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ABSTRACT
The genome of a eukaryotic cell is often vulnerable to both intrinsic and extrinsic

threats due to its constant exposure to a myriad of heterogeneous compounds.

Despite the availability of innate DNA damage response pathways, some genomic

lesions trigger cells for malignant transformation. Accurate prediction of carcinogens

is an ever-challenging task due to the limited information about bona fide

(non)carcinogens. We developed Metabokiller, an ensemble classifier that accurately

recognizes carcinogens by quantitatively assessing their electrophilicity as well as

their potential to induce proliferation, oxidative stress, genomic instability, alterations

in the epigenome, and anti-apoptotic response. Concomitant with the carcinogenicity

prediction, Metabokiller is fully interpretable since it reveals the contribution of the

aforementioned biochemical properties in imparting carcinogenicity. Metabokiller

outperforms existing best-practice methods for carcinogenicity prediction. We used

Metabokiller to unravel cells’ endogenous metabolic threats by screening a large

pool of human metabolites and predicted a subset of these metabolites that could

potentially trigger malignancy in normal cells. To cross-validate Metabokiller

predictions, we performed a range of functional assays using Saccharomyces

cerevisiae and human cells with two Metabokiller-flagged human metabolites namely

4-Nitrocatechol and 3,4-Dihydroxyphenylacetic acid and observed high synergy

between Metabokiller predictions and experimental validations.
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INTRODUCTION
Eukaryotic cells encounter a large number of structurally and functionally distinct

compounds in their life cycle1–3. Such interactions often trigger dysregulation of

cellular processes, resulting in loss of cellular homeostasis1,2,4. Some of these

compounds alter the critical components of a cell, such as its genome or the

surveillance mechanisms that ensure its integrity, leading the cells to malignant

transformation4–7. These compounds are called carcinogens8. Due to the

ever-increasing incidence of cancer worldwide, carcinogens are emerging as a major

health hazard9. Notably, only 5-10% of the cancer types are heritable in nature,

whereas, the majority of the cancers are caused due to exposure to carcinogens10.

Mechanistic insights about their mode of action is still under exploration, however,

multiple studies have revealed that carcinogens also impact the genetic material

(DNA) of a cell and globally alter the key cellular machinery such as its epigenome,

transcriptome, proteome, and metabolome4,11,12. Recent reports suggest that a

chemical carcinogen could induce carcinogenicity by directly impairing the

epigenome, interfering with the DNA damage response pathway, and/or activating

the anti-apoptotic pathways4,11,12. It has also been observed that carcinogens trigger

alterations in the cellular microenvironment that lead to energy metabolic

dysfunction, thereby inducing carcinogenesis13–15. These findings suggest

complexities involved in carcinogens’ mode of action. Present approaches to zero in

on the carcinogens are contingent on expensive (up to $4 million per compound) and

time-consuming (more than two years) animal model-based approaches16,17.

Importantly, these rigorous testing protocols are still questionable for evaluating

carcinogenic threats to humans18. Strikingly, an average validation involves

harvesting of ~800 animals, raising ethical concerns16,17. While in vivo experiments

offer indisputable identification of carcinogens, Artificial Intelligence can significantly

accelerate pre-screening of the ever-expanding space of compounds that includes

new drugs, chemicals, and industrial by-products19–22. To date, numerous

computational methods have been proposed for carcinogenicity prediction. In most

cases, quantitative structure-activity relationship (QSAR) models have been used for

the classification of carcinogens and non-carcinogens21–28. Structural alert-based

expert systems have also been proposed where the carcinogenic potential of a

compound is estimated using two-dimensional structural similarities29,30. QSAR
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models offer decent predictive performance due to their ability to detect specific

functional groups that are reported or linked to carcinogenicity. Some of the

prominent functional groups include nitro compounds, aromatic amines, polycyclic

aromatic hydrocarbons, and polychlorinated biphenyls24,25,31,32. To date, all predictive

models for carcinogenicity prediction are supervisory in nature and use a limited

number of known carcinogens and non-carcinogens for model training. Moreover, a

large number of these prediction models heavily rely on genotoxicity (or

mutagenicity) alone, leading to a suboptimal predictive performance on non- or

mildly genotoxic carcinogens. Although there is a strong link between genotoxicity

and carcinogenicity, genotoxicity alone is insufficient to explain the mode of action of

all carcinogens. Some classical examples of non-genotoxic carcinogens include

1,4-dichlorobenzene (tumor promoter)33, 17β-estradiol (endocrine-modifier)34,

2,3,7,8-tetrachlorodibenzo-p-dioxin (receptor-mediator)35, and cyclosporine

(immunosuppressant)36. On the other hand, N-Nitroso-2-hydroxy morpholine is

genotoxic but non-carcinogen37,38. Given the complexity of the chemical space, linear

approaches relying either on a limited training dataset or measurement of

genotoxic/mutagenic properties fail to generalize on unseen compounds with

discordant structural properties.

With the advancement in functional assays, it has been established that a potential

carcinogen might induce cellular proliferation39,40, genomic instability, oxidative stress

response, anti-apoptotic response40, and epigenetic alterations41. Additionally, a large

number of carcinogens are known to be electrophilic in nature42–44. We developed

Metabokiller, a method that utilizes an ensemble classification approach that

harnesses the aforementioned biochemical properties. Metabokiller identified a

number of human metabolites that might possess carcinogenic properties. We

selected two previously uncharacterized human metabolites i.e. 4-Nitrocatechol and

3,4-Dihydroxyphenylacetic acid, which were predicted by Metabokiller as potential

carcinogens and experimentally validated their predicted carcinogenicity using an

array of functional assays and deep RNA sequencing.
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RESULTS
Metabokiller: Biochemical properties-driven Ensemble Model for
Carcinogenicity prediction
Cancer cells are highly proliferative, and possess altered epigenetic signatures,

elevated reactive oxygen species (ROS) levels, and activated anti-apoptotic

pathways45. Moreover, it has been observed that carcinogens possess

electrophilicity, and therefore, might pose a threat to genomic stability42,43. Unlike

other QSAR-based models for carcinogenicity prediction that largely use limited

available information about the experimentally-validated carcinogens and

non-carcinogens, Metabokiller tracks a set of well-known, carcinogen-centric

biochemical properties. Models created for the individual properties are finally

combined into an ensemble model that evaluates the query compound for these

biochemical properties and gives a consensus score indicating the carcinogenicity

potential (Figure 1a, Supplementary Figure 1a). To build Metabokiller, we first

manually curated and compiled datasets containing information about compounds

that are reported to impact cellular proliferation, genomic stability, oxidative state,

epigenetic landscape, and apoptotic response. We also compiled a dataset

comprising information about bona fide electrophiles and non-electrophiles. Each of

the six independent datasets (electrophilic properties, epigenetic modifications,

genomic instability, oxidative stress, proliferative properties, and anti-apoptotic

properties) is segregated into pro- (Class 1) or anti-/no- (Class 0) activity categories,

collectively containing 35,668 compounds (combined data annotated as MKTn)

(Figure 1b, Supplementary Table 1). Next, to gain deeper insights into the

chemical heterogeneity between the classes, we performed Principal Component

Analysis (PCA) using the Extended-connectivity fingerprints (ECFPs) as features

and observed a high degree of chemical heterogeneity in almost all the cases.

Inter-class functional group comparison revealed the selective enrichment or

de-enrichment of distinct functional groups in every dataset. Collectively, these

results indicate a higher degree of functional and chemical heterogeneity between

the classes for each of these biochemical properties (Figure 1c). We next built six

independent classification models featuring the aforementioned biochemical

properties. To obtain the best performing models, we tried three different feature

extraction methods i.e. bioactivity-based descriptors (Signaturizer library)46,
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chemistry-based molecular descriptors (Mordred software)47, and graph-based

features (DeepChem library)48. In addition to these diversified features, we also tried

multiple machine learning/deep learning-based classification algorithms for model

building such as Random Forest (RF), Multilayer Perceptron (MLP), k-Nearest

Neighbor (KNN), Support Vector Machine (SVM), Stochastic Gradient Descent

(SGD), Logistic Regression (LR), GraphConvModel (GCM), Attentive FP (AFP),

Graph Convolution Network (GCN), and Graph Attention Network (GAT)

(Supplementary Figure 1b). The generic workflow for the model building includes

random splitting of the compiled biochemical datasets into training and testing data,

feature extraction from the compound SMILES using three orthogonal methods

(Mordred, Signaturizer, and graph-based), selection of the highly variable, least

correlated, and more important features using Boruta49, handling class imbalance

using Synthetic Minority Oversampling Technique (SMOTE)50, implementation of an

array of classifiers for model building, and testing of all models on the same unseen

testing dataset. We uniformly performed these steps to build twelve different

classification models for each biochemical property and subsequently selected the

best performing and most stable models i.e. KNN (anti-apoptotic), MLP

(electrophiles), SVM (epigenetic modifications), RF (genomic instability), MLP

(oxidative stress), and RF (proliferation) (Supplementary Figure 1b,
Supplementary Figure 2a). Notably, among all the tested conditions,

Signaturizer-based models outcompeted other models. We next optimized these

base models further by performing randomized-search-based hyperparameter tuning

(Supplementary Table 4) and performed rigorous testing of the selected parameters

using bootstrapping (twenty repetitions) and 10-fold cross-validation techniques

(Figure 1d-g, Supplementary Figure 1a, Supplementary Figure 2b).

