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Perception and action are inherently entangled: our world view is
shaped by how we explore and navigate our environment through
complex and variable self-motion. Even when fixating on a stable
stimulus, our eyes undergo small, involuntary movements. Fixa-
tional eye movements (FEM) render a stable world jittery on our reti-
nae, which contributes noise to neural coding. Yet, empirical evi-
dence suggests that FEM help rather than harm human perception
of fine detail. Here, we elucidate this paradox by uncovering under
which conditions FEM improve or impair retinal coding and human
acuity. We combine theory and experiment: model accuracy is di-
rectly compared to that of healthy human subjects in a visual acuity
task. Acuity is modeled by applying an ideal Bayesian classifier to
simulations of retinal spiking activity in the presence of FEM. In addi-
tion, empirical FEM are monitored using high-resolution eye-tracking
by an adaptive optics scanning laser ophthalmoscope. While FEM in-
troduce noise, they also effectively pre-process visual inputs to facil-
itate retinal information encoding. Based on an interplay of these
mechanisms, our model predicts a relation between visual acuity,
FEM amplitude, and single-trial stimulus size that quantitatively ac-
counts for experimental observations and captures the beneficial ef-
fect of FEM. Moreover, we observe that human subjects’ FEM statis-
tics vary with stimulus size, and our model suggests that changing
eye motion amplitude, as the subjects indeed do, enhances acuity
as compared to maintaining eye motion size constant. Overall, our
findings indicate that perception benefits from action even at the fine
and noise-dominated spatio-temporal scale of FEM.
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Human perception is inherently active: as you read this1

sentence, your eyes produce incessant, intricate move-2

ments necessary for vision. Even when attempting to fixate3

a single letter without moving, spontaneous, small-amplitude4

eye jittering occurs, known as fixational eye movements (FEM).5

Yet, in spite of FEM, we perceive our visual environment as6

stable (1) and we are able to distinguish details finer than the7

amplitude of FEM (2). Our understanding of the role of FEM8

in shaping perception remains incomplete: on the one hand,9

FEM can impair visual acuity by introducing noise (2, 3); on10

the other hand, experiments show that FEM can enhance fine11

detail vision in human subjects (4, 5).12

As evidence suggests that information about the trajectories13

traced out by the eyes during FEM is unused in downstream14

processing (3, 6–9), one expects FEM to blur out fine visual15

details and, thereby, hinder perception. Indeed, retinal spiking16

is stochastic by nature, and therefore keeping one’s eyes static17

to overcome noisy spiking is advantageous compared to moving18

them. A static eye leads to more spikes encoding the same19

stimulus in the same position, which allows the noise to be20

averaged out over time. This effect, according to which FEM21

are harmful for coding, is illustrated in previous modeling22

works in which a Bayesian decoder infers stimuli pixel-by-pixel 23

from simulations of stimulus-evoked retinal spiking (2, 3). In 24

this framework, small to no FEM allow for a decoder to average 25

out noise, as compared to larger FEM, though it remains 26

possible to decode stimuli in the presence of sufficiently small 27

FEM. 28

In a contrasting picture, human psychophysics suggest that 29

FEM support perception: experimentally suppressing FEM by 30

stabilizing stimuli on a subject’s retina impairs visual acuity 31

(4), especially in distinguishing fine details (5). Here, FEM 32

play a helpful role by pre-processing the visual input so as 33

to effectively transform the spatio-temporal structure of re- 34

ceptive fields in retina (10–12) and thalamus (13, 14). In the 35

temporal domain, FEM renders retinal responses to stimuli 36

less transient in time: while retinal spiking decays over time 37

upon presentation of a static stimulus, jittery eye motion 38

refreshes each cell’s receptive field, which elicits sustained reti- 39

nal activity that encodes the visual input (10). In the spatial 40

(frequency) domain, the statistics of FEM are such that the 41

pre-processing filter they effectively apply can enhance retinal 42

gain at high spatial frequencies: small-amplitude jitter in eye 43

position causes fine spatial stimulus features to move through 44

retinal receptive fields, which induces temporal changes in 45

receptive field contents and hence stimulus-relevant variations 46

in retinal activity (11, 12). Overall, FEM allow for temporal 47

encoding of stimuli by rendering retinal activity sustained 48

through time and able to encode fine spatial detail through 49
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temporal variations in spiking.50

