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ABSTRACT

Viruses hijack the host cell’s machinery for the purpose of viral replication and interfere with the1

activity of master regulatory proteins – including RNA binding proteins (RBPs). These RBPs are2

major actors in several steps of RNA processing, able to recognize and bind to their target RNAs3

by means of sequence or structure motifs. While host RBPs are known to represent critical factors4

for RNA viral replication, stability, and escape of host immune responses, their role in the context5

of SARS-CoV-2 infection remains poorly understood. Few experimental studies have mapped the6

SARS-CoV-2 RNA-protein interactome in infected human cells, but they are limited in the resolution7

and exhaustivity of their output. In contrast, computational approaches enable rapid screening of a8

large number of human RBPs for putative interactions with the viral RNA and are thus crucial to9

prioritize candidates for further experimental investigation. Here, we investigated the role of RBPs in10

the context of SARS-CoV-2 by constructing a first single-nucleotide in silico map of human RBP /11

viral RNA interactions. To this end, we trained pysster and DeepRiPe, two deep learning methods12

based on convolutional neural networks, to learn the sequence preferences of >100 RBPs from eCLIP13

and PAR-CLIP data generated on human cell lines. We then applied our models cross-species to14

predict the propensity of each host RBP to bind to the SARS-CoV-2 RNA genome at single-base15

resolution. We further evaluated conservation of RBP binding between 6 other human pathogenic16

coronaviruses and identified sites of conserved and differential binding in the untranslated regions of17

SARS-CoV-1, SARS-CoV-2 and MERS. We scored the impact of sequence variants from 11 viral18

strains on protein-RNA interaction, including alpha, delta and omicron strains, and identified a set19

of gain-and loss of binding events. Further, we performed a systematic in silico mutagenesis to20

screen the SARS-CoV-2 genome for hypothetical high impact variants, which provides a resource to21

anticipate the regulatory impact of variants on novel strains. Lastly, we explore the clinical impact22

of the identified RBPs by linking them to other functional data and OMICs on COVID-19 patients23

from other studies. Our results contribute towards a deeper understanding of how viruses hijack host24

cellular pathways by providing insights into new players of host-virus interactions and provide a rich25

resource that enables the discovery of new antiviral targets and therapeutics. To facilitate the use26

of our results in future studies, we integrated the protein-RNA interaction map and variant impact27

predictions into an online resource (https://sc2rbpmap.helmholtz-muenchen.de). By providing the28

community with pre-trained RBP models we enable host-viral RNA interaction prediction for any29

(RNA) virus beyond SARS-CoV-2 and provide a tool to efficiently monitor new viral strains.30
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1 Introduction32

SARS-CoV-2, causative agent of the recent COVID-19 pandemic, has and still is affecting the lives of billions of people33

worldwide. Despite the large-scale vaccination effort, the number of infections and deaths remains high, primarily34

among the non-vaccinated and otherwise vulnerable individuals. Difficulty to control SARS-CoV-2 infections is35

partly due to the continuous emergence of novel viral variants, against which the full efficacy of current vaccines36

is still debated, as well as the lack of effective medication. This calls for a better understanding of the biology of37

SARS-CoV-2 to design alternative therapeutic strategies. SARS-CoV-2 is a betacoronavirus with a positive-sense,38

single-stranded RNA of ~30kb (90). Upon infection, the released RNA molecule depends on the host cell’s protein39

synthesis machinery to express a set of viral proteins crucial for replication (73). The genomic RNA is translated40

to produce non-structural proteins (nsps) from two open reading frames (ORFs), ORF1a and ORF1b, and it also41

contains untranslated regions (UTRs) at the 5’ and 3’ ends of the genomic RNA (90). A recent study revealed the42

complexity of the SARS-CoV-2 transcriptome, due to numerous discontinuous transcription events (39). Negative sense43

RNA intermediates are generated to serve as the template for the synthesis of positive-sense genomic RNA (gRNA)44

and subgenomic RNAs (sgRNA) which encode conserved structural proteins (spike protein [S], envelop protein [E],45

membrane protein [M] and nucleocapsid protein [N]), and several accessory proteins (3a, 6, 7a, 7b, 8 and 10) (39).46

During its life cycle, SARS-CoV-2 extensively interacts with host factors in order to facilitate cell entry, transcription47

of viral RNA and translation of subgenomic mRNAs, virion maturation and evasion of the host’s immune response48

(90; 11; 20). Mechanisms of virus-host interaction are multifaceted and include protein-protein interactions (PPIs),49

binding of viral proteins to the host transcriptome (96), RNA-RNA interactions and binding of host proteins to viral50

RNAs. Studies on SARS-CoV-2 infected cells to date have predominantly focused on the entry of SARS-CoV-2 into51

human epithelial cells, which involves the interaction of the viral spike protein S with the human ACE2 receptor52

(39). Other studies characterized changes in the host cell transcriptome and proteome upon infection and identified53

host factors essential for viral replication via CRISPR screenings (78; 25; 92). Lastly, mapping of protein-protein54

interactions (PPIs) between viral and host proteins has revealed cellular pathways important for SARS-CoV-2 infection.55

For instance, a recent study identified close to 300 host-virus interactions in the context of SARS-CoV-2 (25). However,56

these studies have been of limited impact with respect to revealing how the viral RNA is regulated during infection.57

RNA viruses hijack key cellular host pathways by interfering with the activity of master regulatory proteins, including58

RNA binding proteins (RBPs) (29). RBPs are a family of proteins that bind to RNA molecules and control several59

aspects of cellular RNA metabolism, including splicing, stability, export and translation initiation. In most cases,60

RNA targets of an RBP share at least one common local sequence or structural feature – a so-called motif - which61

facilitates the recognition of the RNA by the protein. Host cell RBPs have previously been reported to interact with62

viral RNA elements and influence several steps of the viral life cycle, such as recruitment of viral RNA to the membrane63

and synthesis of subgenomic viral RNAs (47; 48; 59; 21). Indeed, in a recent proteome-wide study, 342 RBPs were64

identified to be annotated with gene ontology (GO) terms related to viruses, infection or immunity with a further 13065

RBPs being linked to viruses in literature (21). Examples include the Dengue virus Manokaran et al. (56), the Murine66

Norovirus (MNV) (88) and Sindbis virus (SINV), where it has been shown that RBPs stimulated by the infection67

redistribute to viral replication factories and modulate the success of infection (21). The ability of viral RNAs to68

recruit essential host RBPs could explain permissiveness of certain cell types as well as its range of hosts (48), which69

is especially relevant for zoonotic viruses such as SARS-CoV-2. In the context of SARS-CoV infection, DEAD-box70

helicase 1 (DDX1) RBP has been shown to facilitate template read-through and thus replication of genomic viral71

RNA, while heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) might regulate viral RNA synthesis (20; 54; 94).72

Multiple recent studies show that SARS-CoV-2 RNAs extensively interact with both pro-and anti-viral host RBPs73

during its life cycle (18; 69; 46; 43). Using comprehensive identification of RNA-binding proteins by mass spectrometry74

(ChIRP-MS), Flynn et al. (18) identified a total of 229 vRNA-bound host factors in human Huh7.5 cells with prominent75

roles in protecting the host from virus-induced cell death. Schmidt et al. (69) identified 104 vRNA-bound human76

proteins in the same cell line via RNA antisense purification and quantitative mass spectrometry (RAP-MS), with77

GO-terms strongly enriched in translation initiation, nonsense-mediated decay and viral transcription. The authors78

further confirmed the specific location of vRNA binding sites for cellular nucleic acid-binding protein (CNBP) and79

La-related protein 1 (LARP1) via enhanced cross-linking immunoprecipitation followed by sequencing (eCLIP-seq),80

which were both associated to restriction of SARS-CoV-2 replication (69). Lee at al. (46) identified 109 vRNA-bound81

proteins via a modified version of the RAP-MS protocol and linked those RBPs to RNA stability control, mRNA82

function, and viral process. Further, the authors showed 107 of those host factors are found to interact with vRNA of83

the seasonal betacoronavirus HCoV-OC43, suggesting that the vRNA interactome is highly conserved. Finally, Labeau84

et al. (43) used ChIRP-MS to identify 142 host proteins that bind to the SARS-CoV-2 RNA and showed, in contrast85

to Flynn et al. (18), that siRNA knockdown of most RBPs cellular expression leads to a significant reduction in viral86

particles, suggesting that the majority of RBPs represent pro-viral factors. Taken together, there is strong evidence that87

SARS-CoV-2, like other RNA viruses, heavily relies on the presence of a large number of essential RNA-binding host88
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factors. However, the sets of SARS-CoV-2 relevant RBPs from different studies have limited overlap and the outcome89

depends on the specific cell line utilized in the experiment. Further, most studies lack information of of exact binding90

sites of human RBPs on viral RNA. A comprehensive large scale analysis of the propensities of different host RBPs to91

bind to RNA elements across the SARS-CoV-2 genome is currently missing.92

Cross-linking and immunoprecipitation (IP) followed by sequencing (CLIP-seq) assays (26), including PAR-CLIP93

and eCLIP protocols, are the most widely used methods to measure RBP-RNA interactions in vivo at high nucleotide94

resolution and are able to provide sets of functional elements that are directly bound by an RBP of interest (85). While95

CLIP-seq experiments allow for precise identification of host factor interaction with viral RNAs, the high cost of96

profiling interactions across a large number of RBPs becomes prohibitive at larger scales, as dedicated pull-down97

and sequencing has to be performed for each RBP individually. Therefore, such datasets have been generated only98

for a small number of proteins on SARS-CoV-2 (69). Further, in order to keep up with the continuous emergence of99

novel SARS-CoV-2 variants, CLIP-seq experiments would need to be repeated for the genome of each viral strain in100

order to account for (or to identify) gain-or loss-of-binding variants. Recent advances in machine-and deep-learning101

have enabled a cheaper but powerful alternative by computationally modeling the binding preference of RBPs using102

information from existing CLIP-seq datasets, such as those generated as part of the ENCODE project (86).103

In this study, we train and optimize two recent Convolutional Neural Network (CNN) based methods, Pysster (5) and104

DeepRiPe (23), on hundreds of human eCLIP and PAR-CLIP datasets and use trained models to predict RBP binding105

on viral sequences. By that we provide, to our knowledge, the first comprehensive single-nucleotide resolution in106

silico map of viral RNA - host RBP interaction for SARS-CoV-2 as well as 6 other human coronaviruses and identify107

sequence variants which significantly alter RBP-RNA interaction across 11 different SARS-CoV-2 variants-of-concern.108

We recapitulate human RBPs which are predicted or experimentally determined to binding to SARS-CoV-2 by previous109

studies and identify novel host RBP candidates with no previously reported binding to SARS-CoV-2. We integrate110

knowledge of these proteins across other pathogens and highlight RBPs with clinical relevance, by annotating those that111

were found among SARS-CoV-2-associated genes from Genome Wide Association Studies (GWAS) (64), CRISPR112

studies (24; 30; 70; 91), physical binding experiments (18; 69; 89), or patient OMICS data from blood serum and113

plasma (10; 12; 13; 22; 57; 63; 71; 95). Finally, we perform extensive in silico single-nucleotide perturbations across114

the SARS-CoV-2 genome to identify variants that would lead to gain and/or disruption of RBP binding sites and thus115

may alter viral fitness.116
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2 Results117

The overall workflow of our approach is summarized in Figure 1, from model training, to the in silico mapping of the118

SARS-CoV-2 RBP-RNA interactome and downstream analysis. We first obtained binding site information of publicly119

available eCLIP experiments of 150 RBPs from the ENCODE (86) database and pre-processed them to obtain a set120

of high-quality sites of protein-RNA interaction. For each RBP, a convolutional neural network (CNN) classifier to121

predict the likelihood of RBP-binding to an arbitrary input RNA sequence was trained using the pysster (5) framework,122

resulting in 150 pysster models (Figure 1a). For RBPs not contained in the ENCODE dataset, we included DeepRiPe123

(23) models pre-trained on 59 PAR-CLIP datasets Next, we performed extensive model performance evaluation on124

custom trained pysster models and removed poorly performing models from downstream analysis. Using high-quality125

models, we predicted the likelihood of each RBP binding to individual nucleotides in the SARS-CoV-2 genome using126

a sliding-window scanning approach (Figure 1b, Methods 3.6). Single-nucleotide binding predictions were further127

annotated with empirical p-values to correct for false positive hits; and consecutive high-scoring and significant position128

were aggregated into larger binding-site regions. We thus constructed a comprehensive in silico binding map of human129

RBPs on the SARS-CoV-2 genome and clustered RBP binding sites across different viral genomic regions to unravel130

potential regulatory patterns (Figure 1b). Exploiting the capability of CNNs to learn complex sequence patterns, we131

additionally validated our approach by identifying known binding motifs at predicted RBP binding sites. Finally, we132

utilize our models to score the impact of sequence variant identified in 11 viral strains and identified conserved and133

novel binding sites across 6 other coronaviruses, including SARS-CoV-1 and MERS (Figure 1c).134

