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Abstract

The homeostatic control of their environment is an essential task of living

cells. It has been hypothesized that when microenvironmental pH inhomo-

geneities are induced by high cellular metabolic activity, diffusing protons act
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as signaling molecules, driving the establishment of cross-feeding networks

sustained by the cell-to-cell shuttling of overflow products such as lactate.

Despite their fundamental role, the extent and dynamics of such networks is

largely unknown due to the lack of methods in single cell flux analysis. In

this study we provide direct experimental characterization of such exchange

networks. We devise a method to quantify single cell fermentation fluxes

over time by integrating high-resolution pH microenvironment sensing via ra-

tiometric nanofibers with constraint-based inverse modeling. We apply our

method to cell cultures with mixed populations of cancer cells and fibroblasts.

We find that the proton trafficking underlying bulk acidification is strongly

heterogeneous, with maximal single cell fluxes exceeding typical values by up

to 3 orders of magnitude. In addition, a crossover in time from a networked

phase sustained by densely connected “hubs” (corresponding to cells with high

activity) to a sparse phase dominated by isolated dipolar motifs (i.e. by pair-

wise cell-to-cell exchanges) is uncovered, which parallels the time course of

bulk acidification. Our method promises to shed light on issues ranging from

the homeostatic function of proton exchange to the metabolic coupling of cells

with different energetic demands, and paves the way for real-time non-invasive

single cell metabolic flux analysis.

Introduction

Fermentative processes are among the main modes of harnessing energy by cells. De-

spite their importance and the time elapsed since their discovery, they still continue

to puzzle in regard to their basic function and mechanisms [1]. Since the first obser-

vation of fermentation inhibition by oxygen [2] and given their substantially lower

efficiency with respect to oxidative pathways, fermentative pathways were initially

seen as evolutionary relics with a subsidiary role, to be employed mainly in anoxy-

genic conditions and with problematic waste by-products. Subsequent observations,

however, established their ubiquitous usage, even in presence of oxygen and espe-

cially for high energetic loads (e.g. during fast cellular growth), a phenomenon now

known as “overflow metabolism” [3]. Because of its universality, current research

efforts have been devoted to understand fermentation mechanism and function, e.g.

in terms of volume constraints [4, 5] and/or temperature homeostasis [6]. A funda-

mental aspect of fermentative activity lies in its ecological dimension, specifically

in its capability to alter the cellular microenvironment and most notably the pH

level.

Cells dispose of a number of mechanisms to control their internal pH, which varies

significantly across compartments (from ca. 8 in the mitochondrial matrix down to

about 5 in secretory granules [7]). Cytoplasmic pH is especially impacted by the

membrane potential (which tends to let positive ions in and negative ions out) and by

the cell’s metabolic activity. Most notably, energy production by glycolysis, which
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occurs at high rates e.g. in cancer, generates cytosol-acidifying lactate. To counter

this tendency to reduce cytosolic pH, cells utilize an array of transporters that couple

proton export to the export (co-transporters) or import (exchangers) of some other

metabolite, and whose activity is kinetically regulated by sites acting effectively as

pH sensors [7]. This induces a reduction of the pH of the surrounding medium,

which is in turn sensed by nearby cells. To maintain a stable extracellular proton

level, then, these cells can respond by activating specific H+-sensitive channels and

receptors.

The excretion of lactate by cells with large energetic demands and carbon con-

sumptions, like tumors (so-called Warburg effect [8]) or neurons [9], constitutes an

especially interesting case of microenvironmental acidification. It has indeed been

hypothesised that lactate might become a fundamental vector of metabolic coupling

within cellular populations in higher organisms [10,11]: lactate-importing cells (ac-

ceptors) could rely on lactate-secreting cells (donors) for subsistence, while providing

an essential bioremediation function by removing an acidifying metabolite from the

microenvironment [12, 13]. This idea adds an ‘ecologic’ dimension to pH-driven

intercellular communication [14].

