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Abstract

Complete, telomere-to-telomere genome assemblies promise improved analyses
and the discovery of new variants, but many essential genomic resources remain as-
sociated with older reference genomes. Thus, there is a need to translate genomic
features and read alignments between references. Here we describe a new method
called levioSAM2 that accounts for reference changes and performs fast and accurate
lift-over between assemblies using a whole-genome map. In addition to enabling the
use of multiple references, we demonstrate that aligning reads to a high-quality ref-
erence (e.g. T2T-CHM13) and lifting to an older reference (e.g. GRCh38) actually im-
proves the accuracy of the resulting variant calls on the old reference. By leveraging
the quality improvements of T2T-CHM13, levioSAM2 reduces small-variant calling
errors by 11.4-39.5% compared to GRC-based mapping using real Illumina datasets.
LevioSAM2 also improves long-read-based structural variant calling and reduces er-
rors from 3.8-11.8% for a PacBio HiFi dataset. Performance is especially improved for
a set of complex medically-relevant genes, where the GRC references are lower qual-
ity. The software is available at https://github.com/milkschen/leviosam2
under the MIT license.
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1 Introduction

A reference genome serves both as a template for mapping reads and a set of coordinates
for interpreting results. Human reference quality has steadily improved in the last decade,
with over 1,000 GRCh37 issues having been resolved in GRCh381, and T2T-CHM13 pro-
viding a telomere-to-telomere sequence including difficult-to-assemble regions like seg-
mental duplications2.

While these improvements can benefit read mapping and downstream analyses1,3,4,
researchers face obstacles when migrating between references. A new reference’s coor-
dinate system is incompatible with annotations expressed in the old coordinates. Such
annotations might be genotypes5–7, or functional or phenotype annotations8–11. Migrat-
ing from GRCh37 to GRCh38 required years of work12; even today, many groups report
that they have no plans to switch from GRCh3713.

To facilitate movement between references, tools that “lift” across genomic coordinate
systems have been proposed14–17. Unfortunately, the lifting process can produce discor-
dant results compared to re-analyzing the sequencing reads from scratch. The problem
is particularly pronounced in regions where the references have copy-number differences
or assembly artifacts (Figure 1a)12,18–20. While the recently described LiftOff method can
lift gene annotations with high confidence using re-mapping21, this strategy works only
with genes and not with other types of annotations such as generic intervals, genotypes,
or read mappings.

The prior levioSAM software could perform scalable and memory-efficient lift-over of
mappings, but did not support complex genomic rearrangements such as translocations
and inversions17. Other methods either cannot lift read mappings14,16 or do not scale for
large genomic datasets15.

To make the best use of improved reference assemblies and rich annotations, we pro-
pose levioSAM2 for fast and accurate lift-over of read mappings (Figure 1b). In contrast to
the more typical strategy of lifting old-reference alignments to a newer reference (old-to-
new), we propose to start by mapping to the most complete and error-free assembly like
T2T-CHM13, then to use levioSAM2 to lift the mapped reads to an existing annotation-
rich reference like GRCh37 or GRCh38. The first step of levioSAM2 is an efficient lift
kernel (“levioSAM2-lift”) that translates mapping information into the target coordinates.
LevioSAM2-lift uses succinct data structures that can update mapped reference name and
position information in O(1) time and update the CIGAR alignment string in O(r+g) time,
where r is the number of CIGAR runs and g is the number of overlapping chain gaps of a
mapping (Figure 1c and Section 4.1).

We further designed a selective strategy, similar to the “reference flow” approach22,
to handle mappings that are influenced by major differences between source and target
(Section 4.2). LevioSAM2 classifies lifted reads into three groups. The “suppressed” group
consists of reads mapped to regions in the source genome with no counterpart in the
target, e.g. the centromeric sequences in T2T-CHM13 and missing collapsed sequences,
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Figure 1: Overview of levioSAM2. a, Common assembly errors in legacy reference
genomes include false duplications (FD), false collapses (FC), and local errors (LE). b,
The levioSAM2 workflow; A chain file provides information to lift mappings. Mappings
which cannot be confidently lifted are deferred and re-mapped. The final output is a set
of mappings to the target reference after reconciling the deferred and committed map-
pings. Reads originating in duplications and local errors can benefit from the “commit”
and “defer–reconcile” strategies, where mappings to the source are considered. False col-
lapses can be resolved by the “suppress” strategy, which avoids spurious alignments in
the collapsed reference by only including mappings from a single orthologous copy. c,
LevioSAM2-lift uses a pair of succinct bit vector data structures to efficiently query chain
segments. LevioSAM2 lifts aligned reads from source reference to target reference using
a chain file and updates the alignment CIGAR. Blue, yellow, and green arrows represent
chain segments. Red lines represent mapped sequences. The purple triangle represents a
2-bp insertion in the source reference which requires a CIGAR update.

to avoid false-positive mapping. The “deferred” group consists of reads that can benefit
from re-mapping, e.g. because they mapped with low mapping quality. The “committed”
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group, which generally contains the majority of the reads, consists of reads belonging to
neither of the other two groups. Committed reads are mapped with high confidence and
are included in the final mapping results (See Section 4.2). LevioSAM2 also collects and
reports mappings that are unliftable using the coordinate system of the source reference,
enabling analysis in regions unique to the source (Figure S1).

We evaluated levioSAM2 by lifting mappings from T2T-CHM13 to GRCh37 and GRCh38
coordinates and comparing them to the results obtained by mapping directly to the GRC
references. We also called small variants using GATK-HaplotypeCaller23 and DeepVari-
ant24. We observed that levioSAM2 could reduce small variant errors by 11.4% to 39.5%
on real Illumina whole-genome-sequencing (WGS) data for HG001, HG002, and HG005 in
the Genome in a Bottle (GIAB) v4.2.1 regions25. LevioSAM2 yielded larger improvements
in the GIAB challenging medically relevant genes (CMRG)26, reducing small variant er-
rors by 19.4% to 51.3% for HG002. LevioSAM2 also improved mapping of real Pacific
Biosciences High Fidelity (PacBio HiFi) reads27. Besides achieving improved or compa-
rable small-variant calling accuracy, levioSAM2 reduced structural-variant (SV) errors by
11.8% compared to GRCh38 in the GIAB CMRG regions26, and reduced SV errors by 3.8%
compared to GRCh37 in the GRCh37 GIAB Tier 1 benchmark regions28.

2 Results

Lifting from T2T-CHM13 improves short-read mapping to GRC references. We used
simulated reads to compare mapping accuracy between the levioSAM2 workflow and a
typical single-reference direct mapping method (Section 4.4). We can measure the correct-
ness of a read mapping by comparing its mapping position with its true point of origin
according to the simulator. We simulated 10M paired-end 100-bp Illumina reads using
mason229. We selected GRCh38 as the “base” reference, where sequences not liftable to
CHM13 were masked with the N (unknown) symbol during simulation. We also injected
the SNPs of HG001 during simulation (see Section 4.4 for details). To assess the influ-
ence of the quality of the reference assembly on the mapping process, we performed the
simulation using both human chromosome 20 (GRCh38 chr20) and 21 (GRCh38 chr21).
Chr21 is known to include 771 kbp of false duplications26, whereas chr20 has no known
false duplications. False duplicates in the reference assembly can “attract” reads from the
correct point of origin. We mapped the reads using Bowtie 230 and BWA-MEM31, using
default options for both.

The selective levioSAM2 workflow generated an additional 0.08% of correct mappings
for chr20 and 1.37% for chr21 versus the direct-to-GRCh38 method (“GRCh38”; Figure
S2). The fact that levioSAM2 had a more substantial improvement in chr21 reflects its
ability to recover from the false duplicates in GRCh38. Note that since this simulation is
based on GRCh38, we are not able to measure whether and how levioSAM2 benefits from
assembly improvements in places where GRCh38 has assembly gaps, but characterize
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these improvements using real data in the following sections.

