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Abstract 

Networks underlie much of biology from subcellular to ecological scales. Yet, understanding 

what experimental data are needed and how to use them for unambiguously identifying the 

structure of even small networks remains a broad challenge.  Here, we integrate a dynamic least 

squares framework into established modular response analysis (DL-MRA), that specifies 

sufficient experimental perturbation time course data to robustly infer arbitrary two and three 

node networks. DL-MRA considers important network properties that current methods often 

struggle to capture:  (i) edge  sign and directionality; (ii) cycles with feedback or feedforward 

loops including self-regulation; (iii) dynamic network behavior; (iv) edges external to the 

network; and (v) robust performance with experimental noise. We evaluate the performance of 

and the extent to which the approach applies to cell state transition networks, intracellular 

signaling networks, and gene regulatory networks. Although signaling networks are often an 

application of network reconstruction methods, the results suggest that only under quite 

restricted conditions can they be robustly inferred. For gene regulatory networks, the results 

suggest that incomplete knockdown is often more informative than full knockout perturbation, 

which may change experimental strategies for gene regulatory network reconstruction. Overall, 

the results give a rational basis to experimental data requirements for network reconstruction and 

can be applied to any such problem where perturbation time course experiments are possible.  
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Introduction 

 Networks underlie much cellular and biological behavior, including transcriptional, 

protein-protein interaction, signaling, metabolic, cell-cell, endocrine, ecological, and social 

networks, among many others. As such, identifying and then representing their structure has 

been a focus of many for decades now. This is not just from experimental perspectives alone, but 

predominantly computational with a variety of statistical methodologies that integrate prior 

knowledge from interaction databases with new experimental data sets (Angulo et al., 2017a; 

Barabási and Albert, 1999a; Califano et al., 2012a; Calvano et al., 2005a; Dorel et al., 2018; 

Hackett et al., 2020; Hein et al., 2015a; Hill et al., 2017a, 2017b; Ideker et al., 2001a, 2002a; Liu 

et al., 2013a; Ma’ayan et al., 2005a; Margolin et al., 2006a; Mazloom et al., 2011a; Mehla et al., 

2015a; Molinelli et al., 2013a; Nyman et al., 2020; Pe’er et al., 2001a; Pósfai et al., 2013a; 

Schraivogel et al., 2020; Shannon et al., 2003a; Stein et al., 2015a; Wynn et al., 2018a; Yuan et 

al., 2021). Alternatively, a variety of methods have investigated general ways to infer detailed 

reaction mechanisms—often a foundation of networks—from experimental data (Chevalier et al., 

1993; Díaz-Sierra et al., 1999; Hoffmann et al., 2019; Kim et al., 2007; Schmidt et al., 2005). 

Such tasks may be considered a subset of network inference.  

 Network structure is usually represented as either an undirected or a directed graph, with 

edges between nodes specifying the system. There are five main areas where current approaches 

to reconstructing networks struggle to capture important features of biological networks. The 

first is directionality of edges (Hackett et al., 2020; Hill et al., 2017a; Morgan and Winship, 

2014; Pearl, 2013). Commonly employed correlational methods predominantly generate 

undirected edges, which impedes causal and other mechanistic analyses. Second is cycles. 

Cycles such as feedback or feedforward loops are nearly ubiquitous in biological systems and 
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central to their function (Mangan and Alon, 2003a; Reeves, 2019). This also includes an 

important type of cycle: self-regulation of a node, that is, an edge onto itself, which is rarely 

considered (Fournier et al., 2007). Third is that biological networks are often dynamic. Two 

notable examples are circadian and p53 oscillators (Bell-Pedersen et al., 2005a; Stewart-Ornstein 

et al., 2017a), where dynamics are key to biological function. Directionality and edge signs (i.e. 

positive or negative) dictate dynamics. Fourth is pinpointing how external variables impinge on 

network nodes. For example, is the effect of a growth factor on a network node direct, or though 

other nodes in the network? Fifth, the design and method employed should be robust to typical 

experimental noise levels. The experimental design and data requirements to uniquely identify 

the dynamic, directed and signed edge structures in biological networks containing all types of 

cycles and external stimuli remains a largely open but significant problem. Any such design 

should ideally be feasible to implement with current experimental technologies. 

 Modular Response Analysis (MRA) approaches, first pioneered by Kholodenko and 

colleagues in 2002 (Kholodenko et al., 2002a; Santra et al., 2018) inherently deal with cycles and 

directionality by prescribing systematic perturbation experiments followed by steady-state 

measurements. The premise for data requirements is to measure the entire system response to at 

least one perturbation for each node. Thus, an n node system requires n experiments, if the 

system response can be measured in a global fashion (i.e. all nodes measured at once). The 

original instantiations struggled with the impact of experimental noise, but total least squares 

MRA and Monte Carlo sampling helped to improve performance (Andrec et al., 2005a; Santos et 

al., 2007a; Thomaseth et al., 2018). Incomplete and prior knowledge can be handled as well 

using both maximum likelihood and Bayesian approaches (Gross and Blüthgen, 2020; Halasz et 

al., 2016a; Klinger et al., 2013a; Santra et al., 2013a). However, these approaches are based on 
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steady-state data, or fixed time point data, limiting abilities to deal with dynamic systems. There 

is a formal requirement for small perturbations, which are experimentally problematic and 

introduce issues for estimation with noisy data. Subsequent approaches have recommended the 

use of large perturbations as a trade off in dealing with noisy data, but the theory still formally 

requires small perturbations (Thomaseth et al., 2018). Lastly, there are two classes of 

biologically relevant edges that MRA does not comprehensively address. First is self-regulation 

of a node, which is often normalized (to -1) causing it to not be uniquely identifiable. The other 

are the effects of stimuli external to the network (basally present or administered) on the 

modeled nodes.   

 In addition to perturbations, another experimental design feature that can inform 

directionality is a time-series. One MRA variant (Sontag et al., 2004a) uses time-series 

perturbation data to uniquely infer a signed, directed network that can predict dynamic network 

behavior. However, the data requirements are higher than MRA. In an n node open system (e.g. 

protein levels are not constant), multiple nodes need to be distinctly perturbed more than once, 

such as both production and degradation of a transcript, or phosphorylation and 

dephosphorylation of a protein. This can be experimentally challenging both in terms of scale 

and finding suitable distinct perturbations for a node. Moreover, as is often the case, noise in the 

experimental data severely limits inference accuracy (due to required estimation of 2nd 

derivatives). A subsequent work on Sontag’s approach (Cho et al., 2005), recommends smaller 

perturbations and difference in timepoints but also does not address noisy data. Thus, there 

remains a need for methods that can infer signed, directed networks from feasible perturbation 

time course experiments that capture dynamics, can uniquely estimate edge properties related to 
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self-regulation and external stimuli, and finally that function in the presence of typical 

experimental noise levels.  

 Here we describe a novel, MRA-inspired approach called Dynamic Least-squares MRA 

(DL-MRA). For an n-node system, n perturbation time courses are required, and thus 

experimental requirements scale linearly as the network size increases. The approach uses an 

underlying network model that captures dynamic, directional, and signed networks that include 

cycles, self-regulation, and external stimulus effects. We test DL-MRA using simulated time-

series perturbation data with known network topology under increasing levels of simulated noise. 

The approach has good accuracy and precision for identifying network structure in randomly 

generated two and three node networks that contain a wide variety of cycles. For the investigated 

cases, we find between 7 to 11 evenly distributed time points yielded reasonable results, although 

we expect this will strongly depend on time point placement. We apply the approach to models 

describing a cell state switching network (Gupta et al., 2011), a signal transduction network 

(Huang and Ferrell, 1996), and a gene regulatory network (Mangan and Alon, 2003b). Although 

signaling networks are often a focus in network biology, our analysis suggests they have unique 

properties that render them generally recalcitrant to reconstruction. Results from the gene 

regulatory network application suggest that incomplete perturbation (e.g. partial knockdown vs. 

knockout) is more informative than complete inhibition. While challenges remain for expanding 

to other and larger systems, the proposed algorithm robustly infers a wide range of networks with 

good specificity and sensitivity using feasible time course experiments, all while making 

progress on limitations of current inference approaches.  
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Results 

Formulation of Sufficient Experimental Data Requirements for Network Reconstruction 

Consider a 2-node network with four directed, weighted edges (Fig. 1a). An external 

stimulus may affect each of the two nodes differently and its effect is quantified by S1,ex and S2,ex, 

respectively (e.g. Methods, Eq. 15). We also allow for basal/constitutive production in each node 

(Si,b). Let xi(k) be the activity of node i at time point tk. The network dynamics can be cast as a 

system of ordinary differential equations (ODEs) as follows 

1 2
1 1 2 1, 1, 1 2 1 2 2, 2, 2( ( ) ( ), , ) ( ); ( ( ) ( ), , ) ( )ex b ex b

dx dx
f x k , x k S S f k f x k , x k S S f k

dt dt
≡ ≡ ≡ ≡ .  (1) 

The network edges can be connected to the system dynamics through the Jacobian matrix 

J (Kholodenko et al., 2002a; Santra et al., 2018; Sontag et al., 2004a),  

 
1 1
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2 2

1 2

11 12

21 22

f f
x x

f f
x x

F F

F F

∂ ∂
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∂ ∂
∂ ∂

⎛ ⎞⎛ ⎞
⎜ ⎟≡ ≡⎜ ⎟
⎜ ⎟⎝ ⎠ ⎝ ⎠

J  (2)  

The network edge weights (Fij’s) describe how the activity of one node affects the 

dynamics of another node in a causal and direct sense, given the explicitly considered nodes 

(though not necessarily in a physical sense). In practice, however, causality can only be 

approached if every component of the system is included in the model, which is not typical (and 

even more so, there must be no model mismatch, which is almost impossible to 

guarantee)(Hackett et al., 2020; Höfler, 2005; Morgan and Winship, 2014; Pearl, 2013; Shipley, 

2016). In MRA, these nodes may be individual species or “modules”. In order to simplify a 

complex network it may often be separated into “modules” comprising smaller networks of inter-

connected species with the assumption that each module is generally insulated from other 
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modules except for information transfer through so-called communicating species (Kholodenko 

et al., 2002a). Cases where such modules may not be completely isolated are explored elsewhere 

(Lill et al., 2019).   