While molecular mechanisms behind proton sensing, export and import are by now

rather well characterized in a number of systems, due to their pathophysiological role

for tumorigenesis and in the mammalian brain [15, 16], much less is known about

the actual intercellular proton-exchange network that is established. The major

obstacle to overcome concerns the quantification of proton exchange fluxes for single

cells within a population. Techniques to quantify cellular metabolic fluxes are in

general well developed for the bulk of (mostly microbial) cell cultures [17–19]. Single-

cell metabolomics, on the other hand, is less developed [20], with the exceptions

of the growth rate [21], glucose uptake [22] and more in general nanoSIMS-based

analyses [23,24], whose destructive character is however a serious shortcoming.

In this study, we gather information about the proton-exchange network by combin-

ing pH microenvironment sensing via recently devised pH-sensing ratiometric hybrid

organic nanofibers [25–27] with constraint-based statistical inference. A sketch of

the complete setup is shown in Figure 1. The first step involves the electrospinning

onto glass slides (10× 10 mm2), positioned on a custom rotating collecting system,

of a 10% (w/w) polycaprolactone (PCL) chloroform/DMSO solution mixed with

spherical and monodispersed SiO2 microparticle-based pH sensors (Figure 1a-b). In

the second step, pancreatic ductal adenocarcinoma cells (PDAC, cell line AsPC-1)

and pancreatic stellate cancer-associated fibroblasts (CAFs) are seeded onto the hy-

brid nanofibers and the fluorescence response of the pH-sensors during cell culture

is recorded via time-lapse confocal laser scanning microscopy (CLSM) (Figure 1c).

The third step involves precise automated quantification of intercellular proton (H+)

exchange through physically constrained statistical inference (Figure 1d).
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Figure 1: Schematic illustration of the workflow. (a) Sketch showing the fabrication of
electrospun polycaprolactone (PCL) fibers embedding ratiometric SiO2-based microparti-
cle sensors. (b) Representative SEM micrograph showing the morphology of PCL nonwo-
ven mat of fibers carrying embedded pH sensors. (c) Representative CLSM image showing
cells co-cultured on pH-sensing fibers and analyzed by CLSM time lapse imaging (x, y, z, t;
t = 6h) (nuclei are shown in blue color, cell membranes are shown in magenta color for
tumor cells). (d) Following spatial tracking of cells and probes, the whole pH gradient and
the boundary single cell fluxes are reconstructed through physically constrained statistical
inference.

Besides the accuracy of reconstructed fluxes, our method has the advantage of main-

taining the sample intact. One can therefore monitor real-time single-cell behaviour

potentially up to the whole population scale.

After illustrating our screening platform, we will focus on a concrete application,

namely the reconstruction of the proton exchange network that underlies bulk acid-

ification in mixed populations of CAFs and PDACs (Warburg effect). These results

shed light on the nature of the ecology of cancer metabolism and, more in general,

of metabolic overflow, while our method stands potentially as a first step towards

non-invasive single cell metabolic flux analysis.

Results

Fabrication of pH-sensing scaffolds

We developed fluorescent pH-sensing nanofiber scaffolds composed of optical pH-

sensors microparticles, highly suitable for monitoring pH changes in the surround-

ing environment [28–35], and polycaprolactone (PCL) nanofibers, because of their

processability, biocompatibility, biodegradability, and mechanical stability [36–41].
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Figure 2: Scanning electron microscopy (SEM) micrographs showing (a) the pH sensors
into the fiber’s lumen and (b) the corrugated morphology of the surface of individual
fibers. (c) Graph illustration of the diameter distribution of the hybrid nanofibers. The
superimposed continuous line is the best-fitting Gaussian curve. (d-f) Representative
CLSM micrographs showing PCL nanofibers embedding pH sensors. FITC (green chan-
nel), RBITC (red channel) and overlay with bright field (BF, grey channel) are shown.
(g) Representative images of CLSM time lapse image (maximum intensity projection) at
the time point t = 3h, showing pH-sensing particles (FITC, green; RBITC, red), AsPC-1
cells (Hoechst, blue) and CAF cells (Hoechst, blue; Deep Red, magenta). (h) Result of the
segmentation of the experiment in (e) showing the detection of the single pH sensors (red
circles), AsPC-1 cells (green circles) and CAF cells (yellow circles). (i) Reconstruction of
the cell fluxes through physically constrained statistical inference, with relative colormap.