Here, we combine theory and experiment to study the role of51

FEM in shaping retinal coding and visual acuity. In particular,52

we investigate the interplay of the opposite mechanisms of53

averaging over noisy spikes, which renders FEM harmful, and54

temporal coding, which makes FEM advantageous for visual55

acuity. The two mechanisms are most relevant at different56

stimulus sizes and FEM amplitudes; we therefore study their57

interactions and the resulting nature of visual coding across58

experimental conditions and model parameters.59

From the interplay of different coding mechanisms, we60

derive a relation between visual acuity, FEM amplitude, and61

stimulus size, which we verify experimentally. In particular,62

our model accounts for FEM enhancing acuity for stimuli as63

small as receptive field size or smaller, consistent with previous64

reports (5, 9). Further, our experimental results show that65

subjects’ FEM amplitude varies depending on stimulus size.66

This has potential benefits for retinal coding, as modeling67

suggests that enhanced acuity can be achieved by varying68

FEM amplitude as subjects do. The results highlight that69

perception is inherently active even at the level of FEM.70

Results71

To understand how FEM statistics affect visual acuity, we72

first study FEM trajectories during a visual discrimination73

task, in which 17 human subjects must discriminate between74

orientations of a Snellen E in a four-alternative forced choice75

task, where the letter E is displayed at adaptive stimulus sizes76

quantified by the spacing between adjacent bars of the “E” (Fig.77

1a), between 0.3 and 0.8 arcmin. FEM trajectories are recorded78

through eye tracking with an adaptive optics scanning laser79

ophthalmoscope (AOSLO) (one subject’s example trajectories80

shown in Fig. 1b). The results reveal trajectories consistent81

with a random diffusion process, in that power scales as 1/f2
82

with frequency f (Fig. 1c), as expected from the literature83

(15), and the squared end-to-end length of trajectories grows84

linearly with time (Fig. 1d, see Supplementary Information for85

derivations in the case of a diffusion process). The slope of this86

proportionality relation, governed by the diffusion constant D87

in a diffusion process, varies substantially across subjects (Fig.88

1e).89

How do FEM affect visual discrimination? From a theo-90

retical point of view, we must consider the interplay between91

two opposing coding mechanisms which involve the statistics92

of FEM, controlled by D, the stimulus properties, and the93

response properties of retinal cells (Fig. 2a). On the one hand,94

coding benefits from averaging over noisy spikes by keeping95

the eyes stable (2). Averaging over noise especially supports96

acuity in the case of coarse stimuli, where stimulus features are97

as wide as receptive fields or wider, and stimulus orientation98

can still be identified when the stimulus is downsampled into99

the space of retinal receptive fields (Fig. 2b).100

On the other hand, temporal encoding of visual stimuli by101

the dynamics of retinal activity benefits from FEM. Indeed,102

FEM refresh the content of receptive fields, which leads to103

more sustained stimulus encoding over time, as well as allow104

for FEM-induced temporal fluctuations in retinal responses,105

which can convey information about small stimulus details.106

For example, in Fig. 2d (bottom row), the stimulus moves107

in and out of a given receptive field under the effect of FEM,108

which results in changes in retinal spiking rate that encode109
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Fig. 1. FEM are consistent with a random diffusion process, with diffusion
constant varying importantly across subjects. (a) Experimental set-up and frame
captured by the AOSLO, showing a subject’s retinal photoreceptor mosaic with a
visual stimulus and recorded FEM trajectory. (b) Example FEM trajectories aligned to
their starting point for one subject across stimulus presentations (colors). (c) Power
spectra of FEM trajectories averaged over trials, shown for each subject eye (in grey,
mean in black) along horizontal (left) and vertical (right) directions. (d) Mean square
end-to-end distance of trajectories shown for each subject eye (in grey, mean in black)
along horizontal (left) and vertical (right) axes. (e) Histogram of diffusion constants D,
fitted over all trajectories of all trials and stimuli, for each subject. The results report
important inter-subject variability in terms of D, with the largest D almost three times
larger than the smallest value.

relevant information about stimulus position and orientation. 110

Temporal coding rendering FEM advantageous is consistent 111

with FEM effectively transforming the structure of spatio- 112

temporal receptive fields (10, 11), which is believed to enhance 113

retinal sensitivity to fine stimulus details (5). This mecha- 114

nism appears particularly relevant for stimulus features finer 115

than receptive field size, for which retinal encoding amounts 116

to downsampling, and intermediate FEM amplitudes. For 117

small or vanishing FEM, receptive field contents are constant 118

and retinal activity therefore decays over time (Fig. 2d top). 119

Conversely, for FEM larger than the size of the small details, 120

coding is impaired by the resulting uncertainty on stimulus 121

location with respect to the eye. From the interplay between 122

these coding mechanisms, one expects that visual acuity de- 123

pends non-trivially on both stimulus size and FEM amplitude. 124

To explore the combined effect of these mechanisms, we 125

investigate a simple model of retinal responses in the presence 126

of FEM. We model FEM as resulting from a two-dimensional 127

diffusion process with Poisson step size, controlled by a dif- 128
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Fig. 2. Mechanisms by which FEM affects retinal responses and stimulus en-
coding. (a) Snellen E stimulus (black) moving alongside schematic FEM trajectory
(blue) and projected onto RGC receptive fields (grey) for stable stimuli (top) and jittery
stimuli in the presence of FEM (bottom). Each letter E represents the input to the
retina at a different point in time. (b) Time averaged spiking rate (green) elicited for
each RGC by moving stimuli. In this coding scheme, large FEM result in a blurred out
stimulus. Conversely, less to no FEM are favored as they allow to average out noise
from stochastic spiking activity by keeping the eye relatively stable through time. (c)
Changes in the spiking rate of two example RGCs due to variations in receptive field
content caused by FEM. In the absence of FEM, light intensity is constant through
time in each receptive field, leading to RGC activity decaying in time. In the presence
of FEM, however, RGC responses to stimuli are sustained, and changes in spiking
rate can convey stimulus-relevant information.