We finally built an ensemble model (Metabokiller) by leveraging the prediction

probability outputs from these six models under a unified machine learning-based

framework for carcinogenicity prediction. Methodologically, we took experimentally

validated bona fide carcinogens and non-carcinogens (annotated as MKETn)

(Supplementary Table 2) and computed their carcinogen-specific biochemical

properties using our six biochemical properties-based models. Next, using these

prediction probabilities as features, we built twenty distinct Gradient Boosting

Machines (GBM)-based models by using bootstrapping technique (Supplementary
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Figure 2c). This ensemble model uses the majority voting method for carcinogenicity

prediction of the query compounds (Figure 1a, Supplementary Figure 1a). Of note,

the MKETn dataset (# of compounds = 466) was collected from ISSCAN51 and

CCRIS52 databases and had no overlaps with MKTn, therefore, avoiding any

dataset-dependent biases (Figure 1h, Supplementary Figure 2d). Moreover,

carcinogens in this dataset harbor non-redundant, and diversified biochemical

properties as indicated by the vectors in the Eigenspace (Figure 1i). Notably, we

tested six classifiers for building an ensemble model (Metabokiller) and selected the

GBM classifier that harbored high precision and recall values, essential parameters

for carcinogenicity prediction (Supplementary Table 3).

Finally, to evaluate the performance of Metabokiller on unseen external datasets, we

first compiled a list of experimentally-validated carcinogens and non-carcinogens

from varied sources51–54 (annotated as MKTs1 and MKTs2) (Figure 1j, Supplementary
Table 2). Of note, these external datasets contained a high degree of chemical

heterogeneity as shown in the Principal Component Analysis (PCA) and in the

differential enrichment analyses of the functional groups (Supplementary Figure
2e). We next tested these datasets on Metabokiller and attained highly competitive

performance scores. Notably, the Recall of Metabokiller on the unseen datasets is

substantially high, suggesting its robustness in classifying carcinogens (true

positives) which is extremely vital for the prediction models in the healthcare domain

(Figure 1k, Supplementary Figure 2f). In summary, our results suggest that in

contrast to all the previous methods, Metabokiller provides an orthogonal means for

carcinogenicity prediction, and exhibits higher prediction performance on unseen

data. In addition to its strikingly high performance, the biochemical property-focused

Metabokiller, by the virtue of its construction, offers interpretability. Moreover, we also

implemented Local interpretable model-agnostic explanations (LIME) algorithm55 that

imparts interpretability features to Metabokiller (Figure 1l-n). Further details of the

approach can be found in the Methods section.

Metabokiller outperformed existing methods for Carcinogenicity prediction
and unfolded endogenous metabolic threats
Next, we performed a comparative analysis using Metabokiller alongside nine other

widely accepted tools or methods for carcinogenicity predictions, namely, Protox-II22
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(annotated as P-II), CarcinoPred-EL (annotated as C-RF (Random Forest), C-SVM

(Support Vector Machine), and C-XGB (XG-Boost))21, lazar (annotated as L-rt (rat),

L-ro (rodents), and L-mo (mouse))56,57, and versatile variable nearest neighbor

(vNN-r (restricted), and vNN-nr (non-restricted))58 (Figure 2b). Of note, unlike

Metabokiller, all these methods solely rely on the limited available information of

(non)carcinogens (Protox-II, lazar, and CarcinoPred-EL) and (non)mutagens (vNN)

(Supplementary Figure 3a). For comparative analysis, we first collated a list of

experimentally-validated carcinogens and non-carcinogens and used them as an

independent dataset (I.D.) (Supplementary Figure 2d, Supplementary Table 2). Of

note, I.D. does not contain any overlapping compound with datasets used for training

or testing the Metabokiller models (MKTn, MKETn, and MKTs1+2), or in the training

dataset of other models used for cross-comparison (Figure 2a). Comparative

analyses revealed the superior performance of Metabokiller as compared to all other

methods in most performance metrics (Figure 2d-h). As discussed earlier,

Metabokiller attains the highest Recall (value=0.98; max value=1) allowing the

accurate predictions of true positives (carcinogens), whereas all other methods

severely failed in this parameter (ranging from 0.00 to 0.72; max value=1) (Figure
2f). Moreover, Metabokiller also attained the highest overall accuracy level

(value=0.81; max value=1), in contrast to other methods (ranging from 0.30 to 0.70;

max value=1) (Figure 2e). Notably, except for Metabokiller, Protox-II, and vNN-nr, all

other tested methods made predictions only on a subset of query molecules, further

reflecting their deficiencies in predicting all query compounds (Figure 2c). To gain

deeper insights into the predicted results, we next calculated and compared the

number of true positive, true negative, false-positive and false-negative predictions

across all methods. We observed a substantial decline in TP/FN ratio in all other

methods in contrast to Metabokiller (Supplementary Figure 3b). These results

collectively indicate that the selected biochemical properties leveraged by

Metabokiller holistically capture the chemical and functional properties of

carcinogens, thereby, enabling their accurate classification.

We next aimed to predict the cellular metabolites that harbor carcinogenic properties

by leveraging Metabokiller. To achieve this, we performed a large-scale in silico

screening of the human metabolome. Methodologically, we projected all human

metabolites cataloged in the Human Metabolome Database (HMDB)59 on
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Metabokiller and calculated their carcinogenicity probabilities (Figure 2i). HMDB

contains information about the small molecule metabolites found in the human body,

accounting for a total of 2,17,921 metabolites. These metabolites were further

classified into four groups based on their status i.e. detected, expected, predicted,

and quantified. Interestingly, about 37.5% of the tested metabolites were predicted to

possess carcinogenic properties (probability cutoff ≥ 0.5) (Figure 2j). Since HMDB

also contains information about predicted metabolites, for the downstream analysis

we only focused on non-predicted metabolites. At stringent cutoffs of ≥ 0.7

(Supplementary Table 5) and ≥ 0.8, we obtained 5989 and 632 predicted

carcinogenic metabolites, respectively (Figure 2k). In order to determine the

interrelationship between the individual biochemical properties represented in

predicted carcinogenic metabolites, we computed and compared their prediction

probability vectors in the Eigenspace. Our results indicate that almost all the six

biochemical properties comprehensively, and non-redundantly capture the

carcinogenic feature space, indicating the robustness of our biochemical-based

assay in predicting carcinogenicity (Figure 2l). Next, to dissect the molecular

pathways in which these predicted carcinogenic metabolites are involved, we

projected them on the metabolic pathway space and observed their enrichment in

distinct metabolic pathways (Figure 2m). Moreover, to gain deeper functional

insights, we also performed over-representation analysis on the predicted

carcinogenic metabolites. Functional analysis revealed that the predicted

carcinogenic metabolites (probability cutoff ≥ 0.7) are specifically associated with

tyrosine and tryptophan metabolism, nucleotide metabolism, metabolic pathways

associated with drug metabolism, xenobiotics, oxidative stress, etc (Figure 2n).
Notably, our unbiased functional analysis also captured 38 previously known

carcinogenic metabolites. Some of the potential endogenous carcinogenic

metabolites include Melphalan60, Sulfur mustard61, 1,2-Dichloroethane62, chloral,

Thiotepa, N-nitrosodimethylamine (NDMA)63, 2,2,2-Trichloroethanol64 and others. As

an alternative case study, we also used Metabokiller and its inherent interpretability

module to decode the functional relevance of oncometabolites in tumor biology. We

first reanalyzed the recently integrated cancer metabolomics dataset65, and

performed differential enrichment analysis to identify tumor enriched or de-enriched

metabolites by computing log2 fold change. We then projected all tumor-associated

metabolites on Metabokiller (Supplementary Figure 3c) and computed a
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dataset-specific correlation between the log2 fold change (p-value < 0.05) and the

carcinogenicity prediction probabilities. In most cases, we observed a weak negative

correlation, suggesting de-enrichment of carcinogenic metabolites (Supplementary
Figure 3d). Of note, an in-depth investigation of the enriched metabolites (log2 fold

change ≥ 1 and p-value < 0.05) identified some of the already reported carcinogenic

metabolites, which have been earlier implicated as oncometabolites. These include

2-hydroxyglutarate, succinate, fumarate, N-acetylaspartate, adenylosuccinate,

polyamines (putrescine, spermidine, and spermine), etc66–70 (Supplementary Figure
3e, f). In summary, by using an orthogonal approach leveraging both the biological

and chemical properties of carcinogens, Metabokiller revealed a subset of human

metabolites that possess carcinogenic properties.

