameter estimation remains reliable (Table A.3). Over the range of parameter combinations, larger sample

sizes lead to smaller errors, as expected. This selection approach is conservative with respect to departures

from the standard Kingman coalescent, as we choose a Kingman genealogy model if the Bayes factor does

not distinctively point towards an MMC model.

Parameter estimation within both the Beta- and Psi-coalescent models works well for multi-locus data

for large enough samples, especially for the allele misorientation rate e and for the coalescent parameter α or

ψ (Figure 1, Figures A.2–A.4). The growth rate, in contrast, is only estimated well for situations where the

simulated growth rate was low (Figures A.9, A.12, A.15, A.18).
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Figure 1: Error for estimating parameters for Beta coalescents with exponential growth and allele misorien-

tation across the parameter grid for (α, g, e). Sample size n = 100, 50 independent loci with 100 mutations

on average. 500 simulations were performed per parameter triplet.
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True model Within Fraction model inferred as

the grid? Kingman Beta Psi MMC

α = 2 yes 0.79 0.21

α = 1.9 yes 0.34 0.66

α = 1.8 yes 0.02 0.91 0.04 0.03

α = 1.625 no 0.9 0.06 0.05

α = 1.025 no 1

Ψ = 0.005 no 0.55 0.45

Ψ = 0.025 no 0.05 0.72 0.14 0.09

Ψ = 0.05 yes 0.12 0.82 0.06

Ψ = 0.075 no 0.06 0.91 0.03

Ψ = 0.1 yes 0.02 0.98

Table 1: Model selection via two-step Bayes factor criterion. Based on 2,000 simulations for each true model

assuming n = 25 individuals with 100 loci with 50 mutations each on average. For each simulation, the

coalescent parameter is fixed and the growth parameter g and the allele misorientation rate e are randomly

chosen (g ∈ [0, 11.25], e ∈ [0, 0.1]). The second column hows whether the parameters used for simulation were

included in the inference grid. Fractions are rounded to two digits. MMC refers to cases in which neither the

Psi- nor Beta-coalescent is preferred. An expanded version with enhanced sample size is provided in Table

A.2. For details on simulations and inference parameters see Appendix A.5.

3.2 Data analysis

The simulations demonstrate that the method is able to retrieve the correct model, and also correctly estimate

the parameters of the MMC, provided that there is enough signal in the data. Next, we applied the method

to 45 real SFS from 45 distantly related taxa. We first tested how many datasets are better fit by an MMC

model than by a Kingman model, then tested the goodness of the MMC fit and estimated MMC parameters

for real data.

MMC fits better than Kingman. First, we assessed the fit of each SFS to both MMC models and

the Kingman coalescent, with exponential growth and misorientation. Using the Bayes Factor criterion, we

selected the best fitting model for each empirical SFS in our dataset (Table 2). A large majority (73%) of the

SFS produce a better fit to MMC models than to the standard Kingman coalescent model. The best model is

most frequently the Beta-coalescent (51%), followed by the Kingman coalescent (27%) and the Psi-coalescent

(13%). In a few cases, both MMC models produce a better fit than the coalescent, but we cannot distinguish

the best fitting MMC (9%).

MMC is sometimes a good fit. While we show that MMC models produce better fits than the Kingman

coalescent across many species, this could be because no model fits well. To test whether the best fit

coalescent model is indeed a good model to predict the observed SFS, we calculated Cramér’s V , a measure

of goodness-of-fit appropriate for variable contingency tables (e.g., SFS with different sample sizes across

species). Combined with visual inspections, (supplementary files 1,2), we designed grade categories from ‘very

accurate’ fit to ‘very poor’ fit, as following: A: V ∈ [0 : 0.033[ , B: V ∈ [0.033 : 0.066[, C: V ∈ [0.066 : 0.1[ and

D: V ∈ [0.1 :∞[. Importantly, the MMC models fit well to 71% of data sets: 32/45 SFS have grades A or B

on Table 3. This demonstrates that not only is MMC a better choice than Kingman on statistical grounds

but also that it appears as a good model to predict patterns of diversity for a large majority of species.
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Table 2: Data sets description: Taxa, Species, number of individuals (n) and number of polymorphic

sites (#SNP). Best fitting model (Kingman (KM), Beta, Psi-coalescent or no preference between Multiple

Merger Coalescents (MMC)), its parameters (parameters describing coalescence (Coal), growth rate (g) and

misorientation (e)) and goodness-of-fit grade from Cramér’s V values.

Order Species n #SNP Model Coal gModel eModel Grade

Vertebrates Aptenodytes patagonicus 20 1,278 Beta 1.25 1.5 0 B

Athene cunicularia 40 11,268,203 Beta 1.8 1 0.03 B

Corvus cornix 38 7,167,395 Beta 1.95 1 0 A

Coturnix japonica 20 5,061,864 Beta 1.45 0.5 0.01 A

Egretta garzetta 10 9,318,499 Beta 1.75 0 0.02 B

Emys orbicularis 20 515 KM ∅ 0.5 0 C

Ficedula albicollis 24 14,697,230 Ψ 0.01 0.5 0.01 A

Gorilla gorilla gorilla 54 9,878,547 Beta 1.9 0 0 B

Homo sapiens 216 19,441,528 Beta 1.85 0 0 A

Lepus granatensis 20 769 MMC/Ψ 0.12 0 0.03 C

Nipponia nippon 16 1,140,694 KM ∅ 0 0.03 D

Pan paniscus 26 6,293,657 Beta 1.85 1 0 B

Pan troglodytes ellioti 20 10,009,190 Beta 1.7 0 0 A

Parus major 54 14,174,305 Beta 1.75 0 0.01 A

Parus caeruleus 20 866 MMC/Ψ 0.04 0 0.02 B

Passer domesticus 16 18,501,992 KM ∅ 0 0 A

Phylloscopus trochilus 24 33,401,127 KM ∅ 12.5 0 A

Taeniopygia guttata 38 53,263,038 Beta 1.75 4 0 A

Invertebrates Armadillidium vulgare 20 23,323 Beta 1.7 0 0.03 C

Artemia franciscana 20 5,548 Beta 1.65 0 0.03 B

Caenorhabditis brenneri 20 1,339 Beta 1.5 0 0.06 C

Caenorhabditis elegans 574 165 KM ∅ 0 0.06 D

Ciona intestinalis A 20 480 KM ∅ 0 0.11 B

Ciona intestinalis B 20 1,883 Beta 1.65 0 0.02 B

Culex pipiens 20 5,442 Beta 1.55 0.5 0.01 B

Drosophila melanogaster 196 4,662,706 Beta 1.65 0.5 0.02 A

Halictus scabiosae 22 712 MMC/Ψ 0.04 0 0.01 B

Melitaea cinxia 18 1,695 Beta 1.7 0.5 0.03 B

Messor barbarus 20 9,651 KM ∅ 0.5 0 C

Ostrea edulis 20 939 MMC/Ψ 0.04 0 0.02 B

Physa acuta 18 4,286 Beta 1.5 0 0.02 B

Sepia officinalis 18 1,740 KM ∅ 0 0.02 C

Plants Arabidopsis thaliana 345 10,322,757 Beta 1.6 0 0.07 A

Zea mays 66 520,310 Ψ 0.01 0 0 A

Bacteria Acinetobacter baumannii 79 78,175 Beta 1.8 0 0.1 B

Bacillus subtilis 38 105,523 Ψ 0.14 0 0.2 B

Chlamydia trachomatis 59 9,924 KM ∅ 0 0.11 D

Clostridium difficile 11 192 KM ∅ 15 0.15 D

Escherichia coli 62 84,222 KM ∅ 0 0.06 B

Helicobacter pylori 70 27,498 Ψ 0.01 1 0.2 B

Klebsiella pneumoniae 156 203,601 KM ∅ 18.5 0.15 D

Mycobacterium tubercolosis 33 7,142 Beta 1.05 2.5 0 C

Pseudomonas aeruginosa 86 90,258 Ψ 0.06 3 0.2 B

Staphylococcus aureus 152 30,052 Ψ 0.01 1 0.2 B

Streptococcus pneumoniae 32 49,917 Beta 1.5 0 0.08 C
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Model \ Grade A B C D Total

