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Abstract 

To determine how much cognitive control to invest in a task, people need to consider whether 

exerting control matters for obtaining rewards. In particular, they need to account for the efficacy 

of their performance – the degree to which rewards are determined by performance or by 

independent factors. Yet it remains unclear how people learn about their performance efficacy in 

an environment. Here we combined computational modeling with measures of task performance 

and EEG, to provide a mechanistic account of how people (a) learn and update efficacy 

expectations in a changing environment, and (b) proactively adjust control allocation based on 

current efficacy expectations. Across two studies subjects performed an incentivized cognitive 

control task while their performance efficacy (the likelihood that rewards are performance-

contingent or random) varied over time. We show that people update their efficacy beliefs based 

on prediction errors – leveraging similar neural and computational substrates as those that 

underpin reward learning – and adjust how much control they allocate according to these beliefs. 

Using computational modeling, we show that these control adjustments reflect changes in 

information processing, rather than the speed-accuracy tradeoff. These findings demonstrate the 

neurocomputational mechanism through which people learn how worthwhile their cognitive 

control is. 
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Cognitive control is critical for achieving most goals, but it is effortful (Botvinick and 1 

Cohen 2014; Shenhav et al. 2017). To decide how to invest control into a task (e.g., writing an 2 

essay for a competition), a person must weigh these effort costs against the potential benefits of a 3 

given type and amount of control (Manohar et al. 2015; Verguts et al. 2015; Kool and Botvinick 4 

2018). One aspect of these benefits is the significance of the expected outcomes, both positive 5 

(e.g., a monetary prize, social acclaim) and negative (e.g., missed revenue, social derision) 6 

(Atkinson 1966; Leng et al., 2021). An equally important aspect of the expected benefits of 7 

control is the extent to which control matters for achieving good outcomes and avoiding bad 8 

ones (Frömer et al., 2021a; Shenhav et al., 2021). This can in turn be decomposed into the extent 9 

to which higher levels of control translate into better performance (e.g., whether writing a good 10 

essay will require substantial or only minimal control resources; control efficacy) and the extent 11 

to which better performance translates into better outcomes (e.g., whether prizes are determined 12 

by the strength of an essay or by arbitrary or even biased metrics unrelated to essay-writing 13 

performance; performance efficacy). Whereas studies have increasingly characterized the ways 14 

in which control allocation is influenced by expected outcomes (e.g., Parro et al., 2018; Leng et 15 

al., 2021) and the expected efficacy of control (e.g., as a function of task difficulty; Krebs et al., 16 

2012; Vassena et al., 2014; Chiu and Egner 2019), much less is known about how people 17 

estimate and adjust to the perceived efficacy of their performance in a given environment. 18 

We recently showed that when participants are explicitly instructed about how 19 

efficacious their performance will be on an upcoming trial, they exhibit behavioral and neural 20 

responses consistent with increased control (Frömer et al., 2021a). We had participants perform a 21 

standard cognitive control task (Stroop) for potential monetary rewards, and we varied whether 22 

obtaining those rewards was contingent on performing well on the task (high performance 23 
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efficacy) or whether those rewards were determined at random (low efficacy). We showed that 24 

people allocate more control when they expect to have high compared to low efficacy, reflected 25 

in higher amplitudes of an EEG index of proactive control (the contingent negative variation 26 

[CNV]) and in improved behavioral performance. These results demonstrate that participants 27 

leverage expectations about the extent to which their performance matters when deciding how 28 

much cognitive effort to invest in a task. However, in this work, participants were explicitly cued 29 

with the level of performance efficacy to expect on a given trial, and those predictive cues 30 

retained the same meaning across the session. Thus, how it is that people learn these efficacy 31 

expectations in environments where contingencies are not instructed, and how they dynamically 32 

update their expectations as contingencies change, remains unanswered.  33 

Outside of the domain of cognitive control, a relevant line of work has examined how 34 

people learn about the factors that determine future outcomes when selecting between potential 35 

courses of action. In particular, work in this area has shown that people are able to learn about 36 

and update their expectations of the likelihood that a given action will generate a given outcome 37 

(action-outcome contingency; Dickinson and Balleine 1995; Moscarello and Hartley 2017; Ly et 38 

al. 2019). People preferentially, and more vigorously, select actions that reliably lead to desired 39 

outcomes (i.e., the more contingent those outcomes are on the action in question; Liljeholm et al. 40 

2011; Manohar et al. 2017), and work in both animals (Balleine & O’Doherty, 2010) and humans 41 

(Norton & Liljeholm, 2020; Dorfman et al., 2021; Ligneul et al., 2022; Morris et al., 2022) has 42 

helped to characterize the neural systems that support this process of learning and action 43 

selection. However, given the focus on discrete actions and their immediate relationship with 44 

outcomes, research into these action-outcome contingencies is unable to capture key aspects that 45 

are unique to selection of control states. Most notably, cognitive control signals (e.g., attention to 46 
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one or more features of the environment) are multidimensional, not immediately observable by 47 

either the participant or experimenter, and their relationship with potential outcomes is 48 

intermediated by the many-to-many relationship between control states and task performance 49 

(Ritz et al., 2022). While there has been research into how people learn to adjust cognitive 50 

control signals based on changes in their task environment, here again work has focused on how 51 

people adapt to changes in outcomes (e.g., Otto and Daw 2019; Bustamante et al. 2021) and 52 

changes in the relationship between control and performance (with increasing task difficulty; 53 

Bugg et al. 2011; Nigbur et al. 2015; Bejjani et al. 2018; Jiang et al. 2020). The mechanisms by 54 

which people learn about the relationship between performance and outcomes (performance 55 

efficacy), and how they adjust their control allocation accordingly, remain largely unexplored. 56 

Here, we seek to fill this gap by studying the mechanisms through which expectations of 57 

performance efficacy are formed, updated, and used to guide control allocation. To do so, we 58 

extend our previous approach (Frömer et al., 2021a) – which studied how behavioral and neural 59 

correlates of control allocation vary when performance efficacy is explicitly cued – to examine 60 

how participants learn and adapt their control under conditions where efficacy was un-cued 61 

(having to instead be learned from feedback) and gradually varied across a wide range of 62 

potential efficacy values over the course of the session. We use computational reinforcement 63 

learning models to show that expected efficacy can be learned from feedback through iterative 64 

updating based on weighted prediction errors (Sutton and Barto 2018), and model-based single-65 

trial EEG analyses to show that these efficacy prediction errors modulate a canonical neural 66 

marker of reward-based learning and behavioral adjustment (Fischer and Ullsperger 2013). We 67 

further provide evidence that efficacy estimates learned in this way are used to guide the 68 

allocation of control. In our EEG study and a second behavioral study, participants tended to 69 
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perform better when efficacy was higher. We also provide evidence that a neural marker of 70 

control allocation (Schevernels et al. 2014a) tends to increase with increasing model-based 71 

efficacy estimates. Using a drift diffusion model (Ratcliff & McKoon, 2008; Wiecki, Sofer, & 72 

Frank, 2013), in Study 2 we further show that the performance improvements related to 73 

increased performance-efficacy reflect facilitation of task-related information processing 74 

(reflected in increased drift rates), rather than changes in the speed-accuracy tradeoff (i.e., 75 

thresholds). Taken together, these results show that efficacy estimates can be learned and 76 

updated based on feedback, leveraging general cognitive and neural mechanisms of predictive 77 

inference. 78 

 79 

Materials and Methods 80 

Study 1 81 

Participants 82 

We recruited forty-one participants with normal or corrected-to-normal vision from the 83 

Brown University subject pool. One participant was excluded due to technical issues. The final 84 

data set included 40 participants (24 females, 16 males; median age = 19). Participants gave 85 

informed consent and were compensated with course credits or a fixed payoff of $20. In 86 

addition, they received up to $5 bonus that depended on their task performance ($3.25 on 87 

average). The research protocol was approved by Brown University’s Institutional Review 88 