Experimental validation of Metabokiller predictions on two previously
uncharacterized potential carcinogenic metabolites
Large-scale in silico screening of human metabolomes led to the identification of

multiple previously uncharacterized carcinogenic metabolites. Next, to validate the

Metabokiller predictions, we selected two previously uncharacterized human

metabolites i.e., 4-Nitrocatechol (4NC) and 3,4-Dihydroxyphenylacetic acid (DP). Of

note, DP is a metabolic intermediate of the tyrosine metabolism pathway, whereas

4NC is involved in aminobenzoate degradation (Supplementary Figure 4a).
Importantly DP was predicted to be a non-carcinogen by all other methods except

Metabokiller, while there were conflicting results for 4NC (Supplementary Table 6).
Metabokiller predicted DP as a potential carcinogen with a prediction probability of

0.71. Moreover, evaluation of the individual models’ probabilities revealed that

carcinogenic properties of DP are due to its high genotoxic potential, its electrophilic

nature, its ability to alter the epigenetic landscape, and having pro-proliferative and

anti-apoptotic properties. Of note, in the case of oxidative stress, we observed below

threshold values (cutoff ≥ 0.5) for the DP, suggesting its inability to induce reactive

oxygen species (oxidative stress). Similar to DP, 4NC was also predicted as a

potential carcinogen with almost equivalent prediction probability (0.70), however,

unlike DP, 4NC qualifies in all the individual models, except for epigenetic alteration

property (Figure 3a). We first investigated the potential of both of these metabolites

to induce genotoxicity/genomic instability by performing a single-cell gel

electrophoresis-based comet assay, a standard method used to measure DNA
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breaks and lesions71. These experiments were performed on Saccharomyces

cerevisiae (budding yeast). Briefly, the yeast cells were exposed to these metabolites

at different concentrations, and post-exposure, the lysed cells were stained using

Giemsa dye. We used hydroxyurea (HU), a known DNA repair inhibitor with

mutagenic and genotoxic abilities as a positive control in these experiments72.

Quantitative assessment of the comet tail lengths revealed a dose-dependent

statistically significant increase in the case of 4NC and DP treatment, suggesting

their potential to induce genomic instability (Figure 3b). Since the training dataset for

genomic instability also contains compounds screened for the AMES test, we next

asked whether 4NC and DP also possess mutagenic/genotoxic properties. To

address this hypothesis, we performed mutagen testing experiments using the

high-throughput mutagenesis assay and screened for canavanine-resistant mutants.

Of note, we tested different concentrations of 4NC and DP alongside negative

vehicle controls. Our results revealed a significant increase in the frequency of

canavanine mutants in the treated conditions in contrast to the negative control as

indicated by the bean plot. These results validate the mutagenic/genotoxic properties

of both DP and 4NC (Figure 3c). Higher concentrations of certain biomolecules

often cause pleiotropic effects and indirectly impair the key cellular processes. To

test whether the concentrations of the metabolites used in mutagenesis assays

significantly alter the survival and physiology of the budding yeast, we performed a

propidium iodide-based cell viability assay, and observed no profound cell deaths in

all the tested concentrations (Supplementary Figure 4b, c). We next wondered

whether the observed genotoxicity effect of 4NC is due to the induction of oxidative

stress. Notably, 4NC, but not DP were predicted by Metabokiller to induce reactive

oxygen species (ROS) levels. We next tested these metabolites for their potential to

induce oxidative stress via a fluorometric assay using 2',7'-dichlorofluorescein

diacetate (DCFH-DA) dye. Our results suggest a selective increase in the ROS

levels in the case of 4NC, but not DP, at all tested concentrations, suggesting a

larger synergy with the prediction probabilities of Metabokiller (Figure 3d,
Supplementary Figure 4d). In order to establish a direct link between the

4NC-mediated elevated ROS levels and genotoxicity, we performed high-throughput

mutagenesis rescue experiments by using a ROS scavenger. We observed a

significant reduction in the number of canavanine resistant mutants in cells
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co-incubated with the ROS scavenger suggesting ROS-induced genotoxicity (Figure
3e).

To further evaluate the other predictions of Metabokiller, we next tested both DP and

4NC for inducing an anti-apoptotic response. For the apoptosis assay, we used a

widely adopted, yeast-based assay, in which both the wild-type yeast cells and Δfis1

knockouts were treated with the metabolites for 24 hours. We used acetic acid (AA)

treatment as a positive control since it is known to induce apoptosis or programmed

cell death in yeast. We observed induction of programmed cell death in the wild-type

yeast cell treated with DP, 4NC, and acetic acid, whereas comparatively fewer cell

deaths were observed for DP/4NC-treated Δfis1 knockout cells than acetic acid,

suggesting the activation of anti-apoptotic response by these metabolites, but not by

acetic acid (Figure 4a). Notably, these results are largely in line with the Metabokiller

predictions, further advocating the robustness of Metabokiller’s interpretability

feature. Collectively, these results highlight the utility of Metabokiller in deciphering

the putative mechanism of carcinogenicity induction by 4NC by virtue of its

interpretability module.

Since Metabokiller predicted both of these human metabolites as potential

carcinogens, we investigated whether the mutations caused by 4NC and DP can

alter the genes associated with cell cycle regulation, DNA repair response pathways,

or other pathways related to carcinogenesis. We performed two consecutive

selection procedures. In the first selection, we selected canavanine resistant mutants

which in turn confirms the mutagenic effect of the tested metabolites. These mutants

(n=167) were subjected to the second selection to assess alterations in the growth

assay (Figure 4b). After obtaining the growth profiles of these mutants as well as a

few randomly selected wild-type clones (omitted for selection 1), we performed

hierarchical clustering based on their growth kinetics. Interestingly, we observed

three clusters with yeast colonies displaying (a) accelerated growth (Group 1) (b)

similar growth patterns as that of wild-type yeast (Group 2), and (c) decelerated

growth (Group 3) (Figure 4c, d). These results indicate that both 4NC and DP cause

random mutagenesis and therefore result in distinct phenotypes (growth kinetics). In

summary, all the aforementioned results collectively advocate for the accurate

prediction by Metabokiller.
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Metabokiller predicted carcinogenic metabolites undergo mutation of
cancer-associated genes and trigger malignancy
To investigate the impaired molecular mechanisms triggered by DP and 4NC

treatment, we performed paired-end deep RNA sequencing on wild-type and mutant

yeast cells in biological triplicates. Notably, only those mutants were selected that

were canavanine-resistant (first selection) and displayed accelerated growth kinetics

(second selection), reminiscent of cancer cells (Figure 5a). Differential gene

expression analysis (Figure 5b, c, Supplementary Figure 5 a-f) on the normalized

read counts identified a large number of downregulated genes, both in the case of

DP and 4NC with respect to wild-type controls (Figure 5d). No overlap was

observed in the upregulated genes, however, 35 downregulated genes were

common between the conditions, suggesting differences in their mode of action at

the molecular level (Figure 5e). We next attempted to decipher the impacted

functional pathways impaired in these mutants using Gene Ontology Slim Term

Mapper. Functional analysis of impaired genes revealed their involvement in DNA

repair (RAD59 and DDR48), chromatin organization (ESC8 and RLF2), DNA

recombination (NDJ1, RAD59, and DDR48), and cell cycle (YPR015C, and HUG1).