 What experimental data are sufficient to uniquely estimate the signed 

directionality of the network edges and thus infer the causal relationships within the system? 

Fundamentally, we know that perturbations and/or dynamics are important for inferring causality 

(Hackett et al., 2020; Kholodenko et al., 2002a; Lill et al., 2019; Shipley, 2016; Sontag et al., 

2004a).  Consider a simple setup of three time-course experiments that each measure x1 and x2 

dynamics in response to a stimulus (Fig. 1b-g). One time course is in the presence of no 

perturbation (vehicle), one has a perturbation of Node 1, and one has a perturbation of Node 2. 

Consider further that the perturbations are reasonably specific, such that the perturbation of x1 

has negligible direct effects on x2, and vice versa, and that these perturbations may be large. 

Experimentally, this could be an shRNA or gRNA that is specific to a particular node, or that a 

small molecule inhibitor is used at low enough dose to predominantly inhibit the targeted node. 

A well-posed estimation problem can be formulated (see Methods) that, in principle, allows for 

unique estimation of the Jacobian elements as a function of time with the following set of linear 

algebra relations:  

 1 1 2 11 1 11

,2 1 ,2 21,2 12

( ) ( )( ) ( )

( ) ( )( ) ( )
t k t kk k

p k p kk k

x t x ty t F t

x t x ty t F t
+ ++ Δ Δ⎡ ⎤⎡ ⎤ ⎡ ⎤

= ⎢ ⎥⎢ ⎥ ⎢ ⎥Δ Δ ⎣ ⎦⎣ ⎦ ⎣ ⎦   
(3)

 1 1 2 12 1 21

,1 1 ,1 22,1 22

( ) ( )( ) ( )

( ) ( )( ) ( )
t k t kk k

p k p kk k

x t x ty t F t

x t x ty t F t
+ ++ Δ Δ⎡ ⎤⎡ ⎤ ⎡ ⎤

= ⎢ ⎥⎢ ⎥ ⎢ ⎥Δ Δ ⎣ ⎦⎣ ⎦ ⎣ ⎦   
(4) 

Here, yi,j refers to a measured first-time derivative of node i in the presence of node j 

perturbation (if used), and Δ to a difference with respect to perturbation (subscript p) or time 
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(subscript t) (see Methods). Since we do not use data from the perturbation of node i for 

estimation of node i edges, we do not have to impose assumptions on how the perturbation 

functionally acts on the system dynamics (see Methods). Moreover, constraints on the 

perturbation strength can be relaxed, following recent recommendations (Thomaseth et al., 

2018)(although accuracy of the underlying Taylor series approximation can affect estimation—

see Methods). If these measurements with and without perturbations were each taken in their 

steady state as is done in MRA, the solution for Fij would be trivial. MRA gets around this by 

normalizing self-regulatory parameters Fii to -1. Using dynamic data allows unique estimation of 

self-regulatory parameters without such normalization. Estimation of the node-specific stimulus 

strengths or basal production rates (S’s) requires evaluation after specific functional assumptions, 

but in general these effects are knowable from the data to be generated (see Methods and below 

results).  

 Note that this formulation is generalizable to an n dimensional network. With n2 

unknown parameters in the Jacobian matrix, n equations originate from the vehicle perturbation 

and n-1 equations originate from each of the n perturbations (discarding equations from Node i 

with Perturbation i). This results in 22)1(* nnnnnnn =−+=−+ independent equations. 

1, 11 1, 12 2,

2, 21 1, 22 2,

( )

( )
b ss ss

b ss ss

S F x F x

S F x F x

= − +
= − +

  

Using Sufficient Simulated Data to Reconstruct a Network  

As an initial test of the above formulation, we used a simple 2 node, single activator 

network where Node 1 activates Node 2, one node has first-order degradation (-1 diagonal 

elements), and the other has negative self-regulation (-0.8 diagonal) (Fig. 1a—see Methods for 

equations). A stimulus at t=0 (time-invariant; S,ex = 1) increases the activity of each node, which 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 14, 2022. ; https://doi.org/10.1101/341008doi: bioRxiv preprint 

https://doi.org/10.1101/341008
http://creativecommons.org/licenses/by/4.0/


10 
 

we sample with an evenly spaced 11-point time course. This simulation was done for no 

perturbation (i.e. vehicle) and for each perturbation (Node 1 and Node 2) to generate the 

necessary simulation data per the theoretical considerations above (Fig. 1c,e,g, left panel). Here, 

we modeled perturbations as complete inhibition; for example, a perturbation of Node 1 makes 

its value 0 at all times. Solving Eqs. 3-4 to infer the Jacobian elements at each time point yielded 

good agreement between the median estimates and the ground truth values (Fig. 1h, “Analytic 

Solution”, No Noise). Using the node activity data corresponding to the last time point in the 

time course and the median estimates of Jacobian elements, the external stimuli S1,ex and S2,ex 

were also determined (Eq.18-19) and reasonably agree with the ground truth values.  

 How does this approach fare when data are noisy? We performed the estimation with the 

same data but with a relatively small amount of simulated noise added (10:1 signal-to-noise—

Fig. 1c,e,g). The resulting estimates are neither accurate nor precise, varying on a scale more 

than ten times greater than each parameter’s magnitude with median predictions both positive 

and negative regardless of the ground truth value (Fig. 1i). The stimulus strengths S1,ex and S2,ex 

are estimated to be negative, while the ground truth is positive.  

 Although the analytic equations suggest the sufficiency of the perturbation time course 

datasets to uniquely estimate the edge weights, in practice even small measurement noise 

corrupts estimates obtained from direct solution of these equations. Therefore, we considered an 

alternative representation by employing a least squares estimation approach rather than solving 

the linear equations directly. For a given set of guesses for edge weight and stimulus parameters, 

one can integrate to obtain a solution for the dynamic behavior of the resulting model, which can 

be directly compared to data in a least-squares sense. Least squares methods were shown to 

improve traditional MRA-based approaches(Andrec et al., 2005a; Santos et al., 2007a), but had 
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never been formulated for such dynamic problems. Two hurdles were how to model the effect of 

a perturbation without (i) adding additional parameters to estimate or (ii) requiring strong 

functional assumptions regarding perturbation action. We solved these here by using the already-

available experimental measurements within the context of the least-squares estimation (see 

Methods).  We applied this approach to the single activator model, 10:1 signal-noise ratio case 

above where the analytic approach failed. This new estimation approach was able to infer the 

network structure accurately and precisely (Fig. 1j). We conclude that analytic formulations can 

be useful for suggesting experimental designs that should be sufficient for obtaining unique 

estimates for a network reconstruction exercise, but in practice directly applying those equations 

may not yield precise nor accurate estimates. Alternatively, using a least-squares formulation 

seems to work well for this application.  

Reconstruction of Random 2 and 3 Node Networks 

To investigate the robustness of the least-squares estimation approach, we applied it to 

increasingly complex networks with larger amounts of measurement noise and smaller numbers 

of time points (Fig. 2). We focused on 2 and 3 node networks. We generated 50 randomized 2 

and 3 node models, where each edge weight is randomly sampled from a uniform distribution 

over the interval [-2,2], and the basal and external strength from [0,2] (Fig. 2a, S1a, S2a). Each 

random network was screened for stability. Many networks (29/50 for 2 node and 3 node) 

displayed potential for oscillatory behavior (non-zero imaginary parts of eigenvalues of Jacobian 

matrix). However, since the real parts of the eigenvalues are non-zero and negative, these 

oscillations should dampen over time, and no sustained oscillatory behavior was analyzed. For 

each random model, we generated a simulated dataset based on the prescribed experimental 

design, using complete inhibition as the perturbation. We considered evenly-spaced sampling 
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within the time interval of 0-10 AU (approximate time to reach steady-state—Fig. S1b, S2b) 

with different numbers of time points (3, 7, 11 and 21), and added 10:1 signal-to-noise, 5:1 

signal-to-noise, and 2:1 signal-to-noise to the data. Non-uniform time point spacing may change 

inference results but that was not explored at these first investigations.  

For each random network model, number of time points, and noise level, we evaluated 

the fidelity of the proposed reconstruction approach in terms of signed directionality (Fig. 2c-f). 

We overall found reasonable agreement between inferred and ground truth values, even at the 

higher noise levels and low number of timepoints. Expectedly, the overall classification accuracy 

increases with more time points and decreases with higher noise levels. But, surprisingly, even in 

the worst case investigated of 3 timepoints and 2:1 signal-to-noise ratio, classification accuracy 

was above 85% for 2 node models and 70% for 3 node models. Increasing the number of nodes 

decreases performance, with 3-node reconstruction being slightly worse than 2-node 

reconstruction, other factors held constant.  

We wondered whether the magnitude of an edge weight influenced its classification 

accuracy, since small edge weights may be more difficult to discriminate from noise. We found 

that edge weights with greater absolute values, which are expected to have a greater influence on 

the networks, were more likely to be classified correctly (Fig. S1c-f, S2c-f). Also, for models 

with damped oscillatory behavior, the classification accuracy is very similar to that of all 50 

random models (Fig. S3a-b).  