The morphology of the hybrid pH-sensing fibers was studied in detail by means of

scanning electron microscopy (SEM) and CLSM. The SEM images in Figures 2a,b

show random nonwoven mat of PCL nanofibers bearing spherical pH-sensors aligned

along the fiber longitudinal axis. The fibers present a typical rough and porous sur-

face structure (Figure 2b), likely due to the use of chloroform/DMSO binary solvent

system [42]. The PCL solution, as well as the concentration of the pH-sensors and

the electrospinning conditions were adjusted in order to obtain uniform and bead-

free nanofibers with a controlled diameter of 272.43±7.95 nm (Figure 2c). Notably,

these nanosized electrospun fiber scaffolds provide a large surface-to-volume ratio,

which is known to enhance key cellular functions, including adhesion, proliferation,

and differentiation [43–45]. Moreover, their nanofibrous structure mimic the naive
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extracellular matrix (ECM), which plays a pivotal role in cell polarity as well as

in cell-to-cell/matrix interaction [46–49]. Representative CLSM images of the pH-

sensing nanofibers are shown in Figures 2d-f. Each pH-sensor microparticle is clearly

detectable thanks to the FITC (Figure 2d) and RBITC (Figure 2e) dye molecules

covalently linked with APTES to the surface of silica (SiO2) microparticles [50].

The FITC and RBITC fluorophores act as pH indicator and reference dyes, respec-

tively, to enable ratiometric measurements of pH [51–54]. Thanks to the surround-

ing polymeric matrix, the pH-sensors remain stably immobilized into the lumen of

the nanofibers during imaging, making pH-sensing ratiometric hybrid nanofibers an

ideal biomaterial scaffold for monitoring local microenvironment proton changes in

a fast and noninvasive way, with high spatial control and resolution. The pH-sensing

nanofibers were used to culture pancreatic cancer cells (AsPC-1) and pancreatic stel-

late cancer associated fibroblasts (CAFs) and to monitor extracellular pH changes

via time lapse CLSM acquisitions for 6h with time intervals of 10 minutes (Figure

2g). CLSM acquisitions were analyzed through segmentation algorithms in order to

identify cells and sensors within the images (Figure 2h), to quantify FITC/RBITC

fluorescence intensity ratio, hence the pH read-outs. Knowing the positions of the

cells releasing or intaking acids and pH and positions, the acids efflux from each cell

were inferred (Figure 2i), as described in detail in the following sections.

Inferring single-cell fluxes via pH landascape modeling

Measurements performed on the cell culture at any given time point yield (a) values

of the pH (minus log-concentration of protons) at M locations and (b) the positions

of N cells in a square region of linear size L = 500µm. Given (a) and (b), we want to

determine the net proton exchange flux (import or export) for each cell. We solved

this problem under a few simplifying assumptions. First, the proton concentration

profile is taken to be stationary over our sample. This choice is motivated by the

fact that experimental timescales (minutes) are much longer than the timescales

over which concentrations are expected to equilibrate (seconds, assuming a diffusion

coefficient D ' 7× 103 µm2/s [55]) in regions of size L. In turn, stationarity implies

that concentration profiles solve the Laplace equation ∇2c(r) = 0. Our second

assumption is that the solution of the Laplace equation, i.e. the proton concentration

at position r, can be written as

c(r) =
N∑
i=1

ui
D|r− ri|

+ U

∫
B

ds

D|r− r(s)|
, (1)

where ri denotes the position of cell i (i = 1, . . . , N) and the parameters ui represent

the net single cell fluxes we want to infer. The second term on the right-hand side

