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1. Pipeline 

The FateCompass workflow aims to identify key transcription factors (TFs) during a cellular system 

undergoing differentiation. To mechanistically understand the dynamic transcriptional interactions 

underlying the cell subtype specification, we reasoned that inherent asynchrony of the cells, coming 

from single-cell RNA sequencing (scRNAseq) experiments, provides a temporal resolution of the 

transcriptome; also, that cis-regulatory regions of the expressed genes contain essential information 

of the TFs that regulate their transcription. To this end, we integrated both state-of-the-art methods 

and newly developed algorithms in a coherent and flexible pipeline. We took as input the gene 

expression count matrix, �� א �Թେൈୋ, where � is the number of cells and 
 is the number of genes; the 
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velocity field when present, �� א �Թେൈୋ; and TFs binding sites predictions in the promoters of the 

expressed genes, �୥୫ א� �Թୋൈ୑, where � is the number of TF motifs. Importantly, our pipeline can 

be generalized to include epigenetic information coming from chromatin accessibility and interactions 

between promoters and enhancers by extending �୥୫. The FateCompass pipeline consists of three 

main steps: 

i. Retrieve gene expression dynamics of cell differentiation.  

ii. Estimate TF activities along the cell-fate decision process.  

iii. Identify lineage-specific regulators.  

1.1 Cell-fate decision dynamics from single-cell RNA sequencing  

The main purpose of this work is to study the trajectory a cell follows to arrive to its final state rather 

than the final state itself. A single cell, whose phenotype is represented by a point in the 

multidimensional space, will move along a specific trajectory as its composition changes 

(transcriptomic profile). Considering a regionalized scenario such as the Epigenetic Landscape of 

Waddington (Waddington, 1957), we reasoned that trajectories converge to end-states which are 

essentially different from one another; also, that if a cell-system moving along a specific trajectory is 

pushed slightly out of its way, then the canalization of the landscape will compensate, and eventually, 

the cell will arrive in the stable state it would typically have done [1]. The process of a cell changing 

states along a trajectory until it reaches a final fate can be understood as a particle diffusing on a 

volume. To delineate the differentiation trajectories, we considered two scenarios: one unbiased, in 

which the diffusing particle, single-cell, follows a random walk under the influence of a vector field, 

here represented by the RNA velocity until it gets trapped on an attractor; and the other, biased, in 

which the single-cell is following a random walk from progenitor cells, that are defined as sources, 

towards mature cells, that are defined as sinks. 

1.1.1 Nearest neighbor graph representing the phenotypic manifold 

Similar to other methods [2], [3], FateCompass models cell state transitions restricting possible state 

changes to those consistent with the global structure of the phenotypic manifold via a k-nearest 

neighbor graph based on similarities on the gene expression space. Due to the high sparsity and noise 

in scRNAseq data, finding nearest neighbors in the raw data using a simple similarity metric is likely to 

accumulate spurious connections and obscure the structure we seek.  
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To build the neighbor graph based on solid data trends, we used Uniform Manifold Approximation and 

Projection (UMAP), a non-linear dimensionality reduction algorithm that estimates the topology of the 

high dimensional data and uses this information to build a low-dimensional representation that better 

preserves the local structure of the data over the global variability [4]. Despite the wide use of Principal 

Component Analysis (PCA) for detecting among-sample heterogeneity, it has shown to be inefficient 

in dimensionality reduction of scRNAseq data [5], [6], and we reasoned that for large datasets, local 

and neighborhood structures are more prominent for sample heterogeneity analysis and describe the 

local structure of the data. Therefore, we choose the non-linear method UMAP, which has proven to 

be more performant than others like tSNE when embedding in dimensions larger than two [4], which 

is particularly important when the intention is to use the low dimensional representation for further 

downstream analysis such as clustering.  

Formally, given a dataset, �� א �Թେൈୋ, a k-nearest neighbor graph is constructed using the Euclidean 

distance on the � dimensions of the UMAP embedding, where ʹ ൏ � ൏ �, and � is the number of 

neighbors initially used for the embedding. The reason for this is that UMAP will have significantly 

diminishing returns as it approaches the value of n_neighbors used for the embedding [4]. Then, to 

build the adjacency matrix, �, we kept the same number of neighbors for each cell, ��; and the 

distances were weighted equally since the intermediary embedding step favored a single strong 

connection vs. lots of weak links. 