How does this method compare to similar network reconstruction methods? There are 

limited methods to compare to which also use dynamic data and sequential perturbations. MRA 

(Kholodenko et al., 2002a), from which this method was inspired, uses steady- state data. 

However, Sontag’s method (Sontag et al., 2004a) requires dynamic perturbation data as is used 
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in our method, although it requires two perturbations per node for this set of models (double the 

data). To compare, we further generated another set of perturbation data with 50% perturbation 

(as opposed to 100%). We then used the two sets of perturbation data to estimate the network 

node edges with dynamic modular response analysis (Fig 2g). Even in absence of noise, for low 

to medium numbers of timepoints (3-11) the network is not always accurately inferred (Fig. 2g). 

In the presence of noise, DL-MRA performs better, although the difference between the two 

methods becomes lower at high number of timepoints. Thus, DL-MRA not only outperforms 

with half the data, but it also estimates 6 additional parameters-basal production and external 

stimulus for each node. Although Cho’s approach (Cho et al., 2005) builds upon Sontag’s 

method by recommending smaller time point intervals and smaller perturbations, for our 

purposes, the time intervals and perturbations are fixed and the results from Cho and Sontag’s 

approach would be similar. Moreover, subsequent work has recommended larger perturbations 

while dealing with noisy data (Thomaseth et al., 2018). 

  

To explore a scenario where data from a node might be unavailable, we removed the data 

from one of the nodes in the 50 random 3 node models and used the remaining data to 

reconstruct a 2-node system (Fig. S4). Comparing with corresponding model parameters in the 3 

node system, we find a good but expectedly reduced classification accuracy (No Noise-94.75%, 

10:1 Signal: Noise-93.75%, 5:1 Signal: Noise-91.25%, 2:1 Signal: Noise-87).  

A part of the inference process is performing parameter estimation using multiple starting 

guesses (i.e. multi-start), and we wanted to determine how robust the estimated parameters were 

across the multi-start processes. We looked at the distribution of coefficient of variation (CV) 

among the parameters in the multi-start results in the 50 random 3 node models where either the 
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data generated from the estimated parameters had low sum of squared errors (SSE) compared to 

the original data  (<10-4) or with SSE less than twice the minimum SSE. We find that the CVs 

peak around zero and generally have a small spread, especially for low noise scenarios (Fig. S5). 

This implies a good convergence of the parameter sets obtained through multi-start. 

We conclude that the network parameters of 2 and 3 node systems can be robustly and 

uniquely estimated using DL-MRA. However, these were ideal conditions where there was no 

model mismatch that is expected in specific biological applications. How does DL-MRA 

perform when applied to data reflective of different biological use cases?  

Application to Cell State Networks 

 Cell state transitions are central to multi-cellular organism biology. They are commonly 

transcriptomic in nature and underlie development and tissue homeostasis and can also play roles 

in disease, such as drug resistance in cancer (Armond et al., 2014; Dirkse et al., 2019; Gupta et 

al., 2011; Hormoz et al., 2016a; Larsson et al., 2021; Neftel et al., 2019; Sha et al., 2020; Shen 

and Clairambault, 2020; Zarkoob et al., 2013). Could DL-MRA reconstruct cell state transition 

networks? As the application, we use previous data on SUM159 cells that transition between 

luminal, basal and stem-like cells (Gupta et al., 2011).  Pure populations of luminal, basal and 

stem-like cells eventually grow to a stable final ratio amongst the three. The authors used a 

discrete time Markov transition probability model to describe the data and estimate a cell state 

transition network (Fig. 3a). Thus, we seek to compare DL-MRA to such a Markov model in this 

case.  

We hypothesized that perturbations to the system in this case, in contrast to above, did 

not have to change node activity (i.e. edges). Rather, we thought that perturbing the equilibrium 
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cell state distribution could serve an equivalent purpose. Thus, the data for reconstruction 

consisted of observing the cell state proportions evolve over time from “pure” populations (Fig. 

3b), in addition to equal proportions. DL-MRA is capable of explaining the data (Fig. 3b). 

Interpretation of the estimated network parameters to DL-MRA depends on the transformation of 

the original discrete time Markov probabilities to a continuous time formulation (see Methods—

there are constraints on self-regulatory parameters), but DL-MRA correctly infers the cell state 

transition network as well (Fig 3c). Conveniently, DL-MRA is not constrained to 1-day time 

point spacing as is the original discrete time Markov model.   

How does noise and the number of timepoints affect the reconstruction? As above, we 

generated data for 50 random cell state transition models with 3, 7, 11 and 21 timepoints within 5 

days, as the models generally seemed to reach close to equilibrium within 5 days. Noise levels of 

10:1, 5:1 and 2:1 were used. All parameters were classified accurately (Fig. 3d) (although 

additional constraints in the estimation—see Methods—facilitates this classification 

performance). With 3 timepoints, there was deviation from perfect fit even with no noise in the 

data. At 7 and higher number of timepoints, the estimates matched ground truth well, and noise 

expectedly reduced the accuracy (Fig. 3d). We conclude that DL-MRA can robustly infer cell 

state networks given perturbation data in the form of non-equilibrium proportions as initial 

conditions.  

Application to Intracellular Signaling Networks 

How does the method perform for intracellular signaling networks? The Huang-Ferrell 

model (Huang and Ferrell, 1996) (Fig. 4a) is a well-known intracellular signaling pathway model 

and has been investigated by different reconstruction methods, including previous versions of 

MRA (Andrec et al., 2005b; Henriques et al., 2017; Kholodenko et al., 2002b; Sontag et al., 
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2004a; Thomaseth et al., 2018). It captures signal flux through a three-tiered MAPK cascade 

where the 2nd and 3rd tier contain two phosphorylation sites. An important aspect of the Huang-

Ferrell model is that although the reaction scheme is a cascade and without obvious feedbacks, 

there may be hidden feedbacks due to sequestration effects and depending on how the 

perturbations were performed.  

In order to reconstruct the Huang-Ferrell MAPK network through DL-MRA, we first 

simplified it to a three-node model with p-MAPKKK, pp-MAPKK and pp-MAPK as observable 

nodes, as is typical for reconstruction efforts (Fig. 4b) (Andrec et al., 2005a; Henriques et al., 

2017; Kholodenko et al., 2002b; Lill et al., 2019; Sontag et al., 2004a; Thomaseth et al., 2018). 

Second, to model perturbations, we sequentially perturbed the activation parameters of each of 

the observable species (k3, k15 and k27 respectively). Such perturbations, although hard to 

achieve experimentally, are important because modules must be “insulated” from one another 

and perturbations must be specific to the observables (Kholodenko et al., 2002b; Lill et al., 

2019). Third, in the simplification of the reaction scheme, the observables are shown to influence 

each other but in the actual scheme, they conduct their effects through the unphosphorylated and 

semi-phosphorylated species. We sought to keep the levels of these two species relatively 

constant between different perturbations, so that they wouldn’t add to non-linearities in the 

estimation. Therefore, we used a stimulus which only activated the observables to a maximum of 

about 5% of the total forms of the protein (Lill et al., 2019) 

Estimation with DL-MRA under the above conditions fits the data (Fig 4c) and predicts 

positive node edges down the reaction cascade (F21, F32), negligible direct relation between p-

MAPKKK and pp-MAPK (F13, F31), negative self-regulation of each of the observables (F11, F22, 

F33) negative feedbacks from pp-MAPKK to p-MAPKKK (F12) and from pp-MAPK to pp-
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MAPKK (F23), and negligible external stimuli on pp-MAPK to pp-MAPKK (F13, F31). All these 

effects are consistent with the reaction scheme. The negative feedback effects, although not 

immediately obvious, are consistent with ground truth sequestration effects. For instance, pp-

MAPK has an overall negative effect on pp-MAPKK as the existence of pp-MAPK lowers the 

amount of species MAPK and p-MAPK which sequester pp-MAPKK and makes it avoid 

deactivation by its phosphatase.  

How do the estimation results for the Huang Ferrell model in our method compare with 

those obtained from other methods? Previous work using MRA also reported negative feedbacks 

from successive modules to the preceding ones (Kholodenko et al., 2002a; Lill et al., 2019; 

Sontag et al., 2004a). Similarly, self-regulation parameters in most preceding MRA based 

methods are also estimated to be negative but are fixed at -1(Andrec et al., 2005b; Kholodenko et 

al., 2002b; Lill et al., 2019).  

Besides MRA inspired methods, SELDOM is another network reconstruction method 

which can also deal with dynamic data (Henriques et al., 2017).  SELDOM is a data-driven 

method which uses ensembles of logic based dynamic models followed by training and model 

reduction steps to predict state trajectories under untested conditions. However, when dealing 

with the Huang-Ferrell network, the true value model of SELDOM does not map the effects of 

self-regulation, nor feedback effects between nodes (Fig 4e). This may be explained by the fact 

that although SELDOM uses an extensive number of models to test the data obtained from 

multiple different stimuli, perturbation data was not included to test the Huang-Ferrell Model. 

This implies that systematic perturbation of each of the nodes, as prescribed by MRA-based 

methods, are necessary in order to unearth feedbacks and self-regulation effects.  
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Although application of DL-MRA to the Huang-Ferrell model was able to unearth latent network 

structure, the simulation conditions were restrictive. First, the perturbation scheme chosen in this 

paper, although specifically targeted at the observable species, is hard to produce experimentally. 