fusion constant D (see Methods for details). We model the129

spiking activity of retinal ganglion cells (RGC) at the foveola,130

assuming one-to-one correspondence with photoreceptors (16),131

in response to stimuli moving in the retina’s reference frame.132

RGC receptive fields are arranged into a mosaic (Fig. 1a).133

Each RGC’s spiking rate in response to stimuli is characterized134

by a spatio-temporal kernel: spatial receptive fields are Gaus-135

sian with circular symmetry, and temporal receptive fields136

render RGCs sensitive to temporal changes in light intensity,137

as in transient RGCs. From simulated spiking rates, RGC138

spikes are drawn according to a Poisson process. The only139

free parameters are the temporal kernel time scale as well as140

the gain of RGCs and baseline level of RGC activity, which141

control the sensitivity to stimuli and the spiking rate in the142

absence of stimuli, respectively. The parameters are set based143

on the previous literature on RGC models (2, 3) informed by144

recordings in the primate retina (17, 18), in particular to en-145

sure that RGC spiking rates remain lower than 200 Hz. Hence,146

the likelihood of spiking given the stimulus can be estimated147

precisely in the model.148

The amount of stimulus-relevant evidence conveyed by149

RGC spikes can then be quantified across stimulus sizes and150

D values, with a Bayesian classifier as an ideal model for151

how the rest of the brain processes information from retinal152

spikes. This classifier is optimal in that it accumulates all153

the information available in spiking activity, thus yielding154

the best possible accuracy at classifying stimuli given the155

simulated retinal spikes. The classifier has access to the form 156

of the likelihood of spiking given the stimulus, as well as to 157

the statistics of the eye movements, i.e., D, but not their 158

specific trajectory. Starting with no prior knowledge about 159

the stimulus and hence a flat prior distribution, evidence is 160

accumulated from RGC spiking patterns, and the posterior 161

distribution is updated as follows: 162

P (λ, x, y|{σt′ }t′≤t)︸ ︷︷ ︸
posterior distribution

= 1
Zt

∑
x′

∑
y′

P (σt|λ, x, y, x′, y′)︸ ︷︷ ︸
likelihood

[1]
P (x, y|x′, y′)︸ ︷︷ ︸

transition matrix

P (λ, x′, y′|{σt′ }t′≤t−1)︸ ︷︷ ︸
prior distribution

,

where λ denotes the stimulus orientation (top, bottom, left, 163

or right), x and y are its centre position in the retina ref- 164

erence frame, {σt′ }t′≤t is the history of spiking patterns 165

across RGCs up to time t, and Zt is a normalization con- 166

stant. P (σt|λ, x, y, x′, y′) is a product of P (σit|λ, x, y, x′, y′) 167

over all RGCs i (see Supplementary Information) since the 168

cells are independent and any correlation between their activi- 169

ties comes from the stimulus. P (x, y|x′, y′) is the transition 170

matrix governing the diffusion process of FEM, characterized 171

by the diffusion constant D (see Supplementary Information); 172

namely, the probability that the stimulus moves, during one 173

time step, from coordinates (x′, y′) to coordinates (x, y). 174

The orientation of the E for which the poste- 175

rior is maximized is the classifier’s outcome: λ∗ = 176

argmaxλΣxΣyP ({σt′ }t′≤t|λ, x, y). Repeating this procedure 177

for 50 trials, one can estimate a fraction of correct discrim- 178

ination after 500 ms of stimulus presentation (to match ex- 179

perimental conditions), for each value of D and each stimulus 180

size. 181

Inspecting how the model gathers evidence from spikes to 182

estimate stimulus orientation, we find that learning occurs 183

for a large range of values of D as the fraction of correct 184

discrimination increases over time, albeit at different rates 185

depending on D and stimulus size (Fig. 3). For large stimuli 186

(Fig. 3a), all values of D allow for near-perfect accuracy, 187

quantified by a fraction of correct discrimination nearing 1, 188

except for D = 0; in this case, learning occurs slowly because 189

cells spike sparsely. Intermediate values of D (between 100 and 190

300) yield enhanced fractions of correct discrimination. Finally, 191

a larger value of D is associated with lower fraction of correct 192

discrimination for stimulus sizes smaller than the receptive 193

field size, as well as slower learning for larger stimulus sizes. 194

This can be understood in terms of the interplay between 195

mechanisms: very small D does not allow refreshing receptive 196

fields or encoding through differences in spiking rate (Fig. 197

2d), while very large D prevents staying around the same 198

position for long enough to average over spiking activity (Fig. 199

2c). The optimal value of D is observed to vary non-trivially 200

with stimulus size due to interactions between the opposing 201

coding mechanisms. Indeed, too small eye movements do 202

not enable time-sustained coding with stimulus-relevant time 203

fluctuations in RGC spiking rate, and too large values of D are 204

detrimental to coding as averaging over noise is impaired when 205

stimuli moves too fast with respect to the retina. Overall, the 206

interaction between mechanisms gives rise to an optimal value 207
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Fig. 3. Bayesian classifier predicts that accuracy in visual discrimination tasks
non-trivially depends on stimulus size and FEM amplitude, which is verified in
empirical data on a trial-by-trial basis. (a) Classifier accuracy through time for
different values of D (darker blue: larger D) and different stimulus sizes (decreasing
size from top to bottom and left to right). Black line denotes the chance level fraction
correct at 0.25. All fractions of correct discrimination increase through time. (b)
Empirical (gray circles) and model-predicted (blue lines, darker blue for larger D)
fraction of correct discrimination after 500 ms of simulation, as a function of stimulus
size. Fraction of correct discrimination increases with stimulus size within a similar
range for data and model, however the absence of FEM (D = 0) impairs accuracy
across stimuli.(c-d) Heatmap of fraction of correct discrimination in bins of path length
and stimulus size in the model (c) and data (d). For empirical values, the numbers in
gray denote the number of trials per bin. Only bins where empirical path lengths were
empirically recorded for those particular stimuli were represented. In these bins, the
model predictions agree with empirical findings.