Board. 89 

Experimental design 90 

In the main task, taking approximately 45 minutes, participants performed 288 Stroop 91 

trials (Figure 1A). Each trial started with the presentation of a cue (grey circle) that remained on 92 
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the screen throughout the trial. After a period of 1500 ms, a Stroop stimulus was superimposed 93 

until a response was made or 1000 ms elapsed, at which time it was sequentially replaced with 94 

two types of feedback presented for 1000 ms each. Each trial onset was preceded by a fixation 95 

cross (randomly jittered between 1000 and 1500ms). Participants responded to the ink color of 96 

the Stroop stimulus (red, green, blue, or yellow) by pressing one of four keyboard keys (D, F, J, 97 

and K). Stimuli were either color words same as the ink color (congruent, n = 108) or different 98 

(incongruent, n = 108), or a string of letters “XXXXX” (neutral, n= 72). Feedback informed 99 

them whether they obtained a reward (reward, “$50c” or no reward, “$0c”) and whether the 100 

reward they received depended on their performance (performance-based feedback, a button 101 

graphic), or not (random feedback, a dice graphic). In order to earn rewards in the performance-102 

based case, participants had to be both accurate and respond within an individually calibrated 103 

response deadline (see details below). The order of the two types of feedback was pseudo-104 

randomized with half of the trials showing reward feedback first and the other half efficacy 105 

feedback. Every 2-4 trials the feedback was followed by a probe of efficacy (“How much do you 106 

think your rewards currently depend on your performance?”) or reward rate (“How often do you 107 

think you are currently being rewarded?”) to which participants responded on a visual analog 108 

scale ranging from 0 to 100. The number and timing of the probes was randomized per subject 109 

resulting in a median of 45 efficacy probes (SD=3.38) and 47 reward probes (SD=2.81).  110 

Efficacy (performance-based or random rewards) on each trial was sampled from a 111 

binomial distribution with probabilities ranging between 0.1 and 0.9 that drifted over the course 112 

of the experiment and were predetermined (Figure 1B). In order to ensure that the performance-113 

based and random trials did not differ in reward rate, reward feedback for the random trials was 114 

sampled from the moving window of the reward feedback of the previous 10 performance-based 115 
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trials. At the beginning of the experiment a window with 8 rewards and 2 no rewards was used to 116 

reflect the pre-calibrated reward rate (details below), and this moving window was then updated 117 

after every trial. Thus, reward rate was not experimentally manipulated in the experiment and 118 

remained constant. We confirmed that reward rate was matched across performance-based and 119 

random trials by comparing reward probability between these trial types (b = 0.01; 95% CrI [-120 

0.07, 0.10]; pb > 0 = 0.38).   121 

Prior to the main task, participants performed several practice phases of the Stroop task 122 

(approximately 15 minutes). First, they practiced the mappings between colors and keyboard 123 

keys (80 trials). Then they completed a short practice of the Stroop task with written feedback 124 

(“correct” or “incorrect”) on each trial (30 trials). Participants then completed 100 more of such 125 

trials during which we individually calibrated the reaction time deadline such that participants 126 

yielded approximately 80% reward rate. The reaction time calibration started from a fixed 127 

deadline of 750ms and increased or decreased this threshold in order to ensure that participants 128 

earn rewards on 80% of trials (i.e., that they are both accurate and below the deadline). The 129 

deadline obtained in this way (M = 796ms; SD = 73ms) was used in the main experiment and 130 

was not further adjusted. In the final practice phase participants were introduced to the two types 131 

of feedback which they would see in the main experiment (30 trials).  132 

The experimental task was implemented in Psychophysics Toolbox (Brainard 1997; Pelli 133 

1997; Kleiner et al. 2007) for Matlab (MathWorks Inc.) and presented on a 23 inch screen with a 134 

1920 x 1080 resolution. All of the stimuli were presented centrally while the participants were 135 

seated 80 cm away from the screen.  136 
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Psychophysiological recording and preprocessing 137 

 EEG data were recorded at a sampling rate of 500 Hz from 64 Ag/AgCl electrodes 138 

mounted in an electrode cap (ECI Inc.), referenced against Cz, using Brain Vision Recorder 139 

(Brain Products, München, Germany). Vertical and horizontal ocular activity was recorded from 140 

below both eyes (IO1, IO2) and the outer canthi (LO1, LO2), respectively. Impedances were 141 

kept below 10 kΩ. Offline, data were processed using custom made Matlab scripts (Frömer et al. 142 

2018) employing EEGlab functions (Delorme and Makeig 2004). Data were re-referenced to 143 

average reference, ocular artifacts were corrected using brain electric source analyses (Ille et al. 144 

2002) based on separately recorded prototypical eye movements. The cleaned continuous EEG 145 

was then low pass filtered at 40 Hz and segmented into epochs around cue onset (-200 to 1500 146 

ms), stimulus onset, and both efficacy and reward feedback (-200 to 800 ms). Baselines were 147 

corrected to the average of each 200 ms pre-stimulus interval. Segments containing artifacts, 148 

values exceeding  ± 150 µV or gradients larger than 50 µV, were excluded from further analyses.  149 

 Single trial ERPs were then exported for further analyses in R (R Core Team 2017). The 150 

late CNV was quantified between 1000 and 1500 ms post neutral cue onset (Schevernels et al. 151 

2014b; Frömer et al. 2016; Frömer et al. 2021a) as the average activity over 9 fronto-central 152 

electrodes (Fz, F1, F2, FCz, FC1, FC2, Cz, C1, and C2). The P3b was quantified between 350 153 

and 500 ms (Fischer and Ullsperger 2013) for both reward and efficacy feedback and calculated 154 

as the averaged activity over 9 centro-parietal electrodes (Pz, P1, P2, POz, PO1, PO2, CPz, CP1, 155 

and CP2).  156 

Learning models and statistical analyses  157 

Learning models. Participants provided their subjective estimates of efficacy and reward every 158 

4-8 trials (a total of 45 estimates), and we sought to fit a learning model to these estimates to be 159 
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able to predict trial-by-trial adjustments in performance and neural markers of learning and 160 

cognitive control allocation. In order to obtain trial-by-trial estimates of efficacy and reward rate, 161 

we fitted two temporal difference learning models (Gläscher et al., 2010; Sutton & Barto, 2018) 162 

to the continuous subjective estimates of efficacy and reward rate (Rutledge et al., 2014; Eldar et 163 

al., 2016; Nagase et al., 2018). The first model (“1 learning rate efficacy model”) assumed that 164 

the estimate of efficacy for the next trial (𝐸𝐸𝑡𝑡+1) depended on the current efficacy estimate (𝐸𝐸𝑡𝑡)  165 

and the prediction error (𝛿𝛿𝑡𝑡) weighted by a constant learning rate (𝛼𝛼): 166 

𝐸𝐸𝑡𝑡+1 = 𝐸𝐸𝑡𝑡 +  𝛼𝛼 ∗ 𝛿𝛿𝑡𝑡 167 

Where 0 ≤ α ≤ 1, and the prediction error is calculated as the difference between the contingency 168 

feedback on the current trial (𝑒𝑒𝑡𝑡) and the efficacy estimate on that trial: 𝛿𝛿𝑡𝑡 = 𝑒𝑒𝑡𝑡 −  𝐸𝐸𝑡𝑡. The model 169 

started from an initial value (free parameter) and updated the model-based efficacy estimate 170 

based on the binary efficacy feedback on each trial. For example, assuming a learning rate of 0.5 171 

and the initial value of 0.5, the model would update the initial estimate following efficacy 172 

feedback signaling “performance-based” (𝑒𝑒𝑡𝑡 = 1) to 0.75. If on the next trial contingency 173 

feedback was “random” (𝑒𝑒𝑡𝑡+1 = 0)  the model-based efficacy estimate would drop to 0.6. The 174 

model was fitted separately to the subjective estimates of efficacy with only the learning rate as a 175 

free parameter. The second model (“2 learning rates efficacy model”) was the same as the first 176 

model, but it included two learning rates: one learning rate for learning from the “performance-177 

based” feedback, and another for learning from the “random” feedback. Finally, as a baseline, we 178 

also included the “intercept model” which did not update the efficacy estimate throughout the 179 

experiment, but just assumed that the estimate took one constant value. Importantly, the same 180 

models were fitted to obtain the model-based estimates of reward on each trial (“1 learning rate 181 

reward model” and the “2 learning rate reward model”). These models were fitted using trial-by-182 
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trial reward feedback and the subjective estimates of reward. The models were fit hierarchically 183 

to the data using maximum likelihood estimation (using mfit (https://github.com/sjgershm/mfit). 184 