The feedback effect observed could also depend on the perturbation scheme chosen-for instance 

knockdown of an entire module as a perturbation would likely have manifested as positive 

feedback to the preceding module. That is because such a knockdown would have reduced the 

effect of sequestration of the module on the preceding observable and would have made it more 

available for dephosphorylation. Second, we assumed a low stimulus to avoid effects from the 

unphosphorylated version of the proteins. A higher activation may increase non-linearities 

adding to the complexity of the model, whereas a lower stimulus may not activate enough 

proteins to be well detected in experiments. The degree of activation needed for an experiment 

may be hard to predict beforehand. Such specific perturbations and stimulus had to be done to 

reduce the effects arising from the non-observable species behavior. Hence application of DL-

MRA to intracellular signaling networks with multiple physical interactions needs to be carefully 

considered before modeling or experiments. Application to Gene Regulatory Networks:  Partial 

Perturbations are More Informative than Full Perturbations  

 Here, we applied DL-MRA further to a series of well-studied non-linear feed forward 

loop (FFL) gene regulatory network models that have time-varying Jacobian elements (Fig. 5a, 

Table 1) (Mangan and Alon, 2003a; Reeves, 2019). Such FFL motifs are strongly enriched in 

multiple organisms and are important for signaling functions such as integrative control, 

persistence detection, and fold-change responsiveness (Goentoro and Kirschner, 2009a; 

Goentoro et al., 2009a; Nakakuki et al., 2010a).  
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The FFL network has three nodes (x1, x2, and x3), and the external stimulus acts on x1 

(S1,ex). There is no external stimulus on x2 and x3; however, there may be basal production of x2 

(S2,b) and x3 (S3,b),. Each node exhibits first-order decay (Fii=-1). The parameters F12, F13, and F23 

represent connections that do not exist in the model; we call these null edges, but we allow them 

to be estimated. The relationship between x1 and x2 (F21), between x1 and x3 (F31), or between x2 

and x3 (F32) can be either activating or inhibitory. Furthermore, x1 and x2 can regulate x3 through 

an “AND” gate (both needed) or an “OR” gate (either sufficient) (Fig. 5a). These permutations 

give rise to 16 different FFL structures (Table 1).  

To generate simulated experimental data from these models, we first integrated the 

system of ODEs starting from a zero initial condition to find the steady state in the absence of 

stimulus. We then introduced the external stimulus and integrated the system of ODEs (see 

Methods) to generate time series perturbation data consistent with the proposed reconstruction 

algorithm, using full inhibitory perturbations. We used 11 evenly spaced timepoints for all 16 

non-linear models, based on the random 3-node model analysis above, and also added noise as 

above. 

We first noticed that even in the absence of added noise, a surprising number of 

inferences were incorrect (Fig. 5b, f). Model #1 (Table 1, Fig. 5b-c) is used as an example, where 

F21, F31 and F32 are activators with an AND gate, and F31 is incorrectly predicted as null (Fig. 

5b—compare ground truth to 100% inhibition). To understand the reason for the incorrect 

estimation, we looked at the node activity dynamics across the perturbation time courses (Fig. 

5d). All three nodes start from an initial steady state of zero, but Node 3 is zero for all three 

perturbation cases. This is because of the following. Since x1 is required for the activation of x2 

and x3, complete inhibition of x1 completely blocks both x2 and x3 activation. But, because both 
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x1 and x2 are required for the activation of x3, completely inhibiting x2 activity also completely 

inhibits x3. Thus, given this experimental setup, it is impossible to discern if x1 directly 

influences x3 or if it acts solely through x2.  

We thus reasoned that full inhibitory perturbation may suppress the information 

necessary to correctly reconstruct the network, but that a partial perturbation experiment may 

contain enough information available to make a correct estimate. If this were true, then upon 

applying partial perturbations (we chose 50% here), Node 3 dynamics should show differences 

across the perturbation time courses. Simulations showed that this is the case (Fig. 5e). 

Subsequently, we found that for partial perturbation data, F31 is correctly identified as an 

activator. More broadly, we obtain perfect classification from noise-free data across all 16 FFL 

networks when partial perturbation data are used, as opposed to 5/16 networks having 

discrepancy with full perturbation data (Fig. 5f). The fits to simulated data from the 

reconstructed model align very closely, despite model mismatch (Fig. S6). We conclude that in 

these cases of non-linear networks, a partial inhibition is necessary to estimate all the network 

parameters accurately. Thus, moving forward, we instead applied 50% perturbation to all 

simulation data and proceeded with least squares estimation.  

Application to Gene Regulatory Networks:  Performance 

The above analysis prompted us to use a partial (50%) perturbation strategy, since it 

classified each edge for each model in the absence of noise correctly. What classification 

performance do we obtain in the presence of varying levels of experimental noise? We first 

devised the following strategy to assess classification performance. We generated 50 

bootstrapped datasets for each network structure/signal-to-noise pair, and thus obtained 50 sets 

of network parameter estimates. To classify the network parameters, we used a symmetric cutoff 
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of a percentile window around the median of these 50 estimates (Fig. 6a). We illustrate this 

approach with three different example edges and associated estimates, one being positive (Edge 

1), one being negative (Edge 2), and one being null (Edge 3). Given the window of values 

defined by the percentile cutoff being chosen, if the estimates in this window are all positive, 

then the network parameter would be classified as positive. Similarly, if the estimates in this 

window are all negative, then the parameter would be classified as negative. Finally, if the 

estimates in the window cross zero (i.e. span both positive and negative terms), then it would be 

classified as null. First, consider the case that the percentile window is just set at the median with 

no percentile span. Then, the classifications for true positives and negatives are likely to be 

accurate while the null parameters are likely to be incorrectly categorized as either positive or 

negative (Fig. 6a). If we increase the percentile window span slightly (e.g. between the 40th and 

60th percentile, middle panel), we can categorize null edges better, while maintaining good 

classification accuracy of both true positive and negative edges. However, if we relax the 

percentile window too much, (e.g. between the 10th and 90th percentile, far right panel) we may 

categorize most parameters as null, including the true positive and negatives.  Thus, it is clear 

there will be an optimal percentile cutoff that maximizes true positives and minimizes false 

positives as the threshold is shifted from the median to the entire range.  

Now, we applied this classification strategy to the 16 FFL model estimates from data 

with different noise levels. We varied the percentile window from the median only (50) to the 

entire range of estimated values (100) and calculated the true and false positive rates for all edges 

across all 16 FFL models, which allowed generation of receiver operator characteristic (ROC) 

curves (Fig. 6b). For each noise level, we chose the percentile window that yielded a 5% false 

positive rate (13-87 percentile for 10:1 Signal:Noise, 19-81 percentile for 5:1 Signal:Noise, and 
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21-79 percentile for 2:1 Signal:Noise). Using this simple cutoff classifier, we observed good 

classification performance across all noise levels according to traditional area under the ROC 

curve metrics (10:1 AUC=0.99, 5:1 AUC=0.9, 2:1 AUC=0.92).  

How does classification accuracy break down by FFL model and edge type? To evaluate 

the performance for each of the 16 FFL cases, we calculated the fraction of the 12 links in each 

FFL model that was classified correctly as a function of signal-to-noise, given the percentile 

windows determined above (Fig. 6c). We also looked at the fraction of the 16 models where each 

of the 12 links were correctly classified (Fig. 6d). Perfect classification is a value of one, which 

is the case for no noise, and for many cases with 10:1 signal-to-noise.  

In general, as noise level increases, prediction accuracy decreases, as expected. Although 

for some models and parameters, performance at 2:1 signal-to-noise is poor, in some cases it is 

surprisingly good. This suggests that the proposed method can yield information even in high 

noise cases; this information is particularly impactful for null, self-regulatory, and stimulus 

edges. High noise has strong effects on inference of edges that are either distinct across models, 

time variant or reliant on other node activities (F21, F31, F32) (Fig. 6c-d, S7). F21, which is reliant 

on activity of x1, is inferred better than F31 and F32. This may be caused by the fact that x3 

dynamics depend on both x1 and x2, whereas x2 dynamics only depend on x1.  

Comparing across models, we find that Models 1-8 are reconstructed slightly better than 

Models 9-16 (Fig. 6c) when noise is high. This performance gap is predominantly caused by S3,b 

misclassification—basal production of Node 3 (Fig. S7). What is the reason for the possible 

misclassification of S3,b in Models 9-16? We know that S3,b depends on the initial values of x1, x2 

and x3 and the estimated values of F31, F32 and F33 (See Methods, Eq. 19). For Models 1-8, 

x1(t=0) and x2(t=0) are both zero and therefore S3,b is effectively only dependent on estimated 
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value of F33 and x3(t=0) (Fig. S6 and Methods). But for Models 9-16, x2(t=0) is non-zero and S3,b 

is dependent on the estimated values of both F32 and F33, in addition to x2(t=0) and x3(t=0), 

which increases the variability of S3,b estimates. Therefore with high levels of noise, S3,b is more 

likely to be mis-classified in Models 9-16, whereas this does not happen in Models 1-8 (Fig.6c,d, 

S7). In the future, including stimulus and basal production parameters in the least squares 

estimations themselves, rather than further deriving algebraic relations to estimate them, will 

likely help improve reliability.  