of D that increases first and then decreases with stimulus size208

in model predictions, which can be tested in empirical data.209

We compare the fraction of correct 500 ms trials from210

simulations and human subjects. First, we compute the mean211

fraction of correct discrimination over all subject eyes and212

trials, as a function of stimulus size. As expected, both the213

model and subjects discriminate large stimuli more accurately.214

Across values of D, the model displays good agreement with215

the data; as simulated fractions of correct discrimination across216

values of D lie in the same range as empirical ones, between217

60% and 100% correct answers (Fig. 3b). It is also worth218

noting that the absence of FEM (D = 0, lightest teal line in219

Fig. 3b) yields poorer results, in agreement with empirical220

evidence that stabilizing stimuli on the retina impairs the221

ability to discriminate between stimuli (4, 5).222

To investigate for which stimuli FEM are the most helpful,223

we examine the fraction of correct discrimination of the sub- 224

jects as a function of both stimulus size and path length of 225

FEM, defined as the total amplitude of the stimulus trajectory 226

with respect to the eye in a trial. In order to compare with 227

empirical observations, we consider the simulated fraction of 228

correct discrimination for a range of values of D matching 229

the range found in subjects (Fig. 1e). Then, we compute 230

a weighted average of the fraction of correct discrimination 231

across values of D, where weights correspond to how heavily 232

represented each value of D is across subjects (Fig. 1e). Once 233

again, we find agreement between data and model (Fig. 3c,d). 234

For stimuli larger than the typical size of RGC receptive fields 235

at the preferred retinal location of fixation on the retina (0.5 236

arcmin), discrimination is near-perfect across path lengths. 237

However, for finer stimuli, our results suggest that the fraction 238

of correct discrimination improves for larger path length, down 239

to very fine stimuli at the limit of human acuity (0.3 arcmin). 240

Which mechanism explains the beneficial effect of FEM 241

for visual decoding and acuity? The more immediate answer, 242

namely that FEM refresh the image on the retina and thereby 243

enhance spiking, is insufficient. To illustrate this point, we 244

repeated our theoretical study using modified model RGC 245

with a monomodal temporal filter, such that the model RGC 246

responds to light intensity rather than temporal variations of it 247

(w = 0 in Eq. 4). In this case, RGC response is not transient, 248

and FEM are no longer necessary to elicit sustained RGC 249

spiking. In this modified model, overall acuity deteriorates as 250

expected, which confirms the relevance of the transient nature 251

of RGC spiking to reproduce experimental results. Still, how- 252

ever, larger FEM path length boosts the fraction of correct 253

discrimination for stimuli as fine as or finer than the recep- 254

tive field size, consistent with empirical data (Supplementary 255

Information, Fig. S1). Thus, the ‘refresh mechanism’ is not 256

alone responsible for the benefits of FEM; in addition, tem- 257

poral modulations of RGC activity caused by FEM convey 258

stimulus-relevant information that enhances the visual acuity 259

of an ideal decoder. 260

Surprisingly, we also note that the range of observed path 261

lengths depends considerably on stimulus size. Indeed, path 262

lengths are found to be up to five times larger for intermediate 263

stimulus size (0.5 arcmin, comparable to RF size) than for the 264

largest stimulus size (0.8 arcmin). 265

In sum, our results show that the empirical and model 266

amplitude of FEM influences visual coding and discrimina- 267

tion on a trial-by-trial basis. Especially for stimuli finer than 268

receptive fields, for which coding through changes in neural 269

activity upon eye motion is especially relevant, longer FEM 270

trajectories are favored. The model quantitatively captures 271

experimental results by taking this mechanistic element into 272

account. Indeed, our model explains how fine detail vision 273

deteriorates in the absence of FEM, consistent with the exper- 274

imental literature (5). Additionally, simulations quantitatively 275

reproduce variations of the fraction of correct discrimination as 276

a function of stimulus size and path length of FEM. Note that 277

among model parameters, only D is fitted from empirically 278

recorded FEM trajectories, and no parameters are adjusted to 279

reproduce subjects’ fractions of correct discrimination. Surpris- 280

ingly, the path length empirical FEM is find to vary depending 281

on stimulus size - are these variations robust, and if so, do 282

they influence retinal coding? 283

Quantifying the variations of FEM path lengths with stim- 284
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ulus size, we observe that significant differences can be noted285

