
Supplementary Information 1 

Supplementary Introduction (osf.io/y4xar) 2 

In addition to the behavioral aspects, overlearning recently has been suggested to be 3 

associated with a change in the ratio of excitation and inhibition (E/I ratio) (Shibata et al., 2017). 4 

The E/I ratio shifted towards a more inhibitory dominant state after overlearning, in this case in 5 

a simple visual task and superseded learning. The balance between excitation and inhibition 6 

controls the temporal organization of neuronal avalanches which can be considered as a robust 7 

feature of spontaneous neuronal activity and are approximated by a power law (Shriki et al., 8 

2013). Human resting-state magnetoencephalography (MEG) (Shriki et al., 2013) and 9 

electroencephalography (EEG) (Palva et al., 2013) consist of neuronal avalanches, suggesting 10 

that it is a critical state, which is typically measured via a branching parameter. These branching 11 

parameters indicate the degree to which a signal propagates between clusters of neurons, with 12 

a branching parameter of 1 indicating criticality. Therefore, the present study also investigated 13 

if neuronal avalanches could serve as an electrophysiological marker for arithmetic learning 14 

and overlearning, and if the effect of tRNS is predicted by the individuals’ neuronal avalanches.  15 

We reasoned that a branching parameter of neuronal avalanches (in this case, kappa, κ) 16 

different from 1 may be seen amongst overlearners, due to increased inhibition as was shown 17 

elsewhere using magnetic resonance spectroscopy (Shibata et al., 2017). Considering that 18 

tRNS increases excitation, it is expected that overlearning in combination with tRNS leads to 19 

a scaling component closer to a critical system, that is, less branching. Learning and tRNS 20 

may also impact the branching parameter due to compounded excitation following learning 21 

and active tRNS. It was also expected that learning and sham tRNS would show less 22 

branching than learning and tRNS (κ is closer to 1). 23 

 24 

 25 



Supplementary Results 26 

Figure S1| Individual learning curves of the RTs of the learning and overlearning task. 27 
A) The individual learning curves of the participants who received sham stimulation (n=22) 28 
during learning shows a linear gradient. B) The individual learning curve of the participants 29 
who received sham stimulation (n=21) during overlearning. Bars indicate 95% confidence 30 
intervals.  31 
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 42 

Figure S2| Individual change in aperiodic exponent for both stimulation groups. 43 
Individual data points indicate the aperiodic exponent change (post-pre) for the sham 44 
stimulation group (in red) and the tRNS group (in blue). Means are indicated with a solid 45 
black line. Note that this figure is based after the exclusion of outliers.  46 
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Bayesian ANCOVA 56 

Task (learning/overlearning) and stimulation (tRNS/sham) were included as a fixed 57 

factor and the individual plateau as a covariate. The model with only stimulation included was 58 

the most probable model (P(M|data)=0.41, BFM=6.15, BF10=3.75) compared to the null model 59 

after observering the data. To account for model uncertainty, we looked at the Baysian model 60 

averaging, which tested the effects of both predictors (i.e., stimulation and task) and showed 61 

that the data were 3.20 more likely under models containing stimulation as a predictor 62 

compared to all models (BFincl=3.20). The data was only 0.35 times as likely for task as a 63 

predictor and similarly for the interaction between stimulation and task compared to all 64 

models (BFincl=0.85). This complementary analysis strengthens the conclusions that tRNS 65 

impacts the aperiodic exponent (mean change effect= -0.11, 95% credible interval (CrI; 66 

posterior distribution that contains 95% of the data)) tRNS [-0.21, -0.01], 95% CrI Sham 67 

[0.01, 0.21]), while task has no effect (mean change effect=0.02, 95% CrI learning [-0.12, 68 

0.06], 95% CrI overlearning [-0.07, 0.12]).  69 

 70 
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Model Comparisons for Learning and Overlearning (RTs) 78 

We implemented several model comparisons with the leave-one-out cross-validation 79 