We conclude that (i) when dealing with non-linear gene regulatory networks, complete 

perturbations such as genetic knockouts may fundamentally impede one’s ability to deduce 

network architecture and (ii) this class of non-linear networks can be reconstructed with 

reasonable performance using the proposed strategy employing partial perturbations.  
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Discussion 

Despite intensive research focus on network reconstruction, there is still room to improve 

discrimination between direct and indirect edges (towards causality), particularly when 

biologically-ubiquitous feedback and feedforward cycles are present that stymie many statistical 

or correlation-based methods, and given that experimental noise is inevitable. The presented DL-

MRA method prescribes a realistic experimental design for inference of signed, directed edges 

when typical levels of noise are present. It allows estimation of self-regulation edges as well as 

those for basal production and external stimuli. For 2 and 3 node networks, the method can 

successfully handle random linear networks, cell state transition networks, and gene regulatory 

networks, and, under certain limiting conditions, signaling networks. Prediction accuracy 

improved with more timepoints, which in our case accounted for more relevant dynamic data. 

However, we would like to stress that here we did not explore time point placement, which likely 

underlies the performance increase rather than simply number of timepoints. Prediction accuracy 

was strong in many cases even with simulated noise that exceeds typical experimental variability 

(2:1 signal-to-noise). The method presented here is quite general and could be applied not only to 

cell and molecular biology, but also vastly different fields where perturbation time course 

experiments are possible, and where network structures are important to determine.  

MRA and its subsequent methods allow for inference of direct edges by prescribing 

systematic perturbation of each node (Andrec et al., 2005b; Halasz et al., 2016a; Kholodenko et 

al., 2002b, 2002b; Santra et al., 2013a; Thomaseth et al., 2018) and the idea of directionality has 

been followed through in DL-MRA. Often, such edge directness is equated to causality, but this 

is not necessarily the case, especially when the entire system is not explicitly represented. In 

practice, the causality and strength of an edge may be dependent on how well the model 
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represents the underlying phenomenon and might be affected by simplification of larger 

networks, non-linearities in the actual model and even by noise in the data. Secondly, in 

discussions about causal system inferences, consideration of the counterfactuals is important 

(Höfler, 2005; Morgan and Winship, 2014; Pearl, 2013; Shipley, 2016). For a network of nodes 

going through dynamics, the counterfactuals to intrinsic network edges causing the dynamics 

would be the environmental factors extrinsic to the network edges. In DL-MRA, by evaluating 

external stimuli and basal production as well as the network edges, we have mapped some 

counterfactuals to node dynamics, thus presenting a more complete map of the causal factors to 

the network dynamics compared to methods which only show network edges. This also allows 

for a concise mapping of the environmental contexts in which the network edges are 

reconstructed. 

 Application of DL-MRA could reconstruct cell state transition networks based on 

discrete time Markov transition models, with the added benefit of not being constrained to 

specific time intervals. It can also successfully handle noisy data. The additional constraints in 

DL-MRA in the context of cell state transitions (summations of transition rates—see Methods) 

implies that the underlying network may be estimated even with less data requirements than in 

other cases. This method can be a useful tool to model cell state transitions and predict cell state. 

Perturbations were modeled as a difference in initial states, and that worked well in this case, 

suggesting that such modeling of perturbations may work in other cell state transition or 

biological networks.  

Although application of DL-MRA to an intracellular signaling network (Huang-Ferrell 

MAPK) was able to explain its ground truth, including feedback due to sequestration, the method 

was constrained to specific, difficult-to-implement perturbations and a low stimulus which may 
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not always be feasible experimentally. In MRA, a larger reaction scheme is often simplified into 

modules with one species in the module representing the activity of the module. But often, the 

activity of the other species in the module is implicit and becomes significant in dictating how 

perturbations and stimulus affect the network dynamics. Moreover, the type of perturbation 

chosen also may yield different network inference results. Therefore, the use of MRA methods 

on simplified large intracellular signaling networks, especially while dealing with experiments, 

have significant caveats that should be carefully considered. 

(Fuente et al., 2002)(Thomaseth et al., 2018)Although complete inhibition is often used 

for perturbation studies of gene regulatory networks (e.g. CRISPR-mediated gene knockout), we 

found that partial inhibition is important to fully reconstruct the considered non-linear gene 

regulatory networks. It is important to distinguish here, however, small perturbations vs. partial 

perturbations. Small perturbations are formally recommended for both MRA and other 

techniques (Fuente et al., 2002) where the effects of noise are not extensively explored.  In 

practice however, there is a tradeoff between perturbation strength and feasibility, since the 

effects of small perturbations are masked by noise (Thomaseth et al., 2018). Partial 

perturbations, as considered in this work (~50%) are much larger than what are typically 

considered small perturbations. The theoretical formulation of DL-MRA reduces the impact of 

not having small perturbations, because perturbation data from a particular node is not used for 

inference of edges connected to that node. Yet, DL-MRA still uses linearizations of the Jacobian 

which are are always subject to greater inaccuracy the further away from reference points such 

perturbations take the system. Since many biological networks share the same types of non-linear 

features contained within the considered FFL models, this is not likely to be the only case when 

partial inhibition will be important. We are thus inclined to speculate that large partial 
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perturbations may be a generally important experimental design criterion moving forward. 

Partial inhibition is often “built-in” to certain assay types, such as si/shRNA or pharmacological 

inhibition that are titratable to a certain extent.  

One major remaining challenge is scaling to larger networks. Here, we limited our 

analysis to 2 and 3 node networks. Conveniently, the number of necessary perturbation time 

courses needed grows linearly (as opposed to exponentially) with the number of considered 

nodes. Furthermore, as long as system-wide or omics-scale assays are available, the experimental 

workload also grows linearly. This is routine for transcriptome analyses (Stark et al., 2019), and 

is becoming even more commonplace for proteomic assays (e.g. mass cytometry (Spitzer and 

Nolan, 2016), cyclic immunofluorescence (Lin et al., 2016a), mass spectrometry (Aksenov et al., 

2017), RPPA (Akbani et al., 2014)) (Lin et al., 2016a). Thus, the method is arguably 

experimentally scalable to larger networks.  

However, the computational scaling past 2 and 3 node models remains to be determined and is 

likely to require different approaches for parameter estimation.  Increasing the network size will 

quadratically increase the number of unknown parameters. Reducing this parameter space and 

obtaining good initial guesses will be important. Imposing prior knowledge can also reduce the 

parametric space, such as in Bayesian Modular Response Analysis (Santra et al., 2013a), or with 

functional database information (Wu et al., 2010). As network size grows, the sparseness of the 

Jacobian will increase, so judicious allocation of non-zero elements will be important. Checking 

estimated Jacobians for emergent properties such as degree distributions for scale-free networks 

(Barabási and Albert, 1999a) can provide additional important constraints. The approach used in 

this paper is accommodative of such prior knowledge and in principle can be scaled up for larger 

network size. Lastly, large estimation problems may be broken into several smaller problems to 
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be merged subsequently, which is likely to yield large computational speed up by allowing 

parallelization of much smaller tasks.  

In conclusion, the proposed approach to network reconstruction is systematic and 

feasible, robustly operating in the presence of experimental noise and accepting data from large 

perturbations. It addresses important features of biological networks that current methods 

struggle to account for: causality/directionality/sign, cycles (including self-regulation), dynamic 

behavior and environmental stimuli. It does so while leveraging dynamic data of the network and 

only requires one perturbation per node for completeness. We expect this approach to be broadly 

useful not only for reconstruction of biological networks, but to enable using such networks to 

build more predictive models of disease and response to treatment, and more broadly, to other 

fields where such networks are important for system behavior. 
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Figure Legends 

Figure 1. Overall DL-MRA Approach. (a) Two-node network with Jacobian elements labeled. 
Green arrows are stimuli and basal production terms; red arrows are network elements. (b,d,f) 
Time course experimental design with perturbations:  vehicle (b), Node 1 (d), Node 2 (f). The 
vehicle may be the solvent like DMSO for inhibition with a drug, or a nontargeting si/shRNA for 
inhibition with si/shRNA. (c,e,g) Simulated time course data for Vehicle perturbation (c), Node 1 
perturbation (e), Node 2 perturbation (g) from the network in (a). Left Column:  no added noise; 
Right Column 10:1 signal-to-noise added.  (h-j) Actual versus inferred model parameters (S1,b, 
S1,ex, F11, F12 , S2,b, S2,ex, F21, F22) for direct solution of Eq. 3-4 in the absence (h) or presence (i) 
of noise, or with noise and the least-squares approach (j). In h-i, error bars are standard deviation 
across time points. 

Figure 2. Application to Linear Two and Three Node Models. (a) Connections around a Node 
i in an n-Node Model. Si,b and Si,ex are the basal production and external stimulus terms acting on 
Node i, respectively. Fii is the self-regulation term; Fij the effect of Node j on Node i and Fji the 
effect of Node i on Node j. (b) Example of different signal-to-noise ratio effects on time course 
data. (c,d) Ground truth versus estimated edge weights across all 50 random networks and noise 
levels for data from four different total timepoints (3,7,11,21) for 2 node (c) and 3 node (d) 
networks. Quadrant shading indicates edge classification. (e,f) Fraction of network parameters 
correctly classified in 50 randomly generated 2 node networks (e) and 3 node networks (f) with 
different noise levels and total timepoints. (g) Fraction of network parameters correctly classified 
in 50 randomly generated 3 node networks with Sontag’s dynamic MRA using two sets of 
perturbation data.  

Figure 3. Application to Cell State Transition Networks. (a) Markov transition model of 
SUM159 cell states. (b) Cell proportions over time for SUM159 cells using Markov transition 
parameters (dots), starting at different initial proportions and respective DL-MRA model fits 
(lines). (c) Parameters from DL-MRA estimates of SUM159 data are similarly classified as 
transformed Markov parameters (See Methods, Eq. 29-30). (d) Ground truth versus estimated 
edge weights across 50 random cell transition networks and noise levels for data from four 
different total timepoints (3,7,11,21).  