LevioSAM2 improves short-read small variant calling. We next evaluated levioSAM2
using two common short-read small variant calling pipelines, BWA-MEM–GATK-HaplotypeCaller23

and BWA-MEM–DeepVariant24 (Section 4.5.1). We used real 30× paired-end Illumina
Novaseq whole-genome sequencing (WGS) data representing three ancestries (HG001:
Utah/European; HG002: Ashkenazi Jewish; HG005: Han Chinese)32 (Table 1). All three
individuals had high-quality genotypes provided by the Genome in a Bottle (GIAB) con-
sortium for both GRCh37 and GRCh3825. The GATK-based pipelines that used levioSAM2
to lift reads from T2T-CHM13 to GRCh37 (“CHM13-to-GRCh37”) reduced mean small
variant error compared to a direct-to-GRCh37 pipeline by 49,770 errors (39.5%). LevioSAM2
also showed an error reduction when lifting from T2T-CHM13 to GRCh38 (“CHM13-to-
GRCh38”), avoiding 18,308 (23.9%) small variant errors. The overall F1 improved as
well (Fig 2a and Table S2). We stratified the calls into SNPs and indels and assessed
the precision and recall for levioSAM2 and direct-to-GRC pipelines (Fig 2b). LevioSAM2
had higher precision and recall for all samples and both variant types. For all samples,
levioSAM2 reduced the mean false-positive error (indel and SNP combined) by 38,981
(52.2%) and 11,551 (24.9%) compared to GRCh37 and GRCh38, respectively (Table S2).

LevioSAM2 also improved small variant calling for the BWA-MEM–DeepVariant ap-
proaches. On average, the levioSAM2 workflows avoided 8,778 errors (16.7%) and 3,443
errors (11.4%) compared to GRCh37 and GRCh38, respectively (Fig 2c and Table S3). In
contrast to the GATK-based pipelines, the strongest improvement using DeepVariant was
for SNP recall, where levioSAM2 reduced mean false-negatives by 8,331 (20.8%) and 4,603
(22.3%) variants compared to GRCh37 and GRCh38 (Fig 2d and Table S3). The discrep-
ancy between the performance of GATK-HaplotypeCaller and DeepVariant could be ex-
plained by the difference in their underlying models. The neural network model used
by DeepVariant was capable of learning mapping artifacts and reducing false-positive
errors in hard-to-map regions (Note S1). The hidden Markov model used by GATK-
HaplotypeCaller might not have recognized the mapping artifacts, and thus benefited
more from the less-biased mappings generated by levioSAM2.

Both GRCh37 and GRCh38 are known to include false duplications that confound ge-
nomic analysis in medically relevant regions. We compared levioSAM2, GRCh37, and
GRCh38 for small variant calling performance in the GIAB CMRG regions26 using the
HG002 WGS data. LevioSAM2-based methods were more accurate for both GATK-HaplotypeCaller
and DeepVariant pipelines. When using GATK-HaplotypeCaller, the levioSAM2 work-
flows removed 1,514 (45.4%) and 730 (35.2%) variant calling errors compared to GRCh37
and GRCh38 (Figure 2e and Table S4). When using DeepVariant, levioSAM2 avoided 306
(19.4%) and 1,010 (20.0%) variant calling errors compared to GRCh37 and GRCh38 (Fig-
ure 2f and Table S5). The levioSAM2 workflows outperformed direct-to-target methods
for both recall and precision for both variant types. LevioSAM2 had a larger improve-
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Figure 2: Small variant calling performance. a, b, Variant calling accuracy using GATK-
HaplotypeCaller for all GIAB v4.2.1 regions (a: F1; b: recall and precision). c, d, Variant
calling accuracy using DeepVariant for all GIAB v4.2.1 regions (c: F1; d: recall and pre-
cision). e, Accuracy for challenging medically relevant genes (CMRG) for HG002 using
GATK-HaplotypeCaller. f, Accuracy for challenging medically relevant genes (CMRG)
for HG002 using DeepVariant.

ment in the CMRG regions compared to other regions, again showing that levioSAM2 ef-
fectively leverages the improved assembly quality of T2T-CHM13 to improve short-read
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small variant calling.
We analyzed the reads mapped by CHM13-to-GRCh38 and called small variants in the

“unliftable” regions that were unique to T2T-CHM13 using DeepVariant. We called 5,314
variants that passed the default DeepVariant filter, and 1,635 of them were high-quality
(QUAL ≥ 30) (Figure S1). These variants were unique to T2T-CHM13 and could not be
identified with typical variant calling approaches and GRCh38.

Larger small variant calling improvement in difficult regions. We investigated dif-
ferences in small variant calling between levioSAM2 and the GRC references using the
GIAB difficult region stratifications4,26. These stratify genomic regions by features such
as low mappability (“LowMap“), extreme GC content (“GC<25or>65”), low complexity
(“Tandem&Homo”), presence of segmental duplications (“SegDups”), and the assembly-
artifacts-and-other regions (“OtherDifficult”). The union of these difficult regions com-
prises the “AllDifficult” regions (see Table S6 for region sizes). We considered only the
variant calls within the GIAB confident regions in the evaluation. We observed that
levioSAM2 had enriched small variant calling improvements in the LowMap, SegDups,
and OtherDifficult regions when using GATK-HaplotypeCaller. In these regions, levioSAM2
had a 47.7%–48.0% and a 27.5%–42.4% reduction in error rate compared to direct-to-
GRCh37 and direct-to-GRCh38 respectively. The union of all difficult regions also showed
improved small variant calling performance (Figure 3a and Table S7). When using Deep-
Variant, the most pronounced improvement was in LowMap regions, where levioSAM2
reduced errors by 15.7%–22.3% (Figure S5a and Table S8).

We further analyzed higher-resolution GIAB difficult region strata and ranked them
by density of small variant calling error reduction (Figure 3b and Figure S5b). We ob-
served that levioSAM2 reduced errors most in regions with likely reference artifacts (“hs37d5Decoy”
and “ChainSelf”, both are subsets of “OtherDifficult”), avoiding up to 971 errors per Mbp
compared to direct-to-GRC approaches. Other strata strongly improved by levioSAM2 in-
cluded regions with large segmental duplications (“SegDups>10kb”), and low-mappability
regions comprised of non-unique 250-mers (“NonUnique250bp”) and non-unique 100-
mers (“NonUnique100bp”). There were no stratified regions that reported an increased
error density of greater than 1/Mbp by levioSAM2 using either GATK-HaplotypeCaller
or DeepVariant.

Improved variant calling using PacBio-HiFi long reads. LevioSAM2 supports lifting
alignments spanning chain gaps (Figure 1c), making it suitable for long reads, such as
PacBio HiFi reads27. We designed a workflow for long reads supporting both minimap233

and Winnowmap234 (Section 4.2). We mapped a real 28× PacBio-HiFi WGS dataset from
HG00235 to T2T-CHM13 and used levioSAM2 to generate GRC-based mappings. We
called small variants using DeepVariant and assessed the calls with the GIAB v4.2.1 truth
set. CHM13-to-GRCh37 removed 10,435 small variant errors (9.7%) compared to direct-
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Figure 3: Small variant calling performance in difficult regions. a, Small variant call-
ing accuracy in major difficult genomic regions for HG002. We excluded difficult regions
with low complexity or extreme GC content in the plot because all methods perform simi-
larly. b, GIAB stratified regions with top small variant calling error reduction densities by
levioSAM2. Small variants in both plots were called using using GATK-HaplotypeCaller.

to-GRCh37. CHM13-to-GRCh38 performed comparably to GRCh38, with 673 (0.8%) more
errors (Figure 4a and Table S9). The levioSAM2 workflow generated more accurate small
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variant calls in the GIAB CMRG regions, where CHM13-to-GRCh37 avoided 30 (1.7%) er-
rors and CHM13-to-GRCh38 removed 337 (22.5%) errors compared to their direct-to-GRC
counterparts (Figure 4b and Table S10).

Using the same PacBio-HiFi dataset, we called structural variants (SVs) using Snif-
fles236 and analyzed the results using truvari37 (Section 4.5.2). We evaluated the SV calls
using the GIAB Tier 1 benchmark regions for GRCh3728 and the GIAB CMRG benchmark
for GRCh3826. Note that there is not a genome-wide SV benchmark for each of the refer-
ences. CHM13-to-GRCh37 removed 44 (5.7%) false-positive SV errors (FPs) compared to
direct-to-GRCh37 (Figure 4c and Table S11). Most FPs were shared between both meth-
ods, and the majority of these were insertions enriched in low-complexity regions. Many
of the resolved FPs associated with regions having a many-to-1 mapping from donor to
target, or “mapping collapse” (Figure 6b). While CHM13-to-GRCh37 resulted in 4 more
false-negative SV errors (FNs) compared to direct-to-GRCh37 using the GIAB Tier 1 SV
calls, we observed examples where the GIAB calls did not agree with haplotype-resolved
assemblies for the same individual38 (Figures S6 and S7). We visually inspected these
examples and observed evidence of mapping collapse including abnormal coverage and
loci with more than two haplotypes, suggesting improved mapping and reduced SV FNs
by levioSAM2. Compared to direct-to-GRCh38 in the GIAB CMRG regions, CHM13-to-
GRCh38 removed 2 (11.8%) SV calling errors. Both were false deletions in the KMT2C
gene (Figure 4d and Table S12).