In addition to these, genes involved in cellular stress response were altered in both

cases (Figure 5f, Supplementary Figure 5g, Supplementary Table 8). Recent

reports showed the possibility of inferring insertion-deletion (indel) mutations using

RNA sequencing73. We next tracked indel mutations in wild-type and mutants using

the raw FASTQ files. Mutational analysis identified specific indel mutations in the

CAN1 gene, validating the first selection procedure (Supplementary Figure 5h).
Using conservative filtering criteria (supporting read counts ≥ 5), we identified

mutations in multiple protein-coding genes that are known to be involved in

regulating DNA repair pathways as well as the cell cycle (Figure 5g, h). These

independent analyses further support and explain the phenotypic response of the

mutants (both 4NC and DP). Finally, we tested the carcinogenic effects of DP and

4NC on BEAS-2B normal human epithelial cells using soft-agar assay, a hallmark

functional test for detecting malignant transformation. Our results clearly

demonstrate that both 4NC and DP can induce malignant transformation in these

cells, which collectively reinforce their carcinogenic potential (Figure 5i-k). Taken

together, a combination of transcriptome and mutational analysis, coupled with a
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malignant transformation assay strongly suggests the carcinogenic role of 4NC and

DP via genotoxicity.
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DISCUSSION
The integrity of a cellular genome is always vulnerable to both intrinsic and extrinsic

factors74,75. A large degree of effort is ongoing to delineate the compositional

chemistries of the exogenous compounds that possess a direct threat to genomic

fidelity74. However, recent evidence suggests an equal degree of threat from the

endogenous metabolites76,77. Irrespective of the source, the induced DNA alterations

have been implicated in cancer, as well as aging78,79. Therefore, accurate evaluation

of the carcinogenic potential of any compound is immensely important and plays a

vital role in decreasing the cancer burden. Despite the availability of a stringent

mandate for carcinogenicity testing, many of the Food and Drug Administration

(FDA) approved drugs have been identified as carcinogens and therefore later

withdrawn from the market80. As a precautionary measure, stringent protocols have

been set up to test the proposed drugs for their carcinogenicity potential. The QSAR

models have been used for the computation-assisted pre-screening for

carcinogenicity21,23,24,31,32. Though multiple computational approaches have been

used for the carcinogenicity predictions, unfortunately, they largely fall short on

unseen data, primarily due to the limited amount of experimentally-validated data

available for model training. In this work, we have used a novel approach where,

unlike utilizing limited information on bona fide carcinogens and non-carcinogens, we

leverage biochemical properties associated with known carcinogens. Our method,

Metabokiller, outperformed most of the recent and widely used methods for

carcinogenicity prediction. Moreover, in addition to the higher prediction accuracy,

Metabokiller also possesses features of explainable artificial intelligence, since it

provides the individual contribution of all the six-core models detailing the

biochemical properties of carcinogenicity. We used Metabokiller to perform a

large-scale computational screening of human metabolites for their carcinogenic

potential. We identified a large number of previously known and unknown human

metabolites with carcinogenicity potential. Our functional analysis of

carcinogen-predicted metabolites on pathway space revealed selective enrichment

of tyrosine and tryptophan metabolism, nucleotide metabolism, metabolic pathways

associated with drug metabolism, xenobiotics, oxidative stress, etc. Further,

functional over-representation analysis of predicted carcinogenic metabolites

identified 38 previously known carcinogenic metabolites. These results strongly

advocate for the robustness of biochemical features in capturing carcinogenicity. Our
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in-depth investigation of tumor-associated metabolites leads to the discovery of a

large number of previously uncharacterized oncometabolites. Of note, in addition to

these, Metabokiller also flagged well-characterized oncometabolites such as

2-hydroxyglutarate69, succinate, fumarate81,82, adenylosuccinate, and polyamines

(putrescine, spermidine, and spermine)66. Fumarate is a metabolic intermediate of

the Krebs cycle. Functional studies involving loss of function of fumarate hydratase

(FH) enzyme suggest that the accumulation of fumarate triggers renal cell

cancer81,82. Moreover, similar to fumarate, both succinate and adenylosuccinate are

also linked to the same pathway. Loss of function studies involving succinate

dehydrogenase (SDH), a critical enzyme that regulates cellular succinate levels

suggest that accumulation of succinate triggers cancer, and tumor repopulation post

radio/chemotherapy81–83. Accumulation of 2-hydroxyglutarate rewires the cancer cell

metabolism and triggers oxidative stress. In addition to its direct interference with the

metabolism, it also acts as a modulator of chromatin remodeling enzymes

(2-oxoglutarate-dependent dioxygenases), hypoxia-inducible factor (HIF), and

mammalian target of rapamycin (mTOR) pathways leading to carcinogenesis69.

While the functional characterization of oncometabolites provides an orthogonal

dimension to uncovering tumor biology, to date, only a handful of metabolites have

been characterized as oncometabolites. Metabokiller offers a unique approach to

uncovering oncometabolites and also provides a biochemical property-driven

explanation for their mode of action.

Despite possessing multiple advantages and immunity towards limited training data

for carcinogenicity prediction, Metabokiller also possesses several limitations. First, it

has been known that carcinogens also possess other biological properties such as

induction of chronic inflammation, inhibition of senescence, cell transformation,

changes in growth factors, energetics, signaling pathways related to cellular

replication, or cell cycle control, angiogenesis, and are immunosuppressive in

nature84. The present ensemble model does not take into account these properties.

This is mainly due to the paucity of these compounds in the available literature.

Second, an inert compound can also harbor carcinogenic properties after being

processed by the cellular enzymes43. These assumptions are also not taken into

consideration in the present ensemble model of Metabokiller. Third, the

carcinogenicity of certain molecules is dose-dependent, however, Metabokiller does
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not factor in the dosage information for predictions. Fourth, unlike other proposed

toxicogenomic-based prediction models, Metabokiller does not account for tissue

specificity and merely relies on the carcinogenicity status85,86. Lastly, the present

version of Metabokiller only supports carcinogenicity prediction and does not allow

assessment of the toxicity properties such as oral toxicity, liver toxicity, etc.

Irrespective of these aforementioned limitations, Metabokiller significantly satisfies

the urgent need for a robust, reliable, and accurate alternative for carcinogenicity

prediction. Furthermore, the interpretability module of Metabokiller provides a

biochemical enriched explanation for each prediction (Figure 6). The high Recall

value of Metabokiller, an essential feature for any health-related prediction model,

allows accurate identification of carcinogens (true positives). Large-scale screening

of the human metabolome by Metabokiller provides high confidence predicted

carcinogenic metabolites and opens a new avenue in functional metabolomics and

may contribute to unfolding the role of cancer-associated metabolites in disease

progression.
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MATERIALS AND METHODS
Data compilation
To build an Ensemble model (Metabokiller) for carcinogenicity prediction, we opted to

utilize both the biological and chemical properties associated with carcinogens.

These include the potential to induce a proliferative response, cellular oxidative

stress, epigenetic alterations, genomic instability, and anti-apoptotic properties.

Since carcinogens attack DNA by virtue of their electrophilic nature12,44, we,

therefore, selected electrophilic potential as one of the properties. The training data

for the six independent models were compiled from the literature or numerous

databases in three consecutive steps (combined training data is annotated as MKTn).

Of note, data curation, filtering, and cross-validation were achieved manually to

ensure its authenticity. In the first phase, we compiled data from all the available

literature, databases, and web servers. In the second phase, we assimilated both the

pro- and anti- or no-activity compounds for each of the six models (Supplementary
Table 1). Finally, in the third phase, we filtered, cross-validated, thoroughly

rechecked, and removed the contradictory entries. Post these stringent screening

steps, we gathered a total of 12957 positive (Class 1) and 22711 negative (Class 0)

compounds. In summary, we obtained 12127 compounds for genomic instability

model (class 0 = 8931 and class 1 = 3196), 1714 compounds for electrophilic

property model (class 0 = 746 and class 1 = 968), 15145 compounds for epigenetic

modification model (class 0 = 7576 and class 1 = 7569), 798 compounds for

anti-apoptotic property model (class 0 = 525 and class 1 = 273), 225 compounds for

proliferative property model (class 0 = 123 and class 1 = 102) and 5659 compounds

for oxidative stress model (class 0 = 4810 and class 1 = 849). A detailed description

of all compounds in the respective datasets is mentioned in Supplementary Table 1.

In addition to the aforementioned datasets, we also gathered a list of

experimentally-validated carcinogens and non-carcinogens from multiple sources

and subsequently annotated them as Metabokiller External Training data (MKETn),

Metabokiller Testing data 1 (MKTs1), Metabokiller Testing data 2 (MKTs2), and

Independent Dataset (I.D.). Detailed information about the compounds in these

datasets is mentioned in Supplementary Table 2. Simplified molecular-input

line-entry system (SMILES) were extracted for all the molecules using PubChem

Identifier Exchange Service
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(https://pubchem.ncbi.nlm.nih.gov/idexchange/idexchange-help.html), which were

further converted into canonical SMILES using OpenBabel87.