(LOO) based on our brms model to determine the best fit for the learning and overlearning 80 

task data. First, we determined our starting model with the thought that the RTs should 81 

decrease over blocks and be dependent on the task paradigm.  82 

Syntax: 83 

Mod1 <- brm(medianRT ~ Block * Task + (1 + Block|Participant), family=lognormal, 84 

iter=5000, data=df_learning, save_pars=save_pars(all=TRUE))) 85 

Next, we added levels of complexity by adding our predictors stimulation and baseline 86 

aperiodic exponent to see if the fit with our data increases.  87 

Mod2 <- brm(medianRT ~ Stimulation + Block + Aperiodic_Baseline + Task + (1 + 88 

Block|Participant, family=lognormal, iter=5000, data=df_learning, 89 

save_pars=save_pars(all=TRUE)) 90 

Mod3 <- brm(medianRT ~ Stimulation * Block + Aperiodic_Baseline + Task + (1 + 91 

Block|Participant, family=lognormal, iter=5000, data=df_learning, 92 

save_pars=save_pars(all=TRUE)) 93 

Mod4 <- brm(medianRT ~ Block + Stimulation * Aperiodic_Baseline + Task + (1 + 94 

Block|Participant), family=lognormal, iter=5000, data=df_learning, 95 

save_pars=save_pars(all=TRUE)) 96 

Mod5 <- brm(medianRT ~ Block * Aperiodic_Baseline + Task + Stimulation + (1 + 97 

Block|Participant), family=lognormal, iter=5000, data=df_learning, 98 

save_pars=save_pars(all=TRUE)) 99 



Mod6 <- brm(medianRT ~ Stimulation * Block * Aperiodic_Baseline * Task + (1 + 100 

Block|Participant), family=lognormal, iter=5000, data=df_learning, 101 

save_pars=save_pars(all=TRUE)) 102 

Mod7 <- brm(medianRT ~ Stimulation * Block * Aperiodic_Baseline + Task + (1 + 103 

Block|Participant), family=lognormal, iter=5000, data=df_learning, 104 

save_pars=save_pars(all=TRUE)) 105 

Mod8 <- brm(medianRT ~ Block + Aperiodic_Baseline * Task * Stimulation + (1 + 106 

Block|Participant), family=lognormal, iter=5000, data=df_learning, 107 

save_pars=save_pars(all=TRUE)) 108 

Mod9 <- brm(medianRT ~ Block + Aperiodic_Baseline + Task * Stimulation + (1 + 109 

Block|Participant), family=lognormal, iter=5000, data=df_learning, 110 

save_pars=save_pars(all=TRUE)) 111 

Mod10 <- brm(medianRT ~ Block * Task * Stimulation + Aperiodic_Baseline + (1 + 112 

Block|Participant), family=lognormal, iter=5000, data=df_learning, 113 

save_pars=save_pars(all=TRUE)) 114 

Loo(Mod1, Mod2, Mod3, Mod4, Mod5, Mod6, Mod7, Mod8, Mod9, Mod10) 115 

Model elpd_diff ee_diff 
Mod8 0.0 0.0 
Mod10 -0.1 1.2 
Mod6 -0.2 1.3 
Mod9 -0.4 0.3 
Mod7 -0.4 0.5 
Mod3 -0.5 0.3 
Mod1 -0.9 0.6 
Mod2 -1.0 0.3 
Mod5 -1.3 0.6 
Mod4 -1.6 0.3 

 116 

 117 



 118 

Figure S3| Output of the Bayesian mixed effects model with the three-way interaction. 119 
A) The hairy caterpillar plots showing that convergence was reached in all four chains. B) 120 
Comparison of the observed outcomes (y) and the kernel density estimate of the replications 121 
of y from the posterior predictive distribution (yrep). This posterior predictive check shows a 122 
good fit. C) The posterior density of the intercept. D) The posterior density of block. E) The 123 
posterior density of task. F) The posterior density of the baseline aperiodic exponent (87% of 124 
the distribution is above zero).  125 
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Model Comparison for Learning and Overlearning (Accuracy) 135 

Similarly to our brms models with RTs, we implemented several model comparisons 136 

with the leave-one-out cross-validation (LOO) to determine the best fit for the learning and 137 

overlearning task data. Note that this additional analysis served as a check since we do not 138 

expect any reliable results due to the instructions that were given to the participants. Namely, 139 

the participants were urged to avoid errors and there was no time limit present. This means 140 

that the accuracy should be consistent during the task. Note that the mean accuracy was 141 

calculated per block.  142 

Syntax:  143 

Mod1.A <- brm(meanRTACC ~ Block * Task + (1 + Block|Participant), family=lognormal, 144 

iter=5000, data=df_ACC, save_pars=save_pars(all=TRUE))) 145 

Next, we added levels of complexity by adding our predictors stimulation and baseline 146 

aperiodic exponent to see if the fit with our data increases.  147 

Mod2.A <- brm(meanRTACC ~ Stimulation + Block + Aperiodic_Baseline + Task + (1 + 148 