models the flux U from the boundary B of the observed frame, whose value is to be

inferred along with the uis.
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Equation (1) corresponds to the first terms in a multi-pole expansion of the solution

of Laplace’s equation [56]. The truncation is justified as long as one is interested in

the net exchange of protons with the medium by each cell. Higher-order terms in the

expansion allow in principle for more refined descriptions (e.g. including separate

import and export fluxes, shuttling of molecules inside cells, etc.). However, the

larger number of parameters to be estimated would require a much more intensive

sampling of the pH profile. By taking (1), we effectively focus on the metabolic

generation and/or consumption of acids and on the ensuing symport of hydrogen

ions.

We will now denote by cµ ≡ c(rµ) the proton concentration measured by the probe at

position rµ (µ = 1, . . . ,M) and define the matrix of inverse distances Aiµ = 1
D|rµ−ri| .

To simplify the notation, we include in the flux vector and in the distance matrix

the terms due to the boundary of the frame, i.e. u0 = U and A0µ =
∫
B

ds
D|rµ−r(s)| .

We can thus define for each frame t a cost function

χ2
t (ut) =

M∑
µ=1

1

σ2
µ

[
pHµ + log10

(
Nt∑
i=1

Aiµui,t

)]2

+ λ1

N∑
i=1

u2
i,t . (2)

where, in the first term on the right-hand side, pHµ = − log10 cµ denotes the pH

level measured by the probe at position rµ, while σµ represents the corresponding

experimental error. The second term (λ1

∑N
i=1 u

2
i ), which enforces a Gaussian prior

for the parameters ui, effectively imposes a uniform scale for the uis (in agreement

with the fact that metabolic fluxes are limited by physical constraints like intracel-

lular and membrane crowding). This term is known as Tikhonov regularizer and it

is necessary to prevent multicollinearity [57].

In order to avoid spurious effects in the inference due to variability in the number of

cells in the frame during the experiment (where cells die, divide and migrate, both

in and out of the observed frame), we finally consider a total cost function composed

by the sum of the cost functions of each frame plus two additional cost terms, one

imposing a limit to flux change for each cell across frames, and another constraining

the overall mean flux ū =
∑
i ui
N

to the measured bulk value ub at each time point

t:

χ2
tot(u) =

T∑
t=1

[
χ2
t (ut) + λ2

Nt∑
i=1

(ui,t+1 − ui,t)2 + λ3(ūt − ub,t)2

]
. (3)

We will require that this weighted sum of residuals (the difference between empirical

and reconstructed proton levels) is as small as possible. This is equivalent to as-

suming Gaussian-distributed residuals and inferred fluxes are maximum-likelihood

estimates. Confidence intervals and errors on fluxes can be estimated accordingly

from the inferred posterior. The minimization of χ2
tot(u) was carried out through an

optimized Markov chain Montecarlo method (see methods and Supporting Informa-

tion for details). Our inference scheme ultimately depends on the parameters λ1, λ2
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and λ3, enforcing priors respectively for the intensity of single cell flux, its change

in time and its average bulk value. Their estimate is described in the Supporting

Information document.

Figure 3: (a–c) Snapshots at different time points (at tA = 9 min, tB = 151 min and
tc = 274 min after the cell culture is settled) of the same square visual field (length
L = 500µm) during a typical experiment. Cells are represented schematically as disks
of diameter 10µm whose colour intensity scales with the flux (side bar, blue vs red for
importing vs exporting flux respectively). Probes not shown. (d-e) quality of the recon-
structed pH gradient profile. In (d) the error between the pH calculated from the inferred
fluxes and the experimentally observed pH is plotted against the latter for each probe
(at time tc = 274 min). In (e) the time trace of the pH measured by a given probe is
reported alongside the reconstructed trend in that spatial point. Shaded areas represent
the experimental error on the pH at the probes. (f) Time trends of the bulk [H+] concen-
tration (experimental, dots and reconstructed, continuous line, left y scale) and inferred
bulk acidic efflux (dashed line, right y scale). (g) Time trend of the experimentally mea-
sured bulk lactate concentration in a biological replicate. (h) Single cell flux intensity (in
mmol/gdw/h) as a function of time (in min, sampling every 10 min) of the cells forming
the dipole motif highlighted in the upper right corner of the frames in (a–c). (i) Single-cell
experimental flux distribution (in mmol/gdw/h, (dots) and its gaussian approximation
(lines) in linear-logarithmic scale. The histogram is built from all single-cell flux values
(100−200 cells per frame) and time-frames (36 frames resulting from a 6-hour experiment
sampled every 10 minutes) tracked in one visual field of one experiment.