Model Building
The core of the Metabokiller ensemble model relies on the six independent predictive

models that collectively define the biochemical space of carcinogens. Each model

uses independent training data that is further segregated into two classes based on

their known activity i.e. class 0: anti- or no-activity and class: 1 pro-activity. For all the

models, the training dataset was evaluated for class imbalance, and subsequently,

the upsampling/downsampling techniques were used to counteract this bias. We

initially tested three different feature extraction methods i.e. bioactivity-based

descriptors (Signaturizer library), chemistry-based molecular descriptors (Mordred

software), and Graph-based (DeepChem library). We also tested multiple

classification algorithms i.e., Random Forest (RF), Multilayer perceptron (MLP),

k-Nearest Neighbor (KNN), Support Vector Machine (SVM), Stochastic Gradient

Descent (SGD), Logistic Regression (LR), GraphConvModel (GCM), Attentive FP,

Graph Convolution Network (GCN), and Graph Attention Network (GAT) for model

building. Notably, for feature selection, we used Boruta, a feature selection algorithm,

and for down/upsampling, Synthetic Minority Oversampling Technique (SMOTE) was

used88. Briefly, we tried all the aforementioned combinations and built twelve distinct

models for each of the biochemical properties using the default parameters. We next

selected the best performing models for each of the biochemical properties and

subsequently performed the random-grid-search hyperparameter tuning to obtain the

best and most stable hyperparameters for model building. We finally trained the

models with the best hyperparameters and rigorously evaluated their performance by

using both the bootstrapping (20 folds) as well as 10-fold cross-validation

techniques. A dataset comprising a list of bona fide experimentally-validated

carcinogens/non-carcinogens (MKETn) was used to build the ensemble model. For

this, we projected the MKETn dataset on all the six biochemical models and obtained

their prediction probabilities for pro-activity. We next used these probability values as

features to build the ensemble model. Of note, we have selected Gradient Boosting

Machine-based model since it outperformed other models in prediction performance.

We further improved its performance by performing random-grid-hyperparameter

tuning (Supplementary Table 4). Finally, to negate the impact of data bias, we
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selected twenty distinct GBM-based models generated using Bootstrapping and

implemented a majority voting-based method for carcinogenicity prediction. To

provide quantitative means for model interpretability, we have also implemented

Local Interpretable Model-agnostic Explanations (LIME).

Strains
The BY4741 strain (MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0) of Saccharomyces

cerevisiae was used in all the experiments. For the Apoptosis assay, Δfis1 (MATa

fis1::kanMX4 Δhis3Δ1 leu2Δ0 met15Δ0 ura3Δ0) knockout yeast strains were used.

Unless mentioned, the yeast is grown at 30°C at 200 Revolutions Per Minute (rpm)

in the Yeast Extract–Peptone–Dextrose (YPD) (1% Yeast extract, 2% Peptone, 2%

Dextrose). 1.5% of Agar is additionally added to YPD to prepare plates.

Comet Assay
Yeast secondary culture with an estimated optical density of 0.6-0.7 (OD600) was

used for the comet assay. Briefly, yeast in the secondary culture was exposed to

different concentrations of 4-Nitrocatechol (4NC) (N15553, Sigma-Aldrich), and

3,4-Dihydroxyphenylacetic acid (DP) (11569, Sigma-Aldrich) at the final

concentrations of 0.1 μM, 1 μM, 10 μM, and 100 μM. Moreover, hydroxyurea and

solvent alone were used as positive and negative controls, respectively. The yeast

cells were grown in the presence of metabolite/compounds for 90 minutes at 30°C at

200 rpm. Post-treatment, an equal number of cells were taken from each condition

and pelleted down using centrifugation. Pellets were washed twice with pre-cooled

1X Phosphate-buffered saline (PBS) to remove media traces. The pellet was

resuspended in 0.3% w/v agarose prepared in S-Buffer (1 M sorbitol, 25 mM

KH2PO4, pH 6.5). Next 40 units of zymolyase enzyme (L2524, Sigma-Aldrich) was

added to degrade the cell wall. Finally, 80 μL of this solution was spread onto glass

slides pre-coated with 0.8% w/v agarose. Slides were incubated at 30°C for 30 min

for cell wall degradation. Finally, the slides were incubated in the freshly prepared

lysis solution (30 mM NaOH, 1 M NaCl, 0.05% w/v SDS, 50 mM EDTA, 10 mM

Tris–HCl, pH 10) for 2 hours. The slides were washed three times for 20 min each

with electrophoresis buffer (30 mM NaOH, 10 mM EDTA, 10 mM Tris–HCl, pH 10) to

remove the lysis solution. Next, an electrophoresis step was performed in the

electrophoresis buffer for 15 min at 70 mV/cm. Post electrophoresis, the slides were
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incubated in the neutralization buffer (10 mM Tris–HCl, pH 7.4) for 10 mins, followed

by 10 minutes of incubation in 76% and then 96% ethanol. After this, Giemsa stain

was added for 20 min to stain the DNA. The slides were then washed thrice with 1x

PBST (0.1% Tween20) for 10 min each. The comets were visualized in a brightfield

microscope. Micrographs were taken from random sections of the slides.

Approximately 500 cells were chosen randomly from each condition and the comet

tail length was measured using ImageJ software (https://imagej.nih.gov/).

Mutagenesis Assay
Yeast was grown overnight at 30°C at 200 rpm in YPD media. An equal number of

cells were inoculated (measured using OD600) into 96 well plates containing 100 μL

of YPD media along with respective metabolites (4NC and DP) at concentrations of

0.1 μM, 1 μM, and 10 μM each. The solvent alone was used as a negative control. A

total of 52 biological replicates were set up for each condition. The 96 well plates

were covered with a Breathe-Easy® sealing membrane (Z380059-1PAK,

Sigma-Aldrich) to prevent media evaporation. Plates were incubated at 30°C at 200

rpm and the media was replenished with fresh media 24 hours post-incubation with

the aforementioned metabolites or vehicles. Post 48 hours of incubation, cell count

was estimated using optical density (OD600) measurements which were further used

to normalize the CanR mutant frequencies. Subsequently, a Spot assay was

performed on Synthetic Complete Medium (2% dextrose, 6.7 g/L yeast nitrogen base

without amino acids, 20 mg/L histidine, 120 mg/L leucine, 20 mg/L methionine, 20

mg/L uracil, 20 mg/L adenine, 2% agar) containing canavanine (60 μg/mL) agar

plates. The plates were incubated at 30°C for 2-3 days, the number of colonies were

counted, and subsequently normalized using the OD600 measurement values from

the aforementioned steps. The normalized mutant frequencies were plotted using R

Programming. A similar setup was used for the rescue experiments, where the cells

were grown along with 4NC at a final concentration of 10 μM, in the presence and

absence of a ROS scavenger, i.e. 50 μM L-Ascorbic acid.

Cell Death Assay
Propidium Iodide staining was used for the quantitative estimation of the cell deaths

in the treated and untreated conditions. Cells were grown overnight at 30°C at 200

rpm in YPD media. Using this primary culture as inoculum that ensures equal cell
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counts, cells were grown in 96 well deep plates in the presence of respective

metabolites (4NC and DP) at concentrations of 0.1 μM, 1 μM, and 10 μM each for 12

hours with 8 biological replicates. Propidium iodide staining was performed on

aliquots after nine and twelve hours of incubation in 96 well fluorescence plates.

Heat-killed cells were used as a positive control. Propidium iodide (11195, SRL) was

added at a final concentration of 5 μg/mL and incubated in the dark for 15 minutes.

The fluorescence was measured using Biotek Synergy HTX multi-mode reader at

excitation and emission wavelengths of 530/25 nm and 590/25 nm, respectively.

Apoptosis Assay
Wild type BY4741 and Δfis1 (MATa fis1::kanMX4 Δhis3Δ1 leu2Δ0 met15Δ0 ura3Δ0)

knockout yeast strains were grown overnight at 30°C at 200 rpm in YPD media. An

equal number of both wild-type and Δfis1 cells (optimized using OD600) were

inoculated into multiple 96 well plates containing 100 μL of YPD media along with

respective metabolites (4NC and DP) at a concentration of 10 μM for 24 hours with 8

biological replicates. Cells treated with 199 mM acetic acid for 200 min were used as

a positive control (AA), and untreated cells as negative control (NC). Post-incubation,

serial dilutions of 1:10 were prepared in distilled water, and a Spot assay was

performed on Synthetic Complete Medium agar plates. The plates were incubated at

30°C for 2-3 days, the number of colonies werevcounted, and subsequently, Colony

Forming Units per mL of media (CFU/mL) were calculated using the formula89:

𝐶𝐹𝑈/𝑚𝐿 =  # 𝑜𝑓 𝑐𝑜𝑙𝑜𝑛𝑖𝑒𝑠 × 𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟
𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑐𝑢𝑙𝑡𝑢𝑟𝑒 𝑝𝑙𝑎𝑡𝑒𝑑

Reactive Oxygen Species Quantification Assay
2’-7’dichlorofluorescein diacetate (DCFH-DA) staining was used to measure the

levels of intracellular reactive oxygen species. Yeast was grown overnight at 30°C at

200 rpm in YPD media. Using this primary culture as inoculum that ensures equal

cell counts, cells were grown in 96 well deep plates in the presence of respective

metabolites (4NC and DP) at concentrations of 0.1 μM, 1 μM, and 10 μM each for 12

hours with 8 biological replicates. DCFH-DA fluorescence staining was performed

after nine and twelve hours of incubation in a 96-well fluorescence plate with 10 mM

hydrogen peroxide as a positive control. DCFH-DA (85048, SRL) was added at a

final concentration of 10 μM in each well. The plate was incubated in the dark for 30

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 23, 2022. ; https://doi.org/10.1101/2021.11.20.469412doi: bioRxiv preprint 

https://paperpile.com/c/fmT9SG/aTWeD
https://doi.org/10.1101/2021.11.20.469412
http://creativecommons.org/licenses/by-nc-nd/4.0/


minutes. The fluorescence was measured using Biotek Synergy HTX multi-mode at

excitation and emission wavelengths of 485/20 nm and 525/20 nm, respectively.