LevioSAM2 reduces large-scale mapping artifacts. LevioSAM2 can resolve or reduce
large-scale mapping artifacts compared to direct-to-GRC pipelines. We first examined the
small variant calls using the real 30× HG002 short read dataset. In the medically relevant
gene KMT2C, we observed high-density mapping errors which had been reported by the
GIAB CMRG study26. The errors were due to 15-kbp sequences in KMT2C in HG002 but
collapsed in GRCh37. Therefore, sequences from both regions mapped to KMT2C, result-
ing in an abnormally high mapping depth (up to 296×) and a high alternate allele density
within KMT2C. The missing homolog was assembled in T2T-CHM13 and marked as a
suppressed region by the levioSAM2 annotation workflow. Mapping to T2T-CHM13 cor-
rectly placed the reads in the appropriate locus and the levioSAM2 workflow resolved
most mapping errors in this region (Figure 5a). We also observed that DeepVariant re-
ported a low number of variants in this region using GRCh37, even when the variant
allele frequencies were as high as 0.8. We reasoned that DeepVariant learned this signa-
ture of mapping artifacts and suppressed variants in its model (Figure S8 and Note S1).

We then analyzed mappings of the HG002 PacBio-HiFi long read dataset and observed
similar large-scale mapping improvements by levioSAM2. Similar to the short-read ex-
ample in gene KMT2C, we observed a high density of alternate alleles in a 56-kbp region
which overlapped with another medically relevant gene, MAP2K339. We showed that
CHM13-to-GRCh37 significantly reduced mapping depth and alternate allele density in
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Figure 4: Small and structural variant calling using PacBio-HiFi reads from HG002.
a, b, Small variant calling using minimap2–DeepVariant in a GIAB v4.2.1 regions and b
GIAB CMRG regions. c, Structural variant calling in GRCh37 GIAB Tier 1 benchmark
regions. d, Structural variant calling in GRCh38 CMRG regions.

this region, suggesting improved mapping. When assessed with the GIAB Tier 1 bench-
mark for SVs, CHM13-to-GRCh37 avoided a false structural deletion (8.2 kbp) (Figure
5b).

LevioSAM2 is computationally efficient. LevioSAM2-lift’s bitvector-based algorithm
is fast and memory-efficient (Figure 6a). Compared to CrossMap15, levioSAM2-lift used
20.1% of the wall-clock time and 19.9% the peak memory (64.3 MB vs. 341.9 MB) when
run on a single thread. Unlike CrossMap, levioSAM2-lift supports multi-thread process-
ing and used only 7.3% wall time and 19.4% of the memory (66.4 MB vs. 341.9 MB) when
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Figure 5: LevioSAM2 resolved large-scale mapping errors in medically relevant genes.
a, Mapping short reads to gene KMT2C. b, Mapping PacBio HiFi long reads to gene
MAP2K3. The “GRCh37” track in both plots a and b show high mapping depth and high
density of alternate alleles (bars with non-gray colors), suggesting collapsed mapping.

using 4 threads (see Figure S4 for thread scaling). LevioSAM2-lift was able to replicate the
results of CrossMap, but includes several additional features that are important in prac-
tice. For instance, levioSAM2 can lift mappings spanning chain-file gaps and can update
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Figure 6: LevioSAM2 is computationally efficient and accurate when lifting from T2T-
CHM13 compared to a direct mapping pipeline. a, Computational efficiency of meth-
ods that support lift-over of alignments for a 0.3× paired-end WGS dataset. Numbers
in parentheses show the number of threads used. b, CPU time usage of mapping using
BWA-MEM vs. lifting over using levioSAM2 for a 30× paired-end WGS dataset. In the
lift-over tasks, mapping to T2T-CHM13 was not included in the runtime measurement.

CIGAR-string information in the output mappings, enabling lifting of long-read map-
pings. Further, levioSAM2-lift can optionally update edit distance (NM:i) and mismatch
encoding alignment string (MD:z).

The full levioSAM2 workflow (excluding the initial mapping step to T2T-CHM13)
was also faster than a standard approach that simply maps all the 30× Illumina paired-
end WGS reads for HG002 to the target reference (Figure 6b). We compared the CPU
time used by BWA-MEM31 when aligning directly to the target and by the samtools sort
command40,41 to the corresponding levioSAM2 run. For a 30× real WGS dataset initially
mapped to T2T-CHM13, the levioSAM2 workflows took 36.9 CPU hours for CHM13-to-
GRCh37 and 47.6 CPU hours for CHM13-to-GRCh38. Compared to directly mapping to
the target genome, the CHM13-to-GRCh37 method took 49.8% of the time (74.1 hours)
and the CHM13-to-GRCh38 method took 55.4% of the time (86.3 hours). While other
stages in the levioSAM2 workflow used more memory compared to levioSAM2-lift, they
didn’t use more than 35 GB memory (Note S2 and Figure S3).
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3 Discussion

LevioSAM2 lifts mappings from a source reference to a target reference while selectively
remapping the subset of reads for which lifting is not appropriate. LevioSAM2 uses ef-
ficient succinct data structures and is much more efficient than existing tools. While it is
common to lift post-read-mapping results like variant calls between references14,15, these
translations can be inaccurate due to large-scale differences between references12,18–20.
Starting from a BAM file mapped to T2T-CHM13, levioSAM2 generated GRC-based map-
pings 44.7-50.2% faster than a method which remapped all the reads. Mapping and geno-
typing results after using levioSAM2 were more accurate than those obtained using a
single reference in both simulated and real-data scenarios. Since levioSAM2 uses linear
references, its results are readily interpretable using common tools like the Integrative
Genomics Viewer (IGV)42.

The small-variant calling improvements by levioSAM2 were enriched in difficult re-
gions with presence of low-mappability units, segmental duplications, and assembly ar-
tifacts. These regions include the challenging medically relevant genes (CMRG), where
accurate variant calling is known to be difficult. LevioSAM2 also improved long read
mapping, demonstrated by more accurate small- and structural-variant calling. Notably,
levioSAM2 resolved most mapping errors in a 15-kbp region in the KMT2C gene and a
56-kbp region in the MAP2K3 gene in GRCh37.

As the need to move alignments between assemblies becomes more common, it will
be important to improve whole-genome alignment maps between those references. While
the UCSC “lift over construction” recipe14,43 has become a standard approach, more work
is needed to assess the quality of the resulting chain files44. For example, sequences with
multiple copies are challenging to accurately place, and some chain files do not guarantee
1-to-1 mapping between the source and target references. While the levioSAM2 frame-
work tolerates errors in a chain-file alignment, we expect improved whole-genome maps
to further enhance the accuracy and computational performance of levioSAM2.

LevioSAM2’s decisions on whether to commit, defer or suppress a read mapping rely
on relatively simple heuristics. We have shown these are effective in reducing the overall
number of needed re-alignments. Nevertheless, we expect that levioSAM2’s accuracy can
be further improved by making these decisions more data- and model-driven, perhaps
using properties of the input such as the read length, assay type, or data quality.

The future may see a shift toward more sophisticated pangenome representations,
e.g. made up of high-quality population-scale genome assemblies35,45. We expect that
accurate and efficient lift-over methods like levioSAM2 will be useful in these contexts as
well. While construction of a pangenome graph can require use of expensive multiple- or
progressive-alignment algorithms, the levioSAM2 approach can be applied to any pair of
genomes with a whole-genome alignment to each other (in the form of a chain file).

Rapid progress in genome assembly and sequencing is making hundreds of high-
quality reference assemblies available35. These assemblies provide demonstrated im-
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provements for short and long-read variant calling2,4. However, a rich set of annotations,
key for interpretation, are built on previous references and difficult or impossible to trans-
late to every new assembly. LevioSAM2 enables analyses that have the best of both worlds
by improving mapping for the original reference without losing all its secondary informa-
tion while also providing mappings for novel genomic discovery in regions unique to the
new reference.