2.1 Accurate model predictions in human and viral sequences135

The trained pysster models showed a robust area-under-precision-recall-curve (auPRC) performance (Methods 3.7.1),136

with a median auPRC of 0.6 across all 150 trained models (Figure 2a). As models were used for scanning of the137

full-length viral genome (rather than classification of standalone examples), we further evaluate the model performance138

by computing the correlation of the predicted positive-class probabilities with observed ENCODE peaks on a hold-out139

set of human transcripts (Methods 3.7.2). Nearly all models showed a significant positive correlation, with a mean140

median Spearman correlation coefficient (SCC) across transcripts of 0.149 and a maximum median SCC of 0.38 (Figure141

2b), indicating that the trained models are well-suited for the task of scanning across the viral genome. Exemplary142

prediction tracks for two held-out human transcripts using pysster models of QKI and TARDBP are shown in Figure 2c.143

In general, we observe that models which perform well with respect to the auPRC score tend to perform well in the144

context of RNA sequence scanning (Figure 2d). To ensure that downstream analyses are based on a high-quality set145

of binding site predictions, models with a median SCC of less than 0.1 or an auPRC of less than 0.6 were discarded146

(Methods 3.7.2). A total of 63 high-quality pysster models were thus kept for predicting on the SARS-CoV-2 genome.147

For DeepRiPe, we relied on the results from (23) and retained only those models where informative sequence motifs148

were learned during training, leaving a total of 33 RBP models for predicting on the SARS-CoV-2 genome. Of those,149

we selected only models for RBPs not contained in the ENCODE database, leading to the addition of 24 high-quality150

DeepRiPe models. To confirm that pysster models trained on CLIP-seq data from human cell lines are suitable for151

cross-species binding-site inference in SARS-CoV-2, we validated our approach for RBPs with available CLIP-seq152

experiments from SARS-CoV-2 infected human cell lines. To this end, we obtained eCLIP datasets for CNBP and153

LARP1 on both human and SARS-CoV-2 transcripts from Schmidt et al. (69) and processed binding sites as described154

in Section 3.1. After generating training samples on CNBP and LARP1 binding sites within human transcripts (Methods155

3.2), we trained pysster models for both RBPs. We then performed prediction along the SARS-CoV-2 RNA sequence156

and compared the resulting prediction scores with observed binding sites as well as the raw eCLIP signal (Figure 2e,157

2f). Predictions from pysster models trained on human binding sites showed a strong correlation with the raw eCLIP158

signal (SCC = 0.332, p-value < 1e-16 for CNBP and SCC = 0.133, p-value = 7.96e-12 for LARP1), and accumulation159

of high-scoring positions at the location of called binding sites from the eCLIP experiment (Figure 2f). Further, we160

observed significantly higher prediction scores for in-binding-site nucleotides versus outside-binding-site nucleotides161

for both RBPs (Figure 2f; t-test, p-value < 1e-16 for CNBP; p-value = 2.44e-6 for LARP1). Taken together, these results162

strongly support the validity of our approach for cross-species in silico prediction of RBP binding sites.163

2.2 A comprehensive in silico binding map of human RBPs on SARS-CoV-2164

We performed in silico binding site calling by identifying consecutive significant and high-scoring positions within the165

SARS-CoV-2 genome with both pysster and DeepRiPe high-confidence models (Methods 3.9). In the following, we166

first demonstrate that our model predictions correspond to bona fide RBP binding sites on the SARS-CoV-2 genome by167

performing motif analysis and subsequently build a computational map of SARS-CoV-2-human RBP interactions. We168

then evaluate the enrichment of different RBPs for different viral genomic regions, as well as their putative regulatory169

function in the context of SARS-CoV-2 infection.170
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Predicted RBP binding sites coincide with known binding motifs171

Figure 3a and 3b each show single-nucleotide resolution prediction scores of the well-known human RBPs RBFOX2172

and TARDBP, obtained from pysster models, and MBNL1 and QKI, obtained from DeepRiPe models. Identified173

binding sites (Methods 3.9) are shown below the prediction score tracks. To identify driving features of RBP binding174

and to ensure that high-scoring positions represent genuine binding sites rather than model artifacts we performed175

feature importance analysis (Methods 3.10) in order to assess whether the sequence features underlying the predictions176

at those sites correspond to the binding site preferences of those proteins reported in literature. Specifically, we centered177

input windows around predicted binding sites of RBFOX2, TARDBP, MBNL1 and QKI on SARS-CoV-2 to identify178

individual nucleotides that were most predictive for classifying the input sequence as ’bound’ (Figure 3a and 3b; bottom179

track). We observed that feature importance maps around predicted binding sites corresponded to known binding motifs.180

For instance, we observe the well-known consensus sequence (T)GCATG recognized by the splicing factor RBFOX2181

(36) in the corresponding feature importance maps (Figure 3a, left), as well as the TG-repeat motif, corresponding182

to the sequence preference of TARDBP (28), coinciding with its predicted binding sites (Figure 3a, right). Similarly,183

DeepRiPe attribution maps with respect to binding sites of QKI show the canonical binding motif TACTAA(C) (82)184

(Figure 3b, left). Lastly, the attribution maps computed at each binding site of the splicing factor MBNL1 all harbour185

occurrences of the characteristic YGCY motif (45) (Figure 3b, right).186

Binding site predictions are robust across different datasets and prediction tools187

To evaluate the robustness of viral binding site predictions across pysster and DeepRiPe, we compared predictions for a188

small set of RBPs where both eCLIP data (used to train a pysster models) and PAR-CLIP data (used for the training of189

DeepRiPe models) were available. Among a total of 20 overlapping RBPs, 12 were contained in the sets of high-quality190

models for pysster and DeepRiPe selected in 2.1, namely TARDBP, CSTF2, IGF2BP1, PUM2, CSTF2T, QKI, IGF2BP2,191

IGF2BP3, CPSF6 FXR1, FXR2 and EWSR1. For each of the 12 RBPs, we then computed the Spearman correlation192

between the pysster and DeepRiPe prediction scores across single-nucleotide positions on the viral genome. We193

observed a signal correlation higher than 0.1 for 8 out of the 12 RBPs, with a Spearman correlation coefficient ranging194

from a maximum of 0.64 (TARDBP) to a minimum of 0.15 (CPSF6) (Supplementary Table 1). In general, we observed195

a higher overlap between pysster and DeepRiPE binding site predictions for RBPs harbouring well-defined RNA196

sequence motifs, such as QKI, TARDBP, PUM2, CSTF2, and to a less extent, FXR1/2 and IGF2BP1/2/3. In addition,197

feature attributions maps at overlapping binding sites of pysster and DeepRiPe with respect to QKI and TARDBP198

(Supplementary Figure 1), highlight the presence of the known binding motifs for these two RBPs.199

Binding preferences and clusters of human RBP predicted sites on the SARS-CoV-2 genome200

Given the strong evidence that our predictions reflect true likelihoods of viral sequence regions being bound by human201

RBPs, we set out to build a full in silico SARS-CoV-2 / human RBP binding map, using the set of 88 high confidence202

models from both pysster and DeepRiPe (Section 2.1). Note that we included the CNBP model from Section 2.1, as it203

satisfied our performance constrains. Further, for the 12 shared RBPs between pysster and DeepRiPe, only pysster204

predictions were considered for downstream analysis, given the high agreement between both models. Figure 3c (right)205

depicts the binding profiles of 84 (out of 88) human RBPs which harbor at least one binding site on the SARS-CoV-2206

sequence. We clustered RBPs into eight classes based on their relative binding site coverage across different genomic207

regions of the SARS-CoV-2 genome (Figure 3c, left). We observe that some clusters of proteins exhibit sparse binding208

signal across the SARS-CoV-2 genome (such as clusters 2 and 3), while other clusters contain RBPs which are predicted209

to bind extensively across the whole SARS-CoV-2 genome (cluster 4). Interestingly, some clusters harbour RBPs210

shown to preferentially bind specific genomic elements (cluster 1 and cluster 5-8, Figure 3c, left). We observe overall211

extensive RBP binding coverage mostly at 5’ UTRs and genomic regions coding for E, M and N structural proteins, and212

less coverage at the spike S gene, as well as the viral 3’ UTR. To some extent, clustering of predicted binding sites213

groups together RBPs with similar functions in RNA processing and viral regulation, as well similar RNA recognition214

mechanisms. Cluster 4 corresponds to a group of well-known regulators of RNA processing, which extensively bind215

the viral 5’ UTR, as well as the ORF1ab and subgenomic RNAs. This includes proteins from the FXR family (FXR1,216

FXR2 and FMR1), which recognize RNA using the K Homology (KH) domain, and control RNA stability, translation217

and RNA localization (85). Other RNA translational regulators in the same cluster include the DDX3X helicase, which218

was recently identified as host target against SARS-CoV-2 infection (9), and the 40S ribosomal protein S3 (RPS3),219

which also binding RNAs through the KH domain. Other proteins in this cluster with well-known roles in regulation220

of viral infections are SND1, the splicing regulators (SR) SRSF1 and SRSF2, shown to be implicated in increasing221

translation efficiency in the context of HIV infection (55), the RNA demethylase factor FTO, known to regulate viral222

infections and HIV-1 protein expression (83), in addition to the aforementioned G3BP1 and DDX3X involved in innate223

immunity (8). Cluster 1 predominantly harbors RBPs with binding preference for the viral 3’ UTR, including regulators224

of RNA stability and proteins involved in 3’ end formation and/or regulation of translation. Among those RBPs, the225
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poly (I:C) binding protein KHDRBS1 has been identified to have pro-viral activity in SFV infection (65), while the226

multifunctional RBP PCBP1, along with hnRNPRs has been shown to be implicated in translational control of many227

viruses, including poliovirus, human pailloma virus and Hepatitis A virus. Cluster 6 is comprised of RBPs which228

preferentially bind to the 5’ UTR of SARS-CoV-2. Interestingly, these proteins (AQR, GPKOW, SF3A3, SF3B4 and229

A2AF2) are known to be functionally involved in splicing and harbour a RNA recognition motif (RRM) (85). We230

find that cluster 6 also harbors NONO, a member of the paraspeckle complex, which has previously been associated231

with antiviral immune response and which is part of the RBP interactome in SINV infected cells (21), as well as232

TARDBP, a protein that localizes to P-bodies and stress granules and was shown to bind to the 5’ UTR of SARS-CoV-2233

in a recent study (60). Cluster 5 includes a large class of RBPs with diverse functions, including splicing (SRSF9),234

post-transcriptional repression (PUM2 and CAPRIN1), snoRNA binding (NOP58 and NIP7) and miRNA-mediated235

silencing (AGO1-3). These proteins were predicted to preferentially bind to the N and M genomic regions, while being236

depleted in the viral UTRs.237

Lastly, binding of RBPs in cluster 7 and 8 is mostly concentrated in ORF7b as well as E and M protein regions,238

respectively. Besides the splicing regulators MBNL1 and SUGP2, cluster 7 contains the ELAVL2 and ELAVL3 RBPs239

involved in regulation of RNA stability (38). Previous studies have suggested that ELAVL human proteins might be240

affected during infections by the viral RNA that acts as a competitor to tritate them away from their cellular mRNA241

targets (66). While most RBPs in cluster 8 were not found to be functionally related in literature, RBPs KHSRP and242

MATR3 have been shown to act as restriction factors in SINV infection (65)243

Predicted RBP binding sites overlap with SECReTE motifs244

Haimovich et al. (27) recently identified the presence of a unique cis-acting RNA element, termed "SECReTE"245

motif, which consists of 10 or more consecutive triplet repeats, with a C or a U present at every third base, on the246

sequences of both (-) and (+)ssRNA viruses. In context of SARS-CoV-2, a total of 40 SECReTE motifs have been247

identified in the viral genome, with a total length of ~1.3 kilobase. This motif has been suggested to be important for248

efficient translation and secretion of membrane or ER-associated secreted viral proteins, as well as for viral replication249

centers (VRCs) formation. To investigate whether predicted binding sites identified in 2.2 coincide with SECReTE250

motifs, we obtained exact locations of all SARS-CoV-2 SECReTE motifs from (27), and subsequently intersected them251

with predicted RBP binding sites of all 84 high-quality models containing at least one binding site in SARS-CoV-2.252

We observed that a total of 61 RBPs (out of 84) have binding sites overlapping with SECReTE motifs. Further, 30253

RBPs with at least 10% of their binding sites overlapping with SECReTE motifs were identified and are termed254