overall in path lengths across stimulus sizes (Fig. 4a, Kruskal-286

Wallis test, H = 99, p = 10−17). In particular, statistical287

testing shows that path lengths for stimuli between 0.4 arcmin288

and 0.5 arcmin, near the subjects’ acuity threshold, were sig-289

nificantly different from others. Can observed changes in FEM290

amplitude across stimuli support retinal coding and visual291

acuity? We examine whether varying FEM amplitude across292

stimulus sizes, as subjects do, leads to improved acuity, as293

compared to keeping FEM amplitude fixed or varying FEM294

amplitude in different ways.295

To that purpose (Fig. 4), we fit D separately for each296

stimulus size and each subject (Fig. 4b top); we compare this297

case to that of a fixed value of D equal to the average empirical298

D over stimuli (Fig. 4b middle), and to that of values of D299

shuffled across stimulus sizes (Fig. 4b bottom). Using our300

model, five trials are then simulated for each value of D per301

subject eye and per stimulus size, successively for empirical,302

averaged, and shuffled values of D. From the fraction of correct303

discrimination (Fig. 4c), we observe that varying D across304

stimuli according to empirical values yields an accuracy at the305

task similar to that of human subjects, as well as consistently306

enhanced acuity over keeping D constant or using shuffled307

values of D (Fig. 4d).308

We note that free parameters in the model are not read-309

justed to resemble psychophysical results; as they are chosen to310

reflect RGC electrophysiological properties and kept constant311

throughout the manuscript. In particular, we observe that312

for a certain range of stimulus sizes smaller than foveal RGC313

receptive fields and near the limit of human acuity, the fraction314

of correct discrimination is enhanced on average by over a315

standard error in the mean and up to 10% when modeling316

empirical, stimulus-dependent D compared to when model-317

ing averaged, stimulus-independent D or values of D shuffled318

across stimulus sizes (Fig. 4c). For smaller stimulus sizes (0.3319

arcmin), the subjects and model perform poorly regardless of320

the values assigned to D. For stimuli larger than typical re-321

ceptive field size (0.5 arcmin), the subjects and model perform322

near-perfectly across all values of D.323

We conduct several additional analyses (data not shown)324

to check the robustness of our results. For example, we apply325

different shuffling protocols, that conserve the dependence of326

D on either fine or coarse scales of stimulus size; these analyses327

yield similar performance. We cannot exclude that the form328

of variations in D is incidental to this specific behavioral329

experiment, and happens to yield a superior performance in330

the model. Indeed, we are not able to characterize a simple331

form of the variations of D as a function of stimulus size. Yet,332

the conclusion that a variable value of D enhances visual acuity333

remains. The variations in D measured in human subjects334

suggest that, not only can FEM benefit the resolution of fine335

visual details, but they can do so actively through modulations336

of their amplitude according to stimulus size. Thus, vision337

may be active even at the scale of FEM.338

Discussion339

In this work, we investigated the conditions under which FEM340

help or harm retinal coding and visual acuity. Empirical FEM341

trajectories were recorded in healthy human subjects during342

a discrimination task, and empirical FEM amplitudes were343

estimated for all subjects and stimulus sizes (Fig. 1). FEM344
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Fig. 4. Variations in subjects’ FEM amplitude depending on stimuli lead to
enhanced retinal coding. (a) Path length statistics as a function of stimulus size: the
mean (black line), standard error of the mean (shaded area), and median (dotted line)
are computed over all FEM trajectories for all subject eyes within bins of stimulus size.
(b) Model-predicted fraction of correct discrimination for empirical stimulus-dependent
(top), stimulus-independent (middle) D, and shuffled D across stimuli (bottom) shown
as function of stimulus size. (c) Empirical (gray circles) and model-predicted fraction
of correct discrimination for empirical (solid line), constant (dashed), and shuffled
(dash-dotted) D. (d) Model-predicted difference in fraction of correct discrimination
between trials with empirical D varying across stimuli (b, solid) and fixed D chosen
to be the mean over sizes (b, dashed), as a function of stimulus size. Lines represent
means, and shaded areas represent standard errors in the mean.

amplitude and its relation to stimulus size non-trivially affect 345

acuity, through an intricate interplay of different mechanisms: 346

averaging over noisy spiking RGC activity, and temporal cod- 347

ing through refreshing the content of receptive fields, resulting 348

in stimulus-informative variations in spiking (Fig. 2). Using 349

the output of a model of retinal response to diffusing visual 350

stimuli, an ideal Bayesian classifier successfully accounted for 351

the benefits of FEM to discriminate fine stimuli (Fig. 3). The 352

model of fraction of correct discrimination was found to quali- 353

tatively match human subject performance at the task, even 354

though no model parameters were fitted to empirical fractions 355

of correct discrimination, and only the diffusion constant of 356

modeled FEM was fitted to recorded FEM trajectories. In 357

addition, we noticed that subjects’ FEM path lengths var- 358

ied with stimulus size. Our model predicted that empirically 359

observed changes in FEM size across stimuli lead to improve- 360

ments in visual acuity (over fixed-sized FEM), suggesting that 361

perception can benefit from being active even at the scale of 362

FEM (Fig. 4). 363
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While earlier modeling work on interpreting spikes in the364