Block|Participant, family=lognormal, iter=5000, data=df_ACC, 149 

save_pars=save_pars(all=TRUE)) 150 

Mod3.A <- brm(meanRTACC ~ Stimulation * Block + Aperiodic_Baseline + Task + (1 + 151 

Block|Participant, family=lognormal, iter=5000, data=df_ACC, 152 

save_pars=save_pars(all=TRUE)) 153 

Mod4.A <- brm(meanRTACC ~ Block + Stimulation * Aperiodic_Baseline + Task + (1 + 154 

Block|Participant), family=lognormal, iter=5000, data=df_ACC, 155 

save_pars=save_pars(all=TRUE)) 156 



Mod5.A <- brm(meanRTACC ~ Block * Aperiodic_Baseline + Task + Stimulation + (1 + 157 

Block|Participant), family=lognormal, iter=5000, data=df_ACC, 158 

save_pars=save_pars(all=TRUE)) 159 

Mod6.A <- brm(meanRTACC ~ Stimulation * Block * Aperiodic_Baseline * Task + (1 + 160 

Block|Participant), family=lognormal, iter=5000, data=df_ACC, 161 

save_pars=save_pars(all=TRUE)) 162 

Mod7.A <- brm(meanRTACC ~ Stimulation * Block * Aperiodic_Baseline + Task + (1 + 163 

Block|Participant), family=lognormal, iter=5000, data=df_ACC, 164 

save_pars=save_pars(all=TRUE)) 165 

Mod8.A <- brm(meanRTACC ~ Block + Aperiodic_Baseline * Task * Stimulation + (1 + 166 

Block|Participant), family=lognormal, iter=5000, data=df_ACC, 167 

save_pars=save_pars(all=TRUE)) 168 

Mod9.A <- brm(meanRTACC ~ Block + Aperiodic_Baseline + Task * Stimulation + (1 + 169 

Block|Participant), family=lognormal, iter=5000, data=df_ACC, 170 

save_pars=save_pars(all=TRUE)) 171 

Mod10.A <- brm(meanRTACC ~ Block * Task * Stimulation + Aperiodic_Baseline + (1 + 172 

Block|Participant), family=lognormal, iter=5000, data=df_ACC, 173 

save_pars=save_pars(all=TRUE)) 174 

 175 

 176 

 177 

 178 



Loo(Mod1.A, Mod2.A, Mod3.A, Mod4.A, Mod5.A, Mod6.A, Mod7.A, Mod8.A, Mod9.A, 179 

Mod10.A) 180 

Model elpd_diff se_diff 
Mod3.A 0.0 0.0 
Mod5.A -2.1 2.8 
Mod10.A -2.8 2.6 
Mod1.A -3.1 3.5 
Mod2.A -3.4 3.4 
Mod7.A -3.6 2.6 
Mod6.A -3.9 2.9 
Mod4.A -4.2 4.4 
Mod8.A -4.5 4.3 
Mod9.A -5.2 4.4 

 181 
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 195 

Figure S4| Correlations between MRS-based E/I and EEG-based E/I. On the left a 196 
positive correlation between the left IPS and electrode P3, which is placed approximately 197 
above this region, showing that an increase in E/I in the IPS as it is based on 198 
glutamate/GABA is associated with a decreased E/I as indicated by aperiodic exponent 199 
(r=0.48, 95% CI [0.05, 0.76], p=.01 (one-tailed)). On the right, a non-significant correlation 200 
between the left MFG E/I and the electrode nearly this region (r=0.03, 95% CI [-0.44, 0.49], 201 
p=.44 (one-tailed)). These results are in line with our prediction that both measures 202 
characterise different aspects of E/I, and in contrast to the view that both measures reflect a 203 
similar quantification of E/I, which should have been characterised by a negative correlation.  204 