To calculate the likelihood of each data point, model-based estimates (0-1 range) were compared 185 

to the subjective efficacy estimates (range normalized to 0-1 range for each participant). 186 

Likelihood was evaluated on trials which included a subjective estimate, as the likelihood that 187 

the difference between the model-based and the empirical estimate comes from a Gaussian 188 

distribution centered on 0 with a variance which was fitted as a free parameter each subject. This 189 

variance parameter served as the noise in the estimates. Likelihoods were log transformed, 190 

summed, and then maximized using the fmincon function in MATLAB.  191 

We performed a parameter recovery study to show that the most complex model (the 2 192 

learning rates model) can be successfully recovered. We simulated a dataset with the same 193 

number of trials and subjective efficacy or reward probes as in the actual experiment. We used 194 

the efficacy drifts presented to the actual subjects (half of the simulated subjects saw one drift, 195 

and half its inverse), and we used the reward feedback sequences of two actual subjects from our 196 

experiment. We simulated 200 agents which learned both efficacy and reward with the noise 197 

parameter fixed to 0.2, intercept fixed to 0.5, and the positive and negative learning rates 198 

sampled from a uniform distribution ranging from 0.001 to 0.5. These parameters were matched 199 

based on the range of values obtained from the empirical fits to our data. As shown in Figure S1 200 

we were able to very reliably recover the simulated parameters for both efficacy and reward rate 201 

learning.  202 

Statistical analyses. The efficacy and reward rate estimates obtained through fitting the learning 203 

model were then used to analyze the behavioral and EEG data. To this end, we fitted Bayesian 204 

multilevel regressions to predict subjective estimates of efficacy and reward rates, reaction times, 205 
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accuracy, as well as the CNV and P3b amplitudes. Subjective estimates of efficacy and reward 206 

rate were regressed onto efficacy or reward feedback. Reaction times and accuracies were 207 

regressed onto trial-by-trial model-based estimates of efficacy and reward rate, as well as trial-208 

by-trial CNV amplitude, while controlling for congruency. The P3b amplitudes were analyzed in 209 

two ways: with trial-by-trial model-based estimates of efficacy and reward rate and current 210 

feedback as predictors, and with model-based prediction errors and learning rates for each 211 

feedback type. CNV amplitudes were regressed onto trial-by-trial model-based estimates of 212 

efficacy. All of the fitted models controlled for the influence of the reward rate estimates. 213 

Parallel analyses were done to predict the P3b in response to reward feedback, while controlling 214 

for the efficacy estimates.  215 

The regression models were fitted in R with the brms package (Bürkner 2016) which 216 

relies on the probabilistic programming language Stan (Carpenter et al. 2016) to implement 217 

Markov Chain Monte Carlo (MCMC) algorithms and estimate posterior distributions of model 218 

parameters. The analyses were done based on the recommendations for Bayesian multilevel 219 

modeling using brms (Bürkner 2016; Bürkner 2017; Nalborczyk and Bürkner 2019). The fitted 220 

models included constant and varying effects (also known as fixed and random) with weakly 221 

informative priors (except for the behavioral and CNV analyses, see below for details) for the 222 

intercept and the slopes of fixed effects and the likelihoods appropriate for the modeled data (Ex-223 

Gaussian for reaction times, Bernoulli for accuracy, and Gaussian for the subjective estimates 224 

and the EEG amplitudes). The fitted models included all of the fixed effects as varying effects. 225 

All of the continuous predictors in the model were centered and the categorical predictors were 226 

contrast coded. Four MCMC simulations (“chains”; 20,000 iterations; 19,000 warmup) were run 227 

to estimate the parameters of each of the fitted models. The convergence of the models was 228 
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confirmed by examining trace plots, autocorrelation, and variance between chains (Gelman and 229 

Rubin 1992). After convergence was confirmed, we analyzed the posterior distributions of the 230 

parameters of interest and summarized them by reporting the means of the distribution for the 231 

given parameter (b) and the 95% credible intervals (95% CrI) of the posterior distributions of 232 

that model. We report the proportion of the posterior samples on the relevant side of 0 (e.g., pb < 0 233 

= 0.9), which represents the probability that the estimate is below or above 0. We also report 234 

Bayes factors (BF) calculated using the Savage-Dickey method (Wagenmakers et al. 2010). We 235 

report the BFs in support of the alternative hypothesis against the null (BF10), except for the 236 

analyses of accurate RT, accuracies, and CNV amplitude in which we have informative priors 237 

based on our previous study (Frömer et al. 2021a), and in which case we support the evidence in 238 

favor of the null (BF01).    239 

To compare the positive and negative learning rates we fitted a model in which the 240 

learning rates were predicted by the learning rate type (Kruschke 2013). In this model we used 241 

Gaussian distributions (mean, standard deviation) as priors (intercept: (0.5,0.5); slopes: (0,0.5)). 242 

We fitted two separate models to predict the subjective estimates of efficacy and reward 243 

rate based on previous feedbacks. At each timepoint the estimates were predicted by the current, 244 

and previous 4 feedbacks. The feedback on each of the trials (performance-based vs. random or 245 

reward vs. no reward) was entered as a constant effect and the models also included the intercept 246 

as a varying effect. As the subjective estimates could vary between 0 and 1, we used Gaussian 247 

distributions (intercept: (0.5,0.2); slopes: (0,0.2)) as priors.  248 

For predicting the P3b amplitude in response to the onset of the efficacy feedback, we 249 

fitted two models. First, we fitted a model which included the model-based estimate of efficacy 250 

(prior to observing the current feedback), the actual feedback, and the interaction between the 251 
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expected efficacy and the observed efficacy feedback. Additionally, we controlled for the reward 252 

rate estimate. Second, we fitted separate models which included the model-based prediction 253 

errors, the influence of the between-subject learning rates, and their interaction with the 254 

prediction errors, while controlling for the estimate of the reward rate. In this analysis the 255 

learning rates (one for feedback type for each subject) were mean-centered within subjects and 256 

thus any effect of the learning rates is driven by the difference between the random and the 257 

performance-based learning rate. For these models we selected wide Gaussian priors (intercept: 258 

(5,3); slopes (0,3)). The same logic in building models was applied for the analyses of the reward 259 

feedback. In these analyses we focused on the reward feedback processing and how it interacted 260 

with the model-based estimates of reward rates, while controlling for the model-based estimates 261 

of efficacy. We analyzed only the trials with correct responses for both the efficacy and the 262 

reward feedback analyses.  263 

To test the influence of efficacy on the late CNV, we fitted a model which predicted the 264 

CNV based on the model-based efficacy estimates, while controlling for the effect of the reward 265 

rate estimates. Drawing on the results of our previous study (Frömer et al. 2021a), this model 266 

included Gaussian priors for the intercept (-0.16, 1.59) and the efficacy (-0.30, 0.73) and reward 267 

(0,0.73) slopes.  268 

For predicting reaction times and accuracy we fitted models which included congruency 269 

(Facilitation: difference between neutral and congruent trials; Interference: difference between 270 

incongruent and neutral trials) and the model-based efficacy estimates, while controlling for the 271 

reward rate estimates. We used Gaussian distributions as informative priors based on our 272 

previous study (Frömer et al. 2021a), for both the reaction times (intercept: (624, 58.69); 273 

facilitation (15.54, 21.93), interference (61.12, 37.49); efficacy (-10.26, 19.51); reward (0, 274 
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19.51)) and accuracy1 analyses (intercept: (2.11, 0.81); facilitation (-0.45, 0.64), interference (-275 

0.53, 0.81); efficacy (0.09, 0.32); reward (0, 0.32)).  276 

To investigate how the late CNV influences the behavior, we fitted two models in which 277 

we predicted the reaction times and accuracy based on the CNV amplitude. The prior 278 

distributions for these models were weakly informative Gaussian distributions for predicting 279 

both the reaction times (intercept: (650, 200); slope: (0, 50)) and accuracy (intercept: (0.7, 0.2); 280 

slope: (0, 0.2)). 281 

To visualize the topographies of the relevant ERP effects, we fitted the relevant models to 282 

all 64 channels and then plotted the posterior estimates of the effects of interest at each electrode 283 