Kingman 2 2 3 5 12

Beta 8 11 4 23

Psi 2 4 6

MMC 3 1 4

Total 12 20 8 5 45

Table 3: Distribution of goodness-of-fit grades of the best-fitting models for the 45 collected SFS. Calculated

from Cramér’s V , A: V ∈ [0 : 0.033[ , B: V ∈ [0.033 : 0.066[, C: V ∈ [0.066 : 0.1[ and D: V ∈ [0.1 :∞[.

The amount of multiple mergers greatly varies among species. The MMC models we use vary

in the extent of multiple mergers, from star-like to Kingman-like, scaled by a single parameter (α and Ψ

respectively for the Beta- and Psi-coalescent). To determine whether the model fits suggest an appreciable

level of multiple mergers, we next explore the estimated parameters for MMC models. Of the 45 empirical

SFS we analyzed, 68% (31/45) have α̂ < 1.9 under the Beta-coalescent, which suggests a non-trivial frequency

of multiple mergers, and implies something that is not captured by the SNM is occurring in these species

(Table A.4, α estimates of all data sets, including those where the Kingman or Psi-coalescent are the best

fit model). Nonetheless, estimates of α and Ψ are both skewed towards values that approach the Kingman

coalescent (2 and 0, respectively), despite covering the full range of values across the tree of life (Fig 2, Fig

A.7).

Assuming a Kingman coalescent leads to an overestimation of the growth rate. One potential

impact of using the standard Kingman coalescent instead of better-fitting MMC models is the incorrect

estimation of other parameters, including aspects of demography. To explore this issue, we compared the

estimated growth rate and misorientation error assuming a Kingman model rather than an MMC model. We

observe that the growth parameters are often higher when inferred under the the Kingman coalescent than in

either of the MMC models (Table A.4), although estimates of g tend to converge in empirical datasets where

the MMC parameter estimate approaches Kingman (Fig A.5a). This mirrors previous results of compensating

the effect of MMC when inferring under a Kingman coalescent by estimating a higher growth rate in our

scenario without allele misorientation, see e.g. [MHAJ18].

In contrast, the allele misorientation parameters e are almost identical between the Kingman model and the

MMC (Fig A.5b), which may be a consequence of adding a second, coalescent-model-free estimation method

for e to the pseudolikelihood 2. This suggests that for datasets with frequent multiple mergers, assuming a

Kingman model may lead to overestimating g, but is not likely to impact estimates of e.

Both MMC models have similar parameter estimates. Finally, we compare the estimations of both

MMC models to see whether using one or the other would result in qualitatively different conclusions. The

parameters inferred under the two MMC models are highly correlated. The multiple merger parameters α of

the Beta-coalescent and Ψ of the Psi-coalescent are negatively correlated, as expected from their definitions

(Fig A.6a, Spearman correlation: ρ = −0.73). The estimated growth and misorientation parameters are

highly positively correlated (Spearman correlations ρ = 0.74 and ρ = 0.96). The case of Clostridium difficile

is a notable exception. The best model inferred is the Kingman, consistent with Ψ̂ = 0 inferred for the

Psi-coalescent, but for the Beta-coalescent α̂ = 1, the strongest MMC component, is estimated. However,

this discrepancy is likely due to statistical noise: the data set is very small (192 mutations in a sample size

n = 11) and the species has a very low recombination rate.
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Figure 2: Distribution of α in function of the order of the species. The four top panels represent transformed φ-SFS

(φi = iξi as in [Ach09, LLA17]) for four species from different taxa: two vertebrates Aptenodytes patagonicus (left)

and Parus major (center right) an invertebrate Physa acuta (center left), and a bacteria Escherichia coli (right).

Black dots are the observed values, grey dotted lines are the best fits under the Kingman’s coalescent model and red

lines are the best fits under a Beta-coalescent model.

3.3 Code and data availability

All simulation and analysis codeis available upon request and additionally will be made available as a public

GitHub repository upon publication.

4 Discussion

In this study, we show that unfolded SFS for large variety of species show a characteristic U-shape, which is

inconsistent with the expectations of the standard neutral model using the Kingman coalescent. One possible

explanation for this observation is the prevalence of MMC and MMC-like genealogies in real populations. To

explore the role of MMCs in these data, we develop a statistical framework to detect MMC models. Using

simulated data, we show this approach has good power to detect the correct MMC model and estimate its

parameters, provided that the data are informative enough. Using real SFS collected from 45 species across

the tree of life, we further show the MMC models are a better fit than the Kingman coalescent in most

species, even when population growth and orientation errors are additionally modeling, although in some

cases the MMC parameter suggests approximately Kingman behavior. In the following, we discuss some

possible biological implications of these observations.
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Chosen multiple-merger models, alternatives and limitations. We chose two commonly used hap-

loid multiple-merger models, the Beta- and the Psi-coalescent, which were previously associated with sweep-

stake reproduction in the literature [EW06, Sch03]. However, these MMC models may also originate either

from alternative neutral processes or from selective processes. Indeed, the Beta n-coalescent with α = 1

is known as the Bolthausen-Sznitman n-coalescent and it (resp. a slight variant of it) emerges in a variety

of models with rapid selection [BD13, NH13, DWF13, BBS13, Sch17]. The Beta-coalescent has also been

associated with range expansions [BHK21]. In addition, Psi n-coalescents have been successfully used as

proxy models for detecting regions experiencing positive selection [HJ20].

While Beta- and Psi-coalescent models are linked to several biological properties potentially present in

a considerable number of species, these are not the only MMCs used to model biological populations. For

instance, in the modified Moran models presented above, one can let the Ψ be random, leading to another

more general class of MMC that also belongs to the family of Λ-coalescents [HM13], which is a generally good

candidate for sweepstakes reproduction. Other alternative models exist that more closely mimic recurrent

selective sweeps [DS05] or appear as variants of Psi- and Beta- coalescents, but for diploid reproduction

[BCEH16, BLS18, KB19].

We have chosen to evaluate two simple classes of coalescent processes which interpolate between the two

extreme tree shapes – a purely bifurcating Kingman tree (Ψ = 0 or α = 2) and a star-shaped tree (Ψ = 1 or

α = 0). Alternative multiple merger models could potentially be (mis)identified as Beta- or Psi-coalescents,

as previously shown [FSJ21]. Our method should thus still be able to detect multiple merger signals even

if caused by processes that lead to another MMC. Assessing further which MMC models are best fitting

for biological populations could be informative [MGF20]. In this regard, our inference approach is based on

computing E(Ti) from Eq. (2) via the method from [SKS16], so it can easily be extended to incorporate most

multiple merger models (any Λ- or Ξ-coalescent) and any demographic histories, by replacing the Markov

transition rate matrix of the coalescent and the population size profile ν.