 205 
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Neuronal Avalanches (osf.io/y4xar) 215 

When comparing the presence of neuronal avalanches for the different groups for the 216 

pre and the post resting-state (rs) EEG, the neuronal avalanches were plotted against a standard 217 

power law (see Figure S5). There is no difference between the four groups regarding the pre 218 

rs-EEG. However, for the post rs-EEG there is a small diversion in the power law for the 219 

overlearning X tRNS condition. This diversion was explored further in the statistical regression 220 

analysis using κ for post rs-EEG values during overlearning. Note that we removed an 221 

additional 4 outliers in the overlearning group compared to the sample in the main manuscript. 222 

Predictors included median RT baseline, stimulation (tRNS x sham), plateau (i.e. amount of 223 

overlearning), and branching (κ) values in the pre rs-EEG and learning rate. We found that κ 224 

values during pre rs-EEG significantly predicted the κ values during post rs-EEG (β=.05-1, 225 

SE=0.02-1, t(27)=2.17, p=0.03). The predictor model was able to account for 10% of the 226 

variance of κ values in the post rs-EEG (F(5,27)=1.72, p=.16, R 2= .10). However, no 227 

interaction with stimulation and individual plateau was found (β=.05-1, SE=0.05-1, t(27)=.98 , 228 

p=.33). 229 

 230 



 231 

Figure S5| Neuronal avalanches for the pre and post rs-EEG for the four conditions 232 
following power laws. Cascade size distributions are shown on the x-axis plotted against the 233 
probability on the y-axis for the pre rs-EEG (left) and the post rs-EEG (right) using Δt=6 ms. 234 
The dashed black line represents a perfect power law with an exponent of -3/2. The different 235 
line colors in both plots indicate the four condition (task: learning x overlearning; stimulation: 236 
tRNS x sham).  237 
 238 
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Table S1| Sensations between the tRNS and the sham stimulation group as tested with the 247 

Mann-Whitney’s U test (n=102) 248 

Sensations U-value p 

Itching 1058 .43 

Pain 1142.5 .92 

Burning 1090.5 .41 

Warmth/Heat 1109.5 .70 

Pinching 1089 .52 

Iron Taste 1125 .30 

Fatigue 1092.5 .74 

Subjective performance 1080 .48 

 249 
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Supplementary Materials and Methods 258 

Table S2| List of the 4 presented multiplication problems used as training and the 10 259 

multiplication problems presented during the baseline task.  260 

  Operand 1 Operand 2 

15 

18 

12 

17 

23 

19 

14 

13 

27 

13 

26 

16 

18 

21 

5 

5 

5 

5 

4 

4 

3 

3 

2 

7 

2 

3 

4 

3 

 261 

 262 

 263 
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Table S3| List of one block of the presented multiplication problems used during the learning 265 

task and overlearning task.  266 

Learning task Overlearning task 

 Operand 1 Operand 2 Operand 1 Operand 2 

17 

14 

29 

17 

24 

12 

29 

13 

16 

12 

4 

6 

2 

3 

3 

8 

3 

6 

6 

7 

17 

14 

29 

17 

24 

4 

6 

2 

3 

3 
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Neuronal Avalanches Computation and Statistical Analysis (osf.io/y4xar)  274 

Due to the comparison of neural activity between the pre and post rs-EEG, we decided to 275 

remove an additional three participants from the neuronal avalanches analysis with an excluded 276 

post rs-EEG recording according to our previous exclusion criteria. To identify neuronal 277 

avalanches, standardized z-scores were calculated for each channel. Hereafter, timepoints were 278 

identified in which each channel exceeded a z score of three standard deviations (our predefined 279 

threshold; Shriki et al., 2013). In other words, periods were identified in which each electrode 280 

contained elevated activity. Data was subsequently binned into time blocks of 6 ms. A neuronal 281 

avalanche is considered to be any length of time in which a superthreshold event occurs. In 282 

short, when 6 ms passes and no further events occur, the neuronal avalanche is over. The size 283 

of the neuronal avalanches is the number of superthreshold events (spikes) occurring before the 284 

6 ms of time when no events is seen. Lastly, the size of the neuronal avalanches was computed, 285 

i.e., occurrence of the amount of spikes in the signal after a 6 ms time window (Shriki et al., 286 