’SECReTE-associated RBPs’ subsequently. We find that SECReTE-associated RBPs are predominantly found in some255

clusters of Figure 3c (cluster 3 and 6-8), while showing an apparent depletion in others (cluster 1-2, Figure 3c). For256

instance, 5 (out of 9) SECReTE-associated RBPs (SF3B4, U2AF2, GPKOW, TARDBP and NONO) are found in cluster257

6, with TARDBP and NONO being functinally associated to viral regulation (85; 65). Cluster 3 contains 5 (out of 12)258

SECReTE-associated RBPs, namely CSTF2, ELAVL4, HNRNPC, PTBP1 and QKI, each associated with multiple259

RNA functional processes, including RNA stability, 3’-end formation, splicing and translation (85). Cluster 8 harbors 4260

(out of 9) SECReTE-associated RBPs (FUBP3, KHSRP, MATR3 and CPSF6), 3 of which (FUBP3, KHSRP, MATR3)261

have 25% or more of their binding sites overlapping with SECReTE motifs. KHSRP is an essential RBP involved in262

RNA localization, RNA stability and translation, while METR3 is a regulator of RNA stability. Interestingly, most of263

these factors have been previously associated to viral RNA regulation (85). Lastly, all 4 RBPs in cluster 7 (ELAVL2,264

ELAVL3, SUGP2 and MBNL1) appear to be strongly associated with SECReTE motifs, as more than 25% of their265

respective binding sites are overlapping genomic regions harbouring SECReTE motifs.266

2.3 SARS-CoV-2 variants of concern show gain- and loss-of-binding events267

Multiple waves of SARS-CoV-2 infections have spread across the globe, some of which resulted in the emergence of268

specific lineages of viral variants. The systematic sequencing of thousands of samples from infected patients enabled the269

description and categorization of the detected viral sequences, identifying numerous mutations in their sequence when270

compared to the initial SARS-CoV-2 reference genome. Some of the thus described strains have been experimentally271

characterized as more efficient than others, explaining in part their successful spread at local or global geographic272

scales (32; 84; 33). These strains have been defined by the World Health Organization as variants of concern, with273

"evidence for increased transmissibility, virulence, and/or decreased diagnostic, therapeutic, or vaccine efficacy" (67).274

Specific subsets of mutations have been associated with each variant of concern, when mutations were represented in a275

majority of sequenced samples of their lineage. Notably, a special focus has been given with regards to the impact of276

mutations occurring within the spike-encoding gene (50), owing its importance in the initial steps of viral infection277

and its potential for vaccine neutralization (31). However, due to a lack of appropriate methods, the impact of these278

mutations at the regulatory level, such as their impact on protein-RNA interactions, has so far been largely ignored.279
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To fill this gap, we systematically investigated the impact of observed mutations in viral variants of concern on the280

predicted binding of RBPs, in order to uncover potential viral hijacking of host proteins directly at the RNA level.281

A catalog of high-impacting variants across 11 viral strains282

We compiled a total of 290 mutations (193 unique mutations, 37 shared across strains) across 11 variants of concern,283

including alpha, delta, and omicron strains (Methods 3.11). For each variant and RBP, we evaluated the impact of284

the variant in terms of gain- or loss-of-binding by comparing the predicted binding probability of the reference and285

alternative allele (Methods 3.11.) Using pysster and DeepRiPe models across 87 RBPs, we obtained a total of 25,230286

impact scores, one for each pair of variant and RBP. Notably, three variants (3,037C>T, 14,408C>T, and 23,403A>G)287

are consistently found across all viral strains, and their highest absolute delta-scores were respectively associated to288

FTO (avg. decrease from 0.474 to 0.356), AQR (avg. decrease from 0.191 to 0.036), and NONO (avg. increase from289

0.086 to 0.340). In order to prioritize pairs of variants and RBPs that show a gain- or loss-of-binding, we select a290

sub-set of pairs for which either the reference or alternative allele pass our binding thresholds (Methods 3.9). Note that291

this filter applies a XOR operation, i.e. we are interested in events that lead to either gain- or loss-of-binding (GOB,292

LOB). Overall, a total of 315 GOB or LOB events passed the above filter and are depicted in Figure 4a. The majority293

of variants introduced small delta in prediction scores, with less than 20% (61) of absolute delta-scores above 0.233294

(Figure 4a). As shown in the Supplementary Figure 2a, the top 20% highest-impact variants from Figure 4a accumulate295

in different genomic annotations over the SARS-CoV-2 genome. Interestingly, among the RBPs impacted by these296

mutations, we find that some strains present multiple high-delta-score mutations for SRSF7 (strains delta, kappa) and297

YBX3 (strain lambda), as well as L1RE1, RBPMS, SND1, ZRANB2 (strain omicron) (Supplementary Figure 2b).298

Additionally, the omicron strain harbors a particularly large number of variants predicted to impact binding of ORF1299

protein (from LINE-1 retrotransposable element).300

Systematic point-wise in silico mutagenesis reveals hypothetical high-impact variants301

New viral strains are continuously emerging, some of which are characterized by a faster spread due to newly acquired302

sequence variants, highlighting the importance of a continuous monitoring of viral variants which may result in a303

selective advantage on the protein or RNA regulatory level. To anticipate and quantify the impact of potentially304

unobserved variants, we perform a systematic in silico mutagenesis by generating all possible point mutations across305

the SARS-CoV-2 genome and score each hypothetical mutation with respect to its impact on RBP binding. Figure 4d306

and 4e show exemplary in silico mutation tracks for PUM2 and FTO, respectively, with observed reference prediction307

scores depicted at the top and the impact of gain- and loss-of-binding variants shown at the bottom. Note that for308

visualization purpose, only the delta score of the alternative allele with the highest impact is shown for each position309

and RBP. Supplementary Figure 3 shows an impact catalogue of 29, 903 × 63 single-nucleotide variants across all310

SARS-CoV-2 genome positions and 63 pysster models. The complete set of hypothetical variants together with their311

impact scores is available at https://sc2rbpmap.helmholtz-muenchen.de/.312

High-impact sequence variants disrupt known RBP-binding motifs313

As in vivo RBP-binding is usually driven via the recognition of short sequence motifs, we investigated whether314

high-impact variants cause gain or disruption of known binding motifs. To this end, we gathered from each strain315

the top 10 variants with highest absolute delta-scores, as illustrated in Figure 4b and 4c for strains alpha and delta,316

respectively. This represented a total of 69 unique mutation-RBP pairs, 19 of which were found in more than one317

strain. As expected, the majority (54 / 69) of their delta-scores is found to be in the top 1% of the distributions from the318

in silico mutagenesis. We then computed feature attribution scores (Methods 3.10), centered at the position of each319

high-impact variant. Feature attribution maps for the subset of candidate high-impact variants of the alpha and delta320

strain are shown in Figure 4b and 4c, respectively. Indeed, we observe that variants with high negative delta score321

tend to disrupt known binding motifs of human RBPs. For instance, transition T>G at position 22,917, as seen in the322

delta strain (Figure 4c) (as well as in top mutations from epsilon and kappa strains) decreases the prediction score for323

PUM2 from 0.795 to 0.158, with only 0.0015% in silico variants showing a lower delta-score. As is clearly visible324

from the feature attribution analysis (Figure 4c; middle-right), the variant disrupts the well-known PUM2 binding motif325

TGTATAT. In a similar manner, transversion A>T at position 23,063 from the alpha strain (Figure 4b; also found in top326

mutations from beta, gamma, and mu strains) decreases the prediction score for QKI from 0.488 to 0.049, with 0.006%327

in silico mutations show a low delta-score. Here, the feature attribution profiles clearly highlight how the known QKI328

binding motif ACTAA was detected by the model in the reference sequence, and how the mutation leads to a loss of329

this motif. Lastly, the transversion G>C at position 28,280 in the alpha strain (Figure 4b) decreases the prediction score330

for FTO binding from 0.679 to 0.209, and only 6 (0.00007%) in silico mutations show a delta-score lower than the one331

observed (Figure 4d). Although no clear motif is found within the window, the heights of the nucleotides at the position332

of the mutation are reduced compared to the reference sequence, reflecting the decreased prediction score.333
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High-impact gain- and loss-of-binding events across viral strains334

Among the above set of top 10 highest impact variants per viral strain, we select those that conform to strict gain-or335

loss-of-binding (Methods 3.11). We identify a total of 23 (out of 69) change of binding events across 17 variants and336

13 RBPs (Table 1). The first example corresponds to a transversion G>T at position 210 in the 5’UTR from the delta337

and kappa strains, predicted to induce a loss-of-binding for SRSF7, which we had confirmed from the loss of binding338

motif (delta strain heatmap, see Figure 4c). Further, from the ORF1ab gene, two examples of a loss of binding for339

RBM20 by the C>T transition at position 3,267 (strain alpha), and a gain of binding of RBM22 from a C>T transition at340

position 18,877 (strain mu). From the S gene, a gain of binding is reported for HNRNPC, induced by a C>T transition341

at position 21,575 (strain iota), in addition to another gain of binding reported for SF3A3, from a C>A transversion342

at position 22,995 (strain omicron). Two mutations occurring in the ORF3a gene are passing our filters for two RBP343

impacts: the transition C>T at position 25,469 induces a gain of binding for HNRNPC in delta and kappa strains, while344

the G>T transversion at position 25,563 induces a loss of binding for FTO in strains beta, epsilon, iota and mu. Finally,345

in the N gene, we report three mutations, two of them impacting FTO binding (one gain in the eta strain, from a deletion346

at position 28,278; one loss in the alpha strain, from a G>C transversion at position 28,280), and a loss of binding of347

ORF1 protein (from LINE-1 retrotransposable element) in the eta strain, from a A>G transversion at position 28,699.348

Individual variants impact binding of several RBPs349

Among variants that surpass binding-sites thresholds and lead to either gain- or loss-of-binding (Methods 3.11), several350

variants impact RBP binding of multiple RBPs simultaneously. For instance, a deletion at position 22,299 (S gene)351

identified in the lambda strain, is predicted to induce a gain of binding for ELAVL1, U2AF2, and GPKOW, while352

inducing a loss of binding for SF3B4, SF3A3, and MBNL1. Interestingly, all these factors are associated with splicing.353

Notably, the MBNL1 loss is also detected in the beta strain, through a deletion happening in a close-by location (at354

position 22,281, S gene), suggesting those two mutations may have been retained due to beneficial induction of similar355

changes in binding patterns. Another mutation which impacts multiple RBPs is the transition G>A at position 23,048 (S356

gene) from the omicron strain, predicted to induce binding of the ORF1 protein from LINE-1 retrotransposable element,357

as well as of SND1. Comparably to the MBNL1 impact, two close-by mutations from omicron were associated with a358

gain of ORF1 binding (transversion A>C at position 23,013, and transition A>G at position 23,040), further suggesting359

joint impact of these mutations on ORF1p binding. The last case of mutations with impact on multiple RBPs concerns a360

set of 2 mutations: C>A transversion and C>G transversion at position 23,604, in the S gene. The first is found in alpha361

and mu strains, while the second is found in the delta and kappa strains. Both mutations are predicted to induce a gain362

of SRSF7 binding, which is visualized for the alpha strain on Figure 4b through feature attribution maps.363

2.4 RBP-binding across human coronaviruses364

While evaluation of impact for reported variants enables the monitoring of potentially functional changes in the SARS-365

CoV-2 genome, evaluating changes in binding sites at longer evolutionary time scale might highlight more fundamental366

properties of the SARS-CoV-2 virus, as compared to other RNA viruses infecting human. We investigated to which367

extent binding sites of human RBPs are conserved across related human coronaviruses. For this purpose, we obtained368

genomes and genomic annotations of 6 SARS-CoV-2-related human coronaviruses, namely SARS-CoV-1, MERS,369

HCoV-OC43, HCoV-NL63, HCoV-HKU1, HCoV-229E (Methods 3.13). Binding sites were identified in analogy to370

SARS-CoV-2 (Methods 3.9) across each viral genome using 87 high-confidence pysster and DeepRiPe models. Figure371

5a shows the general binding propensity of RBPs across viral genomes of the 7 coronaviruses. Overall, RBP binding is372

conserved across coronaviruses, with the highly pathogenic viruses (SARS-CoV-1, SARS-CoV-2 and MERS) showing373

a highly similar binding pattern. Further, a total of 86 (out of 87) RBPs (except FKBP4) were predicted to harbor a374

binding site in at least one coronavirus, with only a small variability in the total number of binding RBPs between375

individual viruses. However, we observe a greater variability of RBP binding within shared genomic regions across376

coronaviruses, for instance in the 5’ and 3’ untranslated regions (UTRs). Viral UTRs are known to play an important377

role in both pro- and anti-viral responses and recent evidence suggests that evolution of the 3’ UTR is contributing378

to increased viral diversity (15). Indeed, the 3’ UTR of SARS-CoV-2 shows a severe truncation when compared to379