To assess the quality of our inference method, we used a simplified approach where unlinked loci are

assumed to be independent. This is not always true for MMC models (see [BBE13] and Appendix A.8),

especially for Psi-coalescents caused by strong sweepstake reproduction events with Ψ well above 0. Thus,

the real error rates of our techniques could be higher than anticipated by our simulation study. However,

this potential increase in error rates can be offset by the presence of datasets that are larger than those

assumed in our simulation study. Additionally, due to our reliance on the expected SFS entries – which are

averages over the tree space – our inference method (and also our goodness-of-fit assessment) should perform

worse (given identical sample sizes and mutation counts) when used on species with small genomes and low

recombination rates. This tendency is clearly visible in the goodness-of-fit tests of multiple bacterial data

sets.

Non-extreme demography alone cannot generate U-shaped SFS The Kingman coalescent for a

population undergoing non-extreme demographic changes corresponds simply to a monotonic time rescaling

of the standard Kingman coalescent. Non-extreme changes mean that the order of the number of generations

compressed to form one unit of coalescent time (which depends on the probability that a coalescence event

happens in a generation) is not affected by the demographic changes. For the MMC models employed, this

is for instance satisfied if the population size stays of the same order (N) throughout generations. If this is

true, changes in population size correspond to changes in waiting times, but not topology, of the tree. The

expected SFS for a large population and a large sample is a linear function of the expected population-level
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waiting times ck (for the next coalescence of k lineages) with a simple analytical form:

E[ξf ] = θ
∞∑
k=2

k(k − 1)ck · (1− f)k−2, (4)

where ξf is the number of variants at frequency f . Since the expected waiting times are positive ck > 0,

all coefficients in this expansion are positive. This means that the spectrum has a positive value, negative

derivative, positive convexity (second derivative), etc., so it is a completely monotonic function (‘no bumps’).

More details are provided in Appendix A.11. As it is monotonically decreasing with i, U-shaped spectra

cannot occur as a result of any non-extreme demographic dynamics alone. Note however that extreme

changes in population size violate this and may lead to multiple merger genealogies [BBM+09, CPSJ22].

Alternative processes leading to U-shaped SFS, further confounding factors. Our model directly

incorporates MMC genealogies, exponential growth combined with allele misorientation as sources of the U-

shape of the SFS. However, other potential factors can also influence the SFS and produce SFS with similar

shapes. We further discuss here two particularly notable factors, population structure (e.g. gene flow or

admixture) and biased gene conversion.

First, to explore population structure, we performed a PCA analysis of all datasets, followed by a k-means

clustering (results in Table A.6). Importantly, among the 11 species that display a clear pattern of genetic

structure, only 6 have an observed U-shaped SFS that is well fitted (grades A and B) by an MMC model.

Furthermore, among the 14 species with no clear structure, 10 have an observed U-shaped SFS well fitted

by an MMC model. This suggests that population structure is not the main cause of the U-shape of the

observed SFS. Additionally, many species with clear structure have low goodness-of-fit grades (C and D),

suggesting that none of the models we compare are a good fit to these datasets. We however note that 8/11

species with a clear structure pattern are Bacteria. Indeed for the small genomes with low recombination

rate (in Bacteria recombination preserves long distance linkage), the apparent structure does not necessarily

equate with population structure, but may instead arise from the limited number of genealogies. At the limit,

a single Kingman tree would result in a clear structure pattern due its long internal branches.

To check for the effect of biased gene conversion, we built alternative SFS only based on a subset of

unbiased mutations that are immune to biased gene conversion (details in A.7, the unbiased SFS are added

in supplementary files 1,2). Many of these unbiased SFS were only slightly changed, and many kept their

U -shape. However 6 species (A. cunicularia, F. albicollis, E. garzetta, P. maior, O. edulis, P. troglodytes e.,

all but one vertebrates) lost their U-shape. Two have a small sample size (E. garzetta) or a low multiple

merger component estimate (F. albicollis). For these species, it is nonetheless possible that the U-shape is

caused by biased gene conversion.

In a very conservative approach, among the 17 data sets showing robust and strong MMC signals (category

A, B in Table 2, with α ≤ 1.8 or Ψ ≥ 0.04 and sample size ≥ 20), 6 cases may arise due to structured

genetic diversity (A. baumannii, D. melanogaster, H. pilori, O. edulis, P. aeruginosa and S. aureus) and

3 more lose their characteristic U-shape when biased gene conversion is accounted for (A. cunicularia, P.

maior, P. troglodytes; O. edulis being in common). Thus, 8 species have strong support for MMC models

with population growth. We believe that at least for these cases (and likely for more), neutral sweepstake

reproduction, frequent selection, or other factors that can produce MMC-like genealogies ought to be seriously

considered as underlying drivers of their genetic diversity.

Importantly and more generally, among the 32 species that display a good statistical fit (with grades A

and B), 28 point to MMC models whereas only 4 point to a Kingman coalescent. Noting that MMC models

encompass the Kingman coalescent as a special case, our results support the view that MMC models may

often constitute better reference models.
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MMC and biological properties. Although we only analyzed a small number of species sampled non-

uniformly across the tree of life, we often observed signatures of multiple merger-like events. Reassuringly, our

analysis supports multiple merger genealogies for Mycobacterium tuberculosis, which was recently proposed

in [MASSJ20] and [MGF20] (the non-optimal goodness-of-fit likely stems from a small and essentially non-

recombining genome). The strongest multiple merger effects estimated within the class of Beta coalescents

(α ≤ 1.1) were found in two bacterial pathogens with low or intermediate recombination rates (M. tuberculosis

and P. aeruginosa). There also does not seem to be a meaningful correlation between MMC effects and

overall genetic diversity (Figure A.21, Table A.7). We stress that links between MMC model parameters

and biological properties are not always obvious. For example, while reproduction sweepstakes can lead to

both Beta- and Psi-coalescents, it is not straightforward to translate the parameters α and Ψ into realistic

offspring distributions. For instance the Psi-coalescent model hypothesizes that an occasional individual

contributes a fraction Ψ of the next generation, though examples of such a single-individual contribution

are not biologically likely. Still, the coalescent approximations do fit well to data. Importantly, different

reproduction models can result in the same model on the coalescent time scale. The large families of the

MMC models could result from the rapid accumulation of coalescences over multiple generations instead of

in a single one.

Conclusion. We analyzed genomic data for 45 species across the tree of life, and showed that many exhibit a

U-shaped SFS. By developing a statistical approach to distinguish the genetic signatures of different potential

sources of this U-shape: allele misorientation and MMC genealogies, together with exponential population

growth, our results show that while some U-shaped SFS are well-described by only allele misorientation,

the majority are better described by models that include an MMC component (28 point to MMC and

only 4 to Kingman coalescent, with the rest inconclusive). However, distinguishing true MMC from MMC-

like processes remains challenging. For example, both biased gene conversion (evident for 6 species) and

population structure (clear for 11 species, many of which had no U-shapes) could also generate U-shaped

SFS, and appear to be plausible explanations for the observed data of certain species. MMC models with

simple growth nonetheless represent an excellent fit for at least 8 species.

This study thus invites both closer inspection for the species at hand, but also suggests that MMC

genealogies may appear in a wider range of species than previously reported (e.g., a few marine species and

multiple human pathogens). For such species, their biological properties likely render MMC rather than

Kingman models as the more fruitful analysis framework, highlighting the importance of further developing

both theory and statistical inference procedures under these lesser-used models [Wak13].
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Independent introductions and admixtures have contributed to adaptation of european maize

and its american counterparts. PLOS Genetics, 13(3):e1006666, Mar 2017.