(cf. Frömer et al., 2021b). 284 

Study 2 285 

Participants 286 

We recruited eighty-seven participants residing in the United States from Prolific – an 287 

online platform for data collection. Participants had normal or corrected-to-normal vision and 288 

gave informed consents. They were compensated with a fixed payoff of $8 per hour (median 289 

completion time of 74 minutes) plus a monetary bonus based on points earned during the task 290 

($1 on average). The research protocol was approved by Brown University’s Institutional 291 

Review Board. 292 

We a priori excluded participants who did not pass attention checks (N=8) or who took 293 

substantially longer than the average participant to complete the study (N=2 participants who 294 

took over 130 minutes), suggesting that they did not sustain attention to the experiment over that 295 

                                                 
 
1 Note that the prior distributions are set in log-odds. 
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time. We fit our learning models to data from the remaining 77 subjects, and then excluded 296 

participants whose performance suggested inattention to the overall task (based on accuracies 297 

less than 70% across all trials – including the trials in which performance efficacy was low, N=6) 298 

or inattention to the task feedbacks and efficacy probes (based on low learning rates (N=19), and 299 

one subject with no variance in responses to reward probes). To identify participants with 300 

exceedingly low learning rates, we submitted all positive and negative efficacy learning rates to 301 

unsupervised Gaussian mixture models (as implemented in the Mclust package; (Scrucca et al., 302 

2016) to determine the best fitting number and shape of clusters (model comparison via BIC). 303 

This procedure identified four clusters of subjects with different overall learning rates (Figure 304 

S2B-C) and we excluded subjects from the first cluster as they all had very low learning rates 305 

relative to the other participants (both learning rates < 0.03). The subjects excluded based on low 306 

learning rates were most likely not paying attention to efficacy feedback, or were always giving 307 

very similar responses to the efficacy probes (Figure S3). The final sample included 51 308 

participants (31 females, 20 males; median age = 29).     309 

Experimental design 310 

In order to better understand the computational mechanisms that lead to improved 311 

behavioral performance in high efficacy states (Study 1), we wanted to fit a Drift Diffusion 312 

model (DDM; Ratcliff & McKoon, 2008) to our behavioral data. If people allocate more 313 

attention when they think they have high performance efficacy, this should be observed as an 314 

increase in the drift rate (speed of evidence accumulation). However, Study 1 included a tight 315 

respond deadline for earning a reward, making it more challenging to fit the DDM. To avoid this 316 

issue, in Study 2 we adjusted the task to a free response paradigm which allowed us to 317 
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investigate drift rate and threshold adjustments (cf. Leng et al., 2021). We used this design to test 318 

the hypothesis that higher efficacy estimates should predict increased drift rates.  319 

Instead of single trials, participants now completed 288 intervals during which they could 320 

respond to as many trials (congruent and incongruent, removing the neutral condition) as they 321 

wished within a fixed time window (randomly selected between 2000, 3000, or 4000ms). Apart 322 

from this, the structure of the task remained the same: participants saw a fixation cross (1000, 323 

1500, or 2000ms), then completed as many trials as they wished during a fixed interval, followed 324 

by the feedback (1500 ms) on how many points they earned and whether this was based on their 325 

performance or awarded to them based on random chance. Note that participants now received 326 

continuous reward feedback (10 points per correct response instead of the binary reward-no 327 

reward in Study 1). For example, if participants completed 4 trials correctly and 2 trials 328 

incorrectly within a performance-based interval they would receive 40 points and see feedback 329 

informing them that the points were based on their performance. To determine the number of 330 

points on random intervals, the same yoking procedure as in Study 1 was employed ensuring that 331 

the amount of reward was matched between performance-based and random intervals (reward 332 

amounts on random intervals were sampled from the moving average window of the past 10 333 

performance-based intervals). We confirmed that the yoking procedure was successful by 334 

comparing the reward amounts on the two interval types (b = 0.00; 95% CrI [-0.00, 0.02]; pb > 0 = 335 

0.16). As in Study 1, participants were probed every 2-4 intervals to estimate either how much 336 

they thought their rewards depended on their performance, or how often they were rewarded. We 337 

again implemented an efficacy drift (modified, but comparable to the drift in Study 1; Figure 338 

S2A), now across the 288 intervals of the task. 339 
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We gamified the task in order to make it more appealing for the participants. Instead of 340 

the Stroop task, we used a picture-word interference task in which four grey-scaled images of 341 

fruit (apple, pear, lemon, and peach) were overlaid by those fruit words. Participants responded 342 

to the image, while ignoring the word, by pressing one of the 4 corresponding keys. They first 343 

practiced this task, and then were introduced with a cover story telling them that they are in the 344 

garden and need to water the fruit in little patches by pressing the correct keys. They were 345 

instructed that they will be moving through a garden and that in some patches watering will 346 

directly translate into how many points they will be earning, while in the others that will not be 347 

the case (the efficacy drift). The experiment was implemented in Psiturk (Gureckis et al., 2016) 348 

and the participants performed the task on their own computers and were required to have a 349 

keyboard.  350 

Learning models, Drift Diffusion model, and statistical analyses 351 

Learning models. We fitted the same set of learning models as in Study 1, performed model 352 

comparison, and got the interval-by-interval model-based estimates of performance efficacy and 353 

reward. Note that in this version of the task participants earned points in each interval, unlike the 354 

binary rewards (reward vs. no reward) in Study 1. This meant that the reward learning model 355 

learned reward magnitudes rather than reward probabilities. However, model fitting and the 356 

further analyses were the same as in Study 1.  357 

Statistical analyses. We fitted the same Bayesian multilevel models as in Study 1 to predict the 358 

influence of previous efficacy feedbacks on the subjective efficacy estimates, as well as the 359 

influence of the model-based efficacy estimates on reaction times and accuracies. For the 360 

analyses of the subjective efficacy estimates we used the same priors as in Study 1. For the 361 

analyses of the reaction times and accuracies, we used the posterior distributions obtained in 362 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 7, 2022. ; https://doi.org/10.1101/2020.10.09.333310doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.09.333310
http://creativecommons.org/licenses/by-nd/4.0/


Learning when effort matters  19 

 

Study 1 as the informative priors for the congruency, efficacy, and reward effects. The reaction 363 

times and accuracy models also controlled for the effects of the average congruency level in the 364 

interval and the interval length.   365 

Drift Diffusion model. This model decomposes participant’s behavior into drift rate (the speed 366 

of evidence accumulation) and response threshold (the level of caution), allowing us to 367 

investigate which of these two components is affected by the efficacy estimates. We fitted the 368 

model using Bayesian hierarchical estimation as implemented in the HDDM package (Wiecki, 369 

Sofer, & Frank, 2013). The fitted model included the main effects of efficacy and reward rate 370 

estimates onto both drift rate and threshold, and included the effect of congruency on the drift 371 

rate. The responses were coded as correct or incorrect, and trials with reaction times below 372 

250ms were excluded. All of the effects were allowed to vary across subjects, and we ran five 373 

MCMC chains (12,000 iterations; 10,000 warmup). We confirmed convergence by examining 374 

trace plots and variance between chains.   375 

 376 

Results 377 

Study 1 378 

 To investigate how efficacy estimates are learned, and how they affect control allocation, 379 

in Study 1 we recorded EEG while 40 participants performed a modified version of the Stroop 380 

task (Figure 1A). Across trials we varied whether reward outcomes ($0.50 vs. $0.00) were 381 

determined by a participant’s performance on a given trial (responding accurately and below a 382 

pre-determined response time criterion; performance-based trials) or whether those outcomes 383 

were determined independent of performance (based on a weighted coin flip; random trials). 384 

Over the course of the session, we gradually varied the likelihood that a given trial would be 385 
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performance-based or random such that, at some points in the experiment, most trials were 386 

performance-based (high efficacy level), and at other points most trials had random outcomes 387 