4 Methods

4.1 Efficient lift-over using succinct data structures

A chain file describes a pairwise whole-genome alignment14. It consists of many “chains”,
each a set of co-linear alignments between the source and the target reference. An align-
ment is further split into an interleaved sequence of aligned segments and gaps. An
aligned segment can include matches and mismatches but not gaps. A gap can appear
in one of the references or both. Each line in a chain specifies one aligned segment and up
to two gaps (Figure 1c: bottom).

LevioSAM2 first sorts the aligned segments by position and stores them in a chain
interval array. Each chain interval records information useful for lifting, including tar-
get contig, strand, and offset. The offset is represented as the difference between source
position and target position.

To enable queries against the chain interval array, levioSAM2 builds a pair genome-
length of succinct bit vectors (“BV”) (Fig. 1c: top). It uses the start bv bit vector to
encode starting positions of all chain intervals and uses the end bv vector for ending
positions. Both bit vectors are supplemented with data structures enabling constant-time
rank queries, as provided by the SDSL library46. The levioSAM2 implementation further
wraps these bit vectors and arrays in an unordered map, with source contigs as keys to
the map.

When querying a position, levioSAM2 first locates the index of the corresponding
chain interval by performing a rank query over both start bv and end bv. A rank
query computes the number of set bits (bits equal to 1) prior to the queried position. If a
position p is within a chain interval, it must be that rankstart bv(p)− rankend bv(p) = 1.
For a position outside of any chain interval, levioSAM2 checks the distance between the
position and its neighbor chain interval boundary. If the distance is under a user-defined
threshold, the query is assigned to the neighbor. LevioSAM2 queries the chain interval
array using the index and updates the contig, strand and position information. Since it is
dominated by the rank query, this is a constant-time algorithm (O(1)), which is faster than
the commonly-used interval tree-based algorithms14,15, which can use O(log(m)) time m
is the number of intervals.

It is necessary to update the CIGAR information of an alignment when it overlaps a
chain gap. This kind of CIGAR update is not performed by CrossMap15. While levioSAM
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does perform such an update17, this takes O(n) time where n is the length of a read.
Here we describe a new algorithm (Alg. 1) to update the CIGAR string. The algorithm
maintains a list of chain gaps, and updates the chain gaps into the CIGAR string. Since
the algorithm only traverses through the CIGAR string and gaps collection once, its time
complexity is O(r + g), where r is the number of runs in the original CIGAR and g is the
number of overlapped chain gaps in the alignment. Usually r and g are much smaller
than the read length n, so the proposed algorithm is substantially faster than levioSAM’s.

While levioSAM2 can lift over mappings spanning gaps in a chain file and update
the CIGAR strings accordingly, the resulting mapping does not always align optimally
after lift-over. That is, a slightly different decision about how to arrange gaps and mis-
matches might be more optimal. To achieve optimal alignment, levioSAM2 includes an
optional realignment module that uses a localized dynamic-programming algorithm to
refine the alignment. Note that we use the term “mapping” for the task of determining
where the read camp from, and the term “alignment” for the more detailed task of lin-
ing individual read bases up with reference bases. We use the ksw2 library47 for efficient
dynamic-programming-based realignments. We support parameter presets in the YAML
format48 for popular aligners including Bowtie 2, BWA MEM, and minimap2. LevioSAM2
uses the data structures provided by htslib49 to process SAM and BAM files.

4.2 LevioSAM2 workflow with selective re-mapping

To improve mappings in the presence of large-scale differences between source and tar-
get references, levioSAM2 uses a selective re-mapping strategy. Reads that can be lifted
with high confidence are “committed” and the lifted alignment is taken as the final align-
ment. Reads belonging to a region that is specific to the source reference are “suppressed”
and left unaligned with respect to the target reference. Reads for which the lift is lower-
confidence are “deferred” and are re-mapped to the target reference (Fig. 1b; Section
4.2.1). For paired-end reads, we use the “levioSAM2-collate” step to ensure deferred reads
are re-mapped as a pair (Section 4.2.2). After re-mapping, “levioSAM2-reconcile” com-
pares the re-mapped and lifted mappings for each deferred read and selects the one with
higher confidence (Section 4.2.3). Committed and reconciled mappings are combined in
the final output.

4.2.1 Selective strategy

To determine if a given read should be committed, levioSAM2 examines a combina-
tion of the read’s alignment features and the reference genome’s “liftability” annotation.
Alignment features include mapping status (mapped or not), mapping quality, fraction of
clipped bases, edit distance (the NM:i tag), alignment score (the AS:i tag), and fragment
length (if part of a pair). For BWA-MEM (local alignment), we used a MAPQ cutoff of
30 or an alignment score cutoff of 100; for Bowtie 2 (end-to-end alignment), we used a
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Algorithm 1: UpdateCigar
# Inputs:
# - gap_pos (list, sorted in ascending order)
# - gap_size (list, sorted in ascending order)
# - cigar (list): each element is a tuple - (cigar_op_len, cigar_op)

new_cigar = []; q = 0; borrowed_bases = 0
for i, (clen, cop) in enumerate(cigar):

if cop.consume_query():
if borrowed_bases > 0: # Borrowed bases are resolved first

if borrowed_bases < clen:
clen -= borrowed_bases
borrowed_bases = 0

else:
borrowed_bases -= clen
continue

next_gap = gap_pos[0]
next_q = q + clen
# If not yet reach the next gap, add cigar and advance
if next_q <= next_gap:

new_cigar.add((clen, cop))
else:

rseg_len = clen
# Order of updates: (1) bases before the break point (size: ‘seg_len‘);
# (2) the break point; (3) remaining segment (size: ‘rseg_len‘).
while next_gap >= q and next_q > next_gap:

seg_len = next_gap - next_q
if seg_len > 0:

new_cigar.add((seg_len, cop))
q += seg_len
rseg_len -= seg_len

diff = gap_size.pop_front() # Pop and return the first element
if diff > 0:

new_cigar.add((diff, "D"))
elif diff < 0:

new_cigar.add((-diff, "I"))
rseg_len += diff
q -= diff

gap_pos.pop_front()
next_gap = gap_pos[0]

if rseg_len > 0:
new_cigar.add((rseg_len, cop))
q += rseg_len

elif rseg_len < 0:
borrowed_bases = -rseg_len

else: # When cop doesn’t consume QUERY
new_cigar.add((clen, cop))
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MAPQ cutoff of 10 or an alignment score cutoff of -10.
The genomic liftability annotation is a BED file marking some regions as “unliftable”

and some as “mappability-reduced.” The annotation is generated ahead of the lift-over
process and is indexed using interval trees for fast queries. The “unliftable” annotation
is given to regions that are unique to the source reference, like T2T-CHM13’s centromeric
regions, which have no counterpart in GRCh38. Reads mapping to these regions are sup-
pressed in order to avoid false re-mappings. Suppression tends to improve computational
performance as well, since suppressed reads often come from repetitive regions and re-
quire a disproportionate amount of alignment effort. To determine which regions are
unliftable, we first extract sequences from the source reference that are not in the chain
file and are longer than 5000 bps. We then align the sequences to the target reference us-
ing Winnowmap234 and label either unmapped or repetitive (mapping to multiple loci in
target) regions as unliftable.

LevioSAM2 also looks for “mappability-reduced” regions in the source to gauge con-
fidence in lifted mappings. Mappability-reduced regions have high mappability in the
source reference but lower mappability after being mapped to the target. To build the
mappability-reduced annotations, we use GenMap250 to calculate mappability for both
source and target references (using 100-mers and a 0.01 mismatch-rate tolerance). We ex-
tract uniquely mappable regions in the source reference and lift them to the target. We
then overlap these lifted unique regions with the low-mappability regions in the target.
Reads lifted to these regions are deferred and re-mapped.

4.2.2 Collate

For paired-end reads, the selective strategy can result in cases where the paired ends are
assigned to different groups. Re-mapping accuracy for single-end reads is usually lower
than for paired-end reads, especially when the reads overlap indels. Thus, we develop
the “levioSAM2-collate” method to additionally defer the mate of the deferred singletons,
generating properly paired deferred read sets.

LevioSAM2-collate starts by reading the deferred alignments and storing the first and
the second segments separately in a pair of hash maps51. For a properly-paired read
(i.e. with both ends in the deferred group), we write both ends to a paired-deferred BAM
file and remove them from the hash tables. Once all deferred alignments have been pro-
cessed, any paired ends remaining in the hash maps are singletons. We then read the
committed alignments and extract the reads which pair with the deferred singletons.