2013; Shew, Yang, Petermann, Roy, & Plenz, 2009). Regarding the statistical analysis of neural 287 

avalanches, the post rs-EEG was compared to the pre rs-EEG (baseline) and compared between 288 

the four conditions by means of a graphical illustration and a regression model regarding κ. 289 

Branching in neuronal avalanches was indexed using κ. The dependent variable included the 290 

branching (κ) for the post rs-EEG. Predictors included the baseline performance, κ for the pre 291 

rs-EEG, stimulation, and learning rate. 292 

Material and Methods MRS 293 

We recruited 22 healthy participants (16 males, mean age=26.05, standard deviation =6.5) 294 

who completed an MRI scan and EEG session for two different studies. All participants 295 

provided written, informed consent and the study was approved by the University of Oxford’s 296 

Medical Sciences Interdivisional Research Ethics Committee (MS-IDREC-C2_2015_016). 297 



MR data Acquisition and Pre-processing  298 

All MRI data were acquired at the Oxford Centre for Functional MRI of the Brain (FMRIB) 299 

on a 3T Siemens MAGNETOM Prisma MRI System equipped with a 32 channel receive-only 300 

head coil. Anatomical high-resolution T1-weighted scans were first acquired (MPRAGE 301 

sequence: TR=1900ms; TE=3.97ms; 192 slices; voxel size=1×1×1mm).  302 

For MRS, spectra were measured with a semi-adiabatic localization by adiabatic selective 303 

refocusing (semi-LASER) sequence (TE=32 ms; TR=3.5 s; 32 averages) (Deelchand et al., 304 

2015; Öz & Tkáč, 2011) with variable power RF pulses with optimized relaxation delays 305 

(VAPOR), water suppression and outer volume saturation. Unsuppressed water spectra 306 

acquired from the same volume of interest were used to remove residual eddy current effects 307 

and to reconstruct the phased array spectra with MRspa 308 

(https://www.cmrr.umn.edu/downloads/mrspa/). Two 20mm3 voxels of interest were manually 309 

placed centred on the left intraparietal sulcus (IPS) and centred on the left inferior/middle 310 

frontal gyrus (FG) based on the individual’s T1-weighted image while the participant lay down 311 

in the MR scanner. Acquisition time per voxel of interest was 10-15 minutes including sequence 312 

planning and shimming and B0 shimming.  313 

Neurochemicals were quantified with an LCmodel (Provencher, 2001) using a basis set of 314 

simulated spectra generated based on previously reported chemical shifts and coupling 315 

constants based on a VeSPA (versatile simulation, pulses, and analysis) simulation library 316 

(Soher et al., 2011). Simulations were performed using the same RF pulses and sequence 317 

timings as in the 3T system described above. Absolute neurochemical concentrations were 318 

extracted from the spectra using a water signal as an internal reference.  319 

As in previous studies, the exclusion criteria for data was the Cramér-Rao bounds (Emir et 320 

al., 2012). Neurotransmitters quantified with Cramér-Rao lower bounds (CRLB, the estimated 321 



error of the neurotransmitter quantification) >50% were classified as not detected. Additionally, 322 

we excluded cases with an SNR beyond 3 standard deviations (per voxel of interest, per 323 

neurotransmitter), and neurotransmitter or WM capacity score that fallen beyond 3 standard 324 

deviations from the group mean. This led to the exclusion of 2 cases for the GABA measure of 325 

the frontal gyrus. For each participant, we calculated 4 (brain region (frontal, parietal) * 326 

neurochemical (GABA, glutamate)) neurotransmitter concentrations all of which were 327 

calculated as the ratios between the absolute neurotransmitter concentrations divided by the 328 

absolute concentration of total creatine (creatine+phosphocreatine). The neurotransmitter 329 

concentrations were referenced to total creatine for (i) creatine is a commonly used as a 330 

reference and it is widely accepted as an internal reference standard, (ii) its signal shares the 331 

same imperfections (e.g., frequency drift, phase drift, and subject motion) as the signal of the 332 

GABA and glutamate as all concentrations are acquired simultaneously (Cohen Kadosh et al., 333 

2015) measure was similar to our description in the main text. For the correlation analysis one 334 

data was defined as an outlier (±3SD from the mean) and was removed from the analysis. 335 

 336 