14

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 13, 2022. ; https://doi.org/10.1101/2022.04.12.488084doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.12.488084


[BNK+15] Reto Burri, Alexander Nater, Takeshi Kawakami, Carina F Mugal, Pall I Olason, Linnea Smeds,

Alexander Suh, Ludovic Dutoit, Stanislav Bureš, Laszlo Z Garamszegi, et al. Linked selection
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Appendix A Appendix

A.1 Reproduction models linked to MMC and time scalings

The coalescent approximations from the main text are the coalescent limits for population size N → ∞
(with changed time-scale) of genealogical trees given some reproduction model. We focus on Cannings

models [Can74] of reproduction, which are discrete-generation models, usually with fixed population size,

and exchangeable offspring numbers between individuals. This is a standard model choice, see e.g. [Sag99],

and the modified Moran models present in the Methods are Cannings models. Different reproduction models

can lead to the same coalescent limit, e.g. the Wright-Fisher and Moran model both lead to Kingman’s

coalescent. If the coalescent limit is identical for two constant population size reproduction models (and the

number of generations to form one coalescent time unit is of order Nη), we can describe the limit as in Eq.

(1) for both models. Thus, adding population size changes can still lead to a difference in coalescent limit via

changing the power η of the population size ratio ν. For instance, η = 2 for the standard Moran model but

η = 1 for the Wright-Fisher model (Λ the point mass in 0 in both cases). In the case of exponential growth

(on the coalescent time scale), we see that the factor influenced by η in Eq. (1) equals ν(t)−η = exp(ηgt).

This means that we can still interpret parameters assuming one reproduction model (model 1) leading to the

coalescent (with scale parameter η = x1) under the assumption of an alternative reproduction model (model

2 with scale parameter η = x2) by simply re-scaling the exponential growth parameter g from model 1 as

g′ = g η1η2 . For instance, a growth rate of 2g in the Wright-Fisher model corresponds to a growth rate of g in

the Moran model.

For our two MMC models, this also means that we could analyze the models based on alternative reproduction

models. For instance, we set γ = 1.5 for the discrete reproduction model leading to the Psi-coalescent, but we

could also choose any other 1 < γ < 2. For the Beta-coalescent, there is indeed a very appealing alternative

reproduction model due to Schweinsberg [Sch03]. This alternative model assumes, for 1 < α < 2, that each

individual at each generation independently produces a number of offspring following a power law distribution

with tail parameter α (infinite variance), and that the next generation (the individuals surviving long enough

to reproduce) is sampled from these offspring. In this model, one unit of coalescent time corresponds to

an order of Nα−1 generations. As discussed above, if α > 1, we can interpret any growth rate g when

seeing the Beta-coalescent as the genealogy model based on the modified Moran model with growth rate

g′ =
(

1 + 1
α−1

)
g under Schweinsberg’s model.

A.2 Properties of the reproduction model underlying the Beta-coalescent

The modified Moran model with distribution given on p.4 leading to the Beta(2 − α,α)-coalescent was

introduced in [HM13] and the properties of U have been additionally analyzed in [IM02]. U , or more

precisely UN since it depends on N , is distributed as the number of lineages merged at the first merger in a

Beta(2−α,α)-coalescent starting with sample size N . Since when increasing the sample size, the first merger

can only include more lineages, UN ≤ UM holds for M ≥ N (we can assume that, with increasing sample

sizes, coalescent events just add branches to the tree from smaller sample sizes, see [Pit99]). This then also

holds for the expected values, so E(UN ) ≤ E(UM ) ≤ E(U∞) = α
α−1 , where U∞ is the limit of U for N →∞.

See [HM13, p.9] for the existence of the limit, whose properties including its mean are described on the cited

page combined with [IM02, p.226], including its infinite variance. See Table A.1 for some properties of UN

for different N and α, computed from the definition of UN and the listed properties of its limit.
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N α E(UN )
√
V ar(UN ) P (U ≤ xmin) ≥ 0.99

5000 1.1 6.54 46.87 62

10000 1.1 6.83 64.24 62

25000 1.1 7.20 97.26 62

∞ 1.1 11.0 - 62

5000 1.5 2.96 9.39 15

10000 1.5 2.97 11.27 15

25000 1.5 2.98 14.29 15

∞ 1.5 3.00 - 15

5000 1.9 2.11 1.39 4

10000 1.9 2.11 1.50 4

25000 1.9 2.11 1.64 4

∞ 1.9 2.11 - 4

Table A.1: Properties of UN for the modified Moran model underlying the Beta-coalescents. xmin: Minimal

integer x such that P (U ≤ x) ≥ 0.99.

A.3 Mathematical derivation of the pseudolikelihood function Eq. (2)

We follow the derivation from [EBBF15, Eq. 11]. We want to compute the likelihood of seeing the observed

SFS s1, . . . , sn−1 under a given coalescent (here a Beta-n-coalescent or a Psi-n-coalescent with exponential

growth, but the derivation works for any coalescent model). Let s =
∑n−1
i=1 si be the number of observed

segregating sites. We assume the fixed-s approach, e.g. we assume that the distribution of the SFS is given

by placing s mutations at random on the genealogical tree. Under the fixed-s assumption, the probability of

observing the SFS is given by the multinomial distribution

P (SFS = (s1, . . . , sn−1)) = E

[
s!

s1! · · · sn−1!

n−1∏
i=1

(
Ti
Ttot

)si]
, (5)

since a segregating site has mutant allele frequency i if it lands on a branch that supports i leaves (Ti is

the sum of lengths of branches supporting i leaves, Ttot =
∑n−1
i=1 Ti is the total length of the genealogy).

Under further assumptions of independence of the different fractions Ti

Ttot
of the total branch length and

approximating E
(
Ti

Ttot

)
≈ E(Ti)

E(Ttot)
, we have a further approximation

P (SFS = (s1, . . . , sn−1)) =
s!

s1! · · · sn−1!

n−1∏
i=1

(
E(Ti)

E(Ttot)

)si
, (6)

Next, we consider the addition of a misorientation probability, e, describing the switch of ancestral and

derived states. Eq. (6) constitutes a multinomial distribution, which can be interpreted as throwing s balls

into compartments 1,. . . ,n− 1, where compartment i is hit with probability E(Ti)
E(Ttot)

. Misorienting the allele

in this interpretation means that a ball that originally lands in compartment i is placed in compartment

n− i instead. If this happens with probability e, a ball consequently lands in compartment i with probability

(1− e) E(Ti)
E(Ttot)

+ eE(Tn−i)
E(Ttot)

. So the probability to observe a specific SFS when ancestral and derived types can

be confused is

P (SFS=(si)
n−1
i=1 ) =

s!

s1! · · · sn−1!

n−1∏
i=1

(
(1− e)E(Ti) + eE(Tn−i)

E(Ttot)

)si
, (7)
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where (si)
n−1
i=1 = (s1, . . . , sn−1) is the observed SFS. This is again a multinomial distribution.

Simulations showed that inferring parameters via a pseudolikelihood approach based on Eq. 7 tends to over-

estimate e to fit the U-shape. To counteract this, we couple this equation with an alternative estimation of e

by using polymorphic sites discarded in the process of polarizing the SFS due to having a third allele in the

outgroup. As described in [Lap17, Section 4.2] or [BD03, p. 1620], these sites carry information about e. Let

S0 = S + S6= be the total number of biallelic SNPs in the sample, where S is the (random) number of sites

where the outgroup does not show a third allele not observed in the sample (left and central trees in figure

A.1) and S6= the number of sites where it does (right trees in Figure A.1). Observe that s is the observed

outcome of S, the total sum of the observed SFS.
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3 alleles3 alleles

Figure A.1: Sketch of trees with mutations to illustrate how tri-allelic sites relates to the probability of misorientation.