4.2.3 Reconciling

Motivated by the “reference flow” mapping strategy22, we designed a “levioSAM2-reconcile”
method to improve accuracy. LevioSAM2-reconcile compares the lifted and re-mapped
deferred mappings, selecting the one which has higher confidence. The process starts
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with sorting both deferred BAM files by query name. We select the mapping with lower
edit distance with respect to the target reference. Ties are broken by taking the mapping
with higher mapping quality, or by making a random choice if they are still tied. By recon-
ciling and selecting the alignment in this way, levioSAM2 can better leverage the genetic
diversity provided by the additional reference.

4.3 Generating chain files

We used nf-LO43 with the minimap2 mode to build the chain files for both CHM13-to-
GRCh37 and CHM13-to-GRCh38:

nextflow run main.nf --source source.fa --target target.fa \
--outdir out_dir -profile local --aligner minimap2

4.4 Evaluation using simulated sequencing datasets

We used the GRCh38-based SNPs for NA12878/HG001 from the 1000 Genomes Project
(1KGP)12 to build personalized chromosome 20 and 21 references for simulation. We
masked the regions that could not lift to T2T-CHM13 using bedtools-maskfasta52. We
used the mason simulator29 to simulate 10M 100-bp paired-end reads (5M pairs) for both
chromosomes:

mason_simulator --num-threads 16 -ir ref.fa -n 5000000 \
-o out-R1.fq -or out-R2.fq -oa out.sam -iv sample.vcf

We mapped the reads using both unmasked GRCh38 and CHM13-to-GRCh38 using
default parameters for both Bowtie 230 and BWA-MEM31. We compared mappings from
the direct-to-GRCh38 and CHM13-to-GRCh38 strategies by measuring the fraction of cor-
rect mappings, where a mapping was considered correct if its leftmost mapped position
(the first un-clipped base) was within 10-bp of that of its simulated origin.

4.5 Evaluation using real sequencing datasets

4.5.1 Small variant calling and evaluation

We evaluated three real 30× coverage datasets sequenced using Illumina Novaseq and
a PCR-free protocol. We also evaluated a dataset sequenced with PacBio-HiFi with 28×
coverage (Table 1). The samples were from distinct ancestries, including Utah/European
(HG001), Ashkenazi Jewish (HG002), and Han Chinese (HG005).

For the Illumina datasets, we mapped the reads to GRCh37, GRCh38, and T2T-CHM13
using BWA-MEM31 with default parameters and sorted by genomic positions using sam-
tools41. We used the levioSAM2 workflow to lift the reads mapped to T2T-CHM13 to GRC
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references and generated CHM13-to-GRCh37 and CHM13-to-GRCh38 mappings. We
then called small variants using GATK HaplotypeCaller23 and DeepVariant (the “WGS”
model)24 for GRCh37, GRCh38, CHM13-to-GRCh37, and CHM13-to-GRCh38. For the
PacBio-HiFi dataset, we followed similar procedures, except we used minimap233 as the
read mapper and called small variants using the haplotype-sorting DeepVariant pipeline
with the “PACBIO” model53,54.

For both sequencing data types, we evaluated the accuracy of small variants using
hap.py55 and the Genome in a Bottle (GIAB) v4.2.125 and the GIAB Challenging Medically
Relevant Gene (CMRG) benchmark26 truth sets. Hap.py reports small variant calling ac-
curacy measures stratified by variant type. We sometimes reported the overall (SNP and
indel) F1 of one dataset for simplicity. We did so by adding the true positives (TP), false
positives (FP), and false negatives (FN) for SNPs and indels, then calculating overall F1

with 2 · TP/(TP + 0.5(FP + FN)). Similarly, for the F1 of multiple datasets, we summed
the measures for all datasets and calculated the F1.

Table 1: Real sequencing datasets and truth sets we used for evaluation. The Illumina data
are from Google Health32 and the PacBio data are from the Human Pangenome Reference
Consortium35

Sample Sequencing platform Variant type Truth variants Coordinates
HG001 30× Illumina Novaseq Small GIAB v4.2.125 GRCh37, GRCh38
HG002 30× Illumina Novaseq Small GIAB v4.2.125 GRCh37, GRCh38
HG002 30× Illumina Novaseq Small GIAB CMRG26 GRCh37, GRCh38
HG002 28× PacBio HiFi Small GIAB v4.2.125 GRCh37, GRCh38
HG002 28× PacBio HiFi Small GIAB CMRG26 GRCh37, GRCh38
HG002 28× PacBio HiFi SV GIAB SV Tier 128 GRCh37
HG002 28× PacBio HiFi SV GIAB CMRG26 GRCh38
HG005 30× Illumina Novaseq Small GIAB v4.2.125 GRCh37, GRCh38

4.5.2 Structural variant calling and evaluation

We called structural variants (SV) for the PacBio-HiFi HG002 dataset using Sniffles2 v2.0.136.
We used the “germline SV calling” mode with default parameters, without providing any
tandem repeat annotations. We next compressed the VCF files for each dataset using
bgzip and indexed them with tabix49. Finally, we benchmarked and compared the SV calls
using the GIAB Tier 1 benchmark regions for GRCh3728 and the GIAB CMRG benchmark
for GRCh3826 using truvari 2.137 and following the GIAB benchmarking instructions.
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sniffles2.0.1.py \
--input sample.bam \
--vcf sample.vcf \
--threads 8 \
--output-rnames \
--sample-id sample_id

truvari-v2.1 bench \
--base grch37-HG002_SVs_Tier1_v0.6.vcf.gz \
--comp sample.vcf.gz \
--output sample_id-GIABv0.6 \
--passonly \
--includebed grch37-HG002_SVs_Tier1_v0.6.bed \
--refdist 2000 \
--reference grch37.fasta \
--giabreport

truvari-v2.1 bench \
--base HG002_GRCh38_difficult_medical_gene_SV_benchmark_v0.01.vcf.gz \
--comp sample.vcf.gz \
--output sample_id-vs-GRCh38_SV_v0.01.03 \
--multimatch \
--passonly \
--refdist 2000 \
--includebed HG002_GRCh38_difficult_medical_gene_SV_benchmark_v0.01.bed \
--reference grch38.fa

4.6 Computational efficiency measurement

The computing nodes we used were Intel Cascade Lake 6248R with 48 cores per node
and 192 GB of memory. We requested 36 cores for all experiments except for the thread
scaling experiments. We used GNU Time56 to measure CPU time (“User time” + “System
time”), wall clock time (“Elapsed (wall clock) time”) and peak memory usage (“Maximum
resident set size”).

5 Availability of data and materials

The software is available at https://github.com/milkschen/leviosam2 under the
MIT license. The experiments described in this paper are described at https://github.
com/milkschen/levioSAM2-experiments under the MIT license.
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Supplementary Notes

S1 DeepVariant calls in difficult-to-map regions

We examined the DeepVariant calls in the KMT2C gene, where there were known map-
ping collapses for HG002 data when using direct-to-GRCh37 (see Results). We noticed
that DeepVariant made many homozygous reference calls even when the variant allele
fraction (VAF) were as high as 0.82 (Figure S8). The GIAB truth set reported few variants
in this region. We reasoned that DeepVariant could “recognize” mapping artifacts and
adjust its decisions in difficult-to-map regions.