(low efficacy level) (Figure 1B). Importantly, unlike in our previous study (Frömer et al., 2021a), 388 

participants were not told whether a given trial would be performance-based (maximal efficacy) 389 

or random (minimal efficacy), but instead had to estimate their current efficacy level based on 390 

recent trial feedback, which indicated both the reward outcome ($0.50 vs. $0.00) and how that 391 

outcome was determined (performance-based [button symbol] vs. random [dice symbol]). We 392 

held reward rate constant across both feedback types by yoking reward rate on random trials to 393 

the reward rate on performance-based trials, and counter-balanced the time-course of the gradual 394 

change in efficacy (see Methods for details). To capture changes in efficacy expectations over 395 

the course of the session, we probed participants every 4-8 trials (averaging 44.3 probes per 396 

participant) to report their current estimates of efficacy. These efficacy probes were interleaved 397 

with probes asking participants to estimate the current reward rate, serving as foils and for 398 

control analyses.  399 
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 400 

Participants dynamically update efficacy expectations based on feedback 401 

To determine whether and how participants learned their current efficacy levels, we first 402 

analyzed the influence of previous efficacy feedback (whether outcomes on a given previous trial 403 

had been performance-based or random) on one’s current subjective estimates of efficacy. We 404 

found very strong evidence that participants adjusted their subjective efficacy upward or 405 

downward depending on whether the most recent trial was Performance-Based or Random (b = 406 

0.14; 95% CrI [0.12, 0.16]; pb < 0 = 0; BF10 > 100), and that this remained true (but to diminishing 407 

degrees) up to five trials back (all pb < 0 < 0.01; Figure 2A; Table S1). This effect of feedback was 408 

present only for the efficacy feedback, while reward feedback did not predict the subjective 409 

Figure 1. Manipulating expected efficacy and assessing learning in Study 1. A. Trial Schematic. On each 
trial participants saw a cue (gray circle), predicting the onset of a Stroop stimulus (target), and were then 
sequentially presented with reward and efficacy feedback. On half of the trials, efficacy feedback was presented 
first, and on the other half reward feedback was presented first. Every 2-4 trials participants were subsequently 
asked to estimate their current efficacy level (“How much do you think your rewards currently depend on your 
performance?”) or reward rate (“How often do you think you are currently being rewarded?”). B. Efficacy 
manipulation. We let the probability of performance-based vs. random feedback continuously drift over the 
course of the experiment (inversed for one half of the sample). Arrows mark time points with low and high 
efficacy, respectively. When efficacy was low, rewards were more likely to be random, whereas when efficacy 
was high, rewards were more likely to be performance-based.  
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estimates of efficacy (Figure 2A). These results suggest that participants were dynamically 410 

updating their efficacy estimates based on efficacy feedback.   411 

Figure 2. Efficacy learning is captured by a reinforcement learning model with separate learning rates for 
performance-based and random feedback in Study 1. A. Efficacy estimates track recent efficacy feedback. 
Regression weights for the influence of the current (t) and previous contingent vs. random feedback, as well as 
reward feedback, on the subjective efficacy estimate. Error bars represent 50% and 95% highest density intervals. 
B. A separate learning rate model captures efficacy learning best. BICs of fitted intercept only and one 
learning rate model relative to two learning rate models are plotted for each participant and favor the two learning 
rate model. C. Learning rate biases vary between participants. Positive and negative learning rate estimates 
are plotted for all participants. Points below the diagonal indicate higher learning rates for performance-based 
compared to random feedback, and points above the opposite. D. Example learning trajectories. Subjective and 
model-based efficacy estimates, and a running average of the previous 5 efficacy feedbacks, for a participant with 
a higher learning rate for the contingent compared to random feedback (upper) and a participant with the reverse 
bias (lower). 
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This pattern of learning was accounted for by a standard reinforcement learning (RL) 412 

algorithm, the delta-rule, according to which efficacy estimates are updated in proportion to the 413 

prediction error between the expected efficacy and the efficacy feedback on a given trial (i.e., 414 

whether a given outcome was determined by performance or not) (Sutton and Barto 2018). 415 

Interestingly, consistent with studies of reward learning (Niv et al. 2012; Collins and Frank 2014; 416 

Lefebvre et al. 2017; Chambon et al. 2020; Garrett and Daw 2020), we found that the RL model 417 

that best accounted for our data allowed efficacy estimates to be updated differently from trials 418 

that were more efficacious than expected (Performance-Based feedback) than from trials that 419 

were less efficacious than expected (Random feedback), by having separate learning rates 420 

scaling prediction errors in the two cases. Even when accounting for model complexity, this Two 421 

Learning Rate Efficacy model outperformed a One Learning Rate Efficacy model as well as a 422 

baseline model that fits a single constant efficacy estimate and no learning (Intercept Model) 423 

(Figure 2B). In addition, we were able to successfully recover the parameters of this model from 424 

a simulated dataset matched to our data (see Methods and Figure S1). We found that the two 425 

learning rates for this best-fit model varied across the group (Figure 2E), but did not find that one 426 

was consistently higher than the other (b = 0.02; 95% CrI [-0.04, 0.08]; pb < 0 = 0.260; 427 

BF01=13.55; Figure S4), despite most participants (80%) tending to learn more from 428 

Performance-Based than Random trials. Finally, model-based efficacy estimates were strongly 429 

related to the raw subjective estimates on trials on which participants reported efficacy (b = 0.77; 430 

95% CrI [0.62, 0.91]; pb < 0 < 0.001; BF01 > 100; R2=0.50), demonstrating that the model 431 

successfully captured the raw estimates. Taken together, these results show that participants 432 

dynamically updated their expected efficacy based on trial-by-trial feedback, and that they did so 433 

differentially based on whether the trial was more or less efficacious than expected. The fitted 434 
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models further enable us to generate trial-by-trial estimates of expected efficacy and efficacy 435 

prediction errors, which we use in model-based analyses of behavior and neural activity below. 436 

Note that in all the following analyses we control for reward estimates obtained from models fit 437 

to reward feedback (for details see below).  438 

The feedback-related P3b indexes updating of efficacy expectations 439 

 To investigate the neural mechanism underlying feedback-based learning of efficacy, we 440 

probed the centroparietal P3b ERP component (Figure 3A), an established neural correlate of 441 

prediction-error based learning (Fischer and Ullsperger 2013; Nassar et al. 2019). If the P3b 442 

indexes feedback-based updating of efficacy predictions, as it does for reward predictions, we 443 

would expect this ERP to demonstrate several key markers of such a learning signal. First, we 444 

would expect the P3b to reflect the extent to which efficacy feedback (Performance-Based vs. 445 

Random) deviates from the current level of expected efficacy. In other words, the P3b should 446 

track the magnitude of the unsigned efficacy prediction error (PE) on a given trial. We tested 447 

this by examining how the amplitude of the P3b to a given type of efficacy feedback varied with 448 

model-based estimates of the participant’s efficacy expectation on that trial, while holding the 449 

expected reward rate constant (see the Methods and Materials sections for the details of the 450 

experimental design and the statistical models). If the P3b signaled efficacy PE then its 451 

amplitude should scale inversely with the expected probability of a given type of feedback (i.e., 452 

how unexpected that feedback is), thus correlating negatively with expected efficacy on trials 453 

providing Performance-Based feedback and correlating positively with expected efficacy on 454 

trials providing Random feedback. In addition to overall higher P3b to performance-based 455 

compared to random feedback (b = 0.86; 95% CrI [0.42, 1.31]; pb<0 = 0; BF10 =30.86; Figure 456 

2B), we found exactly this predicted interaction between feedback type and expected efficacy (b 457 
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= -2.40; 95% CrI [-4.07, -0.74]; pb > 0 = 0; BF10 = 24.40; Figure 2B; Figure S5A; Table S2), with 458 

the P3b amplitude decreasing with model-based estimates of expected efficacy on Performance-459 

Based trials (b = -1.49; 95% CrI [-2.72, -0.27]; pb > 0 = 0.03; BF10 = 1.52) and increasing 460 

numerically, but not robustly with expected efficacy on Random trials (b = 0.91; 95% CrI [-0.34, 461 

2.21]; pb < 0 = 0.12; BF10 = 0.44). Accordingly, when we regressed P3b amplitude on our model-462 

based estimates of trial-to-trial efficacy PE, we found a positive relationship (b = 1.25; 95% CrI 463 

[0.35, 2.15]; pb<0 = 0.01; BF10 = 5.84; Figure 3C-left; Table S2).  464 
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 465 

