Supplementary Figures

SI Figure 1. *Coupling between the microdomains around IP*₃*Rs and VGCCs influences* Ca^{2+} *in the AZ and neurotransmission profiles in AD and WT synapses.* Transmitter release rates within 30 ms of stimulus (A) and total vesicles released (B) for different coupling configurations. Decay time of peak release rate (C) and cumulative Ca^{2+} concentration from peak to basal rate in the AZ (D) are markedly influenced by coupling.

SI Figure 2. Stronger coupling between the microdomian of IP_3Rs cluster and AZ exacerbate the release rate and enhanced PPR in AD-affected synapses but only marginally affect the bell-shaped behavior of Pr_2 as a function of Pr_1 . Release profile (A) (zoomed-in (B)) following paired-pulse stimulation protocol shows an increase in release rate by stronger coupling in the microdomian of IP_3Rs cluster and AZ in both WT and AD-affected synapses. (C) The enhanced PPR in AD-affected synapses with respect to WT synapses is exacerbated by stronger coupling. (D) Pr in response to the second pulse (Pr_2) as a function of Pr following the first pulse (Pr_1) shows that the bell-shaped response is marginally affected by the coupling strength.

SI Figure 3. *Stronger coupling between the microdomian of IP*₃*Rs cluster and AZ exacerbate the stronger depression in AD-affected synapses.* Facilitation obtained from peak rate (A) and Pr (B) shows that HC enhances the synaptic depression in AD-affected synapses. Peak release rate (C) and Pr (D) following each AP in the train under different coupling conditions. (E) Asynchronous and (H) peak synchronous release under different coupling conditions.