Left and central trees have one of their variant equal to the outgroup (counted in s) whereas the left tree have 3

differents alleles (counted in s 6=). Under a Jukes and Cantor setting, the expected number of misoriented variants

(central trees) equals half the number of tri-allelic sites.

Consider a polymorphic site in the sample (ingroup). If one of the allele is the same than the outgroup,

there was either a single mutation (most likely for closely related outgroup) or two mutations, the second one

masking the effect of the first (central trees of figure A.1). In the Jukes-Cantor model where all mutations

are equally likely, if the probability of having a specific mutation X > Y masking the effect of the first is p,

then the probabilties of observing 2 alelles is p and the probability of observing 3 alleles is 2p. We emphasise

that while we assume an infinite sites model within the sample, we allow reverse mutations here due to the

considerably longer branch lengths.

Following this, we can compute the probability P (S 6= = s6=|S0 = s + s6=) that we observe exactly s6=

sites which are biallelic within the sample but have a third allele for the outgroup. This is simply binomial

sampling from S0 biallelic sites with success probability 2p. We can also express this probability in terms of

the misorientation probability e. Let v ∈ SFS be the event that a bialllelic site (variant) can be polarized

via outgroup (which means it has one of the two alleles of the sample also for the outgroup) and mis(v) the

event that the ancestral state of v is misidentified. The probability that a site of the SFS can be polarized

(displaying one allele similar to the outgroup) is 1− p. We have

e = P (mis(v)|v ∈ SFS) =
P (mis(v), v ∈ SFS)

P (v ∈ SFS)
=

p

1− 2p
,
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and thus equivalently p = e
1+2e . This leads to

P (S 6= = s6=|S0 = s+ s6=) =

(
s+ s6=
s6=

)(
2e

1 + 2e

)s6= ( 1

1 + 2e

)s
. (8)

We now assume a composite likelihood, multiplying Eqs. (7) and (8). Conditional on observing s + s6=

segregating sites from which s can be polarized via outgroup and form the SFS, the pseudo-likelihood of

observing a specific SFS is given by Eq. (2).

Remark A.1. Eq. (8) shows that S given S0 is binomially distributed with S0 draws with success probability

1− 2p = (1 + 2e)−1. Let X(S0) be a r.v. with this distribution. We will use this to simulate S0 based on S

and the mis-classification probability e: The maximum likelihood estimate for the number of trials S0 of the

binomial r.v. X(S0) ∼ Bin(S0, (1 + 2e)−1), in the sense of maximising P (X(S0) = s), is Ŝ0 = b(1 + 2e)sc,
since

P (X(S0 + 1) = s)

P (X(S0) = s)
=

S0 + 1

S0 + 1− s
2e

1 + 2e
≥ 1⇔ S0 ≤ s(1 + 2e)− 1.

We will use this estimate to simulate a reasonable s6=. If we simulate a SFS with s mutations, and we flip

each mutation in it with frequency e from class i to n − i, we then simulate s6= as a binomial draw from

Ŝ0 = b(1 + 2e)sc Bernoulli r.v.’s with success probability 2e
1+2e . This is denoted as the Ŝ0 approach.

A.4 Cramér’s V as a goodness-of-fit measure

Our assumptions leading to Equations (6), (7) can be interpreted that each variant observed for the SFS is

sampled from a multinomial distribution from the ’true’ allele frequency spectrum. In the following, we denote

the multinomial approximation of the SFS entry frequencies, the ’true’ spectrum, by (p1, . . . , pn−1). Since

assuming sampling from a multinomial distribution is also the statistical model behind the χ2 goodness-of-fit

test, we chose the effect size measure Cramér’s V [Cra16, ch. 21] of this test, defined as

V =

√√√√n−1∑
i=1

(oi − pi)2

pi(n− 2)
,

to quantify the lack of goodness of fit (oi is the observed frequency of mutations with frequency i/n among

all mutations). This measure can be interpreted as a dimensionless version of the χ2 test statistic, since

the mutation counts do not enter, just the mutation frequencies and the additional factor n− 2 corrects for

unequal sample sizes.

A.5 Assessing estimation errors

A.5.1 Simulation and inference setup

As a rough approximation of a genome, we simulated 100 independent loci (ignoring the fine structure of

weakly physically linked loci and long range LD, see Appendix A.8). This means that the genealogical trees

of the loci are independent and follow the same tree distribution, e.g. realisations of a Beta coalescent with

exponential growth with rate g and coalescent parameter α. The mutations on each tree are independent

of all trees (and mutations on other trees) and given by a Poisson process with rate θ
2 . We assumed three

different sample sizes n = 20, n = 25 and n = 100. For each locus, we set the mutation rate so that on

average 50 mutations appear, i.e. we set θ = 100/E[Ttot] (generalized Watterson estimate), where Ttot is the

sum of all branch lengths of the locus’ genealogy. Mutations are interpreted under the infinite-sites model,

resulting in simulated SNP sequences (ancestral vs. derived type). For each SNP, we then flip ancestral and
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derived allele with probability e. We simulate 500 SNP sequences as described above for each combination

of coalescent parameter α or Ψ, growth rate g and misorientation probability e from the following two sets

(the first set has α,Ψ and g on the inference grid, the second uses off-grid values).

• Set 1: equidistant α ∈ {1, 1.05, 1.1, . . . , 2} and Ψ ∈ {0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}
Set 2: α ∈ {1.025, 1.325}, Ψ ∈ {0.025, 0.075} (additionally Ψ = 0.005 for n = 25)

• Set1: g ∈ {0, 0.5, 1, 10}, Set 2: g ∈ {0.25, 2.25, 11.25}

• Set 1: e ∈ {0, 0.01, 0.05, 0.1} (essentially on grid), Set 2: e ∈ {0, 0.015, 0.045, 0.095}

To infer via Eq. (2), we also need the total number of segregating sites s + s6=, adding the number of

segregating positions not included in the SFS due to not being able to polarize them. For this, we use the

Ŝ0 approach described in Remark A.1.

A.5.2 Parameter and model selection accuracy

First, for n = 20 and n = 100, we estimate parameters using Eq. 2 using the same coalescent model (Beta

or Psi) on equidistant grids with α ∈ {1, 1.05, 1.1, . . . , 2} or Ψ ∈ {0, 0.5, 0.1, . . . , 1}, g ∈ {0, 0.05, . . . , 25},
e ∈ {0.001, 0.011, . . . , 0.201}. For this, we only used the on-grid values (Set 1). Results are shown in Figures

1, A.2 – A.4,A.8 – A.19.

Second, we assess the error of our model selection approach based on approximated Bayes factors for

n ∈ {20, 25, 100}. For this, we fixed different values of Ψ and α from Set 1 and Set 2 including α = 2.

We then picked 2,000 simulations at random from all parameter combinations with this fixed coalescent

parameter (as described above) and performed model selection via Bayes factors as described in the method

described in the main document (section 2.2). The maximum was taken on the same equidistant grids as for

the parameter estimation. Expanded results are provided in Tables A.2 and A.3.

A.5.3 Parameter estimation accuracy - results

For inferring parameters under the Beta-coalescent or the Psi-coalescent, Figures 1, A.2–A.4 show the error

distribution of all three parameters for n ∈ {20, 100} across all simulation parameter choices. While g cannot

be estimated precisely in some cases, e, Ψ and, to a lesser degree, α, can generally be estimated rather well,

especially if sample size n = 100.