Selection of Canavanine-resistant mutants with Accelerated Cell Division
Yeast (BY4741) was grown at 30°C at 200 rpm in YPD media. Using this primary

culture as inoculum, cells were grown in MCTs in the presence of respective

metabolites (4NC and DP) at concentrations of 0.1 μM, 1 μM, and 10 μM each for 72

hours with 4 biological replicates, alongside negative control. The culture was

centrifuged and resuspended in fresh media after every 24 hours. After 72 hours, the

cells were plated onto Synthetic Complete Medium containing canavanine (30

μg/mL) agar plates to screen for canavanine-resistant colonies. This is referred to as

the first round of selection. The canavanine-resistant colonies from all the conditions

were grown in YPD media in the presence of canavanine but without metabolites,

and a second selection was performed using the growth assay. RNA was isolated

from the canavanine resistant mutants harboring accelerated growth, and post

quality check was used for library preparation and sequencing.

RNA isolation
Cells (BY4741) were grown at 30°C at 200 rpm in Synthetic Complete Medium

containing canavanine (30 μg/mL) in biological triplicates and harvested and

resuspended in 500 μL of 1x PBS. Zymolyase (40 units) treatment was performed by

incubating for 30 min at 30°C. Post zymolyase treatment, cells were lysed by

mechanical breakdown using the glass beads. The lysed cell suspension was

transferred to fresh MCT, centrifuged and the pellet was resuspended in 500 μL of

TRIzol™ reagent (15596026, Ambion life technologies). 500 μL of chilled chloroform

was added to each tube, followed by 15 min of mechanical breakdown and 5

minutes of incubation at room temperature. Samples containing TRIzol™ and

chloroform were centrifuged at 12000 g for 15 minutes at 4°C. The upper aqueous

layer was carefully transferred to a fresh MCT containing 250 μL of prechilled

isopropanol. 1 μL of glycogen was also added to accelerate RNA precipitation,

followed by transient incubation for 30 minutes at -80°C. Nucleic acid was pelleted

down by centrifugation at 12000 g for 15 min at 4°C. Pellet was washed with 70%

ethanol at 5000 g for 5 minutes at 4°C and air dried, and subsequently resuspended

in RNase-free water. To remove DNA contamination, samples were treated with
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DNase at 37°C for 15 minutes. DNase inactivation was performed by heating the

samples at 65°C with 5 mM EDTA for 10 minutes. This purified RNA was

resuspended in RNase-free water for downstream processing.

RNA Sequencing Analysis
Post sequencing the quality control check was performed using MultiFastQ. The

paired-end sequencing read files were mapped to the yeast reference genome

(ENSEMBL; R64-1-1; GCA_000146045.2) using the align function of the Rsubread

package (v2.6.4)73, and the aligned BAM files were generated. Trimming of reads

was performed from both ends prior to mapping. We used the inbuilt function of

Rsubread to detect short indel (Insertions and Deletions) mutations and the resulting

information was stored in the Variant Call Format (VCF) format. An expression matrix

containing the raw read counts for each sample (Supplementary Table 7) was

obtained using the featureCounts function. Read count matrix was normalized and

analyzed using the RUVg function of the RUVSeq package (v1.24.0)90 to remove

unwanted variation from RNA-Seq data. Differentially expressed genes were

computed using the DESeq2 package (v1.30.1)91, with a fold change cutoff of 1.5,

and a p-value significance of < 0.05. Functional Gene Ontology analysis was

performed using the GO Slim Mapper tool of Saccharomyces Genome Database

(SGD) (https://www.yeastgenome.org/goSlimMapper) and Metascape

(https://metascape.org/gp/index.html).

Mutation Analysis
Variant Call Format (VCF) files containing indel mutation information were generated

using the Rsubread package as discussed above. We next merged the variant

information from three replicates and a single VCF file was generated using the

VCFtools (v0.1.16-1)92. For the downstream analysis, we only selected those

mutations that carry the number of supporting reads for variants (SR) ≥ 5. Cross

comparison of the VCF files from treatment groups of 4NC and DP was performed

with that of negative control (untreated). Finally, we only selected those variants that

were unique to each treatment condition. The mutations were segregated into

frameshift (insertion or deletion) or substitution using the SIFT 4G Annotator using

R64 (sacCer3) as a reference genome93.
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Soft Agar Assay
BEAS-2B cells were cultured in Dulbecco's Modified Eagle Medium (DMEM) media

supplemented with 10% FBS and 1% Penicillin-Streptomycin at 37°C humidified

incubator with 5% CO2. For soft agar assay, BEAS-2B cell suspension of 1×104

cells/well was added to the top agar solution at a final concentration of 0.3% and

final volume of 0.5 mL per well and suspended on the top of solidified 0.5% agar

base. The overnight culture was treated with 10 µM DP or 10 µM 4NC. The cells

were supplemented with DMEM complete media twice until colonies appeared after

3 weeks. Colonies were stained with 0.1% crystal violet in 10% ethanol and imaged

using a 4x lens and bright-field filter in the light microscope.

Statistical Analysis
All statistical analyses were performed using either the Past 4 software or

R-Programming. For comparison of the medians of the two distributions

(non-parametric), Mann–Whitney U test was used, while two-sample Student’s t-test

was used for comparing the means (pairwise comparisons). One sample Student’s

t-test was used to measure the significance of the mutagenesis and its rescue

experiments. The p-value cutoff used in this study is 0.05. *, **, ***, and **** refer to

p-values <0.05, <0.01, <0.001, and <0.0001, respectively.
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FIGURE LEGENDS
Figure 1: Metabokiller, an explainable artificial intelligence-driven ensemble
model for carcinogenicity prediction.
(a) Schematic representation depicting the key steps involved in building

Metabokiller. Of note, six independent classification models that form the core of

Metabokiller prediction engines are highlighted in different colors. Prediction

probabilities from these six models are used as carcinogen-specific biochemical

features for ensemble models, and the final prediction of the query molecule is

performed based on the majority voting method. Metabokiller offers two main

modules, i.e. prediction and interpretability. (b) Bar graph depicting the number of

compounds used in the training datasets of the six indicated biochemical models. Of

note, turquoise and indian-red bars indicate the number of compounds assigned as

anti-/no- and pro- activities in the indicated conditions, respectively. (c) Principal

Component Analysis revealing the chemical heterogeneity between the two classes

(pro- and anti-/no-) of the indicated datasets. Heatmaps at the bottom depicting the

relative enrichment of the indicated functional groups in both classes. (d) Box plot

depicting the AUCROC values of the bootstrapping (20 repetitions) of the indicated

models. (e) Box plot depicting the AUCROC values of the 10-fold cross-validation of

the indicated models. (f) Box plot depicting the accuracy values of the 10-fold

cross-validation of the indicated models. (g) AUC (Area under the curve) plots

representing the performance of the best models obtained using 10-fold

cross-validation of the indicated best models. (h) Venn diagram depicting no

overlaps between the compounds constituting six independent biochemical

property-based models (annotated as MKTn), training dataset used to build the

Metabokiller ensemble model (annotated as MKETn), and the external testing data

containing information about experimentally-validated carcinogens and

non-carcinogens (annotated as MKTs1+2). (i) Variables factor map (PCA) depicting the

direction and contribution of all the six variables (individual models) representing the

experimentally-validated carcinogens (MKETn) in the Eigenspace. (j) Schematic

representation of the projection of the external testing datasets containing

information about experimentally-validated carcinogens and non-carcinogens

(annotated as MKTs1 and MKTs2) on Metabokiller. (k) Bar graph depicting the AUCROC

values of the Metabokiller performance on external testing datasets annotated as

MKTs1, MKTs2, and MKTs1+2). (l) Chemical structure of Phenesterin, a known chemical
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carcinogen. (m) Bar graph depicting the prediction probabilities of the indicated

models for Phenesterin. (n) Bar graph representing the results of Local interpretable

model-agnostic explanations (LIME), an interpretability module of Metabokiller,

highlighting the key biochemical properties of Phenesterin responsible for

carcinogenicity.