Figure 3 displays a typical result from our experiments. Figure 3a,b,c shows the
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single cell fluxes (color scale in mmol/gdw/h 1); cells are schematically represented

as disks of diameter 10µm in the same visual field at three different time-steps after

cell deposition. Single cell fluxes appear to be evenly distributed in sign, i.e. roughly

half of the cells secrete protons while the other half imports them. The quality of the

reconstruction is illustrated in Figure 3d,e in space and time respectively. In Figure

3d the error between the reconstructed pH at the probes and the observed value is

scattered against the observed value. More than 90% of the errors lies within the

measured standard deviation (shades), although we detect a slight systematic devi-

ation at low and high pH, that is however still within two standard deviations and

amounts effectively to a smoothening of the gradient. In Figure 3e the comparison

between reconstructed and measured pH in time is drawn for a given probe. In

Figure 3f the bulk behavior of the pH (experimental, dots, and reconstructed, con-

tinuous lines) and the inferred bulk efflux (dashed line) is reported, while in Figure

3g the measured lactate levels in time that quantitatively correlate with the integral

of the bulk efflux is presented. The bulk behavior is in good agreement with previ-

ous experimental findings [58] but single cell flux values are much higher. The bulk

acidification observed during the Warburg effect therefore can be interpreted to be a

mere leakage spilling from an intense network of cellular exchanges. In quantitative

analogy with electrostatics, we highlight the presence of dipolar interaction motifs.

The intensity of one motif as a function of time is shown in Figure 3h: the flux values

of dipole-forming cells are mutually correlated and exceed the bulk value by three

orders of magnitude (10 mmol/gdw/h vs 10−2 mmol/gdw/h). A general feature of

the set of measured single-cell fermentation fluxes is its strong heterogeneity. This

aspect has been analysed by building the empirical distribution as shown in Figure

3g. One sees that the tails strongly deviate from the superimposed Gaussian fit.

This quantifies the intuition that a handful of cells carrying extreme fluxes are in-

deed responsible for a macroscopic fraction of the acidification level in the observed

visual field.

Reconstruction of the cell-to-cell exchange network

In order to re-cast single-cell fluxes as pairwise exchange connections we observe

that, in general, given a particle that starts to diffuse at r0 and A absorbing points

at positions rj (j = 1, . . . , A), the probability that the particle is absorbed by one of

them also satisfies the Laplace equation [59]. This means that, if P (rj|r0) denotes

the probability that the particle initially at r0 is absorbed at rj, then

P (rj|r0) ∝ 1

|rj − r0|
. (4)

1The flux unit has been chosen to facilitate comparison with typical bulk values and assuming
an average cell dry weight of 0.5ng
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Based on this, we define the flux from cell i (with ui > 0) to cell j (with uj < 0)

as

ui→j = − 1

Zi

uiuj
dij

, Zi = −
∑

k :uk<0

uk
dik

, (5)

where dij = |rj − ri|. The term −uiuj
dij

> 0 links the exchange between i and j to the

magnitude of their proton fluxes and to how far i and j are from each other (the

farther away they are, the less likely it is that they are connected as per (4)). The

normalization factor Zi simply ensures that∑
j :uj<0

ui→j = ui . (6)

This defines a weighted directed network for our system that we can easily compute

and analyse (see the Supporting Information for further details).