SARS-CoV-1 and MERS. Given that viral UTRs are not under selective pressure with respect to a translated protein,380

they might be more prone to acquire mutations that modulate regulation through host RBPs. Figure 5b and 5c show381

RBP binding to the 3’ and 5’ UTRs across selected coronaviruses, respectively. While SARS-CoV-1, SARS-CoV-2382

and MERS show conserved binding on the 5’ UTR and cluster closely, a depletion of RBP binding sites is observed in383

the 3’ UTR of SARS-CoV-2 when compared to SARS-CoV-1 and MERS. To investigate gain-and loss-of-binding in384

viral UTRs across the severe pathogenic human coronaviruses SARS-CoV-1, SARS-CoV-2 and MERS, we performed385

multiple sequence alignment of the viral 3’ and 5’ UTRs and compared the predicted binding score profiles across the386

three viruses (Methods 3.13).387
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Loss of FXR2-binding in SARS-CoV-2 3’ UTR388

Figure 5e shows 3’ UTR binding of FXR2, a paralog of FMRP (fragile X mental retardation protein). Our model389

predicted extensive binding of FXR2 along the 3’ UTR of SARS-CoV-1 and MERS, while SARS-CoV-2 showed a390

complete lack of predicted FXR2 binding sites, owing to its significantly shorter 3’ UTR. On the other hand, Figure 5g391

shows that FXR2 binding is conserved in the 5’ UTR of SARS-CoV-1 and SARS-CoV-2. FMRP was previously shown392

to broadly bind along the entirety the 3’ UTR of the Zika virus (ZIKV) (74). However, while FMRP was suggested to393

act as a ZIKV restriction factor by blocking viral RNA translation, a significantly reduced ZIKV infection was observed394

upon knockdown of FXR2 (74).395

Conserved FTO binding site in the 3’ UTR of SARS-CoV-1 and SARS-CoV-2396

Altered expression levels of methyltransferase-like 3 (METTL3) and fat mass and obesity-associated protein (FTO)397

have been recently linked to viral replication (99). FTO is a demethylase (eraser) enzyme with enriched binding in the398

3’ UTR of mRNAs in mammals (58). FTO has previously been suggested as a potential drug target against COVID-19399

(97), as targeted knockdown has been shown to significantly decrease SARS-CoV-2 infection (99; 97; 6). Therefore, we400

investigated predicted binding of FTO to the 3’ UTR of SARS-CoV-2 and related viruses. Indeed, we observed that401

SARS-CoV-1, SARS-CoV-2 and MERS, as well as the less pathogenic viruses HCoV-HKU1 and HCoV-OC43 harbor402

at least one FTO binding site in their 3’ UTR (Figure 5b). Further, Figure 5d shows that while SARS-CoV-1 and MERS403

harbor multiple shared FTO binding sites along their 5’ UTR, SARS-CoV-2 only harbors one FTO binding site at the 3’404

end of its 5’ UTR which is exclusively shared with SARS-CoV-1.405

Newly acquired TARDBP binding in the SARS-Cov-2 5’ UTR406

We next focus on TARDBP (also known as TDP-43) (Figure 5f), which was predicted to bind the 5’ UTR of a407

SARS-CoV-2 mutant in a recent study (60). TARDBP, a host protein implicated in pre-mRNA alternative splicing, has408

been shown to play a role in viral replication and pathogenesis in the context of coxsackievirus B3 infection (42). In409

contrast to the findings of Mukherjee et al. (60), our model identified a TARDBP binding site at the genomic range of410

89-98 in the wild-type reference of SARS-CoV-2. Interestingly, in addition to observing a lack of predicted binding411

signal of TARDBP on the 5’ UTR of SARS-CoV-1 and MERS, we found a complete lack of TARDBP binding to the 5’412

UTR of any of the other investigated coronaviruses (Figure 5c). This suggests that 5’ UTR TARDBP binding potential413

is newly acquired in SARS-CoV-2 and may affect its virulence.414

2.5 A functional catalog of human RBPs with predicted SARS-CoV-2 interaction415

To understand the functional impact of RBPs on the SARS-CoV-2-mediated COVID-19 disease, we set out to interrogate416

the breadth of publicly available OMIC research, thereby gathering supportive evidences for our 87 RBPs models417

(Figure 6). To this end, we collected 97 data sets of experimental research results from 22 studies (Methods 3.15)418

covering experimentally determined and predicted viral RNA - host RBP interactions as well as multi-level (OMICS)419

data related to SARS-CoV-2 cell line infections, shedding light on viral entry, protein-protein interactions and host cell420

regulation. Studies which are closer to disease phenotypes, like CRISPR cell survival assays and COVID-19 patient421

data, were also included. In addition, we collected evidence of direct involvement of RBPs in SARS-CoV-2 infection,422

as reported in the SIGNOR database, a manually curated resource of pathways and genes involved in SARS-CoV-2423

(49). All data sets were harmonized and integrated through the use of knowing01 (kno) software to annotate RBPs by424

automated mapping of gene, variant and protein identifiers, yielding reported evidence of binding or regulation for 85425

out of 87 (97.7%) RBPs models.426

We found that a large fraction (63 out of 87, 72.4%) of RBPs were identified to directly bind SARS-CoV-2 RNA427

using affinity-purification methods (69; 18) (Figure 6), validating the interaction of these RBPs with the viral RNA.428

Interestingly, only 32 out of 87 RBPs (36.8%) have previously had reported binding sites profiles over the SARS-CoV-2429

genome by related methods catRAPID (87) or PRISMNet (80). We thus complement the knowledge on binding site430

locations over SARS-CoV-2 RNA with 55 RBPs uniquely explored by our framework, 36 of which are experimentally431

supported for viral RNA interactions (labeled as ’NOVEL validated’, Figure 6). Our holistic comparison revealed432

that the majority of explored RBPs (75, 86.2%) were previously reported to be part of host-pathogen PPI networks433

and cellular pathways which are altered during infection by either SARS-CoV-2, SARS-CoV-1 or both (Figure 6). In434

addition, 34 out of the 87 (39.1%) were identified as essential genes in CRISPR knock-out screenings, highlighting the435

importance of RBPs in the infection process, immune response and viral replication, through direct interaction with436

the viral genome. Although no RBP co-localizes with loci associated to COVID-19 severe disease courses (GWAS)437

under genome-wide significance, we identified 44 (50.6%) RBPs with nominal significance. When considering the438

total of 2,730 coding genes co-localizing nominally associated loci, this represents a significant enrichment for RBPs439
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(odds ratio of 7.8, Fisher test p-value <2.2e-16), suggesting their importance in patient’s course. Finally, a small set440

of our predicted-binding RBPs was shown to be supported only from CRISPR screens or found deregulated across441

COVID-19 patients, without evidence of viral RNA binding from previous studies, neither functional evidence in442

molecular networks altered by SARS-CoV-2 infection (labeled as ’NOVEL & disease relevant’, Figure 6). Taken443

together, the large overlap between the RBPs we selected and the different resources considered confirms that hijacking444

host RBPs is crucial to the infection life cycle of the virus, through the direct binding of these RBPs to the viral genome445

only or in combination with host-pathogen protein-protein interactions.446
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3 Material and Methods447

3.1 ENCODE data and preprocessing448

Enhanced CLIP (eCLIP) datasets were obtained from the ENCODE project database, which comprises 223 eCLIP449

experiments of 150 RBPs across two cell lines, HepG2 and K562. For RBPs with experiments in both cell lines, we450

selected only data of eCLIP experiments from the HepG2 cell line for downstream analysis, as those were demonstrated451

to yield higher performing models (compared to K562) in previous studies (5). Narrow peaks of each eCLIP library452

were taken directly from ENCODE and preprocessing was performed as follows: for each of the two replicates of a453

given eCLIP experiment, peaks were first intersected with mRNA locations obtained from the GENCODE database454

(Release 35) and only overlapping peaks were retained. Next, the 5’-end of each peak was defined as the cross-linked455

site, as it usually corresponds to the highest accumulation of reverse transcription truncation events. A 400bp window456

was then centered around the cross-linked site for each peak, defining the input window of the downstream model.457

Input windows of both replicates were intersected reciprocally with a required overlap fraction of 0.75, ensuring that458

only those peaks which are present in both replicates are considered for downstream training set construction. Finally,459

the top most 50,000 windows with a read-start count FC of 2.0 above the control (SMInput) experiment were selected460

for each RBP.461

3.2 Pysster training set construction462

For each RBP, a classification dataset of bound (positive) and unbound (negative) RNA sequences was constructed.463

Positive samples were obtained by taking corresponding 400nt peak-region windows from the previous step (3.1), while464

two distinct sets of negative samples were generated. First, 400nt long regions which did not overlap with binding sites465

of the given RBP were sampled from transcripts harboring at least one binding site. This constraint ensures that the466

transcript is expressed in the experimental cell type and would not be observed as RBP-binding in other cell types. The467

second set of negative samples was generated by randomly sampling binding sites of other RBPs. This ensures that468

any CLIP-seq biases (such as U-bias during UV-C cross-linking (79), (93)) are present in both positive and negative469

samples and prevents the model from performing a biases-based sample discrimination during the training. Together,470

this yields a three-class training set, where class 1 corresponds to positive samples and class 2 and 3 correspond to471

negative samples. Samples of class 2 and 3 were sampled at a 3:1 ratio with respect to class 1. Finally, generated472

samples were randomly split into train, validation and test sets at a ratio of 70:15:15, respectively.473

3.3 Pysster model474

The pysster Python library (5) was used for implementation of the model which consists of three subsequent one-475

dimensional convolutional layers, each with 150 filters of size 18, followed by a single fully connected layer with 100476

units. The ReLU activation function is applied to each intermediate layer output and a maximum pooling layer is added477

after every convolutional layer. Finally, a fully connected layer with 3 units, one for each of the three output classes, is478

added. Dropout (75) with a rate of 0.25 was applied to each layer, except for input and output layers. The model was479

trained with the Adam optimizer (41) using a batch size of 512 and a learning rate of 0.001. For each RBP, we trained480

for at most 500 epochs and stopped training in case the validation loss did not improve within the last 10 epochs.481

3.4 Pysster binary classification threshold482

As pysster models are trained as a 3-class classification problem with class imbalance, we re-calibrate each model for483

the binary classification task by introducing a binary decision threshold tm on the predicted positive-class probability484

scores. For each model m, tm is defined as the threshold which maximizes the F1 performance (Section 3.7.1) of485

the model with respect to bound vs. unbound binary classification obtained by pooling class 2 and 3 samples into a486

common ‘unbound’ class. This threshold is used to identify bound regions in the viral sequence (Section 3.9).487

3.5 DeepRiPe model488

We obtained pre-trained DeepRiPe models from Ghanbari et al. (23) and retained models for 33 out of the 59 RBPs,489

filtering out models where no informative sequence motif could be learned by the model. The PAR-CLIP-based models490

used in this study are modified versions of the DeepRiPe neural network, where only the sequence module to extract491

features from the RNA sequence is used. Briefly, the model consists of two convolutional layers, one fully connected492

layer and one output layer that contains k sigmoid neurons to predict the probability of binding, one for each RBP. Each493

convolutional layer has a rectified linear unit (ReLU) activation, followed by a max pool layer and a dropout layer494

with probability of 0.25. 90 filters with length 7 and 100 filters of length 5 for the first and second convolution layers,495
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respectively. The fully connected layer has 250 hidden units and a ReLU activation. Details in data preparation and496

model training are outlined in Ghanbari et al. (23).497

3.6 Single-nucleotide predictions498

The pysster and DeepRiPe positive-class prediction score corresponds to the probability that input RNA sequence is499

bound by the RBP of interest. By design, this score is assigned to the entire input sequence, although RBP binding500

sites are much more local, usually spanning only a few nucleotides (14). To obtain single-nucleotide binding site501

probabilities from both pysster and DeepRiPe models along an RNA sequence, we employ a one-step sliding-window502

approach to scan over a given RNA sequence, where the predicted positive-class probability score is assigned to the503

center nucleotide of the input window. In order to obtain predictions over the entire RNA sequence, the 5’ and 3’504

sequence ends are 0-padded.505

3.7 Pysster performance evaluation and model selection506

3.7.1 Precision-recall and F1 performance507

As the validation loss was monitored for the purpose of early-stopping, the precision-recall (PR) and F1-score508

performance of the pysster models was evaluated on the test set. Models with an area under the PR curve (auPRC) of509

less than or equal to 0.6 were deemed poor quality and thus excluded from the downstream analysis.510

3.7.2 Performance in practice511

Training datasets are sampled at a fixed positive-negative ratio which hardly reflects the ratio of bound and unbound sites512

of RNA transcripts found in vivo. In practice we expect that for some transcripts regions, binding sites of a particular513