presence of FEM had suggested stimulus encoding and decod-365

ing was possible in spite of FEM (2, 3), our work establishes366

that FEM are able to not only allow, but also to enhance the367

encoding and decoding of task-relevant information, thereby368

accounting for experimental observations (5). Furthermore,369

our work uncovers a relation between the (fine) spatial scale370

of visual stimuli and the role of the FEM amplitude. When371

one considers the opposing mechanisms of noise averaging372

(which favors lower values of D) and of the response dynamics373

(which favors higher values of D), non-zero, optimal value of374

D, varying with stimulus size, emerges. This notion of optimal375

FEM statistics for stimulus encoding is complementary with376

existing ideas that focused on stimulus statistics, suggesting377

that scale-invariant eye movements effectively transform the378

visual input so as to enhance our perception of fine detail379

(5, 10). Our results quantitatively addresses the statistics of380

FEM and shows that optimal values of D for the encoding381

stimulus-relevant information vary depending on spatial fre-382

quencies present in stimuli. Recent modeling work exploring383

yet an additional mechanism, namely that encoding can take384

advantage of spatial heterogeneities in the retinal receptive385

field mosaic through FEM, also found benefits of FEM to386

visual coding (19). Our conclusions are complementary in387

that they exploit different mechanisms through which FEM388

enhance retinal coding.389

Our experimental findings indicate that subjects can change390

the amplitude of their FEM during sustained fixation depend-391

ing on stimulus size. This agrees with observations in the392

recent literature that empirical FEM statistics change in a393

task-dependent manner. In particular, the amplitude, speed,394

and curvature of FEM drift and microsaccades were reported395

to be distinct between passive viewing and acuity tasks (20). In396

addition, recent work in primates supports that FEM originate397

from central neural circuitry generating noise that controls398

FEM statistics (21), which is consistent with subjects’ ability399

to modulate FEM amplitude according to stimuli.400

While we have discussed coding mechanisms at the reti-401

nal level, other mechanisms and their associated costs may402

also incur, including motor costs in quelling noisy and jittery403

motion to reduce FEM amplitude. There may be conditions404

under which FEM amplitude is suboptimal, and acuity is en-405

hanced by partially stabilizing stimuli on the retina (22). The406

perspective we propose on the effect of FEM on perception407

provides quantitative predictions for how subject acuity varies408

with FEM amplitude, to be tested in future psychophysical409

experiments in which FEM size may be effectively enhanced410

or reduced by amplifying or compensating for motion through411

eye tracking. More broadly, our findings suggest that active412

sensing is relevant even down to fine spatio-temporal scales413

where noise plays a key role in shaping neural coding and414

sculpting human behavior.415

Materials and Methods416

417

Adaptive optics microstimulation. High resolution retina tracking418

during presentation of a small optotype was achieved by employing419

a custom adaptive optics scanning laser ophthalmoscope (AOSLO).420

In such a system, cone-resolved imaging and presentation of a visual421

stimulus is accomplished concurrently (23–25) (see SI for details).422

Visual acuity task and retina tracking. All 17 adult participants (8 423

male, 9 female, age: 10 – 42 years) took part in a visual acuity task. 424

Participants had to indicate the orientation of a Snellen-E stimulus, 425

presented randomly at one of four orientations (up, down, left, right). 426

Each stimuli was presented for 500 ms at the center of the AOSLO 427

raster after the participants initialized a trial with a keyboard press. 428

Stimulus size during a trial was fixed, and was changed between 429

trials following a Bayesian adaptive staircase procedure (QUEST 430

(26)). Stimulus size decreased if the most recent response was 431

correct, and increased at incorrect responses. Each experimental 432

run consisted of 20 trials yielding stimulus gap sizes roughly between 433

0.3 and 0.8 arcmin. More than 20 trials were conducted in case 434

some trials had to be discarded due to eye blinks, saccades, or eye 435

tracking artefacts. Experimental runs were repeated five times for 436

each eye of each participant (except one participant in whom only 437

one eye was tested). With each stimulus presentation, a 1 s AOSLO 438

video was recorded, from which retinal motion and stimulus position 439

were extracted (27, 28). Retinal motion and thus eye motion traces 440

during stimulation were extracted by a real-time, strip-wise image 441

registration and stabilisation technique (29), with effective temporal 442

sampling of ∼ 960 Hz. Trials containing defects of eye-tracking 443

stabilisation or microsaccades were identified by visual inspection 444

(see SI for details). 445

Retinal response model. Modeled RGC receptive fields are arranged
into a mosaic reminiscent of Fig. 1a, which we simulate as a square
lattice with jittered centre positions and receptive field sizes. Each
receptive field is characterized by a spatial and temporal kernel. The
spatial kernel is Gaussian with circular symmetry. The temporal
kernel accounts for the fact that spiking activity decays to silence
when the same fixed stimulus is shown within a time scale of the
order of dt = 50ms (2), and is implemented by subtracting the light
intensity observed 50ms ago, weighted by a kernel weight, from the
current intensity within the receptive field. Subsequently, to obtain
RGC spiking rates, we multiply the stimulus after applying the
spatiotemporal receptive field kernel by a constant gain, and add a
baseline that controls RGC spiking rate in obscurity. Then, spikes
are drawn from a Poisson process with said spiking rate. Equation
4 describes RGC spiking rate and spiking probability in response to
light stimuli.

r(t) = r0 + ∆r
(∫ ∫

dxdyS(xt, yt)RF (x, y) [2]

− w

∫ ∫
dxdyS(xt−1, yt−1)RF (x, y)

)
, [3]

P (σ(t) = n) =
r(t)n

n!
e−r(t) [4]

with r(t) the RGC’s spiking rate at time t, r0 = 100 Hz its base- 446

line spiking rate in the absence of stimuli, ∆r = 500 Hz its gain 447

controlling sensitivity to light intensity, RF its spatial receptive 448

field specific to each neuron, 0 < w < 1 the temporal kernel weight, 449

S(xt, yt) the two-dimensional stimulus centred onto position (xt, yt) 450

the coordinates of the stimulus at time t, σ(t) the number of spikes 451

fired by the RGC at time t, and n a non-negative integer. For 452

computation purposes, all possible positions (x, y) are described 453

by coordinates upon a discrete square grid and cyclic boundary 454

conditions are applied. Parameter values for dt, r0, and ∆r are 455

chosen based on retinal recordings (17, 18) and previous modelling 456

work (2, 3). 457
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Supporting Information Text11