These errors distribute over the different parameter settings as shown in Figures A.8 – A.19. Most notably,

large errors when estimating growth rates only happen if the growth rate is also large. For Psi-coalescents,

we see that choosing Ψ between grid points are still mostly captured by the adjacent Ψ grid points.
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sample size true model grid Fraction model inferred as

Kingman Beta Psi MMC

n = 20 α = 2 yes 0.77 0.22 0.00 0.00

α = 1.9 yes 0.37 0.58 0.02 0.02

α = 1.8 yes 0.06 0.79 0.09 0.08

α = 1.625 no 0 0.82 0.09 0.08

α = 1.025 no 0.99 0.01 0

α = 1 yes 0.99 0 0

Ψ = 0.025 no 0.14 0.59 0.15 0.12

Ψ = 0.05 yes 0.01 0.17 0.70 0.11

Ψ = 0.075 no 0.12 0.82 0.06

Ψ = 0.1 yes 0.04 0.94 0.02

n = 25 α = 2 yes 0.79 0.21

α = 1.9 yes 0.34 0.66 0 0

α = 1.8 yes 0.02 0.91 0.04 0.03

α = 1.625 no 0.9 0.06 0.05

α = 1.025 no 1 0

α = 1 yes 1 0

Ψ = 0.005 no 0.55 0.45

Ψ = 0.025 no 0.05 0.72 0.14 0.09

Ψ = 0.05 yes 0 0.12 0.82 0.06

Ψ = 0.075 no 0.06 0.91 0.03

Ψ = 0.1 yes 0.02 0.98 0

n = 100 α = 2 yes 0.87 0.13

α = 1.9 yes 0.12 0.88

α = 1.8 yes 1

α = 1.625 no 1

α = 1.025 no 1

α = 1 yes 1

Ψ = 0.025 no 0.92 0.06 0.02

Ψ = 0.05 yes 1

Ψ = 0.075 no 1

Ψ = 0.1 yes 1

Table A.2: Model selection via two-step Bayes factor criterion. Based on 2,000 simulations for each true model

assuming 100 loci with 50 observed mutations. For each simulation, the coalescent parameter is fixed and

the growth parameter g and the allele misorientation rate e are randomly chosen (g ∈ [0, 11.25], e ∈ [0, 0.1]).

The column grid shows whether the parameters used for simulation were included in the inference grid. For

details on both simulations and inference parameters see Appendix A.5. Fractions are rounded to two digits.

A.6 Visual correlations between the estimated parameters

We provide a graphical view of the correlation between the parameters inferred between the Kingman coa-

lescent and the Beta-coalescent (Figure A.5) or between both MMC models (Figure A.6).
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Figure A.2: Error for estimating parameters for Psi-coalescents (n = 100, with growth and misclassification)

across all simulation scenarios
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Figure A.3: Error for estimating parameters for Beta-coalescents (n = 20, with growth and misclassification)

across all simulation scenarios

sample size n = 20 n = 100

α = 1.75 0.01

α = 1.8 0.04

α = 1.85 0.22 0.04

α = 1.9 0.37 0.53

α = 1.95 0.34 0.43

Ψ = 0.05 0.02

Table A.3: Fractions of estimated parameters of model-misidentified coalescent simulations with α = 2. If

the two-step Bayes factor model inference recorded ”MMC”, the Beta parameter is reported.

28

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 13, 2022. ; https://doi.org/10.1101/2022.04.12.488084doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.12.488084


−0.15

−0.10

−0.05

0.00

0.05

0.10

Ψ

Ψ
−

Ψ

prop

0.1

0.2

0.3

0.4

0.5

−10

0

10

20

g

ĝ
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Figure A.5: Comparison of parameters between Kingman model and Beta-coalescent model.

A.7 Correction for GC-bias

We use the approach from [PATE18] and consider the subset of SNPs corresponding to A↔ T and G↔ C

substitutions, which are not affected by biased gene conversion. We overlaid these neutralized SFS to the

observed SFS and the predictions of the fitted models in supplementary files 1,2.

A.8 Non-independence of unlinked loci under multiple merger genealogies

Here, we address the issue that physically unlinked loci in multiple merger genealogies still have dependent

genetic diversity. For Λ-coalescents, which all our coalescent models are, the issue can be easily understood

within the approximate multi-unlinked-locus model from the appendix of [Kos18]. In this model, multiple

mergers result from large families appearing in a short amount of evolutionary time (see also a more thorough

explanation in [MGF20]), so these families affect not only one, but all loci. Due to the model definition of

MMC, each ancestral lineage can join one of such events with the same probability. Thus, if this probability
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Figure A.6: Comparison of Beta-coalescent (x-axis) and Psi-coalescent (y-axis) parameters inferred from each

SFS.

is high, there will be a merger of similar size at each or nearly each locus in the genome, introducing a

dependency between loci. The strength of this dependency should be correlated to the probability with

which an ancestral lineage merges, following Remark 1 in [Kos18]. This probability x is generated by a

Poisson process whose rate is proportional to x−2Λ(dx), where Λ is the associated measure of the coalescent

(a Beta distribution or the point mass in Ψ for our model classes). This probability is rather small for Beta

coalescents, but high for high Ψ values, see also Figure A.20.

A.9 Population structure scans

We performed two simple checks for population structure: PCA and find.clusters from the R package

adegenet [JA11]. For PCA, we coded alleles as 0 and 1, imputed missing data as the mean allele at the

site, to then perform a double-centered PCA: PCA, as implemented in adegenet, was performed on the

SNP matrix after subtracting row means and column means (and adding the overall mean), see [GJQP+19,

p.20]. The approach behind find.clusters is to first perform a standard PCA and then group individuals

by running the k-means clustering algorithm on the principal component coordinates for different numbers of

clusters. Based on the goodness-of-fit criterion BIC, we chose the ’optimal’ k as the smallest value of k that

is visibly a local minimum (essentially the elbow criterion). For large data sets of more than 1 million SNPs,

we performed the analysis with a reduced data set by filtering down the number of SNPs by only retaining

each xth SNP where x = # SNPs
1000000 , rounded to the lower integer. Results are shown in Supplementary file 3

and Table A.6. For diploids, PCA and find.clusters results were not qualitatively affected by performing

them on either haplotypes or diploid genotypes. For D. melanogaster, we performed the population structure

scan separately on Chromosome 2L, 2R, 3L, 3R (with filtering down as described above). For the human

data, we omitted the X and Y chromosomes.

A.10 Nucleotide diversity across the genome

We recorded the (sample) mean and standard deviation of the per-site nucleotide diversity in non-overlapping

windows of 15,000 sites along the genome (resp. the sequenced part of it). For computation, we used the R

package pegas [Par10] and vcftools [DAA+11] (for haploid data presented as vcf files, we used J. Dutheils

fork of vcftools https://github.com/jydu/vcftools). For the human data, we omitted the X and Y

chromosomes and for D. melanogaster, we used chromosomes 2L, 2R, 3L, 3R.