1.1.2 Modeling transition probabilities using a Markov process 

Single-cell transcriptomics provides a static picture of a time-evolving system whose possible states 

are represented by points in a manifold, in other words, �ሺ�ሻ  state point of the system at time �. The ؠ

value of � at some initial time �଴ is fixed, �ሺ�଴ሻ ൌ �଴, and for successive instants �ଵ, �ଶ͕�͙͕��୬; where 

�ଵ ൏ �ଶ ൏ ڮ ൏ �୬; there are � corresponding random states �ሺ�ଵሻ, �ሺ�ଶሻ͕�͙͕��ሺ�୬ሻ. To determine how 

the cells move from progenitors to mature cells, we assumed that they traverse the manifold in small 

steps under the influence of an external force, drift, in the direction of differentiation, e.g., RNA 

velocity or gradient of potential energy from progenitor cells (sources) to mature cells (sinks). This can 

be modeled using a Markov chain to represent cell fate choices in a probabilistic manner as follows 

[7]: 

μ
μ� �

ሺ�ǡ �ሻ ൌ
μଶ

μ�ଶ
ሾ�ሺ�ǡ �ሻ�ሺ�ǡ �ሻሿ െ

μ
μ�

ሾ	ሺ�ǡ �ሻ�ሺ�ǡ �ሻሿ ሺͳሻ 
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where the left-hand-side of the equation represents the probability of being at the state � at the time 

�,��ሺ�ǡ �ሻ; the first term on the right-hand-side is the flux through the state � due to diffusion, �ሺ�ǡ �ሻ, 

and the second term on the right-hand-side is the flux through the state due the external force or drift, 

	ሺ�ǡ �ሻ. 

To outline the differentiation trajectories, we took advantage of the system's stability in the observable 

space. We went from the continuous-space previously described (equation 1) to a discrete space with 

state-dependent drift criteria. We decided to move to a discrete space due to the ill-posed nature of 

the problem and that the observed states are not enough to constrain the solution. As a result, the 

gene expression dynamics are described by a discrete Markov process on a network. This simplification 

avoids the complex problem of inferring the high-dimensional drift field, 	ሺ�ǡ �ሻ, with only a few 

thousand observations. In this way, we allowed jumps only to the observed states, with state-

dependent drift, 	ሺ�୧ሻ, and the weight of each jump given by the normalized transition probability, 

ȫ൫�୨ȁ�୧ǡ 	ሺ�୧ሻ൯. Below we describe the form of the propagator when considering different drifts, 

namely, RNA velocity and Potential energy.  

1.1.3 RNA velocity as driving force  

To get the transition probabilities using RNA velocity information, we reasoned from equation (1) that 

the drift directing the state-transition probabilities is given by the direction of differentiation, 

represented by the direction of the velocity vector [8]. In addition, we made the following 

assumptions: for a very small ��, we approximate �� ՜ ο�, we assumed the diffusion coefficient to be 

completely homogeneous (�), and the drift to be time-independent and locally constant around a 

given state � (�ሺ�ሻ). Under these assumptions, and in the continuous space, the propagator of 

equation (1) can be approximated by Gaussian distribution: 

ȫሺɌǡ �ȁ�଴ǡ �଴ሻ ൌ
ͳ

ሺʹɎ�ο�ሻ
ଵ
ଶ
��� ቆെ

ሺɌ െ �ሺ�ሻο�ሻଶ

ʹ�ο� ቇ ሺʹሻ 

where Ɍ is the distance between the current state and the next possible state, Ɍ ൌ ȁ�୲ െ �଴ȁ. A row 

normalization is applied to transform the Gaussian distribution into transition probabilities over the 

network of discrete observed states: 

ȫ୧୨ ൌ
ͳ

�୧ሺʹɎ�ο�ሻ
ଵ
ଶ
��� ൭െ

൫Ɍ୧୨ െ �ሺ�୧ሻο�൯
ଶ

ʹ�ο� ൱ ሺ͵ሻ 