Figure 4: (a–c) Same snapshots of Figure 3a–c with superimposed inferred network
structures. Arrows are drawn if the pairwise exchange flux exceeds 0.5 mmol/gdw/h, with
a thickness proportional to flux intensity. (d) Distribution of pairwise exchange fluxes
(in mmol/gdw/h) in double logarithmic scale (sampled over all frames). (e–g) Structural
features quantifying the topology of the flux exchange network as a function of time (in
min): average degree (e); degree of the node with maximum connectivity (f); and size of
the largest connected component (g). (h) Degree distribution over all frames (dots) and
corresponding Poissonian null hypothesis (same mean, lines).

Figure 4a,b,c showcases the same three snapshot of the system displayed in Figure

3a,b,c, with the aforementioned network structure superimposed. Arrows are added

between cells whose exchange exceeds our average sensitivity 0.5 mmol/gdw/h. The

heterogeneity of fermentative phenotypes highlighted in Figure 3e,f is at the origin of

the strong heterogeneities in the intensities of cross-feeding exchange fluxes, whose

empirical distribution is reported in Figure 4d. One indeed sees that it spans three
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orders of magnitude.

We finally performed a standard graph theory analysis, in particular to calculate the

time-dependence of the average degree 〈k〉 = 1
N

∑N
i=1 ki, of the maximum degree,

and the size of the largest connected component. These quantities are reported

respectively in Figure 4e,f,g. Upon comparing Figures 4a and 4c, one sees that

the trends highlight a crossover between qualitatively different regimes. At shorter

times, a whole-frame-spanning exchange network is present, sustained by “hub” cells

carrying high intensity fluxes. At longer times, such a network appears to dissolve,

leading to a phase dominated by isolated dipoles. The topological structure develops

in correlated fashion with the bulk pH acidification (Figure 3f). The presence of hubs

can be appreciated upon looking to the experimental degree distribution depicted

in Figure 4h as compared with a Poissonian null hypothesis of the same mean. The

general trend is not significantly perturbed upon varying the threshold defining the

links, that is the control parameter for the average network connectivity.

Materials and Methods

Chemicals

Polycaprolactone (PCL, molecular weight 80000 gmol-1, 440744, Sigma-Merck, KGaA,

Darmstadt, Germany), chloroform (puriss. P.a., reag. ISO, reag. Ph.Eur., 99.0 −
99.4% (GC)-32211, Sigma-Merck, KGaA, Darmstadt, Germany), DMSO (dimethyl

sulfoxide,BioUltra 99.5% GC- 41639, Sigma-Merck, KGaA, Darmstadt, Germany)

and ethanol (puriss. p.a., ACS reagent, Reag. Ph.Eur., 96% v/v- 32294, Honey-

well, USA) were used for the fabrication of electrospun fibers. Tetraethyl orthosil-

icate (TEOS, item code: 131903), (3-Aminopropyl)triethoxysilane (APTES, item

code: 440140), potassium chloride (Item code: P9541), ammonium hydroxide solu-

tion 28% (item code: 211228), Fluorescein 5(6)−isothiocyanate (item code: 46950),

Rhodamine B isothiocyanate (Item cod: R1755), tygon® formula 2375 laboratory

tubing I.D. x O.D. 1.6 mm x 3.2 mm (Item code: Z685585), were purchased from

Sigma. 50 mL syringe was purchased from HSW HENKE-JECT®, NE-4000 syringe

pump from New Era pump systems.