Figure 3.  P3b reflects dynamically changing efficacy estimates during processing of 
efficacy feedback in Study 1. A. ERP average for the P3b locked to the onset of the efficacy 
feedback separately for performance-based and random feedback. The grey area shows the 
time window used for quantifying the P3b. B. LMM predicted P3b amplitudes are plotted for 
performance-based and random feedback as a function of efficacy estimates. The topography 
shows the interaction of efficacy estimate with efficacy feedback in the P3b time window. C. 
Predicted (centered) effects of unsigned prediction errors (left) and model-based learning 
rates (right) on the P3b. Shaded error bars represent 95% confidence intervals. Topographies 
display fixed-effects estimates. 
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In addition to tracking efficacy PEs, the second key prediction for the P3b if it indexes 466 

efficacy learning, is that it should track the extent to which PEs are used to update estimates of 467 

efficacy (i.e., the learning rate). In the current study, we found that participants differed in their 468 

learning rates for the two forms of efficacy feedback (Performance-Based vs. Random), 469 

providing us with a unique opportunity to perform a within-subject test of whether P3b tracked 470 

differences in learning rate across these two conditions. Specifically, we could test whether a 471 

given subject’s P3b was greater in the feedback condition for which they demonstrated a higher 472 

learning rate. However, we have not found conclusive evidence for the increase in P3b for the 473 

within-subject feedback condition with the higher learning rate (b = 2.00; 95% CrI [-2.21, 6.04]; 474 

pb<0 = 0.17; BF = 1.08; Figure 3C-right). While, theoretically, prediction error and learning rate 475 

would interact in predicting the P3b amplitude, we did not observe such an interaction here. This 476 

finding is in line with previous work on reward processing (Fischer and Ullsperger 2013), which 477 

has found additive effects of prediction errors and learning rate on P3b. While we found the 478 

effect of prediction errors, our learning rate effect was going in the expected direction, but was 479 

not conclusive.   480 

The CNV indexes control allocation based on updated expectations of efficacy  481 

 Thus far, our findings suggest that participants dynamically updated expectations of their 482 

performance efficacy based on feedback, and that the P3b played a role in prediction error-based 483 

updating of these expectations. Next, we tested the prediction that learned efficacy estimates 484 

determine the expected benefits of control, and thus influence how much control is allocated 485 

(Shenhav et al. 2013). We have previously shown that people exert more control when expecting 486 

their performance to be more rather than less efficacious on the upcoming trial (Frömer et al., 487 

2021a). This was reflected in better behavioral performance and higher amplitudes of the 488 
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contingent negative variation (CNV; Figure 4B-left) - a slow negative fronto-central waveform 489 

preceding target onset, which is increasingly negative as the amount of control allocated in 490 

preparation for the task increases (Grent-’t-Jong and Woldorff 2007; Schevernels et al. 2014a). 491 

Here we used the same marker of control, but, unlike in our previous study, efficacy expectations 492 

were (a) learned rather than explicitly instructed; (b) varied over time rather than having a fixed 493 

association with a cue; and (c) varied continuously across the range of efficacy probabilities 494 

rather than alternating between maximal and minimal efficacy. We were therefore interested in 495 

testing whether these dynamically varying expectations of efficacy, as estimated by our model, 496 

would still exert the same influence on behavior and neural activity. 497 

  Consistent with our predictions and our previous findings, participants tended to perform 498 

better when they expected performance to be more efficacious, responding faster on correct trials 499 

with increasing model-based estimates of efficacy (Figure 4A; Figure S6A; Table S3). This 500 

finding replicates the performance effects we observed using instructed cues, albeit with only 501 

modest evidence (b = -16.00; 95% CrI [-34.91, 2.96]; pb > 0 = 0.05; BF01 = 1.68). Like in our 502 

previous studies, faster responding was not explained by a change in speed-accuracy trade-off, as 503 

accuracy did not decrease with increasing efficacy (b = 0.12; 95% CrI [-0.20, 0.44]; pb > 0 = 0.23; 504 

BF01 = 1.99; Figure S6A). These analyses controlled for the standard behavioral effects related to 505 

Stroop congruency (i.e., slower and less accurate responding for incongruent relative to 506 

congruent trials; Figure S7), as well as for the reward rate estimates.   507 

If the CNV provides an index of control allocation based on current incentive 508 

expectations, it should both reflect one’s latest efficacy estimate and should predict performance 509 

on the upcoming trial. Our findings support both predictions. Regressing single-trial CNV 510 

amplitude onto model-based efficacy estimates, and controlling for expectations of reward 511 
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(discussed below), we found that the CNV amplitudes had a positive relationship2 with the 512 

current efficacy expectations (b = -0.35; 95% CrI [-0.85, 0.16]; pb > 0 = 0.09; BF10 = 2.73; Figure 513 

4B-right; Figure S5B; Table S4). However, this effect was weaker than in the previous 514 

experiment with cued efficacy levels, which is to be expected given that in this experiment 515 

participants had to learn their efficacy levels. As with the behavioral finding above, this result 516 

provides evidence consistent with our previous CNV finding using instructed cues. We further 517 

replicate our earlier finding (Frömer et al., 2021a) that larger CNV amplitude in turn predicted 518 

better performance on the upcoming trial, with participants responding faster (b = 11.41; 95% 519 

CrI [8.09, 14.72]; pb < 0 = 0; BF10 > 100; Figure 4C; Table S5) and more accurately (b = -0.07; 520 

95% CrI [-0.12, -0.01]; pb > 0 = 0.01; BF10 = 3.14; Figure 4D; Table S5) as CNV increased.  521 

                                                 
 
2 Note that the CNV is a negative component, thus higher CNV amplitudes (i.e., more control allocation) are more 
negative.  
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  522 

Figure 4. Efficacy estimates influence allocation of control and behavior in Study 1. A. 
Higher efficacy predicts faster accurate responses. B. CNV increases with higher efficacy. 
Left: Grand-average ERP for high and low efficacy estimates (median split used for plotting). 
The shaded area marks the time window used for CNV quantification. Time 0 corresponds to 
the onset of the neutral cue. Right: Predicted CNV amplitudes as a function of efficacy estimates. 
The topography shows the fixed effect of the efficacy estimate from the fitted linear model. C. 
-D. Larger CNV amplitude predicts better performance. Predicted accurate RT (C.) and 
accuracy (D.) as a function of efficacy estimates. Shaded error bars indicate 95% confidence 
intervals.  
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Parallel learning of efficacy and reward rate 523 

We held the amount of reward at stake constant over the course of the experiment, but the 524 

frequency of reward (reward rate) varied over the course of the session based on a participant’s 525 

recent performance, and participants were sporadically probed for estimates of their reward rate 526 

(interleaved with trials that were followed by efficacy probes). Our efficacy manipulation 527 

explicitly controlled for this variability by yoking Random-Outcome feedback to a participant’s 528 

recent reward rate (see methods for details). However, this additional source of variability also 529 

provided an opportunity to examine additional mechanisms of learning and adaptation in our 530 

task. As in the case of efficacy estimates, reward rate estimates were robustly predicted by 531 

reward feedback on previous trials (Table S1; Figure S8A), and this reward rate learning process 532 

was well captured by a two learning rate reward rate model (Garrett and Daw 2020; S8B-C), 533 

with the model-based estimates successfully predicting the reported subjective estimates (b = 534 