Figure 4. Application to a Signaling Network. (a) Full Reaction scheme for the Huang-Ferrell 
(HF) Model, depicting the parameters k3, k15 and k27 which were perturbed sequentially to 
generate the perturbation data. (b) Model coarse-graining to a 3-node network. (c) Data 
generated for each node with a small E1 stimulus (2.5x10-6 uM)  . (d) Model parameters 
estimated as significant (bold) and negligible (dotted lines). (e) SELDOM true graph values 
represented in the 3-node model with parameters considered (bold) and not considered (dotted 
lines). 

Figure 5. (a) Feedforward loop (FFL) network models. Across all 16 models (Table 1), F11, F22, 
and F33 values are fixed at -1 and F12, F13, and F23 values are fixed at 0. F21, F31, and F32 values 
can be positive or negative depending on the model. The combined effect of x1 and x2 on x3 is 
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described by either an AND gate or an OR gate. There are 16 possible model structures (Table 
1). (b) 100% inhibitory perturbations may not provide accurate classification even without noise. 
In Model #1, F31 is positive (ground truth) but is estimated as null. (c) Specific structure of 
Model #1. (d) Node activity simulation data for 100% inhibition in Model #1, implying that it is 
impossible to infer F31 from such data. (e) Node activity simulation data for 50% inhibition in 
Model #1, showing potential to infer F31. (f) Fraction of model parameters correctly classified in 
all the 16 non-linear models without noise, for 100% inhibition vs 50% inhibition. 

Figure 6. (a) Classification scheme for a distribution of parameter estimates. Going from left to 
right panels, the same parameter distribution with an actual (ground truth) value of positive (+), 
negative (-), or null (0), respectively, is estimated using different percentile windows centered on 
the median. The percentile “window” is the median value for the leftmost panel (rigorous 
classification), between 40th and 60th percentile in the second panel, and between 10th and 90th 
percentile in the third panel (conservative classification). Going from rigorous to conservative 
(left to right), an intermediate between the two gives a good classification performance. (b) ROC 
curves across all parameters for all 16 FFL models. Different color lines are different noise 
levels. (c) Fraction of correctly classified model parameters for different noise levels broken 
down by FFL model type. (d) Fraction of each model parameter correctly classified for different 
noise levels broken down by parameter type.  
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Supplementary Figure Legends 

Figure S1: (a) Random 2 node network with Jacobian elements labeled. Green arrows are basal 
production and external stimulus terms. (b) Time courses for the 50 random 2 node networks, 
normalized by the maximum value  (c,d,e,f) Fraction of network parameters correctly classified 
in 50 randomly generated 2 node networks with an absolute value between 0 to 0.5 (c), 0.5 to 1 
(d), 1 to 1.5 (e) and 1.5 to 2 (f). 
Figure S2: (a) Random 3 node network with Jacobian elements labeled. Green arrows are basal 
production and external stimulus terms. (b) Time courses for 50 random 3 node networks, 
normalized by the maximum value (c,d,e,f) Fraction of network parameters correctly classified 
in 50 randomly generated 3 node networks with an absolute value between 0 to 0.5 (c), 0.5 to 1 
(d), 1 to 1.5 (e) and 1.5 to 2 (f). 
Figure S3: (a,b) Fraction of network parameters correctly classified in 29 two node networks (a) 
and 29 three node networks (b) with potential for oscillatory behavior (non-zero imaginary parts 
of eigenvalues of Jacobian elements).  
Figure S4: Distribution of estimated parameters in two node networks normalized to 
corresponding actual parameters in 50 random three node systems, when the data from only node 
1 and node 2 is included to make the estimation. A value of 1 means the parameters estimate did 
not change.  
Figure S5: Histogram of coefficient of variation (CV) among the parameters from multi start 
results in the 50 random three node models. Only parameter sets with sum of squared errors 
(SSE) less than twice the minimum SSE were included as acceptable. 

Figure S6: Simulated, noise-free experimental data (dots) and model-generated fits (lines) for 
each FFL model structure. Different perturbations—vehicle (P0), perturb x1 (P1), perturb x2 
(P2), perturb x3 (P3)—are across the columns and different model structures (1-16) are down the 
rows. Each node (1-3) is a different color as indicated in the legend.  

Figure S7: Detailed results from the FFL models depicting whether a model parameter was 
correctly (1) or incorrectly (0) predicted for each model structure (1-16) under each noise level. 
Correct predictions were classified based on the optimal percentile cutoffs identified for each 
noise level. 
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Methods 

Deriving Sufficiency Conditions for Unique Estimation of Jacobian Elements 

The first-order partial derivatives comprising J (Eq. 2) can be approximated by a first-

order Taylor series expansion of Eq. 1 about a time point k 

 ( ) ( ) ( ) ( )1 1 1 1 1 1 2 2
1 2

( 1) ( ) ( ) . ( 1) ( ) ( ) ( 1) ( )f k f k f k x k x k f k x k x k
x x

∂ ∂+ ≈ + + − + ⋅ + −
∂ ∂

 (5)  

 ( ) ( ) ( ) ( )2 2 2 1 1 2 2 2
1 2

( 1) ( ) ( ) ( 1) ( ) ( ) ( 1) ( )f k f k f k x k x k f k x k x k
x x

∂ ∂+ ≈ + ⋅ + − + ⋅ + −
∂ ∂

 (6)  

Eq. 5-6 may be written more succinctly as  

 
1 11 1 12 2

2 21 1 22 2

( 1) ( ) ( 1) ( ) ( 1)

( 1) ( ) ( 1) ( ) ( 1)
t t

t t

y k F k x k F k x k

y k F k x k F k x k

+ ≈ ⋅Δ + + ⋅Δ +
+ ≈ ⋅Δ + + ⋅Δ +

  (7) 

where 

  ( 1) ( 1) ( ); ( 1) ( 1) ( )i i i t i i iy k f k f k x k x k x k+ ≡ + − Δ + ≡ + − . (8) 

The approximation in Eq. 7 becomes more accurate as more time points are measured. 

Also, the edge weights are potentially time-dependent, although this is rarely considered when 

describing biological networks. 

How do we estimate the edge weights F in Eq. 7 and thus reconstruct the network? Time 

series data can inform xi’s and fi’s as a function of time, following application of a stimulus. 

Given such stimulus-response data, however, for each time point there are only two equations for 

four unknowns, an underdetermined system for which more data are needed.  

Consider now stimulus-response time course data in the presence of single perturbations. 

Let pi be a variable that reflects the strength and/or presence of different potential perturbations: 
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p1 represents perturbation of x1 and p2 represents perturbation of x2. If pj is not explicitly written, 

its value is zero and/or it has no effect. Now, the ODEs become a function of the perturbation 

variables 

 , 1 2( ) ( , ) ( ( ), ( ), )i j i j i jf k f k p f x k x k p≡ =   (9) 

The 1st order Taylor series expansions for cases with perturbations become 

 ( )1,1 11 ,1 1 12 ,1 2 1 1
1

( ) ( ) ( ) ( ) ( ) ( )p py k F k x k F k x k f k p
p

∂≈ ⋅Δ + ⋅Δ + ⋅
∂

 (10) 

 ( )1,2 11 ,2 1 12 ,2 2 1 2
2

( ) ( ) ( ) ( ) ( ) ( )p py k F k x k F k x k f k p
p

∂≈ ⋅ Δ + ⋅Δ + ⋅
∂

 (11) 

 ( )2,1 21 ,1 1 22 ,1 2 2 1
1

( ) ( ) ( ) ( ) ( ) ( )p py k F k x k F k x k f k p
p

∂≈ ⋅Δ + ⋅Δ + ⋅
∂

 (12) 

  ( )2,2 21 ,2 1 22 ,2 2 2 2
2

( ) ( ) ( ) ( ) ( ) ( )p py k F k x k F k x k f k p
p

∂≈ ⋅ Δ + ⋅Δ + ⋅
∂

 (13) 

 where 

 , , ,( ) ( ) ( ); ( ) ( , ) ( )i j i j i p j i i j iy k f k f k x k x k p x k≡ − Δ ≡ −  (14) 

Here, we have expanded with respect to the perturbation, rather than with respect to time 

as previously. However, since the reference point is the same, the Jacobian elements remain 

identical in these equations. It is also interesting to note that the Jacobian elements, or network, 

may be affected by the perturbation, but we do not necessarily have to know those effects 

mathematically, since the reference point is the same. Now we have six potential equations with 

which to estimate the four Jacobian elements. However, we must make some determination as to 
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how the perturbations p1 and p2 directly affect Node 1 and Node 2 dynamics f1 and f2 to account 

for the perturbation variable partial derivatives.  

 By design, the Node 1 perturbation has significant direct effects on Node 1 dynamics, 

and similarly for the Node 2 perturbation on Node 2 dynamics. Using equations including 

1 1f p∂ ∂  and 2 2f p∂ ∂ require precise definition of perturbation strength and their effects on 

dynamics, which could be difficult to determine experimentally and implement in simulations.  

Therefore, we do not employ equations involving such terms. On the other hand, if the Node 1 

perturbation has negligible direct effect on Node 2 dynamics, that is, the effects on Node 2 

dynamics are through the network (i.e. p1) and not explicit in f2), and similarly the Node 2 

perturbation has negligible direct effect on Node 1 dynamics, then 2 1f p∂ ∂ and 1 2f p∂ ∂  are 

approximately zero. This mild condition is often the case experimentally. The only determining 

factors for the suitability of the Taylor series truncation are the spacing of time points and the 

accuracy of the expansion about the perturbation difference. From this, the main set of linear 

equations presented in Eq. 3-4 are obtained.  