RBP are not observed over several kilo-bases, while other regions, such as 5’ and 3’ untranslated regions (UTRs), might514

harbor a dense clustering of binding sites. To measure the ability of pysster models to accurately predict de novo RBP515

binding-sites along whole-length RNA transcripts, we introduce the concept of Performance-In-Practice (PIP), which516

measures how well the single-nucleotide prediction score of the model correlates with binding sites identified by eCLIP.517

For a given RNA sequence, the PIP of a model is defined as the Spearman correlation coefficient (SCC) between the518

truncated prediction scores ptrunci and a binary vector obtained by labeling all positions that fall within eCLIP binding519

sites with 1 and 0 otherwise. Here, ptrunci refers to a modified version of the prediction score pi defined as520

ptrunci =

{
pi, if pi ≥ tm
0, otherwise

where tm is a threshold obtained for each model as outlined in Section 3.4. For each model, we perform extensive PIP521

analysis on the human transcriptome as follows. First, we select the set of transcripts which contain at least one binding522

site for it. From this set, we uniformly draw 100 transcripts without replacement as hold-out transcripts. Subsequently,523

we intersect positive and negative training samples with the hold-out transcripts and discard all samples that overlap524

with any of the hold-out transcripts before retraining pysster on the remaining training samples. We use the resulting525

models to predict along the hold-out transcripts as described in Section 3.6 and compute the PIP score for each hold-out526

transcript. Finally, models with a median PIP score of less than or equal to 0.1 were excluded from downstream analysis.527

3.8 Estimating significance of prediction scores528

To directly control the false positive rate of binding site prediction from both pysster and DeepRiPe models on the529

viral genome, we estimate prediction score significance via an RNA sequence permutation test. In order to obtain a530

null-distribution of predictions (positive-class) scores, we first compute the di-nucleotide frequencies on the viral RNA.531

Next, we perform frequency-weighted sampling of di-nucleotides to construct a set of N = 10, 000 null-distributed532

inputs. Null-distributed prediction scores for each model are then obtained by predicting on those sequences. A p-value533

is assigned to each observed prediction score pi in the viral sequence by computing the fraction of scores from the null534

distribution pnullj for which pnullj > pi, j = 1, ..., N .535

3.9 Identifying RBP binding sites536

We identify RBP binding sites on the viral RNA sequence using predicted single-nucleotide binding probabilities537

(Section 3.6) together with estimated p-values (Section 3.8). For each pysster model, we classify nucleotides in the viral538

RNA as "bound" if the predicted probability score is equal or greater than the estimated binary threshold tm (Section539
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3.4) and the score is found to be significant (p < 0.01). Regions with a consecutive stretch of bound nucleotides of540

at least length 2 are then defined as a RBP binding site. Neighboring binding sites that are spaced by less than 10541

nucleotides are merged to a single binding site. Note that for DeepRiPe models, nucleotides in the viral RNA are542

considered "bound" if the probability score is found to be significant (p < 0.01) and no score threshold is applied.543

3.10 Base-wise feature attribution via Integrated Gradients544

To gain insight into which RNA sub-sequences are driving factors for RBP binding, we compute sequence importance545

scores using Integrated Gradients (IGs) (81; 23). Starting from an input baseline, IG performs a step-wise linear path546

interpolation between the baseline and the actual input sequence and computes the gradients of the interpolated inputs547

with respect to an output neuron. That is, we obtain a vector of importance scores over the input sequence which548

indicate which nucleotides of the input contributed most toward the prediction. Here, we choose the 0-vector (i.e. the549

one-hot encoding of all nucleotides is set to 0) as the baseline and perform 50 baseline-input interpolation steps. To550

obtain sequence importance scores for a given binding site, we compute IGs with respect to an input window centered551

around the binding site. For sequence-motif construction, the heights of nucleotides in the input sequence is given by552

the feature attribution weights.553

3.11 Analyzing mutations in variants of concern554

Variant information of 11 SARS-CoV-2 viral variants (alpha, beta, delta, epsilon, eta, gamma, iota, kappa, lambda,555

mu, omicron) was obtained from the UCSC genome-browser for the SARS-CoV-2 virus (17), and converted into VCF556

format. For each strain, we first created a ’mutated’ strain-specific genome, using the viral reference sequence and the557

set of strain-defining variants. We then center a window at the reference position of each genomic variant and extract558

the mutated sequence for subsequent prediction via each model. We note that for cases were genomic variants are559

in close proximity with each other, extracted windows might contain multiple mutations. This is crucial, as only the560

combination of multiple variants might lead to gain or loss of RBP binding. The resulting prediction score on each561

alternative allele (ALT) is then compared with the prediction score of the same window on the reference sequence562

(REF). To quantify the impact of each mutation, we compute a delta score between the prediction score of ALT and563

REF sequence:564

∆score = scoreALT − scoreREF . (1)

Mutations with a positive delta score sign represent ’gain-of-binding’ (GOB) events, while mutations with negative sign565

represent ’loss-of-binding’ (LOB) events. To further narrow down the set of mutations, we compile a subset of mutation566

that lead to a gain- or loss-of-binding (GOB and LOB), defined as instances where (in case of LOB) the REF score567

is passing the binding site score threshold and p-value (Sections 3.4 and 3.8) while the ALT does not, or vice versa568

(in case of gain of binding). As for binding site calling (Section 3.9), we use a significance level of 0.01 as p-value569

threshold for both pysster and DeepRiPe models.570

3.12 In silico mutagenesis571

We perform in silico probing of the effects of all possible point-mutations on RBP binding across the SARS-CoV-572

2 genome. At each viral genome position, the reference base was mutated to each of the three alternative bases.573

Subsequently, prediction was performed on the input windows derived from each ALT allele using all high-quality574

pysster models. Finally, as described in Section 3.11, an impact score is computed and a set of change-of-binding575

mutations is compiled.576

3.13 Comparative analysis of human coronaviruses577

Besides SARS-CoV-2, we obtained reference sequences for 6 other human coronaviruses, including SARS-CoV-1,578

MERS, HCoV-229E, HCoV-HKU1, HCoV-NL63 and HCoV-OC43 from NCBI (68). Using high-quality models from579

both pysster and DeepRiPe (Section 3.7), we perform single-nucleotide binding prediction along each viral RNAs580

(Section 3.6). Next we compute prediction empirical p-values for each viral sequence (Section 3.8) by generating a581

dedicated null distribution of scores for each virus and RBP. RBP binding sites across viruses were then identified as582

described in Section 3.9. We evaluate genomic-element preference across a subset of shared viral genomic locations583

(ORF1ab, E, N, M, S, 5’ UTR, 3’ UTR) for each RBP and virus by intersecting the predicted set of binding sites of584

each virus with its RefSeq annotations. To compute multiple sequence alignments (MSA) between genomic elements585

of betacoronaviruses, we use the ClustalO (72) algorithm with default parameters.586
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3.14 Functional annotation of RBPs587

To assess the potential role of RBPs with predicted binding on viral RNA sequences, we manually curated all RNA-588

related functions of the 87 RBPs with good predictive models using the GeneCards, Uniprot and RBP2GO databases589

(77).590

3.15 Public COVID-19/coronaviruses OMICS data591

To assess regulatory information of RBPs across available coronavirus/COVID-19 multiOMICS data, we downloaded592

evidence from 22 studies. We imported study-relevant supplementary tables via knowing01, which harmonizes data593

tables and links results to molecular information, like human gene symbols, UniProt identifier, variant positions as594

available in the proprietary CellMap unified data model (Version 2022/03). A list of 87 RBPs with good model595

performance were loaded as list of Gene Symbols. To ensure that all RBP human gene symbols are identically named596

in African Green Monkey OMICS data, we used VeroE6 cells linked to human symbols.597

A total of 97 research results were grouped into the following study types:598

• extended interactomes from experimental determined of host RBP-SARS-CoV-2 interactions using affinity599

purification and mass spectrometry (18; 69; 89)600

• computational predictions of host RBPs- SARS-CoV-2 interactions in the 5’ UTR, 3’ UTR and Spike S601

genomic region of the viral RNA with either catRAPIDomics (87) or the PRISMNet tool (80)602

• viral-host protein-protein interactions (PPIs) measured by affinity-purification followed by mass spectrometry603

(24; 78)] and yeast two hybrid screenings (40)604

• multiOMICS data, including the regulation of the host proteomics, phosphoproteomics, ubiquitinomics and605

transcriptomics up to 24 hours after coronavirus infection (4; 78), as well as the effectome, which includes606

deregulated host proteins 72 hours after SARS-CoV-2 induced expression of each of the viral proteins (78)607

• CRISPR phenotype screens probing cell survival few days after viral infection with single genes knockouts in608

human (24; 30; 70; 91) or African green monkey [(92)] cell lines609

• genome-wide association studies (GWAS) linking human genetic variation to COVID-19 disease severity (64)610

• patient OMICS data, including proteomics and transcriptomics regulation of whole blood, serum or plasma of611

mostly inpatients (10; 12; 13; 22; 57; 63; 71; 95)612

To filter for significant regulation in each data set, we applied significance cutoffs per study result. We chose to select613

two different significance levels to get lists of regulation with a stringent (adjusted p-value < 0.01) and a lax (adjusted614

p-value < 0.1) cutoff threshold, whenever available. Few data sets only provided raw p-values for which we used615

with lower cutoffs. Patient transcriptomics data were used with much lower cutoffs, due to the inflation of regulated616

genes on typical cutoffs. For GWAS data we employed a genome-wide (p-value < 5e-08) and nominal (p-value <617

0.01) significance cutoff, for stringent and lax cutoffs, respectively. Finally we annotated all 87 RPBs with regulated618

molecules via the knowing01 Annotate feature and visualized the number of evidences of RBPs in each data set in a619

count matrix.620
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4 Discussion621

Strong evidence suggests that human RBPs are critical host factors for viral infection by SARS-CoV-2, yet there is no622

feasible experimental approach to map exact binding sites of RBPs across the SARS-CoV-2 genome systematically. To623

combat this knowledge gap, we constructed the first in silico human-virus RBP-RNA interaction map for SARS-CoV-2624

using predictions from pysster (5) and DeepRiPe (23) models trained on a large cohort of eCLIP and PAR-CLIP625

datasets, respectively. The use of high-capacity CNN classifiers represents a significant improvement over previous626

computational studies performing motif scanning over the SARS-CoV-2 genome (75; 3), as it enables the learning627

of more complex binding syntax and thus the detection of binding sites for RBPs with no cleanly defined sequence628

motif. This is evident by the fact that we observed high performance for RBPs without annotations of binding motifs629

in literature. On the other hand, we demonstrated that deep learning methods are by no means black boxes, as we630

recovered known binding motifs for several RBPs (including QKI, RBFOX2 and TARDBP) using gradient-based631

attribution methods. Together with stringent performance evaluation and conservative selection of high-quality models,632

these results suggest that our predictions represent bona fide binding sites. In a recent study, the PRISMNet deep633

learing model was used to infer binding of 42 host RBPs to the SARS-CoV-2 genome (80). However, predicted634

binding sites by PRISMNet are restricted to the 5’ and 3’ viral UTR regions are rather large, with some spanning over635

hundreds of nucleotides, while RBP binding usually only occurs across short stretches of RNA in vivo. In contrast, our636

approach generated single-nucleotide binding probabilities across the entire viral genome and may therefore yield a637

more complete picture of the binding landscape of human RBPs to SARS-CoV-2.638

Our study identified known, as well as novel human RBPs to interact with SARS-CoV-2 (Figure 6). Further, the639

generated binding map provides a rich resource for future functional studies, in particular for investigating the role of640

the SARS-CoV-2 protein-RNA interactome in context of the viral life cycle. For instance, binding site predictions may641

be used to accelerate the discovery of host RBPs that engage in both pro-and anti-viral functions by directly interacting642

with the viral RNA. Further, predictions may aid in the identification of functional sites on the viral RNA that can643

be therapeutically targeted by RNA drugs, such as anti-sense oligonucleotides, to interfere with host RBP binding.644

In addition to constructing a RBP binding map on the SARS-CoV-2 reference sequence, we quantified the impact of645

sequence variant from 11 SARS-CoV-2 strains, including the alpha, delta and omicron viral strains.646

Additionally, we applied a systematic in silico mutagenesis of all positions in the SARS-CoV-2 genome, pinpointing647

mutations associated with particularly high impact, which could represent potential high-risk variants to monitor in648

the future. Our analyses confirmed that our models can effectively be used to identify mutations with high-impact649

potential using the prediction scores, either for mutations observed in viral variants of concern (Figure 4a) or from in650

silico mutagenesis (Supplementary Figure 3). Such mutations can be evaluated further through the computation of651

attribution maps, highlighting important nucleotide in a given window of interest, and how their importance is impacted652

by the mutation. In previous studies variants of concerns have been prioritized through their potential impact on the653

sequence of viral proteins, in particular the Spike protein. Our results complement these findings, and enable to better654

understand the efficiency of specific lineages of SARS-CoV-2 in the context of RBP-viral RNA interactions, providing655

with a map of mutations of high potential for hijacking important host RBPs, or on the contrary evade binding of656

anti-viral RBPs. With our comparative analysis of RBP-RNA interactions across seven coronaviruses we contribute to657

the identification of genomic features and factors which confer unique characteristics to SARS-CoV-2 transmission658

and pathogenicity, compared to SARS-CoV-1, MERS, and less pathogenic coronaviruses. Both variants of concern659

and comparative analysis highlight gain-or loss-of-binding affecting host RBP-viral interactions and therefore pinpoint660