S2 Computational efficiency of levioSAM2

We measured the CPU time and peak memory usage of each step in the levioSAM2 and
typical pipelines (Figure 6b and Figure S3). In the levioSAM2 workflows, lifting align-
ments over took 19.2% CPU time (7.1 hours) for CHM13-to-GRCh37 and 13.6% (6.5 hours)
for CHM13-to-GRCh38. The majority of the CPU-time usage for the levioSAM2 workflow
was in the remapping step, taking 66.2% (24.5 hours; GRCh37) and 74.6% (35.6 hours;
GRCh38) of time. Mapping the deferred reads took longer and had a higher memory
footprint compared to the direct-to-target mapping task, likely because of the higher in-
cidence of repetitive alignments for deferred reads. The most memory-consuming step
was levioSAM2-collate, since we used a hash map to store unpaired deferred reads. For
memory-limited systems, it will be straightforward to reduce the memory bottleneck with
a marginal increase in CPU time .
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Figure S1: Regions unique to T2T-CHM131 compared to GRCh38 (blue) and high quality
calls from DeepVariant in these regions (red).
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Figure S2: Mapping accuracy using simulated reads that carry GRCh38-based HG001
genotypes2.
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Figure S3: Peak memory usage of levioSAM2 and direct-to-GRC pipelines using a real
30× WGS dataset from HG002.
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Figure S4: Thread scaling of levioSAM2-lift. 3.6M pairs (0.3 × coverage) of real Illumina
reads from the real HG002 dataset were used. Wall clock time (second) and peak memory
usage (MB) were measured using GNU Time.
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Figure S5: Small variant calling performance in difficult regions. a, Small variant calling
accuracy in major difficult genomic regions for HG002. b, GIAB stratified regions with top
small variant calling error reduction densities by levioSAM2. Small variants in both plots
were called using using DeepVariant.
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Figure S6: IGV visualization near chr5:21,543,010. The reads were grouped using the al-
lele at chr5:21,543,010. A 174-bp DEL was called when using direct-to-GRCh37, matching
the GIAB Tier 1 SV callset. However, personalized whole-genome assemblies suggested
collapse mapping in this region and the CHM13-to-GRCh37 mappings showed better con-
cordance with the assemblies.
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Figure S7: IGV visualization near chr7:61,880,665. The reads were grouped using the al-
lele at chr7:61,880,665. A 166-bp DEL was called when using direct-to-GRCh37, matching
the GIAB Tier 1 SV callset. However, personalized whole-genome assemblies suggested
collapse mapping in this region and the CHM13-to-GRCh37 mappings showed better con-
cordance with the assemblies.
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Figure S8: DeepVariant calls in chr7:152,104,140-152,104,343 (located in the KMT2C
gene). This is a region annotated as high confidence (“Confident regions”) but has
no truth variants (“HG002 truth variants”). Gray bars in the “DeepVariant calls” track
show homozygous reference variant calls. Colors other than gray in the “GRCh37” and
“GRCh37 coverage” tracks show alternate alleles.
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Supplementary Tables

Table S1: Software version

levioSAM2 v0.2.0
BWA-MEM3 0.7.17-r1188
minimap24 2.24-r1122
Winnowmap25 2.03
Bowtie 26 2.3.5.1
bedtools7 v2.30.0-48-g868a9a24
GATK8 v4.2.2.0
HTSJDK9 2.24.1
Picard10 2.25.4
DeepVariant11 1.2.0
Hap.py12 v0.3.8-17-gf15de4a
Sniffles213 2.0.1
whatshap14 1.2.1
truvari15 v2.1
nf-LO16 1.5.1
liftOver17 accessed on Sep 14, 2021
CrossMap18 v0.5.4
mason219 2.0.9
GNU Time20 1.9
IGV21 2.6.3
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Table S2: Small variant calling accuracy for 30× WGS datasets using BWA-MEM–GATK-
HaplotypeCaller in all GIAB v4.2.1 regions22

Sample Method Type Recall Precision F1 TP FN FP
HG001 GRCh38 SNP 0.9932 0.9875 0.9903 3232144 22228 41050
HG001 CHM13-to-GRCh38 SNP 0.9950 0.9908 0.9929 3238118 16254 30230
HG001 GRCh37 SNP 0.9869 0.9790 0.9829 3209109 42734 68868
HG001 CHM13-to-GRCh37 SNP 0.9900 0.9903 0.9901 3219275 32568 31572
HG001 GRCh38 INDEL 0.9902 0.9889 0.9895 463115 4578 5418
HG001 CHM13-to-GRCh38 INDEL 0.9904 0.9907 0.9905 463195 4498 4537
HG001 GRCh37 INDEL 0.9863 0.9832 0.9848 460484 6391 8148
HG001 CHM13-to-GRCh37 INDEL 0.9870 0.9897 0.9884 460816 6059 4981
HG002 GRCh38 SNP 0.9922 0.9877 0.9899 3338776 26350 41484
HG002 CHM13-to-GRCh38 SNP 0.9943 0.9912 0.9927 3345806 19320 29656
HG002 GRCh37 SNP 0.9859 0.9802 0.9831 3305380 47305 66646
HG002 CHM13-to-GRCh37 SNP 0.9890 0.9909 0.9900 3315802 36883 30406
HG002 GRCh38 INDEL 0.9893 0.9889 0.9891 519842 5625 6059
HG002 CHM13-to-GRCh38 INDEL 0.9895 0.9911 0.9903 519929 5538 4887
HG002 GRCh37 INDEL 0.9858 0.9843 0.9851 514968 7421 8551
HG002 CHM13-to-GRCh37 INDEL 0.9864 0.9903 0.9884 515300 7089 5244
HG005 GRCh38 SNP 0.9914 0.9876 0.9895 3247494 28120 40927
HG005 CHM13-to-GRCh38 SNP 0.9936 0.9903 0.9920 3254520 21094 31718
HG005 GRCh37 SNP 0.9861 0.9801 0.9831 3220745 45244 65350
HG005 CHM13-to-GRCh37 SNP 0.9894 0.9904 0.9899 3231517 34472 31338
HG005 GRCh38 INDEL 0.9922 0.9900 0.9911 413504 3263 4309
HG005 CHM13-to-GRCh38 INDEL 0.9923 0.9917 0.9920 413577 3190 3566
HG005 GRCh37 INDEL 0.9883 0.9844 0.9864 408990 4834 6685
HG005 CHM13-to-GRCh37 INDEL 0.9891 0.9912 0.9902 409333 4491 3763
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Table S3: Small variant calling accuracy for 30× WGS datasets using BWA-MEM–
DeepVariant in all GIAB v4.2.1 regions22

Sample Method Type Recall Precision F1 TP FN FP
HG001 GRCh38 SNP 0.9945 0.9983 0.9964 3236509 17863 5417
HG001 CHM13-to-GRCh38 SNP 0.9958 0.9981 0.9970 3240823 13549 6144
HG001 GRCh37 SNP 0.9883 0.9978 0.9931 3213802 38041 6937
HG001 CHM13-to-GRCh37 SNP 0.9908 0.9980 0.9944 3222057 29786 6364
HG001 GRCh38 INDEL 0.9925 0.9967 0.9946 464179 3514 1609
HG001 CHM13-to-GRCh38 INDEL 0.9925 0.9966 0.9946 464176 3517 1626
HG001 GRCh37 INDEL 0.9888 0.9966 0.9927 461638 5237 1637
HG001 CHM13-to-GRCh37 INDEL 0.9893 0.9966 0.9930 461883 4992 1623
HG002 GRCh38 SNP 0.9937 0.9990 0.9963 3343863 21263 3436
HG002 CHM13-to-GRCh38 SNP 0.9951 0.9985 0.9968 3348636 16490 4881
HG002 GRCh37 SNP 0.9874 0.9985 0.9929 3310312 42373 5059
HG002 CHM13-to-GRCh37 SNP 0.9898 0.9985 0.9941 3318525 34160 4935
HG002 GRCh38 INDEL 0.9919 0.9972 0.9946 521223 4244 1506
HG002 CHM13-to-GRCh38 INDEL 0.9919 0.9972 0.9945 521209 4258 1548
HG002 GRCh37 INDEL 0.9884 0.9971 0.9927 516310 6079 1560
HG002 CHM13-to-GRCh37 INDEL 0.9888 0.9971 0.9929 516527 5862 1561
HG005 GRCh38 SNP 0.9930 0.9986 0.9958 3252742 22872 4588
HG005 CHM13-to-GRCh38 SNP 0.9945 0.9982 0.9963 3257465 18149 5812
HG005 GRCh37 SNP 0.9878 0.9984 0.9931 3226259 39730 5227
HG005 CHM13-to-GRCh37 SNP 0.9904 0.9984 0.9944 3234785 31204 5309
HG005 GRCh38 INDEL 0.9929 0.9977 0.9953 413827 2941 993
HG005 CHM13-to-GRCh38 INDEL 0.9930 0.9976 0.9953 413845 2923 1021
HG005 GRCh37 INDEL 0.9892 0.9977 0.9934 409353 4472 969
HG005 CHM13-to-GRCh37 INDEL 0.9898 0.9977 0.9937 409620 4205 987

Table S4: Small variant calling accuracy for 30× WGS datasets using BWA-MEM–GATK-
HaplotypeCaller in GIAB CMRG regions for HG00223