General Estimation Model Equations 

 We employ the following general model for a two-node network: - 

1
1 1 2 1 11 1 12 2

2
2 1 2 2 21 1 22 2

dx
f (x ,x ) S F x F x

dt
dx

f (x ,x ) S F x F x
dt

= = + +

= = + +
  (15) 

Here, S1 and S2 are the stimuli strengths on Node 1 and Node 2 respectively, and F11, F12, 

F21 and F22 are the network edge weights (Figure 1a). In many systems, there may be a basal or 

constitutive production driving the node activities, besides an external stimulus. For these cases, 
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the Stimulus term (Si), may be considered as an addition of these two effects- the basal 

production term (Si,b) and the external stimulus (Si,ex). Then the two-node model can be 

represented by the following equations- 

1
1, 1, 11 1 12 2

2
2, 2, 21 1 22 2

b ex

b ex

dx
S S F x F x

dt
dx

S S F x F x
dt

= + + +

= + + +
 (16) 

Or more generally, 

, ,
1

n
i

i b i ex ij j
j

dx
S S F x

dt =

= + +∑ , (17) 

where n is the total number of nodes.  

When a steady state exists, the dxi/dt terms become zero and it becomes easy to represent 

the stimulus terms as a function of the node activities (xi) and network edges (Fij).  

, , ,
1

( )
n

i b i ex ij i ss
j

S S F x
=

+ = − ∑   (18) 

This is helpful to understand that the perturbation time course data also generally 

constrains not only the edge weights, but also the stimulus terms. For a system at a steady state 

without an external stimulus, for example at t=0: 

, ,
1

( )
n

i b ij i ss
j

S F x
=

= − ∑   (19) 

The Two-node Single Activator model 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 14, 2022. ; https://doi.org/10.1101/341008doi: bioRxiv preprint 

https://doi.org/10.1101/341008
http://creativecommons.org/licenses/by/4.0/


44 
 

 The two-node single activator model (Fig. 1a, S1a) is described by 

1
1 1 2 1

2
2 1 2 1 2

1

1 1.5 0.8

dx
f (x ,x ) x

dt
dx

f (x ,x ) x x
dt

= = −

= = + −
  (20) 

Here, S1,ex=1, F11=-1, F12=0, S2,ex=1, F21=1.5, F22=-0.8. The basal production terms are 

both zero, for simplicity, and the initial conditions for x1(t=0) and x2(t=0) are zero. The stimulus 

terms Si,ex are calculated through Eq. 18, using the median values of Fij and the xi(t=10), when 

the system reaches near steady state. 

Random Two-node and Three-node models 

The random 2 node network is described by 

1
1 1 2 1, 1, 11 1 12 2

2
2 1 2 2, 2, 21 1 22 2

b ex

b ex

dx
f (x ,x ) S S F x F x

dt
dx

f (x ,x ) S S F x F x
dt

= = + + +

= = + + +
  (21) 

Values for S1,b, S2,b, S1,ex and S2,ex are sampled from a uniform distribution over the range 

[0,2] and values for F11, F12, F21, and F22 are sampled from a uniform distribution over the range 

[-2,2] using the MATLAB function rand. To capture basal activity, we use a two-step 

approach. First, starting from node activity values of zero, without the external stimulus on Node 

1 and Node 2 (S1,ex=S2,ex=0 in Eq 22) we simulate until the network reaches steady-state with 

just basal production driving the network behavior. Then, we introduce the external stimulus on 

Node 1 and Node 2, integrate the ODEs, and sample evenly spaced time-points using ode15s in 

MATLAB with default settings. We sample 3,7, 11, and 21 evenly spaced time points across a 

time course, from 0 to 10 arbitrary time units in all the cases. 
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The random 3 node networks use the same sampling rules as the 2 node networks with 

the following equations. 

 

1
1 1 2 3 1, 1, 11 1 12 2 13 3

2
2 1 2 3 2, 2, 21 1 22 2 23 3

3
3 1 2 3 3, 3, 31 1 32 2 33 3

,

,

,

b ex

b ex

b ex

dx
f (x ,x x ) S S F x F x F x

dt
dx

f (x ,x x ) S S F x F x F x
dt
dx

f (x ,x x ) S S F x F x F x
dt

= = + + + +

= = + + + +

= = + + + +

  (22) 

Intracellular Signaling Networks 

 In the simplification of the Huang-Ferrell network to three nodes, p-MAPKKK, pp-

MAPKK and pp-MAPK were taken as nodes. Since, in absence of external stimuli, the basal 

values of the nodes are zero, the basal production was estimated as zero beforehand and not 

considered in the estimation of the rest of the network. Aside from the basal production edges, a 

full 3 node network (Fig 4b) was estimated from the simulation data of each of the observables. 

After estimation, parameters with values less than 1/100th of the largest parameter, were 

considered negligible.  

Cell State Transition Models 

 The cell transition model from (Gupta et al., 2011) is a discrete time Markov probability 

model. Here, we show how this form is related to the ODE model used in DL-MRA. Starting at 

any initial value, each next step representing a time difference of one day follows from the 

previous time point as follows- 

1, 1 11 1, 12 2, 13 3,

2, 1 21 1, 22 2, 23 3,

3, 1 31 1, 32 2, 33 3,

t t t t

t t t t

t t t t

x M x M x M x

x M x M x M x

x M x M x M x

+

+

+

= + +
= + +

= + +
   (23) 
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Where Mij denotes the Markov transition probabilities of species j into species i. In matrix 

form it may be represented as follows- 

1, 1 1,11 12 13

2, 1 21 22 23 2,

31 32 333, 1 3,

    

    

    

t t

t t

t t

x xM M M

x M M M x

M M Mx x

+

+

+

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

   (24) 

Representing the Markov parameter matrix as M and the species relative concentration 

variables as vector X, the equation becomes 

1t tX MX+ =       (25) 

The Markov transition probabilities for a species must add up to 1. In experimental terms, 

a species can either transition to other species or stay the same and the sum of all those 

probabilities is 1.  

1:3

1ij
i

M
=

=∑      (26) 

As a first step in relating these equations to the ODE form underlying DL-MRA, we put 

the variables in terms in terms of ∆x (with respect to time),  

1t t t tX X MX X+ − = −    (27) 

1 ( )t tX M I X+Δ = −    (28) 

'
1t tX M X+Δ =     (29) 

Where M’ is M-I, and I is the identity matrix.  M’ is M, except that 1 is subtracted from 

all its diagonal elements. Hence Eq. 26 for M’ becomes 
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'

1:3

0ij
i

M
=

=∑     (30) 

This also implies that the diagonal term for M’ is negative of the sum of the other two 

terms in the same column. In experimental terms, the amount of reduction of a species is equal to 

how much it got converted to other species.  

The above equations apply for the cases where ∆t is 1. We can incorporate arbitrary time 

steps as 

'
t t t tX M X t+Δ ΔΔ = Δ    (31) 

Where ∆t is the scalar value of time difference and M’∆t is the matrix of the set of 

parameters, specific to the time difference chosen. For a case where ∆t tends to 0, the equation 

becomes- 

'

0
lim( / )t t dt t

t
X t M X+ΔΔ →

Δ Δ =   (32) 

'/ dt tdX dt M X=     (33) 

Where M’dt is the matrix of the set of parameters specific to the case where ∆t is 

infinitesimally small. Note that Eq. 33 is similar in form to Eq. 22, only without the extra 

stimulus terms and where M’dt is equivalent to the Jacobian matrix F with terms Fij. There would 

be an added constraint that the sum of the terms in the same column would add up to zero, or that 

the diagonal term is the negative of the sum of the other two terms in the same column. 

t

dX
FX

dt
=     (34) 
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3

1,
ii ij

j j i

F F
= ≠

= − ∑     (35) 

Non-Linear Models 

The non-linear feedforward loop models (Mangan and Alon, 2003a) are described by: 

3213213
3

213212
2

13211
1

),.,,(,

),(,

1,

3231

21

xKxKxG)x,x(xf
dt

dx

xKxf)x,x(xf
dt

dx

x)x,x(xf
dt

dx

xxxx

xx

−==

−==

−==

 (36) 

When an AND gate is present 

 ),(*),(),,,(
32313231 2121 xxxxxxxx KxfKxfKxKxG =  (37) 

When an OR gate is present 

 ),,,(),,,(),,,( 122121 313232313231
xKKxfcxKKxfcKxKxG xxxxxxxxxxxx +=   (38) 

For a given u, v � {x1, x2, x3} and K, Ku, Kv � {
21xxK , 

31xxK , 
32xxK }:  

If u activates its target, then:  

 
2

2

1

),(

⎟
⎠

⎞
⎜
⎝

⎛+

⎟
⎠

⎞
⎜
⎝

⎛

=

K

u

K

u

Kuf  ; 

��

fc(u,K
u

,K
v

,v)=

u

K
u

⎛

⎝
⎜

⎞

⎠
⎟

2

1+ u

K
u

⎛

⎝
⎜

⎞

⎠
⎟

2

+ v

K
v

⎛

⎝
⎜

⎞

⎠
⎟

2
  (39) 

If u represses its target, then:  
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Effectively, an external stimulus of ‘S1,ex=1’, acts on Node 1 at t=0 and is propagated 

through the network. There is no external stimulus acting on Node 2 and Node 3. However, in 

many cases there is basal production in one or both of Node 2 and Node 3. This leads to a non-

zero steady-state of the network before the external stimulus is introduced.  