RBPs which can be prioritized for further screening.661

We integrated knowledge of our predicted RBPs across other pathogens, host-viral protein-protein interactions, numerous662

studies collecting functional and phenotypic data, such as GWAS and CRISPR screens, as well as multi-omics COVID-663

19 patient data, in order to pinpoint RBPs with clinical significance. By this analysis, we mainly identify five sets664

of RBPs predicted to interact with the SARS-CoV-2 genome. The first set comprises core RBP predictions with665

numerous independent evidences in the scientific literature of their involvement in regulation of viral infection, included666

SARS-CoV-2. Proteins in this core set are confirmed by additional in silico methods, as well as experimental assays667

to bind SARS-CoV-2, and identified as deregulated or affected in multi-omics studies and/or CRISPR, GWAS and668

patient data of SARS-CoV-2 infection. Among them, we find several known regulators of viral processes, such as the669

hnRNPR viral restriction factors (65), the IGF2BP1-3 RBPs, which are mainly ubiquitinated during SARS-CoV-2670

infection (78) and linked, through GWAS, to poor disease outcome (34), as well as key regulators of SARS-CoV-2671

infections such as the stress granules-associates RBPs CAPRIN1 and KHDRBS1 (37), associated to pathways such672

as ER stress, Inflammation, cytokine storm and others (Supplementary Table 3), the pro-viral DDX3X factor (9) and673

the host factor NONO (65), previously shown to promote innate immune activation in HIV infection (44). Important674

regulators of mRNA splicing (QKI, PTBP1 and U2AF2), and other processes (TARDBP, TIAL1) are also part of this675
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group of RBPs. Notably, many of the RBPs we highlighted throughout our binding site analysis on the SARS-Cov-2676

genome, impacts from mutations in viral variants, or comparative genomic changes of binding sites fall into this group.677

For instance, TARDBP and QKI are two RBPs that are well supported, in particular through experimental identification678

of their binding to the viral RNA, in addition to OMICs support and CRISPR (TARDBP) or GWAS (QKI). We also679

identify TARDBP as a particularly important RBP in the context of SARS-CoV-2 infection due to the prediction of a680

unique binding site in the virus 5’ UTR, when compared to SARS-CoV-1, MERS and other coronaviruses. A second681

set of RBPs comprises 36 proteins uniquely predicted by our framework as binders of SARS-CoV-2, which harbour682

experimental extensive support.683

An example of RBP of interest in this group is the Serine/arginine-rich splicing factor 7 (SRSF7). Previous studies684

have shown that SRSF7 interacts with coronavirus RNA (76). It has also been suggested that this spliceosome protein685

could be sequestrated by the viral genome, the later thus acting as a sponge through these putative binding sites, to alter686

host splicing processes. Among the high-impact mutations in the SRSF7 gene position 23,604 (S protein gene) is found687

mutated across multiple strains, with different alternative nucleotides: a C>A transversion is found in alpha and mu688

variants, while a C>G transversion is found in delta and kappa variants. Both mutations are associated to a positive689

delta score, therefore a gain of binding. This position has been suggested by previous studies to be a major driver of the690

increased infection efficiency of these viral variant, as a modifier of the S protein sequence (P680R) (52), although691

additional studies indicate that other mutations may be required for an actual effect ((53; 98)). The gain of binding we692

identify here could also suggest that the translation of the S gene into the protein is improved through the recognition of693

the newly created binding site by SRSF7.694

Besides SRSF7, the large number of binding sites for splicing factors at the 5’ UTR of the SARS-CoV-2 (cluster 6,695

Figure 3c) and the pervasive binding of several host and viral restriction factors (cluster 4, Figure 3c) suggests that696

these RBPs are likely to get sponged on the viral genome and by that modulate post-transcriptional regulatory networks697

in the host cell.698

699

One other interesting RBP in this group is represented by FXR2, paralog of FXR1 and FMR1 which are identified700

as direct binders of SARS-CoV-2 (Figure 6). Recent evidence suggests that FXR2 selectively interact with MERS viral701

proteins but not with viral proteins from SARS-CoV-1 and SARS-CoV-2 [(24)]. While we find evidence of FXR2702

binding along the SARS-CoV-2 genome, this is in agreement with the results of our comparative analysis with other703

human coronaviruses, where we observe extensive binding of FXR2 along the 3’ UTR of SARS-CoV-1 and MERS, but704

depletion of FXR2 bindidng in the SARS-CoV-2 3’ UTR. Together with the evidence of genetic association of FXR2 to705

COVID-19 disease severity (35) our findings suggest a fine-tuning role of FXR2 in regulating the severity of the infection.706

707

From these two sets, we can also highlight many RBPs with functions related to endoplasmic reticulum processes.708

SARS-Cov-2 utilizes the endoplasmic reticulum (ER)-derived double membrane vesicles (DMVs) as replication centers.709

RNA viruses, included SARS-CoV-2, contains several instances of an RNA regulatory motif, called SECReTE motif710

(27) which facilitates localization to the ER and increases viral protein translation, as well as viral replication. Such711

motif is also found in some human mRNAs encoding for proteins involved in innate immunity and associated with712

epithelial layers targeted by SARS-CoV-2. This suggests that host and pathogen might compete for ER-associated713

RBPs and this might make the host more vulnerable to the infection. Among our validated RBPs in set 1 and 2 (Figure714

6) we identified several SECReTE-associated RBPs, defined as those proteins where more than one fourth of their715

predicted binding sites overlapped instances of the SECReTE motif on the SARS-CoV-2 genome. These include716

FUBP3, KHSRP and MATR3, already identified previously as important host or restriction factors for other RNA717

virus infections (65). Interestingly, we linked MATR3 to several CRISPR studies showing that this factor is essential718

for SASR-CoV-2 replication, as well as to many nominal variants in all GWAS data (Figure 6). MATR3 physically719

interacts with G3BP1, another predicted RBP in this set which been found to interact specifically with SARS-CoV-2720

nucleocapsid (N) protein, control viral replication and localize (together with MATR3) at stress granules where G3BP3721

is taken away from its typical interactions partners (62). Our and previous data (Figure 3) suggest that direct binding of722

G3BP3 and MATR3 to the SARS-CoV-2 RNA could constitute an additional mechanism used by the virus to interfere723

with the G3BP3-MATR3 PPI network and impair stress granule formation. The fact that G3BP3 binding is enriched in724

correspondence of the gene encoding for protein N (Figure 3c) might also suggest a direct regulation of this transcript725

by this RBP in a sort of feedback loop manner.726

727

The other three sets of RBPs predicted to bind SARS-CoV-2 correspond to 1) proteins with in silico support from728

other predictive tools, but no experimental validation of direct binding to SARS-CoV-2 (named ’Predicted only’);729

2) novel candidate SARS-CoV-2 binders, uniquely predicted by our method, no experimental validation but large730

functional support from host-pathogen PPI, CRISPR and patient omics data (named ’Novel infection relevant’), and 3)731

putative novel regulators that lack so far functional evidence across studies but were nonetheless found to be deregulated732
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in COVID-19 patients (named ’Novel disease relevant’). The fat mass and obesity-associated protein (FTO) is an733

example of a newly identified regulatory RBP for SARS-CoV-2. FTO is a demethylase (19), and while it has been734

suggested that the virus could hijack the host epigenome [(2)], a recent study showed that the viral genome itself735

was methylated (51), with a negative effect on viral replication efficiency. Besides the predicted binding pattern,736

FTO also presented numerous important gain-or loss-of-binding across many viral strains. Although there was no737

clear trend towards systematic loss of binding of FTO across the viral variants, we were able to point out multiple738

close-by mutations in the alpha variant that were associated to a significant loss, around the position 28,280 (Figure 4b).739

Finally, the FTO protein was identified as key risk factor for obesity, which is also a known risk for COVID-19 severity.740

FTO coding region harbored also nominal genetic associations to COVID-19 severity (variant lowest p-value 0.0053).741

Interestingly, FTO was additionally found to be significantly regulated on gene level in blood serum of patients admitted742

to ICU care (adj. p-value 7.72E-06) (63). A small set of novel predicted RBPs, with little to no experimental evidence743

across multiple functional studies, includes the ELAVL2-4 factors, the DND1 RBP and the splicing factors SRRM4744

and SF3A3 (Figure 6). Interestingly, ELAVL2-4 RBPs, found in our analysis to be SECReTE motif-associated RBPs,745

and SRRM4 RBP are neuron-specific proteins and were found, through our integrative analysis, to be deregulated in746

COVID-19 patients. This points to novel promising candidates whose molecular mechanisms can be further investigated747

experimentally.748
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5 Conclusion749

Viruses depend on essential host factors at all stages of their infection cycle. One family of host factors, RNA-binding750

proteins (RBPs), are involved in multiple aspects of post-transcriptional regulation and are characterized by their ability751

to bind to short RNA motifs. While several RBPs have been associated with SARS-CoV-2, some of which may represent752

drug-able targets for anti-viral therapy, cost and time constraints render a comprehensive experimental profiling of753

human RBPs to the SARS-CoV-2 RNA infeasible. To fill this knowledge gap, we instead identified binding of human754

RBPs to the SARS-CoV-2 genome computationally. Here, we used the pysster and DeepRiPe frameworks together with755

data from over 200 eCLIP and PAR-CLIP experiments to train RBP binding site predictors on the basis of convolutional756

neural networks (CNN). By applying stringent performance filters, we obtained a set of high-quality prediction models757

for 88 RBPs and created an in silico binding map of human RBPs along the SARS-CoV-2 genome at single-nucleotide758

resolution. Predicted binding profiles of RBPs suggested that groups of RBPs exhibit similar binding patterns on the759

viral genome and that RBPs within these group may be functionally related, for example, by being associated to the760

SECReTE motif important for efficient viral replication. We identify RBPs with clinical relevance, by analyzing our761

data in the context of functional and clinical studies, including genetic screens and COVID-19 patient data. We further762

utilized trained models to score the impact of strain-defining sequence variants across 11 SARS-CoV-2 strains. Several763

variants that result gain or loss of RBP-binding were identified, some of which simultaneously impact the binding of764

multiple RBPs or which are conserved in multiple viral strain. In addition to the analysis of observed variants, we765

quantified the impact of hypothetical variants by performing extensive in silico mutagenesis, generating all possible766

point mutations across the SARS-CoV-2 genome. We believe that this resource will greatly aid researchers in assessing767

the impact of newly identified viral variants. Finally, we predicted RBP-binding across 6 other human coronaviruses768

(including SARS-CoV-1 and MERS) and identified several conserved binding sites as well newly acquired binding sites769

in SARS-CoV-2.770

All generated results, including fully trained models, predicted binding sites across SARS-CoV-2 and other coron-771

aviruses, variant impact scores across 11 viral strains and impact scores of hypothetical variants are publicly available772

at https://sc2rbpmap.helmholtz-muenchen.de/. We believe that our results give new insight into the role of773

RNA-binding proteins in context of SARS-CoV-2 infection and represents a rich resource for further research on how774

SARS-CoV-2 hijacks the host cell’s RNA regulatory machinery for viral replication and evasion of immune response.775
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6 Tables1092

Table 1: Subset of high delta score mutations passing binding sites thresholds
RBP Variant Strain Genomic element REF score ALT score delta score Impact