Method Type Recall Precision F1 TP FN FP
GRCh38 SNP 0.9569 0.9483 0.9526 16824 758 911
CHM13-to-GRCh38 SNP 0.9652 0.9758 0.9705 16971 611 418
GRCh37 SNP 0.9481 0.9036 0.9253 16978 929 1798
CHM13-to-GRCh37 SNP 0.9521 0.9677 0.9598 17049 858 565
GRCh38 INDEL 0.9387 0.9520 0.9453 3398 222 184
CHM13-to-GRCh38 INDEL 0.9412 0.9726 0.9566 3407 213 103
GRCh37 INDEL 0.9251 0.9155 0.9202 3382 274 336
CHM13-to-GRCh37 INDEL 0.9275 0.9643 0.9456 3391 265 135
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Table S5: Small variant calling accuracy for 30× WGS datasets using BWA-MEM–
DeepVariant in GIAB CMRG regions for HG00223

Method Type Recall Precision F1 TP FN FP
GRCh38 SNP 0.9616 0.9854 0.9734 16907 675 250
CHM13-to-GRCh38 SNP 0.9700 0.9904 0.9801 17055 527 164
GRCh37 SNP 0.9547 0.9790 0.9667 17095 812 366
CHM13-to-GRCh37 SNP 0.9591 0.9896 0.9741 17175 732 179
GRCh38 INDEL 0.9340 0.9735 0.9533 3381 239 98
CHM13-to-GRCh38 INDEL 0.9362 0.9762 0.9558 3389 231 88
GRCh37 INDEL 0.9248 0.9667 0.9453 3381 275 124
CHM13-to-GRCh37 INDEL 0.9267 0.9751 0.9503 3388 268 92

Table S6: Difficult regions stratified by GIAB23. The sizes are calculated after intersecting
stratified regions with the GIAB v4.2.1 confident regions for HG00222

Reference GIAB subset name Legend Size
GRCh38 alldifficultregions AllDifficult 415,601,891
GRCh38 gclt25orgt65 slop50 ExtremeGC 164,164,687
GRCh38 AllTandemRepeatsandHomopolymers slop5 Tandem&Homo 121,406,218
GRCh38 lowmappabilityall LowMap 105,002,312
GRCh38 segdups SegDups 83,843,041
GRCh38 allOtherDifficultregions OtherDifficult 22,511,200
GRCh37 alldifficultregions AllDifficult 393,128,724
GRCh37 AllTandemRepeatsandHomopolymers slop5 Tandem&Homo 121,049,426
GRCh37 lowmappabilityall LowMap 75,276,894
GRCh37 segdups SegDups 72,412,437
GRCh37 gclt25orgt65 slop50 ExtremeGC 62,521,603
GRCh37 allOtherDifficultregions OtherDifficult 29,884,114
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Table S7: Small variant calling accuracy for 30× WGS datasets using BWA-MEM–GATK-
HaplotypeCaller in GIAB difficult regions for HG00223

Method Type Subset Recall Precision F1 TP FN FP
GRCh38 SNP GC<25or>65 0.9943 0.9834 0.9889 212359 1209 3576
CHM13-to-GRCh38 SNP GC<25or>65 0.9954 0.9884 0.9919 212591 977 2487
GRCh37 SNP GC<25or>65 0.9891 0.9759 0.9825 210064 2318 5179
CHM13-to-GRCh37 SNP GC<25or>65 0.9910 0.9882 0.9896 210470 1912 2514
GRCh38 SNP Tandem&Homo 0.9948 0.9836 0.9891 181945 960 3059
CHM13-to-GRCh38 SNP Tandem&Homo 0.9951 0.9862 0.9906 182017 888 2564
GRCh37 SNP Tandem&Homo 0.9909 0.9795 0.9852 180733 1662 3808
CHM13-to-GRCh37 SNP Tandem&Homo 0.9919 0.9872 0.9896 180925 1470 2357
GRCh38 SNP OtherDifficult 0.8941 0.6999 0.7852 49090 5814 20974
CHM13-to-GRCh38 SNP OtherDifficult 0.9148 0.8232 0.8666 50224 4680 10750
GRCh37 SNP OtherDifficult 0.6308 0.5328 0.5777 41407 24230 36307
CHM13-to-GRCh37 SNP OtherDifficult 0.6828 0.8073 0.7398 44814 20823 10694
GRCh38 SNP SegDups 0.9076 0.8370 0.8709 109771 11177 21381
CHM13-to-GRCh38 SNP SegDups 0.9302 0.8819 0.9054 112508 8440 15071
GRCh37 SNP SegDups 0.8761 0.7342 0.7989 96344 13627 34874
CHM13-to-GRCh37 SNP SegDups 0.9043 0.8719 0.8878 99445 10526 14616
GRCh38 SNP LowMap 0.8806 0.8918 0.8861 169632 23008 20590
CHM13-to-GRCh38 SNP LowMap 0.9171 0.9241 0.9206 176665 15975 14517
GRCh37 SNP LowMap 0.8516 0.8142 0.8325 112749 19652 25729
CHM13-to-GRCh37 SNP LowMap 0.9006 0.9206 0.9105 119240 13161 10282
GRCh38 SNP AllDifficult 0.9611 0.9482 0.9546 618558 25007 33821
CHM13-to-GRCh38 SNP AllDifficult 0.9718 0.9647 0.9682 625442 18123 22947
GRCh37 SNP AllDifficult 0.9296 0.9084 0.9189 556892 42168 56269
CHM13-to-GRCh37 SNP AllDifficult 0.9450 0.9597 0.9523 566140 32920 23803
GRCh38 INDEL GC<25or>65 0.9866 0.9869 0.9868 49835 675 680
CHM13-to-GRCh38 INDEL GC<25or>65 0.9870 0.9894 0.9882 49854 656 549
GRCh37 INDEL GC<25or>65 0.9840 0.9815 0.9828 49672 806 965
CHM13-to-GRCh37 INDEL GC<25or>65 0.9847 0.9887 0.9867 49706 772 587
GRCh38 INDEL Tandem&Homo 0.9881 0.9918 0.9899 334899 4042 2941
CHM13-to-GRCh38 INDEL Tandem&Homo 0.9882 0.9923 0.9902 334933 4008 2782
GRCh37 INDEL Tandem&Homo 0.9861 0.9909 0.9885 331136 4665 3242
CHM13-to-GRCh37 INDEL Tandem&Homo 0.9865 0.9923 0.9894 331274 4527 2739
GRCh38 INDEL OtherDifficult 0.9573 0.8609 0.9065 10227 456 1762
CHM13-to-GRCh38 INDEL OtherDifficult 0.9591 0.9285 0.9436 10246 437 840
GRCh37 INDEL OtherDifficult 0.5957 0.4563 0.5168 2803 1902 3370
CHM13-to-GRCh37 INDEL OtherDifficult 0.6344 0.7358 0.6814 2985 1720 1085

Continued on next page
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Table S7 – Continued from previous page
Method Type Subset Recall Precision F1 TP FN FP
GRCh38 INDEL SegDups 0.9137 0.8599 0.8860 9888 934 1649
CHM13-to-GRCh38 INDEL SegDups 0.9168 0.9037 0.9102 9922 900 1082
GRCh37 INDEL SegDups 0.8876 0.7522 0.8143 8809 1115 2966
CHM13-to-GRCh37 INDEL SegDups 0.8951 0.8851 0.8901 8883 1041 1179
GRCh38 INDEL LowMap 0.8486 0.8678 0.8581 8836 1576 1362
CHM13-to-GRCh38 INDEL LowMap 0.8552 0.9045 0.8792 8904 1508 951
GRCh37 INDEL LowMap 0.8211 0.7691 0.7943 5917 1289 1798
CHM13-to-GRCh37 INDEL LowMap 0.8333 0.8941 0.8626 6005 1201 720
GRCh38 INDEL AllDifficult 0.9853 0.9870 0.9862 365008 5440 5096
CHM13-to-GRCh38 INDEL AllDifficult 0.9855 0.9896 0.9876 365091 5357 4051
GRCh37 INDEL AllDifficult 0.9808 0.9814 0.9811 357465 7014 7193
CHM13-to-GRCh37 INDEL AllDifficult 0.9816 0.9887 0.9851 357770 6709 4349
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Table S8: Small variant calling accuracy for 30× WGS datasets using BWA-MEM–
DeepVariant in GIAB difficult regions for HG00223