Results are shown in Table A.7 and Figure A.21.
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A.11 Effect of non-extreme demography on the SFS

The expected SFS (E(S1), . . . , E(Sn−1)) for a given genealogy tree (conditional on waiting times and topol-

ogy) is a linear function of the waiting times Ck for the next coalescence event of the sample genealogy if

k ancestral lineages are present, with coefficients kPn,k(i) dependent on the topology, where Pn,k(i) is the

probability that a random branch at level k has i descendants in the sample ([Fu95, FLW+17, SW08]). For

a sample from a population with panmictic, neutral dynamics and finite variance in offspring number, corre-

sponding to a Kingman coalescent where time is rescaled by a deterministic strictly monotonic function, all

tree topologies are equally probable and independent of waiting times. The expected coefficients are given

by E[kPn,k(i)] = k
(
n−i−1
k−2

)
/
(
n−1
k−1

)
. It should be noted that the assumption of monotonic time change ensures

that the genealogy stays bifurcating: extreme changes in population size violate this and may lead to multiple

merger genealogies.

The SFS for a large population described by the time-rescaled Kingman coalescent can be obtained as

the large sample limit n→∞ of the above spectrum [FKR+18]. For large n, the probability that a random

lineage at level k takes a fraction f of the descendants is E[Pn,k(fn)] → (k − 1)(1 − f)k−2df . Hence the

continuous expected SFS is given by equation (4), which depends on the expected population-level waiting

times ck = E[Ck] > 0 for k = 2 . . .∞. The positivity of all coefficients in this expansion implies that for

a finite expected TMRCA
∑∞
k=2 Tk < ∞, the expected SFS for populations with non-extreme demography

is an absolutely monotonic function of 1− f in [0, 1), and therefore a completely monotonic function of the

frequency f in (0, 1]. This is the case for all non-extreme demographies with bounded past population size,

since all of them have finite expected TMRCA.
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A.12 Psi-coalescent graphs
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Figure A.7: Distribution of psi parameter in function of the order of the species (white: vertebrates, light grey:

invertebrates, dark grey: plants, black: bacteria).
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Table A.4: Parameters Estimations

Species gKM eKM VKM α gBeta eBeta VBeta Ψ gΨ eΨ VΨ Model

Acinetobacter baumannii 0 0.1 0.064 1.8 0 0.1 0.059 0.02 0 0.1 0.061 Beta

Aptenodytes patagonicus 24 0.01 0.071 1.25 1.5 0 0.047 0.04 15.5 0.01 0.063 Beta

Arabidopsis thaliana 3.5 0.08 0.019 1.6 0 0.07 0.010 0.01 1 0.08 0.017 Beta

Armadillidium vulgare 0 0.03 0.089 1.7 0 0.03 0.069 0.06 0 0.02 0.083 Beta

Artemia franciscana 0.5 0.03 0.067 1.65 0 0.03 0.055 0.02 0.5 0.03 0.065 Beta

Athene cunicularia 2.5 0.03 0.040 1.8 1 0.03 0.037 0 2.5 0.03 0.040 Beta

Bacillus subtilis 5.5 0.15 0.085 1.25 0 0.15 0.079 0.14 0 0.2 0.062 Ψ

Caenorhabditis brenneri 1.5 0.09 0.094 1.5 0 0.06 0.086 0.09 0 0.06 0.105 Beta

Caenorhabditis elegans 0 0.06 0.142 2 0 0.06 0.1422 0 0 0.06 0.1422 KM

Chlamydia trachomatis 0 0.11 0.105 2 0 0.11 0.105 0 0 0.11 0.105 KM

Ciona intestinalis A 0 0.11 0.053 1.95 0 0.11 0.052 0 0 0.11 0.053 KM

Ciona intestinalis B 0.5 0.03 0.085 1.65 0 0.02 0.061 0.07 0 0.02 0.068 Beta

Clostridium difficile 15 0.15 0.214 1 0 0.15 0.221 0 17.5 0.2 0.214 KM

Corvus cornix 1.5 0 0.023 1.95 1 0 0.020 0 1.5 0 0.023 Beta

Coturnix japonica 4 0.02 0.048 1.45 0.5 0.01 0.020 0.07 1.5 0.01 0.044 Beta

Culex pipiens 2.5 0.02 0.069 1.55 0.5 0.01 0.057 0.07 1 0.01 0.063 Beta

Drosophila melanogaster 5.5 0.02 0.019 1.65 0.5 0.02 0.005 0.01 3 0.02 0.017 Beta

Egretta garzetta 0 0.02 0.055 1.75 0 0.02 0.037 0.07 0 0.02 0.039 Beta

Emys orbicularis 0.5 0 0.068 1.85 0 0 0.060 0.04 0 0 0.059 KM

Escherichia coli 0 0.06 0.054 2 0 0.06 0.054 0 0 0.06 0.054 KM

Ficedula albicollis 0.5 0.01 0.029 2 0.5 0.01 0.029 0.01 0.5 0.01 0.028 Ψ

Gorilla gorilla gorilla 0 0 0.042 1.9 0 0 0.040 0 0 0 0.042 Beta

Halictus scabiosae 0 0.01 0.069 1.85 0 0.01 0.064 0.04 0 0.01 0.062 MMC

Helicobacter pilori 1 0.15 0.052 1.65 0 0.15 0.060 0.01 1 0.2 0.050 Ψ

Homo sapiens 0.5 0.01 0.010 1.85 0 0 0.011 0 0.5 0.01 0.010 Beta

Klebsiella pneumoniae 18.5 0.15 0.122 2 18.5 0.15 0.126 0 18.5 0.16 0.122 KM

Lepus granatensis 0.5 0.04 0.102 1.5 0 0.03 0.069 0.12 0 0.03 0.066 MMC

Melitaea cinxia 1.5 0.04 0.061 1.7 0.5 0.03 0.059 0.01 2 0.04 0.061 Beta

Messor barbarus 0.5 0 0.069 2 0.5 0 0.069 0 0.5 0 0.069 KM

Mycobacterium tubercolosis 25 0.01 0.118 1.05 2.5 0 0.090 0.07 29 0 0.126 Beta

Nipponia nippon 0 0.03 0.160 2 0 0.03 0.160 0 0 0.03 0.160 KM

Ostrea edulis 0 0.02 0.052 1.8 0 0.02 0.044 0.04 0 0.02 0.042 MMC

Pan paniscus 2 0 0.068 1.85 1 0 0.056 0 2 0 0.068 Beta

Pan troglodytes ellioti 0.5 0 0.052 1.7 0 0 0.028 0.02 0.5 0 0.045 Beta

Parus major 0.5 0.01 0.031 1.75 0 0.01 0.010 0.03 0 0.01 0.022 Beta

Parus caeruleus 6 0.04 0.062 1.2 0 0 0.037 0.11 1.5 0.03 0.031 MMC

Passer domesticus 0 0 0.022 2 0 0 0.022 0 0 0 0.022 KM

Phylloscopus trochilus 12.5 0 0.022 2 12.5 0 0.022 0 12.5 0 0.022 KM

Physa acuta 1 0.03 0.068 1.5 0 0.02 0.035 0.05 0.5 0.03 0.055 Beta

Pseudomonas aeruginosa 25 0.15 0.073 1.1 0 0.15 0.063 0.06 3 0.2 0.050 Ψ

Sepia officinalis 0 0.02 0.091 1.95 0 0.02 0.090 0.01 0 0.02 0.090 KM

Staphylococcus aureus 1 0.15 0.054 1.7 0 0.15 0.059 0.01 1 0.2 0.055 Ψ

Streptococcus pneumoniae 1 0.12 0.103 1.5 0 0.08 0.099 0.09 0 0.08 0.102 Beta

Taeniopygia guttata 9.5 0 0.034 1.75 4 0 0.019 0.01 10 0 0.030 Beta

Zea mays 0 0 0.033 1.95 0 0 0.031 0.01 0 0 0.030 Ψ
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Figure A.9: Error for estimating growth rate g for Beta-coalescents with growth and misclassification (n =

100)
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Figure A.10: Error for estimating misorientation rate e for Beta-coalescents with growth and misclassification

(n = 100). Growth rate is denoted by g.