Figure 2: Metabokiller predicted human metabolites possessing carcinogenic
potential, and outperformed other prediction methods.
(a) Dataset used to evaluate and cross-compare the performance of Metabokiller

with widely accepted models/tools contains no compound overlaps, represented

using Venn Diagram. The datasets used to build the six independent biochemical

properties-based models are annotated as MKTn, the training dataset used to build

the Metabokiller ensemble model is annotated as MKETn, the external testing data

containing information about experimentally-validated carcinogens and

non-carcinogens is annotated as MKTs1+2, and the dataset selected for the cross

model performance evaluation is annotated as Independent Dataset (I.D.). (b)
Diagrammatic representation of the experimental workflow to cross-compare the

performance of Metabokiller alongside indicated methods for carcinogenicity

predictions. These methods include Protox-II (annotated as P-II), CarcinoPred-EL

(annotated as C-RF (Random Forest), C-SVM (Support Vector Machine), and

C-XGB (XG-Boost)), lazar (annotated as L-rt (rat), L-ro (rodents), and L-mo

(mouse)), and versatile variable nearest neighbor (vNN-r (restricted) and vNN-nr

(non-restricted)). (c) Percentage bar graph depicting the number of compounds

predicted by the indicated methods/models. (d) Bar graph depicting the AUCROC

values of the indicated models on Independent Dataset (I.D.). (e) Bar graph

depicting the Accuracy values of the indicated models on Independent Dataset (I.D.).

(f) Bar graph depicting the Recall values of the indicated models on Independent

Dataset (I.D.). (g) Bar graph depicting the F1 score of the indicated models on

Independent Dataset (I.D.). (h) Bar graph depicting the Precision values of the

indicated models on Independent Dataset (I.D.). (i) Schematic representation

depicting the testing of Human Metabolome Database (HMDB) metabolites on

Metabokiller. (j) Overlapping density plots depicting the distribution of prediction

probabilities of human metabolites obtained using Metabokiller. Of note, metabolites

predicted as carcinogens and non-carcinogens are represented in red and green
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color, respectively. Pie charts at the top represent the distribution of metabolites

based on their annotated status in HMDB i.e., detected, expected, predicted, and

quantified. (k) Venn diagram depicting the number of predicted-carcinogenic human

metabolites, further segregated based on their prediction probability cutoffs. (l)
Variables factor map (PCA) depicting the direction and contribution of all the six

variables (individual models) representing the predicted carcinogenic metabolites

from HMDB in the Eigenspace (probability cutoff ≥ 0.5). (m) Projection of the

predicted carcinogens (indicated as red dots; probability cutoff ≥ 0.7) on the human

metabolic space, achieved using iPath Web Server94. (j) Circle packing chart

representing metabolic pathway enrichment results of the predicted carcinogenic

metabolites (probability cutoff ≥ 0.7) using Metabokiller. Of note, the pathway

information is gathered from The Edinburgh Human Metabolic Network (EHMN), The

Integrating Network Objects with Hierarchies (INOH), Reactome, Kyoto

Encyclopedia of Genes and Genomes (KEGG), and Small Molecule Pathway

Database (SMPDB), and the analysis was performed using Integrated Molecular

Pathway Level Analysis (IMPaLA)95.

Figure 3: High-throughput assays experimentally validate the Metabokiller
predictions
(a) Bar graph denoting the prediction probabilities of the six biochemical properties

and the ensemble model (Metabokiller) for the two previously uncharacterized

human metabolites i.e. 4-Nitrocatechol (4NC), and 3,4-Dihydroxyphenylacetic acid

(DP). Of note, the chemical structures of the compounds are represented on the top.

(b) Representative micrographs on the left, depicting the results of the comet assay

performed on yeast cells in the indicated conditions. Of note, NC and hydroxyurea

(HU) represent the negative and positive controls, respectively. Violin plots on the

right, depicting the comparative distribution of the comet tail length of ~500 randomly

selected cells per condition. Four different concentrations of 4NC and DP were used.

Mann–Whitney U test was used to compute statistical significance between the test

conditions and the negative control. (c) Schematic diagram on the left depicting the

experimental workflow in a 96 well plate format for testing the mutagenic potential of

the 4NC and DP. Of note, three different concentrations of 4NC and DP were used,

and the mutant counts were normalized using Optical Density (O.D.) values at 600

nm. Representative micrographs in the middle, depicting the mutagenic effect of
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4NC and DP in conferring canavanine resistance mutations, identified using spot

assay (# of biological replicate = 52). Bean plot on the right depicting the distribution

and mean of the normalized frequency counts of the canavanine resistant mutants,

represented as fold change with respect to NC in the indicated conditions. The

pairwise one-sample Student's t-test was used to compute statistical significance

between the test conditions and the negative control. (d) Schematic representation

of the experimental design used in the quantitative estimation of reactive oxygen

species (ROS) using the DCFH-DA dye-based assay. Box plot at the bottom

depicting the ROS levels measured using DCFH-DA dye-based assay in the

indicated conditions. Mann–Whitney U test was used to compute statistical

significance between the test conditions and the negative control (NC). Notably,

hydrogen peroxide (H2O2) treated yeast cells were used as a positive control. (e)
Schematic representation of the experimental design of the high-throughput

mutagenesis rescue experiment. Of note, 10 µM concentration of 4NC was used,

with 50 µM L-ascorbic acid as ROS scavenger. Representative micrographs in the

middle depicting the rescue of mutagenic effects of 4NC in the presence of ROS

scavenger (# of biological replicate = 56). Bean plot on the right side depicting the

distribution and mean of the normalized frequency counts of the canavanine

resistant mutants, represented as fold change with respect to NC in the indicated

conditions. The pairwise one-sample and two-sample Student's t-tests were used to

compute statistical significance between NC vs 4NC and 4NC vs 4NC+ROS

scavenger, respectively.

Figure 4: 4-Nitrocatechol (4NC) and 3,4-Dihydroxyphenylacetic acid (DP)
trigger an anti-apoptotic response in yeast
(a) Schematic representation of the experimental design of the apoptosis assay. Of

note, 10 µM concentration of 4NC and DP was used. Representative micrographs in

the middle depicting the DP and 4NC induced anti-apoptotic response in yeast.

Untreated cells were taken as negative control (NC), while cells treated with 199 mM

acetic acid (AA) for 200 min were used as a positive control. Box plot on the right

highlighting the distribution of colony-forming units per mL after treatment of wild

type (WT) and Δfis1 yeast with vehicle (NC), acetic acid (AA),

3,4-Dihydroxyphenylacetic acid (DP), and 4-Nitrocatechol (4NC). Mann Whitney U

test was used to compute the statistical significance with a p-value cutoff of < 0.05.
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(b) Diagrammatic representation of the experimental design used for the selection of

gain of function mutants possessing accelerated cell division. Of note, mutants were

selected based on canavanine resistance (selection 1) as well as accelerated cell

division (selection 2). (c) Heatmap depicting the growth profiles of the

metabolite-induced canavanine-resistant mutants. Mutants were clustered based on

their growth profiles. Three major clusters were obtained with either accelerated

(Group 1), decelerated (Group 3), or normal growth (Group 2). The green-colored

rectangle in the middle indicates the growth profiles of the untreated cells (NC). (d)
Growth curve profiles of untreated wild-type (NC), 4NC, and DP treated mutants with

accelerated growth under optimal growth conditions. The Student's t-test was used

to compute statistical significance between the test conditions and the negative

control (NC) with a p-value cutoff of < 0.05.

Figure 5: Cross-validation of carcinogenic and mutagenic potential of
4-Nitrocatechol (4NC) and 3,4-Dihydroxyphenylacetic acid (DP) using Deep
RNA Sequencing and Soft Agar Assay.
(a) Schematic representation depicting the experimental design of RNA sequencing,

featuring the group information, treatment duration, and the sequencing parameters.