Cell lines

Human pancreatic cancer cell line AsPC-1 (ATCC® CRL-1682�) were obtained from

American Type Culture Collection (ATCC, Rockville, Md., USA) and cultured at

37 °C in a humidified 5% CO2 incubator according to ATCC protocols. Cancer

associated fibroblasts, CAFs (Vitro Biopharma Cat. n. CAF08) were cultured in

DMEM medium (D5671, Sigma-Merck KGaA, Darmstadt, Germany) supplemented

with 10% FBS (F7524, Gibco, Thermo Fisher Scientific), 2 mM glutamine (G7513,

Sigma-Merck KGaA, Darmstadt, Germany), 1% penicillin/streptomycin (P0781,
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Sigma-Merck KGaA, Darmstadt, Germany) and 1µg/ml Recombinant Human Fi-

broblast growth Factor-basic (FGFb) (Catalog # 13256-029 Gibco, Thermo Fisher

Scientific) at 37°C with 5% CO2. Cell lines were subcultivated with a ratio of 1 : 5

and passaged 2 times per week. Mycoplasma contamination were routinely tested

by Mycoplasma PCR detection kit (G238 abmGood, Canada).

Image Analysis

Input data are raw images which, concretely, consist of information collected by

three independent channels:

� Red Channel (particles emit a constant signal regardless of local pH)

� Green Channel (particles emit a signal proportional to local pH)

� Blue Channel (this is related solely to nuclei emission; hence it helps splitting

cells from sensors)

Two algorithms were applied in series to all images as pre-processing steps, the

former [Algorithm A] to identify cells or sensors within the image, the latter [Al-

gorithm B] to quantify their intensity, hence their pH read-outs (for sensors only).

More details are reported in the Supporting Information.

Monte Carlo method

The inference setup described above is a maximum likelihood problem where fluxes

are assumed to be distributed as P (u) ∝ exp[−χ2
tot(u)] and the optimal guesses

for u are those that maximize the probability of occurrence. Points of the poste-

rior distribution have been sampled with an optimized Monte Carlo method based

on the Metropolis-Hastings algorithm [60], i.e. by definining a Markov chain in

the flux space based on a random walk whose steps have conditional probabilities

P (u → u′) = min(1, e∆L), where ∆L is the variation of log-likelihood L = −χ2

in going from u to u′. An analytical gaussian approximation of the log-likelihood

rate function has been used to over-relax the random walk to tackle ill-conditioning

and provide a warm start. The maximum likelihood optimal configuration has been

found through simulated annealing while confidence intervals and errors have been

estimated numerically by exploiting the invariance properties of the log-likelihood

functions. More details are reported in the Supporting Information while codes im-

plementing the method are available at

https://github.com/demartid/infer_single_cell_fermentation_codes_data
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Conclusions

In this work we proposed and tested a method for the measurement of single cell

fermentation fluxes, based on high spatial resolution cell seeded pH-sensor scaffolds

and constraint-based statistical inference. The inverse character of the methodology

makes it non-invasive and we applied it to follow in real time the acidification of the

environment surrounding a cancerous population (Warburg effect) at the resolution

of single cells, also in complex cellular systems, such as tumor and stromal cell cocul-

tures. We highlighted the existence of a network of proton exchanges among cells in

line with the lactate shuttle hypothesis. One of the most straightforward application

of our method would be thus to probe the lactate shuttle hypothesis in physiological

and pathological contexts, like the neuron-astrocyte and tumor-stroma metabolic

partnership. The quantification of the exchange intensity reveals strong heterogene-

ity where a handful of cells is responsible for a large fraction of the pH gradient.

Extreme single cell flux values are of the order of 10 mmol/gdw/h and overcome bulk

values (roughly 10−2 mmol/gdw/h) by at least 2 orders of magnitude. The former

values are compatible with those measured in microbic overflows [61] while the latter

are consistent with previous measurements of the (bulk) Warburg effect [58]. This

would seem to suggest a common mechanism at work (e.g. saturation of physical

constraints). In this regard it would be important to correlate the measurements of

single cell fermentation with putative determinants of the overflow, like for instance

single cell growth and/or oxidative rates. This would open the way for a non-invasive

spatial metabolic flux analysis able to resolve the whole carbon flux at single cell

resolution and the ensuing inter-cellular interactions. Such measurements will thus

have significant impact on our understanding of the ecology and metabolism of cellu-

lar populations, in particular setting the experimental ground for recent quantitative

theoretical approaches based on statistical mechanics [62–68].
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