Method Type Subset Recall Precision F1 TP FN FP
GRCh38 SNP GC<25or>65 0.9957 0.9990 0.9973 212648 920 218
CHM13-to-GRCh38 SNP GC<25or>65 0.9963 0.9985 0.9974 212779 789 318
GRCh37 SNP GC<25or>65 0.9901 0.9983 0.9942 210285 2097 359
CHM13-to-GRCh37 SNP GC<25or>65 0.9919 0.9984 0.9951 210657 1725 342
GRCh38 SNP Tandem&Homo 0.9972 0.9983 0.9977 182389 516 310
CHM13-to-GRCh38 SNP Tandem&Homo 0.9974 0.9982 0.9978 182423 482 340
GRCh37 SNP Tandem&Homo 0.9932 0.9980 0.9956 181146 1249 363
CHM13-to-GRCh37 SNP Tandem&Homo 0.9941 0.9981 0.9961 181311 1084 346
GRCh38 SNP OtherDifficult 0.9163 0.9757 0.9450 50306 4598 1256
CHM13-to-GRCh38 SNP OtherDifficult 0.9297 0.9715 0.9502 51045 3859 1497
GRCh37 SNP OtherDifficult 0.6414 0.9530 0.7668 42101 23536 2076
CHM13-to-GRCh37 SNP OtherDifficult 0.6901 0.9685 0.8059 45294 20343 1474
GRCh38 SNP SegDups 0.9169 0.9847 0.9496 110896 10052 1729
CHM13-to-GRCh38 SNP SegDups 0.9332 0.9731 0.9528 112872 8076 3117
GRCh37 SNP SegDups 0.8847 0.9768 0.9284 97286 12685 2316
CHM13-to-GRCh37 SNP SegDups 0.9082 0.9752 0.9405 99877 10094 2537
GRCh38 SNP LowMap 0.9014 0.9851 0.9414 173653 18987 2634
CHM13-to-GRCh38 SNP LowMap 0.9275 0.9779 0.9520 178675 13965 4038
GRCh37 SNP LowMap 0.8773 0.9772 0.9246 116156 16245 2705
CHM13-to-GRCh37 SNP LowMap 0.9136 0.9752 0.9434 120959 11442 3077
GRCh38 SNP AllDifficult 0.9685 0.9951 0.9816 623274 20291 3073
CHM13-to-GRCh38 SNP AllDifficult 0.9758 0.9929 0.9842 627965 15600 4517
GRCh37 SNP AllDifficult 0.9366 0.9920 0.9635 561083 37977 4534
CHM13-to-GRCh37 SNP AllDifficult 0.9489 0.9922 0.9701 568432 30628 4467
GRCh38 INDEL GC<25or>65 0.9895 0.9959 0.9927 49979 531 211
CHM13-to-GRCh38 INDEL GC<25or>65 0.9895 0.9960 0.9927 49978 532 205
GRCh37 INDEL GC<25or>65 0.9869 0.9958 0.9913 49815 663 216
CHM13-to-GRCh37 INDEL GC<25or>65 0.9871 0.9959 0.9915 49826 652 213
GRCh38 INDEL Tandem&Homo 0.9914 0.9962 0.9938 336023 2918 1360
CHM13-to-GRCh38 INDEL Tandem&Homo 0.9913 0.9961 0.9937 336001 2940 1385
GRCh37 INDEL Tandem&Homo 0.9894 0.9962 0.9928 332240 3561 1346
CHM13-to-GRCh37 INDEL Tandem&Homo 0.9896 0.9962 0.9928 332294 3507 1366
GRCh38 INDEL OtherDifficult 0.9639 0.9899 0.9767 10299 386 110
CHM13-to-GRCh38 INDEL OtherDifficult 0.9622 0.9897 0.9758 10281 404 112
GRCh37 INDEL OtherDifficult 0.6066 0.9634 0.7445 2854 1851 109
CHM13-to-GRCh37 INDEL OtherDifficult 0.6391 0.9737 0.7717 3007 1698 82

Continued on next page
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Table S8 – Continued from previous page
Method Type Subset Recall Precision F1 TP FN FP
GRCh38 INDEL SegDups 0.9236 0.9874 0.9544 9995 827 130
CHM13-to-GRCh38 INDEL SegDups 0.9250 0.9859 0.9545 10010 812 146
GRCh37 INDEL SegDups 0.8972 0.9845 0.9388 8904 1020 143
CHM13-to-GRCh37 INDEL SegDups 0.9029 0.9854 0.9423 8960 964 135
GRCh38 INDEL LowMap 0.8681 0.9825 0.9218 9040 1373 163
CHM13-to-GRCh38 INDEL LowMap 0.8720 0.9805 0.9231 9080 1333 182
GRCh37 INDEL LowMap 0.8425 0.9782 0.9053 6073 1135 137
CHM13-to-GRCh37 INDEL LowMap 0.8511 0.9796 0.9109 6134 1073 129
GRCh38 INDEL AllDifficult 0.9889 0.9962 0.9925 366326 4122 1470
CHM13-to-GRCh38 INDEL AllDifficult 0.9888 0.9961 0.9925 366308 4140 1509
GRCh37 INDEL AllDifficult 0.9842 0.9960 0.9901 358734 5746 1517
CHM13-to-GRCh37 INDEL AllDifficult 0.9848 0.9960 0.9904 358931 5549 1519
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Table S9: Small variant calling accuracy for 28× WGS PacBio-HiFi data using minimap2–
DeepVariant in all GIAB v4.2.1 regions for HG00222

Method Type Recall Precision F1 TP FN FP
GRCh38 SNP 0.9988 0.9991 0.9990 3361165 3961 3012
CHM13-to-GRCh38 SNP 0.9988 0.9990 0.9989 3361055 4071 3482
GRCh37 SNP 0.9923 0.9979 0.9951 3326880 25805 7129
CHM13-to-GRCh37 SNP 0.9945 0.9986 0.9965 3334094 18591 4667
GRCh38 INDEL 0.9467 0.9190 0.9327 497477 27990 45387
CHM13-to-GRCh38 INDEL 0.9466 0.9189 0.9326 497426 28041 45429
GRCh37 INDEL 0.9436 0.9184 0.9308 492918 29472 45365
CHM13-to-GRCh37 INDEL 0.9448 0.9187 0.9315 493541 28849 45229

Table S10: Small variant calling accuracy for 28× WGS PacBio-HiFi data using
minimap2–DeepVariant in GIAB CMRG regions for HG00223

Method Type Recall Precision F1 TP FN FP
GRCh38 SNP 0.9876 0.9795 0.9836 17364 218 365
CHM13-to-GRCh38 SNP 0.9952 0.9890 0.9921 17497 85 196
GRCh37 SNP 0.9867 0.9698 0.9782 17668 239 553
CHM13-to-GRCh37 SNP 0.9870 0.9702 0.9785 17675 232 547
GRCh38 INDEL 0.8851 0.8700 0.8775 3204 416 496
CHM13-to-GRCh38 INDEL 0.8876 0.8760 0.8817 3213 407 470
GRCh37 INDEL 0.8816 0.8690 0.8753 3223 433 503
CHM13-to-GRCh37 INDEL 0.8829 0.8716 0.8772 3228 428 491

17

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2022. ; https://doi.org/10.1101/2022.04.27.489683doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.27.489683
http://creativecommons.org/licenses/by/4.0/


Table S11: Structural variant calling accuracy for 28× WGS PacBio-HiFi data using
minimap2–Sniffles 2 in GRCh37 GIAB Tier 1 benchmark regions for HG00224

Method Type Recall Precision F1 TP FN FP
GRCh37 All 0.9714 0.9238 0.9470 9365 276 772

DEL 0.9755 0.9436 0.9593 4096 103 245
INS 0.9682 0.9102 0.9383 5269 173 520
Other 0 0 0 0 0 7

CHM13-to-GRCh37 All 0.9710 0.9278 0.9489 9361 280 728
DEL 0.9740 0.9485 0.9611 4090 109 222
INS 0.9686 0.9137 0.9403 5271 171 498
Other 0 0 0 0 0 8

Table S12: Structural variant calling accuracy for 25× WGS PacBio-HiFi data using
minimap2–Sniffles 2 in GRCh38 GIAB CMRG regions for HG00223

Method Type Recall Precision F1 TP FN FP
GRCh38 All 0.9677 0.9519 0.9598 198 7 10

DEL 0.9785 0.9381 0.9579 91 2 6
INS 0.9609 0.9685 0.9647 123 5 4

CHM13-to-GRCh38 All 0.9677 0.9612 0.9644 198 7 8
DEL 0.9785 0.9579 0.9681 91 2 4
INS 0.9609 0.9685 0.9647 123 5 4
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