0.82; 95% CrI[0.60, 1.02]; pb < 0 < 0.001; BF01 > 100; R2=0.58; Figure S8B-C). Updates to these 535 

reward rate estimates were reflected in P3b modulations of (unsigned) reward prediction errors 536 

and associated learning rates (Fischer and Ullsperger 2013; Figure S9; Table S6). This pattern of 537 

results provides additional evidence that efficacy learning involves similar neural and 538 

computational mechanisms as reward-based learning. 539 

Study 2 540 

Learned efficacy modulates control over information processing  541 

Our findings suggest that people rely on domain-general mechanisms to learn about their 542 

performance efficacy in a given environment, and use these learned estimates of efficacy to 543 

optimize performance on their task. Specifically, in Study 1 we found that higher levels of 544 

learned efficacy are associated with faster responses, albeit with modest evidence (b = -16.00; 545 
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95% CrI [-34.91, 2.96]; pb > 0 = 0.05; BF01 = 1.68). We also found that this speeding occurred on 546 

correct but not incorrect trials, suggesting that these performance adjustments reflected 547 

attentional control rather than adjustments to speed-accuracy tradeoffs. However, these findings 548 

remain only suggestive in the absence of a formal model, and the presence of a stringent 549 

response deadline in this study (individually calibrated for each subject during the practice phase 550 

to ensure the reward rate of 80%; M = 796ms; SD = 73ms) presented an obstacle to fitting our 551 

behavioral data to such a model without additional assumptions (e.g., regarding the form of a 552 

collapsing threshold). 553 

To provide further support for our proposal that learned efficacy influences control over 554 

information processing, we ran an additional behavioral study (Study 2). Participants in this 555 

study (N = 51) performed a web-based version of the task in Study 1, with the biggest 556 

modification being that the Stroop trials (now using picture-word rather than color-word 557 

interference) were performed over the course of short self-paced time intervals rather than trial 558 

by trial as in Study 1. Specifically, participants were given limited time windows (2-4s) to 559 

complete as many Stroop trials as they wanted to and were rewarded at the end of each interval 560 

(cf. Leng et al., 2021). When rewards were performance-based, participants received a number of 561 

points exactly proportional to the number of correct responses they gave during that window. 562 

When rewards were random, the number of points was unrelated to performance on that interval 563 

but (as in Study 1) was yoked to their performance in previous performance-contingent intervals. 564 

Following our approach in Study 1, we varied the likelihood of a given interval being 565 

performance-based or random over the course of the session (Figure S2A), and sporadically 566 

probed participants for their subjective estimates of expected efficacy and reward rate. While in 567 

most respects very similar to the paradigm in Study 1, one noteworthy feature of this self-paced 568 
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design is that it resulted in a much less stringent deadline for responding, thus producing reaction 569 

time patterns more typical of free-response paradigms for which the traditional (fixed-threshold) 570 

DDM was designed. Note that because this was an online sample we also employed additional 571 

cutoff criteria to exclude inattentive participants, as detailed in the Methods section and Figures 572 

S2B-C and S3.  573 

 Replicating the learning patterns observed in Study 1, subjective estimates of efficacy in 574 

Study 2 reflected a running average over recent efficacy feedback (b = 0.18; 95% CrI [0.16, 575 

0.20]; pb < 0 = 0; BF10 > 100). This effect was again weighted towards the most recent feedback 576 

but still present up to five intervals back (all pb < 0 < 0.01; Figure 5A, Figure S10, and Table S7). 577 

As in Study 1, this learning pattern was best captured by an RL algorithm with two learning rates 578 

(Figure 5B), though positive and negative efficacy learning rates did not significantly differ from 579 

one another on average (b = 0.03; 95% CrI [-0.03, 0.08]; pb < 0 = 0.260; BF01=11.74; Figure 5C). 580 

As in Study 1, the model-based efficacy estimates successfully predicted the raw subjective 581 

estimates on intervals on which participants reported their efficacy beliefs (b = 0.86; 95% CrI 582 

[0.81, 0.90]; pb < 0 < 0.001; BF01 > 100; R2 = 0.60), and the same was true for the model-based 583 

reward estimates predicting the subjective reward estimates (b = 1.00; 95% CrI[0.95, 1.04]; pb < 0 584 

< 0.001; BF01 > 100; R2=0.66).  585 

Critically, we once again found that higher model-based estimates of efficacy predicted 586 

better performance on the upcoming interval. Participants responded faster (b = -10.25; 95% CrI 587 

[-19.86, -0.20]; pb > 0 = 0.02; BF01 = 2.33) and more accurately (b = 0.23; 95% CrI [0.03, 0.43]; 588 

pb > 0 = 0.01; BF01 > 100) with increasing model-based efficacy estimates (Figure 6B, Figure 589 

S6B, and Table S8). To formally test whether these behavioral patterns reflected adjustments in 590 

information processing (i.e., the rate of evidence accumulation once the stimuli appeared) or 591 
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instead reflected adjustments in speed-accuracy tradeoffs (i.e., the threshold for responding), we 592 

fit these data with the hierarchical drift diffusion model (HDDM; Wiecki, Sofer, & Frank, 2013). 593 

We tested whether model-based efficacy estimates predicted trial-by-changes in drift rate, 594 

threshold, or both, while controlling for influences of expected reward rate on those same DDM 595 

parameters. We found that higher levels of expected efficacy were associated with higher drift 596 

rates (b = 0.07; 95% CrI [0.14, 0.43]; pb < 0 = 0.00) but were uncorrelated with threshold levels (b 597 

= -0.00; 95% CrI [-0.04, 0.04]; pb < 0 = 0.74). Expected reward rate was not correlated with either 598 

drift rate or threshold (Table S9). These results suggest that participants responded to changes in 599 

performance efficacy by adjusting their attention to the task, rather than simply adjusting their 600 

response threshold (i.e., becoming more or less impulsive). 601 

 602 

 603 
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Discussion 604 

To evaluate the expected benefits of investing cognitive control into a task, people need 605 

to consider whether this control is necessary and/or sufficient for achieving their desired 606 

outcome (i.e., whether these efforts are worthwhile). A critical determinant of the 607 

Figure 5. Efficacy is learned in the same way in a modified task and influences a behavioral marker of 
control allocation. A. Regression weights for the influence of previous feedback type (efficacy and reward) on 
the subjective efficacy estimate. Error bars represent 50% and 95% highest density intervals. B. Two learning 
rate model captures efficacy learning best. Differences in BICs between the two learning rate model, and the 
intercept-only and one learning rate models.  C. Efficacy learning rates. Positive and negative efficacy learning 
rates for each participant.  D. Higher model-based efficacy estimates predict better behavioral performance. 
Higher efficacy estimates reduce reaction times (left) and improve accuracy (right). E. Higher model-based 
efficacy estimates predict increased allocation of attention. Parameter estimates from the drift diffusion model. 
Higher efficacy estimates increase drift rates, but not response caution (thresholds).   
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worthwhileness of control is performance efficacy, the extent to which performance on a control-608 

demanding task matters for outcome attainment versus those outcomes being determined by 609 

performance-unrelated factors. However, the mechanisms through which people estimate the 610 

efficacy of their performance based on previous experience are largely unknown. Here, we 611 

identified the computational and neural mechanism through which efficacy is learned and used to 612 

guide the allocation of cognitive control. Across two experiments, we found that participants 613 

dynamically updated expectations of the efficacy of their task performance (i.e., the likelihood 614 

that this performance will determine reward attainment), and used those expectations to adjust 615 

how much control they allocated. The feedback-based updating of efficacy was well-captured by 616 

a prediction error-based learning algorithm. Model-based estimates of efficacy and efficacy 617 

prediction errors were encoded by canonical neural signatures of effort allocation and belief 618 

updating, respectively. Importantly, these findings cannot be explained by variability in reward, 619 

as reward rate was held constant across efficacy levels, and the subjective reward rate was 620 

controlled for statistically. Further, our model-based analysis revealed that people allocated more 621 

control when they learned that they had more efficacy, extending our previous findings on 622 

instructed efficacy (Frömer et al., 2021a). Taken together, our results uncover the mechanism 623 

through which efficacy estimates are learned and used to inform mental effort investment within 624 

a given task environment. 625 

Previous research has characterized the learning algorithms people use to learn the reward 626 

value of different states and actions in their environment (Gläscher et al. 2010; Sutton and Barto 627 

2018). Recent theoretical (Jiang et al. 2014; Lieder et al. 2018; Verbeke and Verguts 2019) and 628 

empirical (Bejjani et al. 2018; Otto and Daw 2019; Jiang et al. 2020; Bustamante et al. 2021 Jan 629 

6) work has extended this research to show how similar algorithms guide learning and adaptation 630 
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of cognitive control under varying rewards and task demands within a given task environment. 631 