34

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 13, 2022. ; https://doi.org/10.1101/2022.04.12.488084doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.12.488084


e: 0 e: 0.01 e: 0.05 e: 0.1

r: 0
r: 0.5

r: 1
r: 10

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

−0.2

−0.1

0.0

0.1

−0.2

−0.1

0.0

0.1

−0.2

−0.1

0.0

0.1

−0.2

−0.1

0.0

0.1

Ψ

Ψ̂
−

Ψ

prop

0.25

0.50

0.75

1.00

Figure A.11: Error for estimating coalescent parameter Ψ for Psi-coalescents with growth and misclassification

(n = 100). Growth rate is denoted by g.
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Figure A.12: Error for estimating growth rate g for Psi-coalescents with growth and misclassification (n =

100).
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Figure A.13: Error for estimating misorientation rate e for Psi-coalescents with growth and misclassification

(n = 100). Growth rate is denoted by g.
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Figure A.14: Error for estimating coalescent parameter α for Beta coalescents with growth and misclassifi-

cation (n = 20). Growth rate is denoted by g.
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Figure A.15: Error for estimating growth rate g for Beta-coalescents with growth and misclassification

(n = 20)
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Figure A.16: Error for estimating misorientation rate e for Beta-coalescents with growth and misclassification

(n = 20). Growth rate is denoted by g.
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Figure A.17: Error for estimating coalescent parameter Ψ for Psi-coalescents with growth and misclassification

(n = 20). Growth rate is denoted by g.
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Figure A.18: Error for estimating growth rate g for Psi-coalescents with growth and misclassification (n = 20).
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Figure A.19: Error for estimating misorientation rate e for Psi-coalescents with growth and misclassification

(n = 20). Growth rate is denoted by g.
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Figure A.20: Distribution of merger rates of Beta-coalescents: Each lineage merges with merger probability

x (abbeviated as mergP), where x is chosen with rate x−2 ∗ Λ(dx), where Λ is a Beta distribution with

parameters 2 − a and a. Mergers only are realized if at least two lineages merge. The figures depict the

corresponding (improper) density x−2 ∗ fβ(2 − a, a), where fβ is the density of the Beta distribution used.

The detailed (Poisson) construction can be found in [Pit99].
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Figure A.21: Comparison of estimated α parameter α̂ (x-axis) and mean π̄ (standard deviation σ(π)) of

windowed nucleotide diversity π (y-axis). See Sect. A.10) for details.

41

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 13, 2022. ; https://doi.org/10.1101/2022.04.12.488084doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.12.488084


Table A.6: Population structure inference and genetic diversity π (nucleotide diversity per site in 15 kb

windows) for the fitted data sets. Model fitted, grade of fit, and biological order repeated from Table 2.

Number of clusters: k inferred by BIC criterion for subsequent k-means clustering. PCA eye-test: Visual

inspectation of PCA plot. Clear structure: “yes” if PCA eye-test=yes and DAPC cluster=1, “no” if PCA

eye-test=no and DAPC cluster>1, otherwise “?”.

Species (clade) best model, grade PCA eye-test DAPC clusters clear structure mean π (s.d. π)

×10−3

Aptenodytes patagonicus (V) Beta, B unclear 5 ? 1.0 (0.8)

Athene cunicularia (V) Beta, B yes 1 ? 1.8 (1.4)

Corvus cornix (V) Beta, A no 1 no 1.5 (0.7)

Coturnix japonica (V) Beta, A no 1 no 9.8 (3.8)

Egretta garzetta (V) Beta, B no 4 ? 2.6 (1.7)

Emys orbicularis (V) KM, C unclear 2 ? 1.1 (1.0)

Ficedula albicollis (V) Ψ, A no 1 no 3.3 (1.5)

Gorilla gorilla (V) Beta, B no 1 no 1.5 (0.8)

Homo sapiens (Yoruba population) (V) Beta, A no 1 no 1.2 (0.6)

Lepus granatensis (V) MMC/Ψ, C yes 2 yes 1.0 (0.6)

Nipponia nippon (V) KM, D unclear 7 ? 0.4 (0.3)

Pan paniscus (V) Beta, B no 1 no 0.7 (0.4)

Pan troglodytes ellioti (V) Beta, A unclear 1 ? 1.2 (0.6)

Parus caeruleus (V) MMC/Ψ, B unclear 1 ? 1.7 (0.9)

Parus maior (V) Beta, A no 1 no 2.9 (1.4)

Passer domesticus (V) KM, A no 1 no 5.8 (2.4)

Phylloscopus trochilus (V) KM, A no 1 no 6.9 (3.6)

Taeniopygia guttata (V) Beta, A no 1 no 5.2 (4.0)

Armadillidium vulgare (I) Beta, C no 1 no 4.9 (3.0)

Artemia franciscana (I) Beta, B no 1 no 3.1 (1.8)

Caenorhabditis brenneri (I) Beta, C no 1 no 7.1 (4.4)

Caenorhabditis elegans (I) KM, D no 10 ? 0.02 (0.01)

Ciona intestinalis A (I) KM, B unclear 3 ? 4.1 (4.1)

Ciona intestinalis B (I) Beta, B unclear 9 ? 12.1 (10.1)

Culex pipiens (I) Beta, B unclear 2 ? 11 (7.1)

Drosophila melanogaster (I) Beta, A yes 2 yes 7.5 (3)

Halictus scabiosae (I) MMC/Ψ, B unclear 2 ? 0.5 (0.6)

Melitaea cinxia (I) Beta, B unclear 3 ? 13.5 (5.3)

Messor barbarus (I) KM, C unclear 2 ? 1.7 (1.1)

Ostrea edulis (I) MMC/Ψ, B yes 2 yes 1.8 (2.1)

Physa acuta (I) Beta, B no 1 no 6.3 (4.6)

Sepia officinalis (I) KM, C no 2 ? 0.6 (0.4)

Zea mays (P) Ψ, A unclear 3 ? 0.3 (0.5)

Arabidopsis thaliana (P) Beta, A yes 1 ? 0.06 0.07

Acinetobacter baumannii (B) Beta, B yes 14 yes 11.2 (4.6)

Bacillus subtilis (B) Ψ, B unclear 5 ? 11.9 (3.2)

Chlamydia trachomatis (B) KM, D yes 8 yes 4.4 (2.2)

Clostridium difficile (B) KM, D unclear 5 ? 5.2 (2.9)

Escherichia coli (B) KM, B yes 17 yes 17.4 (3.9)

Helicobacter pilori (B) Ψ, B yes 2 yes 33.1 (2.1)

Klebsiella pneumoniae (B) KM, D unclear 9 ? 7.4 (2.4)

Mycobacterium tubercolosis (B) Beta, C yes 12 yes 0.4 (0.2)

Pseudomonas aeruginosa (B) Ψ, B yes 9 yes 6.6 (1.4)

Staphylococcus aureus (B) Ψ, B yes 15 yes 8.2 (2.5)

Streptococcus pneumoniae (B) Beta, C yes 2 yes 11.5 (6.5)
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x ρ(α̂, x) all data sets ρ(α, x) data sets with fits A,B

π̄ -.11 -.11

σ(π) -.12 -.06

Table A.7: Correlation coefficient ρ of estimated α parameter α̂ and mean π̄ (standard deviation σ(π)) of

windowed nucleotide diversity π (Sect. A.10)
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