Adaptive optics microstimulation. High resolution retina tracking during presentation of a small optotype was achieved by12

employing a custom adaptive optics scanning laser ophthalmoscope (AOSLO). In such a system, cone-resolved imaging and13

presentation of a visual stimulus is accomplished concurrently. The techniques have been described earlier (1–3), we mention14

only pertinent details here. In brief, the output of a supercontinuum light source (SuperK Extreme, NKT Photonics, Denmark)15

was spectrally filtered to create a red visible light channel, used for imaging, ocular wavefront sensing and microstimulation16

(center wavelength = 788 ±12 nm, FF01-788/12-25, Semrock, Rochester, USA). Adaptive optics correction, run in closed17

loop operation at about 25 Hz, consisted of a Shack-Hartmann wavefront sensor (SHSCam AR-S-150-GE, Optocraft GmbH,18

Erlangen, Germany) and a magnetic 97-actuator deformable mirror (DM97-08, ALPAO, Montbonnot-Saint-Martin, France).19

The imaging/stimulation beam was point-scanned across the retina, spanning a square field of 0.85 x 0.85 degrees of visual angle.20

The light reflected from the retina was detected in a photomultiplier tube (H7422-50, Hamamatsu Photonics, Hamamatsu,21

Japan) which was placed behind a confocal pinhole (pinhole diameter = 20 µm, equaling 0.5 Airy disk diameters). PMT22

signals were sampled at 20 MHz by a FPGA board (ML506, Xilinx, San Jose, USA), producing digital video frames at ∼ 3023

Hz with a spatial resolution of 600 pixels per degree of visual angle. By modulating the intensity of the imaging beam by24

an acousto-optic modulator (TEM-250-50-10-2FP, Brimrose, Maryland, USA), visual stimuli were created (thus a ‘light off’25

stimulus within the visible scanning background, see main paper Fig. 1a).26

Data pre-processing. Trials containing defects of eye-tracking stabilisation or microsaccades were identified by visual inspection27

of stabilized AOSLO videos and eye motion trajectories obtained from eye-tracking. Trials presenting sheared or trapezoid video28

frames associated with trajectories displaying large displacements within a single time frame were identified as stabilization29

failures and were discarded from subsequent analyses. For analysis, eye motion trajectories were downsampled to a 50 ms time30

bin to average over the AOSLO scanning over the recording frame pixel per pixel over 33 ms cycles.31

Diffusion process and end-to-end length. Let R be the vector connecting the initial position of the eye to its position after32

Nt steps of duration ∆t. We can write R =
∑Nt

i=1 ri, where the displacement vector at each of Nt steps is given by33

ri = l(Xiui + Yivi); X and Y are iid Poisson random variables with mean a and variance equal to the mean, ` is the smallest34

possible non-zero step size, ui is a vector of norm 1 and phase drawn equiprobably from {0, π} and respectively vi is a vector35

of norm 1 and phase drawn equiprobably from {−π/2, π/2}. We compute the variance of the component of R along the x axis,36

Rx =
∑Nt

i=1 `Xiuix.37

Var(Rx) = 〈Rx2〉 − 〈Rx〉2 = 〈Rx2〉 [1]38

by symmetry of Rx around 0 due to equiprobable leftward and rightward displacements.39

The second moment can be calculated as follows:

〈Rx2〉 = `2
∑
i

∑
j

〈XiXj〉〈uix · ujx〉 [2]

= `2

〈∑
i

∑
j

XiXjuix · ujx

〉
[3]

= l2
∑
i

∑
j

〈XiXj〉 δij [4]

= `2
∑
i

〈
X2
i

〉
[5]

= Nt`
2〈X2〉 [6]

= Nt`
2[〈X〉2 + Var(X)] [7]

= Nt`
2(a2 + a), [8]

where we have used the properties of the Poisson process, X.40

To compute a from 〈Rx2〉, we solve the quadratic equation and retain the positive solution, a =

√
1+4 〈Rx2〉

Ntl2 −1

2 . In addition, we41

recall that a = 2D∆t. Therefore, by fitting the slope α of the square end-to-end length as a function of time, one can express42

the diffusion constant as a function of α, as43

D =

√
1 + 4α∆t

`2 − 1

4∆t . [9]44

By symmetry, the same is true for the trajectory projection along the y axis.45
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Diffusion constant fitting. The diffusion constant can be estimated from the data by using Eq. 9, with ` = 0.1 arcmin the46

minimum step size we used in discretizing FEM and α obtained by fitting the slope of the square end-to-end length in either x47

or y axe as a function of time. We note that if FEM were realizations of perfect random walks, with each step’s direction48

uncorrelated from the previous one, the same D value would be obtained by fitting from either FEM trajectory path lengths49

or end-to-end lengths. However, small discrepancies in D values may arise. We approximate FEM as a random walk in the50

interest of maintaining reasonable computational burden for Bayesian classification, even though evidence suggests that small51

directional correlations exist at longer time scales than our 50 ms time step, rendering FEM trajectories slightly smoother than52

those described by our simple random walk model (4, 5).53

Power-spectral density. We want to compute the power-spectral density, S(f), of the random iid process, Rx (and equivalently54

Ry). By the central limit theorem, as Nt tends to infinity, Rx is well approximated by a Gaussian continuous random variable55

W (t), of mean 0 and variance `2(a+ a2) t
∆t (Eq. 8, with t = Nt∆t). In the continuous limit, we have:56