(b) Heatmap representing the expression profile of differentially expressed genes in

3,4-Dihydroxyphenylacetic acid (DP) and untreated conditions (NC). (c) Heatmap

representing the expression profile of differentially expressed genes in

4-Nitrocatechol (4NC) and untreated conditions (NC). (d) Bar graph depicting the

number of differentially expressed genes in the indicated conditions. (e) Venn

diagram depicting the number of differentially expressed genes shared among 4NC

and DP (compared with respect to NC). (f) Gene Ontology Slim Mapper analysis

depicting the association of the differentially expressed genes in the indicated

ontologies. (g-h) The Venn diagrams and their accompanying heatmaps on the right

side collectively depicting the number of mutated genes (insertions, deletions, and

substitution mutations) involved in DNA repair or Cell Cycle regulation. The heatmap

on the right further segregates the identified mutations as frameshift (insertion or

deletion) and substitution. (i) Representative micrographs depicting the results of

malignant transformation assay. Scale bar = 100 μm. (j) Mean-Whisker plot depicting

the size of the malignantly transformed colonies in the indicated conditions. Two

sample Student’s t-test was used to compute the statistical significance between test

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 23, 2022. ; https://doi.org/10.1101/2021.11.20.469412doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.20.469412
http://creativecommons.org/licenses/by-nc-nd/4.0/


conditions and the negative control (NC), with a p-value cutoff of < 0.05. (k) Bar

graphs represent the fold change increase in the number of transformed colonies in

the indicated conditions. Two sample Student’s t-test was used to compute the

statistical significance between test conditions and the negative control (NC), with a

p-value cutoff of < 0.05.

Figure 6: Graphical Abstract of the key findings
Schematic representation depicting the mode of action of Metabokiller. Of note,

Metabokiller predicts the carcinogenicity potential of any query compound by

assessing for the indicated biochemical properties.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 23, 2022. ; https://doi.org/10.1101/2021.11.20.469412doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.20.469412
http://creativecommons.org/licenses/by-nc-nd/4.0/


SUPPLEMENTARY FIGURE LEGENDS
Supplementary Figure 1: Metabokiller: An ensemble model that leverages
biochemical properties to predict carcinogenicity.
(a) Schematic representation depicting the step-by-step workflow used to build all

the six individual biochemical models and the ensemble model (Metabokiller).

Up/downsampling approach was used to counteract the class imbalance.

Signaturizer library was used to generate bioactivity features. Hyperparameter tuning

was performed to obtain the best-performing model parameters. The ensemble

model (Metabokiller) was built using biochemical features of experimentally-validated

carcinogens/non-carcinogens generated using six models. The majority voting

method was used to assign the final carcinogenicity status. (b) The table containing

performance metrics (Accuracy and AUCROC) of the twelve base models

representing indicated biochemical properties. Of note, the models differ in their

usage of feature extraction methods i.e. Signaturizer (bioactivity-based descriptors),

Mordred (chemistry-based descriptors), and DeepChem library (graph-based

descriptors) as well as classification algorithms. Models selected to build

Metabokiller are color-highlighted.

Supplementary Figure 2: Metabokiller leverages multiple datasets to generate
supporting models.
(a) Table denoting the information about the number of compounds, the method used

for handling class imbalance, the feature extraction method, and the classifying

algorithm used to build the indicated models. (b) Box plots depicting the F1 Score,

Precision, and Recall of the indicated models as inferred from the 10-fold

cross-validation. (c) Box plot depicting the model performance of the twenty Gradient

Boosting Machine (GBM)-based models generated using bootstrapping technique.

(d) Table containing source and compound information about the datasets used in

this study. (e) Principal Component Analysis revealing the chemical heterogeneity

between the carcinogens and non-carcinogens in the indicated datasets. The

heatmap at the bottom depicts the relative enrichment of the indicated functional

groups in both classes. (f) Bar graphs depicting the prediction performance of

Metabokiller on the indicated unseen datasets.
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Supplementary Figure 3: Metabokiller outperforms state-of-the-art methods for
carcinogenicity prediction.
(a) Table summarizing the source information and reported performance of the

publicly available model for carcinogenicity or mutagenicity prediction. (b) Heatmap

depicting the number of true positive (TP), false positive (FP), true negative (TN),

and false negative (FN) predictions on the Independent Dataset (I.D.) for indicated

methods/tools. (c) Schematic representation of the steps involved in processing

pan-cancer metabolomics dataset. Of note, Pearson correlation was computed

between log2 fold change (tumor vs healthy) and biochemical/carcinogenicity

probabilities. (d) Heatmap detailing the correlation values further segregated based

on cancer type. (e) Volcano plots depicting the differentially enriched/de-enriched

metabolites in the indicated cancer datasets. Grey dots highlight the metabolites that

do not qualify for the enrichment cutoff (log2 fold change ≥1 or ≤ -1, and p-value

(adjusted) < 0.05), and green and red dots represent the metabolites that qualify for

the enrichment cutoff and are predicted as non-carcinogenic and carcinogenic by

Metabokiller respectively. (f) Structural information of some of the well-characterized

oncometabolites reported in the literature and predicted by Metabokiller.

Supplementary Figure 4: High synergy between Metabokiller predictions and
experimental validations.
(a) Schematic representation highlighting the predicted-carcinogenic metabolic

intermediates of the tyrosine metabolism pathway and aminobenzoate degradation

pathway. (b) Box plots depicting the fluorescence intensity of propidium iodide

staining indicating cell viability in the indicated conditions. Of note, heat-killed (HK)

yeast cells were used as a positive control. Mann–Whitney U test was used to

compute statistical significance between the test conditions and the negative control.

(c) Growth curve profiles of the treated and untreated wild-type yeast during

transient exposure with the indicated conditions. The Student’s t-test was used to

compute statistical significance between the positive (H2O2 treated yeast cells) and

negative control (untreated yeast cells). (d) Box plot depicting the results of reactive

oxygen species (ROS) levels inferred using DCFH-DA dye-based assay in the

indicated conditions. Of note, ROS levels were measured 12 hours post-incubation.

Mann–Whitney U test was used to compute statistical significance between the test
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conditions and the negative control. Notably, hydrogen peroxide (H2O2) treated yeast

cells were used as a positive control.

Supplementary Figure 5: Deep RNA sequencing revealed the prominent
molecular and biological processes affected in 4-Nitrocatechol and
3,4-Dihydroxyphenylacetic acid treated yeast cells.
(a) Bar plots depicting the total read counts (in millions) of the indicated RNA

sequencing samples. (b) Box plot representing the distribution of the transformed

read count data in the indicated conditions. (c) Correlation plot showing the

relationship between the individual RNA sequencing samples. Of note, 75% of the

normalized and transformed data was used for the correlation analysis. (d-e) Box

plots depicting the relative log expression of the individual replicates of the indicated

conditions before and after upper quantile normalization. (f) Volcano plot indicating

the differentially expressed genes between the treated (metabolite treatment) and

untreated conditions. (g) Metascape-based Functional Gene Ontology analysis

identified the involvement of differentially expressed genes in the indicated

prominent biological processes. (h) Schematic representation depicting the genomic

alterations in the CAN1 gene in the indicated replicates.
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SUPPLEMENTARY INFORMATION

Supplementary Table 1: Tabular representation of the datasets used for building the

individual six models capturing the carcinogen-specific biochemical properties. Of

note, each table contains information about the compound canonical SMILES,

common name, PubChem CID, InChI, IUPAC name, activity status, and source

information.

Supplementary Table 2: Tables containing the list of experimentally validated

carcinogens and non-carcinogens that constitute training and testing datasets used

in this study. Of note, each table contains information about the compound canonical

SMILES, common name, PubChem CID, InChI, IUPAC name, carcinogenicity status,

and source information.

Supplementary Table 3: Table containing performance metrics of all the tested

classifiers for building the ensemble model (Metabokiller).

Supplementary Table 4: Table containing information about the hyperparameters

used to build all the models supported by Metabokiller.

Supplementary Table 5: Table containing information about the carcinogenicity

prediction results of the Human Metabolome Database (HMDB) metabolites using

Metabokiller (probability cutoff ≥ 0.7). It also contains information about compound

canonical SMILES, HMDB accession ID, PubChem CIDs, HMDB status, InChI keys,

KEGG IDs, compound names, IUPAC names, and prediction probabilities of all the

individual models supported by Metabokiller.

Supplementary Table 6: Table containing carcinogenicity or mutagenicity prediction

results of 3,4-Dihydroxyphenylacetic acid (DP), 4-Nitrocatechol (4NC) using different

predictive models/methods.

Supplementary Table 7: Table containing gene expression data (read counts) of

canavanine resistant mutants treated for 72 hours with 3,4-Dihydroxyphenylacetic

acid (DP), 4-Nitrocatechol (4NC), and vehicle (negative control).

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 23, 2022. ; https://doi.org/10.1101/2021.11.20.469412doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.20.469412
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Table 8: Table containing information about the Gene Ontology

results computed using the differentially expressed genes in the indicated conditions.

The table also contains information about Gene Ontology IDs, Term names, and the

information of the mapped gene for each of the given Ontology. Of note, this analysis

was performed using the GO Slim Mapper tool from the Saccharomyces Genome

Database (SGD) website.
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