0 SRSF7 G210T delta, kappa 5’ UTR 0.768 0.457 -0.311 loss
1 RBM20 C3267T alpha ORF1ab 0.813 0.336 -0.477 loss
2 RBM22 C18877T mu ORF1ab 0.338 0.614 0.276 gain
3 HNRNPC C21575T iota S 0.374 0.840 0.467 gain
4 MBNL1 del_22281 beta S 0.800 0.006 -0.795 loss
5 ELAVL1 del_22299 lambda S 0.070 0.632 0.562 gain
6 SF3B4 del_22299 lambda S 0.871 0.128 -0.744 loss
7 SF3A3 del_22299 lambda S 0.860 0.273 -0.587 loss
8 U2AF2 del_22299 lambda S 0.543 0.980 0.438 gain
9 GPKOW del_22299 lambda S 0.297 0.841 0.544 gain
10 MBNL1 del_22299 lambda S 0.803 0.398 -0.405 loss
11 SF3A3 C22995A omicron S 0.081 0.808 0.726 gain
12 ORF1 A23013C omicron S 0.014 0.621 0.608 gain
13 ORF1 A23040G omicron S 0.006 0.673 0.666 gain
14 ORF1 G23048A omicron S 0.006 0.606 0.600 gain
15 SND1 G23048A omicron S 0.187 0.791 0.604 gain
16 SRSF7 C23604A alpha, mu S 0.394 0.719 0.326 gain
17 SRSF7 C23604G delta, kappa S 0.394 0.792 0.398 gain
18 HNRNPC C25469T delta, kappa ORF3a 0.317 0.670 0.352 gain
19 FTO G25563T beta, epsilon, iota, mu ORF3a 0.633 0.080 -0.552 loss
20 FTO del_28278 eta N 0.335 0.683 0.348 gain
21 FTO G28280C alpha N 0.679 0.209 -0.470 loss
22 ORF1 A28699G eta N 0.597 0.141 -0.456 loss
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Figure 1: Pipeline of the computational mapping of the human - SARS-CoV-2 protein-RNA interactome. a. (Left panel)
Interactions between RNA-binding proteins (RBPs) and transcripts can be experimentally measured through eCLIP
and PAR-CLIP protocols, enabling the quantification of locally accumulated reads, and the calling of peaks. Such
peaks were obtained for 150 RBPs from eCLIP data (86), and for 59 RBPs from PAR-CLIP data (61). (Middle panel)
Sequences from these peaks were used to train two deep learning models, composed of convolutional neural networks
enabling the detection of complex sequence motifs. These models can then be applied to predict for a given sequence
its potential for binding by a RBP. The pysster models are trained separately for each RBP, while DeepRIPE is trained
in a multi-task fashion and simultaneously for all input RBPs. (Right panel) A selection of high-performance models
was established through evaluation of performance of the models, from overall performance metrics to in-practice,
sequence-wide evaluation. b. All retained models were applied to scan the entire genome of SARS-CoV-2, and binding
sites were predicted from consecutive, high-prediction scores positions. Sequence motifs underlying RBP binding sites
were also identified by interrogating both CNNs via Integrated Gradients. Predictions were compiled in the first in
silico map of host-protein - viral RNA interactome for SARS-CoV-2. c The prediction models were applied to evaluate
the impact of variants of concerns, d as well as to evaluate the evolutionary trajectory of affinity of host RBPs to other
coronaviruses’ genomes.
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Figure 2: Evaluation of pysster models’ performance and high-quality model selection. a. Receiver Operating Curve
(ROC) and Precision Recall Curve (PRC) for all 150 pysster models trained from ENCODE eCLIP datasets. A first
threshold of 0.6 was set on the area under the PRCs (auPRC), leading to a subset of 79 models passing the threshold.
b. Boxplots of correlations between eCLIP and prediction scores from 100 left-out transcripts per RBP model. This
correlation highlights the performance of models in a realistic context of full-sequence-length scan. A second threshold
was thus set on the median correlation coefficient, leading to a subset of 93 models passing the threshold. The 10
models with highest median correlation are displayed in a detailed sub-plot. c. Genome-browser view illustrating the
comparison between eCLIP signals and model prediction scores over full-length transcripts. Two of the best models
are presented, with signal from left-out transcripts with high correlation between eCLIP log-fold-change signals and
prediction scores from the pysster models. d. Scatterplot of the AUPRC and median correlation values for each model,
highlighting the final subset of high-quality models. The top 10 models are labeled. e. Comparison of genome-wide
eCLIP signal and pysster prediction scores from the CNBP eCLIP datasets generated over the SARS-CoV-2 genome by
(69). f. Boxplot of pysster prediction scores from position within or without overlap from called narrow peaks, for the
CNBP model and the LARP1 model.
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Figure 3: Computational map of RBP binding on SARS-CoV-2. a Single-nucleotide probability score for RBFOX2 (left)
and TARDBP (right) RBP binding as computed by the corresponding pysster models across the whole SARS-CoV-2
genome. The higher the score, the higher the likelihood of a binding event at that position. Points highlighted in strong
color correspond to significant predictions, i.e. with bound probability significantly higher than random (empirical
p-value < 0.01, see Methods). Wider binding sites, encompassing more than one significant position are shown as
vertical bars underneath each prediction profile, together with their corresponding binding motifs as extracted by means
of attribution maps (see Methods). b Single-nucleotide probability score for MBNL1 (left) and QKI (right) RBP binding
as computed by the corresponding DeepRiPe models. Significant positions (empirical p-value < 0.01) are highlighted
in strong color, and computed binding sites together with their corresponding motifs are shown underneath. c Clustering
of RBPs based on binding site coverage of genomic annotations of SARS-CoV-2 for both pysster and DeepRiPe RBPs
(left panel). In silico RBP binding map, at single-nucleotide resolution, for both pysster and DeepRiPe RBPs (right
panel). SARS-CoV-2 SECReTE motifs from (27) are shown below.33
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(a)

(b) (c)

(d) (e)

Figure 4: Impact of variants from SARS-CoV-2 strains on predicted binding sites. a. Joint heatmap of delta scores
from the 290 identified variants in the different SARS-CoV-2 strains. Delta-scores represent the difference in prediction
score of a prediction model between alternative and reference sequences centered on each variant. Only the 315 impacts
labeled as change-of-binding are colored (see 3.11). Delta score color scale is capped so as to show low delta score
impacts. RBPs and mutations without any such impact across strains are dropped from the heatmap. b. Complete
heatmap of delta scores from 31 variants associated to the alpha viral variant. The top 10 with highest absolute
delta scores are lined out, with yellow color indicating the ones labeled as change-of-binding. Some sites are further
investigated through integrated gradients, comparing the sequence motifs identified by the prediction models against
known motifs from mCrossBase (16). c. Complete heatmap of delta scores from 16 variants associated to the delta viral
variant. d,e. Results from the in silico mutagenesis over the SARS-CoV-2 genome. Nucleotides across the viral genome
were perturbed towards the three alternative bases, generating a reference distribution of possible delta-scores, notably
highlighting positions with highest impacts. Here, d) and e) display the position-wise reference score (top) and delta
score (bottom) for PUM2 and FTO, respectively.
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Figure 5: Comparison of SARS-CoV-2 and 6 other human coronaviruses. a,b,c. Binding sites were predicted over the
seven human coronaviruses, and their number counted over the entire genome (a) or over the 3’ (b) and 5’ (c) UTRs.
Hierarchical clustering was applied to evaluate the proximity between viruses in terms of binding sites composition.
d,e,f,g. Examples of evolutionary conserved, gained, and lost binding sites between the three high-severity viruses
MERS, SARS-CoV-1, and SARS-CoV2. Panel d shows an example for FTO binding sites found only in SARS-Cov-2
and SARS-CoV-1 in their 3’ UTRs. Panel e shows a binding site for FXR2 only shared between MERS and SARS-
CoV-1 in their 3’ UTR. Panel f shows a binding site for TARDBP exclusive to SARS-CoV-2 in the 5’ UTR. Panel g
shows a binding site for FXR2 only shared between SARS-CoV-2 and SARS-CoV-1 in the 5’ UTR.
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Figure 6: RBPs in context of public in vitro and patient OMICS data. RBP with model predictions (rows)
annotated with experimental evidences found in 92 mulitOMIC publicly available research results (columns) followed
by information from RBP classification and role in known SARS-CoV-2 pathways. From left to right: RBPs were
manually assigned to five categories according to their annotation pattern. RBPs predicted to bind SARS-CoV-2 RNA
by the other prediction methods catRAPID, PrismNET. RBPs binding to SARS-CoV-2 RNA determined experimentally
by ChIRP-MS, RAP-MS and RaPID assay. Evidences of RBPs with stringent or lax significance cutoffs found in further
55 data sets across mulitple OMICS levels and experiment types were grouped by experimental context: Experimental
viral-host protein interactions measured by AP-MS across various coronaviruses, SARS-CoV-2 and SARS-CoV-2
infection OMIC (timecourses), selected CRISPR studies, most recent GWAS data (release 6) by Host Genetics Initiative
and blood-based patient OMICS data. Light green and yellow boxed highlight few patterns shared between SARS-CoV-
2 and -1 infections. Classification of RBP according to their roles related to biological processes. Far right: Annotation
of RBPs to pathways related to SARS-CoV-2 infections obtained from SIGNOR database.

37

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 2, 2022. ; https://doi.org/10.1101/2021.12.22.472458doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.22.472458


COMPUTATIONAL MAPPING OF THE HUMAN-SARS-COV-2 PROTEIN-RNA INTERACTOME

8 Supplementary Tables1094

Supplementary Table 1: Comparison of high quality pysster and DeepRiPe models

RBP cor of
pred score

cor of
p-value

# common
binding sites

TARDBP 0.640832 0.40309 6
CSTF2 0.459011 0.21621 6
IGF2BP1 0.387823 0.39983 9
PUM2 0.383309 0.35263 10
CSTF2T 0.331395 0.22239 3
QKI 0.279760 0.14371 5
IGF2BP2 0.171838 0.21092 7
IGF2BP3 0.073798 0.05951 5
CPSF6 0.153344 0.26078 2
FXR1 0.012354 0.14136 8
FXR2 0.080191 0.19433 5
EWSR1 0.009787 0.06610 0

Supplementary Table 2: Overlap of pysster and DeepRiPe binding sites with SECReTE motif

RBP # overlaps # binding
sites Ratio Model Binding sites

FUBP3 7 20 0.350 pysster
[11040,11049], [11068,11118], [14155,14165],
[14383,14391], [21920,21928], [26299,26317],
[26336,26344]

PTBP1 1 3 0.333 pysster [9500,9584]

KHSRP 5 16 0.312 pysster [8596,8635], [9496,9530], [11287,11326],
[14142,14172], [26293,26351]

SUGP2 7 24 0.292 pysster
[9622,9652], [11091,11116], [11191,11231],
[11278,11368], [11626,11663], [21580,21596],
[27831,27848]

ELAVL4 4 14 0.286 DeepRiPe [8622,8624], [11028,11065], [27677,27685],
[27802,27824]

ZFP36 2 7 0.286 DeepRiPe [8595,8613], [21928,21932]

ELAVL2 5 18 0.278 DeepRiPe [8612,8624], [11029,11067], [21563,21565],
[21911,21942], [27795,27827]

ELAVL3 4 15 0.267 DeepRiPe [9523,9527], [11041,11065], [21920,21933],
[27800,27826]

MBNL1 5 19 0.263 DeepRiPe [11645,11657], [15492,15524], [26288,26341],
[27164,27199], [27792,27853]

MATR3 4 16 0.250 pysster [9511,9539], [11182,11313], [11614,11658],
[26303,26324]

AGO2 4 18 0.222 DeepRiPe [8589,8631], [15528,15582], [24091,24134],
[28722,28730]

NCBP2 2 9 0.222 pysster [12026,12027], [14770,14772]

ZNF800 8 39 0.205 pysster
[1659,1701], [3826,4059], [12025,12234],
[14769,14774], [14800,14882], [15529,15533],
[28692,28764], [28911,28957]

CSTF2 2 10 0.200 pysster [8591,8633], [13883,13912]

QKI 3 15 0.200 pysster [9521,9533], [11326,11347], [14167,14178]
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DDX3X 3 17 0.176 pysster [12026,12030], [14769,14772], [28861,28949]

TARDBP 2 12 0.167 pysster [11117,11123], [11218,11388]

G3BP1 12 83 0.145 pysster

[818,841], [1651,1731], [3787,4196],
[8168,8346], [12026,12376], [14396,14397],
[14769,14824], [14836,14908], [15519,15531],
[16524,16810], [28386,28753], [28913,28974]

GRSF1 1 7 0.143 pysster [28891,28903]

HNRNPC 2 14 0.143 pysster [9787,9789], [11034,11044]

CPSF6 6 45 0.133 pysster [1707,1715], [3808,4054], [4090,4098],
[11182,11214], [21938,21969], [26333,26352]

FIP1L1 2 15 0.133 DeepRiPe [13900,13935], [21935,21971]

SF3B4 4 30 0.133 pysster [11959,12000], [16553,16561], [21527,21529],
[24083,24101]

U2AF2 4 31 0.129 pysster [9773,9777], [12004,12023], [14379,14392],
[27785,27839]

DKC1 2 16 0.125 pysster [779,889], [14769,14801]

NONO 1 8 0.125 pysster [11204,11222]

NIP7 5 43 0.116 pysster [806,834], [13880,13945], [14763,14797],
[16536,16546], [25236,25254]

CPSF1 3 28 0.107 DeepRiPe [827,841], [23278,23312], [28914,28946]

GPKOW 3 28 0.107 pysster [11982,12026], [21575,21579], [26302,26310]

SRSF9 3 28 0.107 pysster [821,834], [12026,12028], [28850,28915]