Rx = W (t) =
∫ t

0
ξ(s)ds, [10]57

where ξ(s) is continuous white noise whose moments are 〈ξ(s)〉 = 0 and 〈ξ(s)ξ(s′)〉 = l2(a+a2)
∆t δ(s− s′). The power-spectral58

density is obtained as (6, 7):59

S(f) = lim
T→+∞

〈
| ŴT (t) |2

〉
, [11]60

where ̂ denotes the Fourier transform and WT (t) is W (t) truncated at time T . Explicitly, WT (t) = W (t)1[0,T ](t) where 1 is61

the indicator function of the interval [0, T ]. We use the following convention for the Fourier transform:62

ŴT (t)(f) = 1√
T

∫ T

0
e−2iπftW (t)dt. [12]63

S(f) can then be written as64

S(f) = lim
T→+∞

1
T

∫ T

0
dt
∫ T

0
dt′e2iπf(t−t′)〈W (t)W (t′)〉. [13]65

From Eq. 10, we can compute, the correlation term: 〈W (t)W (t′)〉 =
∫ t

0

∫ t′
0 〈ξ(s)ξ(s

′)〉ds ds′ = l2(a+a2)
∆t min(t, t′). To compute66

S(f), first we divide the double integral on the square into an integral on the upper triangle and another on the lower triangle,67

to deal with the term min(t, t′). Then, recognizing that one double integral is the conjugate of the other, we rewrite the sum as68

twice the real part. The double integral is then calculated as:69

S(f) = lim
T→+∞

1
T

l2(a+ a2)
∆t

∫ T

0
dt
∫ T

0
dt′e2iπf(t−t′)min(t, t′)

= lim
T→+∞

1
T

l2(a+ a2)
∆t

[∫ T

0
dt
∫ t

0
dt′e2iπf(t−t′)t′ +

∫ T

0
dt′
∫ t′

0
dt e2iπf(t−t′)t

]

= lim
T→+∞

2
T

l2(a+ a2)
∆t Re

[∫ T

0
dt
∫ t

0
dt′e2iπf(t−t′)t′

]
= lim
T→+∞

2
T

l2(a+ a2)
∆t

[
T

(2πf)2 −
sin (2πfT )

(2πf)3

]
= 2l2(a+ a2)

∆t(2πf)2 .

[14]70

The power spectrum is inversely proportional to the square of the frequency. By symmetry, the same is true for the trajectory71

projected along the y axis.72

Bayesian classifier. The classifier aims to output the stimulus orientation, λ, by accumulating evidence from RGC spiking73

over time. Initially, the prior distribution is flat, i.e., P (λ, x, y) = 1
4NxNy

for each of the 4 possible stimulus orientations (top,74

bottom, left or right), each of the Nx possible positions along the x axis and each of the Ny possible positions along the y axis.75

Since the temporal kernel is non-vanishing over two time steps and the diffusion process is iid, the current position of the76

stimulus depends only on the position at the previous time step, and spikes from the current time step only carry information77

about stimulus position during the current and previous time step. The posterior distribution can therefore be updated from78

the following:79
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P (λ, x, y|{σt′}t′≤t) = 1
P ({σt′}t′≤t)

P (λ, x, y, {σt′}t′≤t) [15]

= 1
P ({σt′}t′≤t)

∫
dx′dy′P (λ, x, x′, y, y′, {σt′}t′≤t−1,σt) [16]

= 1
P ({σt′}t′≤t)

∫
dx′dy′P (σt|λ, x, x′, y, y′, {σt′}t′≤t−1)P (λ, x, x′, y, y′, {σt′}t′≤t−1) [17]

= 1
P ({σt′}t′≤t)

∫
dx′dy′P (σt|λ, x, x′, y, y′)P (x, y|λ, x′, y′, {σt′}t′≤t−1)P (λ, x′, y′, {σt′}t′≤t−1)) [18]

=
P ({σt′}t′≤t−1)
P ({σt′}t′≤t)

∫
dx′dy′P (σt|λ, x, x′, y, y′)P (x, y|x′, y′)P (λ, x′, y′|{σt′}t′≤t−1), [19]

hence Eq. 1 of the main text. The transition matrix , P (x, y|x′, y′), containing the probabilities of all possible x′, y′ given the80

currently considered x, y, is written as81

P (x, y|x′, y′) = d
|x−x′|

l e−d

|x−x′|
l

!
+ dNx+ |x−x′|

l e−d(
Nx + |x−x′|

l

)
!

+ dNx−
|x−x′|

l e−d(
Nx − |x−x

′|
l

)
!

+ d
|y−y′|

l e−d

|y−y′|
l

!
+ dNy+ |x−x′|

l e−d(
Ny + |x−x′|

l

)
!

+ dNy−
|x−x′|

l e−d(
Ny − |x−x

′|
l

)
!

[20]82

where d = 2D∆t. The first three terms of the sum account for displacements along the x axis, where the first term captures83

the contribution of direct jumps from x′, y′ to x, y, the second term of longer jumps around the grid through the left, and the84

third term of longer jumps around the grid through the right due to cyclic boundary conditions. Similarly, the last three terms85

describe contributions from displacements along the y axis, including directly, around the grid through the top and the bottom.86
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Fig. S1. Model fraction of correct trials as a function of stimulus size and path length for sustained cells. Although acuity is impaired for finer stimuli than receptive field size,
longer FEM trajectories still leads to improved fractions of correct trials compared to shorter trajectories.
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