 To capture basal activity, we use a two-step approach. First, starting from node activity 

values of zero, without the external stimulus on Node 1 (S1,ex=0), we simulate until the network 

reaches steady-state. Then, we introduce the external stimulus on Node 1, integrate the ODEs, 

and sample 11 evenly spaced time-points using ode15s in MATLAB with default settings and 

steady-state node values without the external stimulus as the initial conditions. We chose 11 

timepoints because it yields good classification accuracy for the above random 3 node model 

even in presence of noisy data. For each of the 16 non-linear models, the values of the 

parameters (K, Ku, Kv), were varied and chosen so that the resulting node activity data are 

responsive to the stimulus and perturbations (Fig. S6, See Supplementary Code for values). 

Modeling Perturbations 

 Precisely modeling perturbations can be a challenge, since experimentally, there may be 

several ways of causing a perturbation with different mechanisms such as siRNAs, 

competitive/non-competitive/uncompetitive inhibition, etc. It may be hard to quantify how much 

a perturbation is affecting a node, in terms of its dynamics (i.e. right-hand sides of the ODEs). 

Therefore, we employ the following approaches which circumvent the need to model how each 

perturbation mechanistically manifests in the ODEs during parameter estimation. There are two 
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cases to consider:  (i) when we have a perturbation of node i and we need to simulate node i 

dynamics; (ii) when we have a perturbation of node i and we need to simulate other node j 

dynamics. To illustrate the approach, we use the above-described 2 node model with an example 

of a Node 1 perturbation. Recall that  

1
1, 1, 11 1 12 2

2
2, 1, 21 1 22 2

b ex

b ex

dx
S S F x F x

dt
dx

S S F x F x
dt

= + + +

= + + +
 (41) 

For case (i), we have to obtain values for x1 under perturbation of Node 1. We refer to the 

perturbed time-course as x1,1. In experimental situations, x1,1 would be measured directly. To 

obtain simulation data for x1,1 we use the following: 

 1,1 1 1( ) ( )x k p x k= × ,   (42) 

where x1 is obtained from the simulations without perturbations, and recall that k refers to time 

point k. For a 50% inhibition, p=0.5 and for a complete inhibition, p=0. 

For case (ii), we have to obtain the values for x2 under perturbation of Node 1, which we 

refer to as x2,1. To do this, we have to integrate the ODE for dx2/dt, but using x1,1 values, as 

follows   

2,1
2, 2, 21 1,1 22 2,1b ex

dx
S S F x F x

dt
= + + +   (43) 

Here, x2 has been replaced with x2,1 to represent x2 under perturbation of Node 1, for 

clarity.  To solve this equation, we simply use the “measured” x1,1 time course directly in the 

ODE.  
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When data are generated by simulations, there is little practical limit to temporal 

resolution, but with real data, to solve Eq. 43 one may need values for x1,1 at multiple time points 

where measurements are not available, depending on the solver being used. We therefore fit x1,1 

data to a polynomial using polyfit in MATLAB, and use the polynomial to interpolate given 

a required time point. In this work, we have used an order of 5 to fit the data as well as avoid 

overfitting, but the functional form is quite malleable so long as it captures the data trends.  

For modeling perturbations of the cell transition model, the initial value of the simulated 

data for the perturbed node was taken as zero during simulation. The estimation was performed 

in a similar way as a random 3 node network as described above.  

For modeling perturbations for the Huang Ferrell model, the parameters k3, k15 and k27 

were sequentially set as zero. The estimation was performed in a similar way as a random 3 node 

network as described above.  

Simulated Noise  

 Normally distributed white (zero mean) noise is added to simulated time courses point-

wise with 

(0, )y x N d x= + ⋅  (44) 

where x is the simulation data point, y is the noisy data point, and d represents the noise level. 

Signal-to-noise ratio of 10:1, 5:1 and 2:1 are, respectively d = 0.1, 0.2, and 0.5. Normally 

distributed samples are obtained using randn in MATLAB. While there are many different 

distributional options for modeling noise, we chose this for simplicity and to capture the effects 

generically of noisier data. We do not intend to answer questions related to whether specific 
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distributional assumptions about the form of the noise have significant impact of the methods 

performance.  

Parameter Estimation 

 For the two-node model, the entire network, with and without perturbations, can be 

explained by the following system of equations 

1
1, 1, 11 1 12 2

2
2, 2, 21 1 22 2

2,1
2, 2, 21 1,1 22 2,1

1,2
1, 1, 11 1,2 12 2,2

b ex

b ex

b ex

b ex

dx
S S F x F x

dt
dx

S S F x F x
dt
dx

S S F x F x
dt

dx
S S F x F x

dt

= + + +

= + + +

= + + +

= + + +

  (45) 

where x1,1 and x2,2 are the perturbed node values, from either simulated or experimental data. 

Eight parameters (S1,b, S1,ex, F11, F12 , S2,b, S2,ex, F21, F22) need to be estimated to fully reconstruct 

this network. We seek a set of parameters that minimizes deviation between simulated and 

measured dynamics. 

For an initial guess, the node edge parameters (Fij) are randomly sampled from a uniform 

distribution over the interval [-2,2] and the stimulus parameters (Si,ex) are sampled from a 

uniform distribution over the interval [0,2]. Using data at t=0, which corresponds to a steady-

state without Si,ex, the Si,b can be estimated during each iteration of the estimation as follows- 

1, 11 1 12 2

2, 21 1 22 2

ˆ ˆ ˆ( ( 0) ( 0))

ˆ ˆ ˆ( ( 0) ( 0))

b

b

S F x t F x t

S F x t F x t

= − = + =

= − = + =
 (46) 

 For an n-node model, this equation can be scaled accordingly to obtain each ��i,b. 
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For these initial guesses we compute the activity data using Eq. 45. The perturbation data 

xk,k is used in the perturbation equations as detailed above (Eq. 43). Let ��i, and ��i,j denote the 

predicted node activity values for non-perturbed and perturbed cases respectively. For a total of n 

nodes and Nt timepoints, the objective function is the sum of squared errors Φ 

( ) ( )22

, ,
1 1 1

ˆ ˆ( ) ( ) ( ) ( )
tN n n

i i i j i j
k i i j i

x k x k x k x k
= = = ≠

⎡ ⎤⎛ ⎞Φ = − + −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

∑ ∑ ∑∑  (47) 

Note here that we do not use data from node j, when perturbation j was used (per the 

derivation). The MATLAB function fmincon is used to minimize Φ by changing edge weights 

and stimulus terms within the range [-10,10].  

 We employ “multi-start” by running the estimation 10 times, starting from different 

randomly generated initial starting points (Raue et al., 2013). The estimated parameters and their 

respective final sum of squared errors (Φ) are saved and the estimated parameter set 

corresponding to the minimum Φ is chosen as the final parameter set. Variability of parameter 

estimates across multi-start runs is explored in Supplementary Figure S5.  

Parameter Estimation for Non-Linear Models 

For estimating the Non-Linear models, we start with a prior knowledge that S1,b  is always 

zero and S2,ex and S3,ex are always zero as well, which is directly evident from x1 initial conditions 

and x2, x3 stimulus response in the presence of a complete Node 1 perturbation. The equations for 

the non-perturbation case become as follows  
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1
1, 11 1 12 2 13 3

2
2, 21 1 22 2 23 3

3
3, 31 1 32 2 33 3

ex

b

b

dx
S F x F x F x

dt
dx

S F x F x F x
dt
dx

S F x F x F x
dt

= + + +

= + + +

= + + +

  (48) 

Since the system is at steady-state before the external stimulus, the basal production 

parameter can be estimated during each iteration of the estimation as-  

2, 21 1 22 2 23 3

3, 31 1 32 2 33 3

ˆ ˆ ˆ ˆ( ( 0) ( 0) ( 0))

ˆ ˆ ˆ ˆ( ( 0) ( 0) ( 0))

b

b

S F x t F x t F x t

S F x t F x t F x t

= − = + = + =

= − = + = + =
 (49) 

where ��i,j are the current model parameter estimates and xi (t=0) are the x values at the 

initial system steady state before the induction of external stimulus.  

Bootstrapping Simulated Data for the FFL Model Cases 

To generate multiple parameter set estimates to classify edge weights for the FFL model 

cases, we employ a bootstrapping approach. In an experimental scenario, each data point will 

have a mean and a standard deviation, and upon a distributional assumption (e.g. normal), one 

can then resample datasets to obtain measures of estimation uncertainty. We use the simulated 

data as the mean, and then vary the standard deviation as described above to generate 50 

bootstrapped datasets for each of the 16 considered models. Estimation is carried out for each of 

the 50 datasets using multi-start, which yields 50 best-fitting parameter sets for each model. 

Uncertainty analysis and classification error is based on these sets.  
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Model# F21 Gate

1 Activator AND

2 Activator AND

3 Activator AND

4 Activator AND

5 Activator OR

6 Activator OR

7 Activator OR

8 Activator OR

9 Repressor AND

10 Repressor AND

11 Repressor AND

12 Repressor AND

13 Repressor OR

14 Repressor OR

15 Repressor OR

16 Repressor OR

Table 1. Structure of each of the 16

Sarmah et al., 2022. Table 1

F31 F32

Activator Activator

Activator Repressor

Repressor Activator

Repressor Repressor

Activator Activator

Activator Repressor

Repressor Activator

Repressor Repressor

Activator Activator

Activator Repressor

Repressor Activator

Repressor Repressor

Activator Activator

Activator Repressor

Repressor Activator

Repressor Repressor

 16 non-linear models.
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Sarmah et al., 2022. Supplementary Figure 3
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Sarmah et al., 2022. Supplementary Figure 4
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Sarmah et al., 2022. Supplementary Figure 5
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Sarmah et al., 2022. Supplementary Figure 6
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Sarmah et al., 2020. Supplementary Figure 7
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