FXR1 11 106 0.104 pysster

[639,928], [1631,1703], [1715,1723],
[3963,4107], [8619,8627], [13907,13913],
[14771,14876], [15506,15549], [16543,16555],
[23231,23266], [27401,27417]

AKAP8L 1 10 0.100 pysster [14786,14788]

AATF 2 22 0.091 pysster [5698,5702], [15525,15568]

ZRANB2 3 34 0.088 pysster [11655,11661], [21574,21586], [26284,26330]

AGGF1 3 35 0.086 pysster [4031,4057], [12024,12088], [14766,14776]

FMR1 5 59 0.085 pysster [750,839], [858,910], [14879,14891],
[23268,23276], [28859,28908]

HNRNPD 1 12 0.083 DeepRiPe [9492,9522]

HNRNPM 1 12 0.083 pysster [11345,11384]

NOP56 1 12 0.083 DeepRiPe [814,821]

SRSF7 3 38 0.079 pysster [820,838], [14771,14811], [23253,23280]

CPSF7 2 27 0.074 DeepRiPe [14849,14875], [21924,21929]

FXR2 5 70 0.071 pysster [3776,4047], [4059,4063], [12024,12268],
[13905,13957], [14770,14775]

ORF1 1 14 0.071 DeepRiPe [28693,28703]

FTO 4 58 0.069 pysster [12021,12131], [14795,14809], [23258,23266],
[28679,28778]

RBM22 3 45 0.067 pysster [4029,4057], [26286,26336], [28834,28935]
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YBX3 4 60 0.067 pysster [705,870], [14767,14855], [14891,14919],
[23295,23327]

SF3A3 2 34 0.059 pysster [11965,12009], [16529,16601]

SRRM4 1 17 0.059 DeepRiPe [26278,26328]

PRPF8 1 19 0.053 pysster [27150,27193]

RPS3 3 57 0.053 pysster [730,941], [14769,14776], [28568,28740]

AGO3 1 20 0.050 DeepRiPe [28710,28752]

SND1 4 82 0.049 pysster [750,852], [14771,14772], [23266,23287],
[28697,28720]

AGO1 1 22 0.045 DeepRiPe [28712,28771]

SAFB2 2 44 0.045 pysster [1688,1710], [4042,4062]

SRSF1 1 22 0.045 pysster [12024,12028]

TRA2A 2 47 0.043 pysster [12025,12055], [14766,14774]

TIAL1 1 27 0.037 pysster [26271,26318]

PUM2 1 29 0.034 pysster [27141,27165]

AQR 1 30 0.033 pysster [11957,12027]

RBM20 1 30 0.033 DeepRiPe [28728,28736]

IGF2BP1 1 50 0.020 pysster [28657,28722]

CAPRIN1 0 19 0.000 DeepRiPe

CSTF2T 0 3 0.000 pysster

DDX59 0 0 0.000 pysster

DND1 0 14 0.000 DeepRiPe

EIF4G2 0 5 0.000 pysster

ELAVL1 0 7 0.000 DeepRiPe

EWSR1 0 0 0.000 pysster

FAM120A 0 2 0.000 pysster

FKBP4 0 0 0.000 pysster

GTF2F1 0 1 0.000 pysster

HNRNPA1 0 16 0.000 pysster

HNRNPK 0 1 0.000 pysster

HNRNPL 0 9 0.000 pysster

IGF2BP2 0 50 0.000 pysster

IGF2BP3 0 23 0.000 DeepRiPe

ILF3 0 9 0.000 pysster

KHDRBS1 0 10 0.000 pysster

L1RE1 0 13 0.000 DeepRiPe

NOP58 0 26 0.000 DeepRiPe

PCBP1 0 8 0.000 pysster

PCBP2 0 0 0.000 pysster

RBFOX2 0 8 0.000 pysster

RBPMS 0 19 0.000 DeepRiPe
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TAF15 0 5 0.000 pysster

XRN2 0 2 0.000 pysster

ZC3H7B 0 20 0.000 DeepRiPe

Supplementary Table 3: Overlap of pysster and DeepRiPe models with proteins from external sources

pysster DeepRiPe Overlaps with proteins from external sources

RBP auROC auPRC medPIP auROC AP (40) (24) (92) (70) (69) (18) (87) (4) (46) (78) (80) SIGNOR*

AATF 0.92 0.66 0.1 X

AGGF1 0.91 0.71 0.17 X X15

AGO1 0.79 0.32 X4

AGO2 0.85 0.5

AGO3 0.87 0.49

AKAP8L 0.89 0.6 0.21 X X

AQR 0.93 0.7 0.22 X

CAPRIN1 0.76 0.22 X234 X1416 X18
Innate response to
dsRNA, ER stress,
Stress granules

CPSF1 0.77 0.23 X X1516

CPSF6 0.89 0.61 0.18 0.79 0.26

CPSF7 0.79 0.54 X6 X1516 X18

CSTF2 0.93 0.81 0.14 0.82 0.3 X1718

CSTF2T 0.92 0.6 0.19 0.84 0.66

DDX3X 0.96 0.78 0.32 X23 X X10 X15

DDX59 0.89 0.67 0.16 X4

DKC1 0.96 0.89 0.21 X X1516

DND1 0.82 0.46

EIF4G2 0.95 0.78 0.31 X X4 X1516

ELAVL1 0.9 0.73 X X X67 X8 X1516

ELAVL2 0.93 0.61

ELAVL3 0.94 0.72

ELAVL4 0.93 0.58

EWSR1 0.93 0.62 0.22 0.85 0.2 X1 X9 X1216 X18

FAM120A 0.92 0.62 0.24 X X8 X1516 X1718

FIP1L1 0.8 0.3 X4 X1516

FKBP4 0.93 0.65 0.18 X7 X1416 Virus entry

FMR1 0.94 0.67 0.18 X4 X X10

FTO 0.92 0.63 0.27

FUBP3 0.95 0.8 0.14 X23 X8

FXR1 0.92 0.6 0.26 0.86 0.26 X X8

FXR2 0.94 0.67 0.23 0.8 0.18 X X10

G3BP1 0.93 0.64 0.31 X X X234 X8 X111516

Innate response to
dsRNA, Inflammation,
ER stress, Cytokine
Storm

GPKOW 0.92 0.71 0.16 X

GRSF1 0.93 0.71 0.18 X X4

GTF2F1 0.94 0.71 0.29 X4 X15 X17

HNRNPA1 0.94 0.74 0.11 X23 X X15 X1718

HNRNPC 0.97 0.83 0.15 X X67 X1516 X18

HNRNPD 0.94 0.47 X7 X10 X1516

HNRNPK 0.98 0.87 0.3 X X67 X1516 X17

HNRNPL 0.97 0.86 0.31 X23 X X6 X10

HNRNPM 0.95 0.74 0.22 X X X X7 X9

IGF2BP1 0.91 0.66 0.12 0.83 0.19 X23 X X X6 X1416 X17

IGF2BP2 0.91 0.65 0.13 0.84 0.29 X2 X X8 X17

IGF2BP3 0.88 0.56 0.08 0.84 0.42 X X X8 X14 X1718

ILF3 0.93 0.74 0.15 X4 X7 X9 X1516 X17
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KHDRBS1 0.97 0.86 0.18 X X9 X1516 X1718

Innate response to
dsRNA, Inflammation,
MAPK activation,
Stress granules, Cy-
tokine Storm

KHSRP 0.9 0.65 0.15 X X X1516 X1718

Apoptosis, Fibrosis, In-
nate response to dsRNA,
Virus entry, Inflamma-
tion, ER stress, MAPK
activation, Stress gran-
ules, Cytokine Storm

L1RE1 0.96 0.59 X X

MATR3 0.94 0.7 0.23 X X4 X X8 X1516

MBNL1 0.98 0.94 X16

NCBP2 0.93 0.71 0.24

NIP7 0.92 0.69 0.15 X7

NONO 0.92 0.6 0.15 0.93 0.38 X X7 X89 X1516 X17

NOP56 0.92 0.69 X1516 X1718

NOP58 0.93 0.68 X4

ORF1p 0.97 0.67

PCBP1 0.93 0.67 0.16 X10 X1516

PCBP2 0.96 0.79 0.3 X X23 X15

Fibrosis, Innate re-
sponse to dsRNA, Virus
entry, Inflammation, ER
stress, MAPK activa-
tion, Stress granules,
Cytokine Storm

PRPF8 0.95 0.74 0.33 X14

PTBP1 0.94 0.8 0.37 X X67 X8 X1516 X1718

PUM2 0.95 0.8 0.16 0.95 0.72 X10 X1516

QKI 0.97 0.87 0.31 0.97 0.64 X1718

RBFOX2 0.96 0.8 0.24 X1516

RBM20 0.91 0.59

RBM22 0.91 0.72 0.2 X1718

RBPMS 0.97 0.78 X13

RPS3 0.94 0.63 0.28 X234 X10 X12141516

SAFB2 0.93 0.7 0.11 X9 X15 X18

SF3A3 0.96 0.84 0.23

SF3B4 0.98 0.88 0.26 X X

SND1 0.95 0.75 0.21 X234 X5 X8 X15 X1718

SRRM4 0.8 0.31

SRSF1 0.94 0.7 0.28 X X67 X1516

SRSF7 0.92 0.69 0.17 X X4 X X16

SRSF9 0.92 0.65 0.18 X141516

SUGP2 0.9 0.63 0.15 X4

TAF15 0.93 0.7 0.17 0.88 0.28 X15

TARDBP 0.98 0.92 0.28 0.95 0.73 X X X18

Apoptosis, Fibrosis, In-
nate response to dsRNA,
Virus entry, Inflamma-
tion, ER stress, MAPK
activation, Stress gran-
ules, Cytokine Storm

TIAL1 0.95 0.8 0.13 X4 X10 X1718

TRA2A 0.96 0.8 0.29 X141516

U2AF2 0.95 0.77 0.15 X67 X1718

XRN2 0.93 0.64 0.18 X15

YBX3 0.92 0.71 0.1 X2 X8

ZC3H7B 0.87 0.37

ZFP36 0.93 0.46 X4 X1516

ZNF800 0.93 0.62 0.25 X4 X X15

ZRANB2 0.9 0.64 0.1 X4

1 also included in the PPI network
2 SARS-CoV-2 RNA interacting proteins
3 proteins included in the PPI network (network based on STRING v.11 interactions between human proteins in the expanded SARS-CoV-2 RNA interactome)
4 differentially expressed proteins (SARS-CoV-2 infected and uninfected Huh7 cells)
5 proteins that were reduced during SARS-CoV-2 infection
6 proteins that increased during SARS-CoV-2 infection
7 additional potential inhibitors of SARS-CoV-2 replication
8 statistically significant interactors enriched in both probe I and probe II experiment
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9 statistically significant interactors enriched in only probe I experiment
10 statistically significant interactors enriched in only probe II experiment
11 proteins included in virus-host PPI network of SARS-CoV-2 in A549 cells
12 transcripts that significantly change upon SARS-CoV-2 infection
13 proteins that significantly change upon SARS-CoV-2 infection
14 ubiquitination site significantly changes upon SARS-CoV-2 infection
15 phosphorylation site significantly changes upon SARS-CoV-2 infection
16 included in results of enrichment analysis
17 RBPs predicted to bind the 5’UTR of SARS-CoV-2
18 RBPs predicted to bind the 3’UTR of SARS-CoV-2
* empirical p-value < 0.05
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9 Supplementary Figures1095
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Supplementary Figure 1: RBP binding pattern on the SARS-CoV-2 genome between the two methods, pysster and
DeepRiPe. Comparison of single-nucleotide probability scores of binding for two RBPs, QKI (left panel) and TARDBP
(right panel). Significant binding sites, commonly predicted by both methods are shown underneath the probability
plots together with their corresponding learnt motifs from the attribution maps. Prediction score correlation and p-value
correlation given in the header.
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(a)

(b)

Supplementary Figure 2: Impact of variants of concern on predicted binding sites. a. Accumulation of high-impact
variants of concern in viral components for each lineage. The subset of high-impact variants here corresponds to the
one represented in Figure 4a, i.e. the top 20% of binding-impacting variants. b. Accumulation of impacted RBP sites
for each lineage. The same subset as in (a) was used here.
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Supplementary Figure 3: In silico perturbation analysis of SARS-CoV-2. Nucleotides across the viral genome were
perturbed towards the three alternative bases and the alternative base with resulting the highest delta score considered for
downstream analysis. Here, we show the delta score heatmap across positions with at least one gain- or loss-of-binding
event across all RBPs.
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Supplementary Figure 4: Expression of RBPs in tissues across the body: Median expression values in log10 transcript
per million (TPM) of RBPs across 54 sub-tissue types from the Genotype-Tissue Expression (GTEx) project (7). RBPs
from different methods color coded above the heatmap: pysster-exclusive in red, DeepRiPe-exclusive in blue, and
shared between models in grey.
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