Our findings extend this work further in several ways. First, we show that people leverage 632 

weighted prediction errors when learning about the efficacy of task performance, independently 633 

of potential reward and task difficulty. Second, we show that they update their efficacy 634 

expectations differently depending on whether performance was more efficacious or less 635 

efficacious than they expected, demonstrating a striking parallel with dual learning rate models 636 

that have been found to prevail in research on reward learning (Collins and Frank 2013; Lefebvre 637 

et al. 2017; Garrett and Daw 2020), including in our own reward rate data. Third, we show that 638 

participants dynamically adjust their control allocation based on learned efficacy, just as they do 639 

for learned rewards and task demands (Bugg et al. 2011; Jiang et al. 2014; Lieder et al. 2018).  640 

Our neural findings build further on past research on learning and control adaptation. The 641 

P3b component has been shown to track prediction-error based learning from action-relevant 642 

outcome values (Fischer and Ullsperger 2013; Nassar et al. 2019; Lohse et al. 2020). Here we 643 

show that this neural marker tracks learning about efficacy in the same way as it tracks learning 644 

about rewards. We found increased P3b amplitudes when people experienced feedback about 645 

outcome contingencies that was less expected given their current estimate of efficacy (e.g., 646 

expecting low efficacy, but getting performance-contingent feedback), relative to when these 647 

contingencies were more expected (e.g., expecting low efficacy and getting random feedback). 648 

Our additional finding that P3b amplitude was overall larger for efficacy compared to no efficacy 649 

feedback demonstrates that our participants were not just tracking the frequency of the two types 650 

of feedback, as predicted by an oddball account. Instead this finding suggests that they were 651 

actively learning from the feedback.  652 
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Extending previous findings on cueing efficacy and/or reward (Schevernels et al. 2014b; 653 

Frömer et al. 2021a), our CNV and behavioral results further show that participants used these 654 

learned efficacy estimates to calibrate their effort and their performance. Notably, unlike in 655 

previous work, our study shows effort-related changes in CNV amplitude entirely divorced from 656 

perceptual cues, providing evidence that this activity truly reflects adjustments in control, rather 657 

than reactive processing of features associated with the cue. Taken together, our findings suggest 658 

that similar neural mechanisms underlie learning and control adaptation in response to variability 659 

in one’s efficacy in a task environment, as they do in response to variability in expected rewards 660 

(Leng et al., 2021; Otto & Daw, 2019). By fitting behavioral data from this task to a drift 661 

diffusion model (Study 2), we were able to further demonstrate that participants were adapting to 662 

changes in expected efficacy by enhancing the processing of stimuli (i.e., increasing their rate of 663 

evidence accumulation) - potentially via attentional control mechanisms – rather than by 664 

adjusting their threshold for responding. This particular pattern of control adjustments was 665 

predicted for the current task because performance-contingent rewards depended on responses 666 

being both fast and accurate (as in Frömer et al., 2021a), but future work should test the 667 

prediction that different control adjustments should emerge under different performance 668 

contingencies (cf. Leng et al., 2021; Ritz et al., 2021). 669 

Our findings build on previous research on how people learn about controllability of their 670 

environment. Studies have examined the neural and computational mechanisms by which 671 

humans and other animals learn about the contingencies between an action and its associated 672 

outcome, and demonstrated that these learned action-outcomes contingencies influence which 673 

actions are selected and how vigorously they are enacted (Dickinson and Balleine 1995; 674 

Liljeholm et al. 2011; Manohar et al. 2017; Moscarello and Hartley 2017; Ly et al. 2019). Our 675 
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work extends this research into the domain of cognitive control, where the contingencies 676 

between actions (i.e., control adjustments) and outcomes (e.g., reward) depend both on whether 677 

control adjustments predicts better performance and whether better performance predicts better 678 

outcomes (Shenhav et al., 2021). Learning control-outcome contingencies therefore requires 679 

learning about how control states map onto performance (control efficacy) as well as how 680 

performance maps onto outcomes (performance efficacy). By describing the mechanisms by 681 

which people solve the latter part of this learning problem, and demonstrating that these are 682 

comparable to those engaged during action-outcome learning, our study lays critical groundwork 683 

for better understanding the links between selection of actions and control states.  684 

Our efficacy-updating results are a reminder that many aspects of feedback are reflected in 685 

prediction error signals (Langdon et al. 2018; Frömer et al. 2021b). In the present study, we 686 

intentionally separated feedback about reward and efficacy to isolate the cognitive and neural 687 

learning mechanisms associated with each. In doing so, we have taken an important first step 688 

towards understanding the updating mechanisms underlying each. Further work is needed to 689 

understand how they are inferred in more naturalistic settings, in which different forms of 690 

feedback are often multiplexed, containing information about the values of actions that were 691 

taken as well as about the features and structure of the environment (cf. Dorfman et al., 2019; 692 

2021). 693 

Another distinct element of more complex naturalistic environments is that the same 694 

feedback can be used to evaluate multiple targets, internal ones, such as the selected response 695 

and its predicted outcome, or external ones, such as the source of feedback/environment 696 

(Carlebach and Yeung 2020). Such multi-level prediction error signals might for instance 697 

explain, why despite close links between P3b and behavioral adaptation (Yeung and Sanfey 698 
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2004; Chase et al. 2011; Fischer and Ullsperger 2013), this link is context dependent and 699 

attempts to link the P3b uniquely to behavioral updating have failed (Nassar et al., 2019). 700 

Reinforcement learning, and predictive inference more generally, have been proposed to not only 701 

support the selection of individual actions, but also extended sequences of actions and control 702 

signals (Holroyd and Yeung 2012; Lieder et al. 2018). Alongside evaluations of actions and 703 

environmental states, neural signatures of feedback-based learning could thus further reflect 704 

evaluations of control signals, their quality or intensity. Given the many potential causes a given 705 

outcome can have, and the flexibility that people have in how they use the feedback, it is easy to 706 

see how feedback could be misattributed and lead to inaccurate beliefs about performance 707 

efficacy. Such beliefs about environmental statistics can drive changes in feedback-processing 708 

and behavioral adaptation, above and beyond the true statistics (Schiffer et al. 2017), and are thus 709 

of particular importance for understanding some of the cognitive symptoms of mental disorders.  710 

Understanding how efficacy estimates develop based on previous experiences is crucial for 711 

understanding why people differ in how much cognitive control they allocate in different 712 

situations (Shenhav et al.). People differ in their beliefs about how much control they have over 713 

their environments (Leotti et al. 2010; Moscarello and Hartley 2017), and in their ability to 714 

estimate their efficacy (Cohen et al. 2020). Further, many mental disorders, including depression 715 

and schizophrenia, have been linked with one’s estimates of their ability to control potential 716 

outcomes in their environment, including through allocation of control (Huys and Dayan 2009; 717 

Maier and Seligman 2016), and we have recently proposed that such changes can drive 718 

impairments of motivation and control in those populations (Grahek et al. 2019). As we show in 719 

this study, when people have learned to expect low efficacy, they will allocate less cognitive 720 

control, which can manifest as apparent control deficits. The experimental and modeling 721 
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approach taken in our study helps uncover a more fine-grained view of how components of 722 

motivation are learned and used to support the allocation of cognitive resources. In this way, our 723 

study takes a first step toward a better computational and neural account of efficacy learning, 724 

which can aid the understanding of individual differences in the willingness to exert mental 725 

effort, as well as the development of interventions aimed at teaching individuals when these 726 

efforts truly matter.  727 

 728 

  729 
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Supplementary materials  730 

Figure S1. Parameter recovery study for the two learning rate models for the efficacy 
and reward learning. We simulated 200 subjects with the range of learning rates matched 
to the empirically observed range. The noise and the intercept parameters were fixed to 
match the empirically observed mean value. The number of trials and subjective estimates, 
as well as the sequence of efficacy and reward feedbacks were based on Experiment 1. A. 
Learning rates for efficacy. Simulated and recovered learning rates were highly 
correlated both in the case of positive (r = 0.93, p<0.001) and negative learning rates (r = 
0.94, p<0.001). B. Learning rates for reward.  Simulated and recovered learning rates 
were highly correlated both in the case of positive (r = 0.88, p<0.001) and negative 
learning rates (r = 0.96, p<0.001). 
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 731 

  732 

Figure S2. Efficacy drifts and the unsupervised clustering of the efficacy learning rates in Study 2. A. Efficacy 
drifts used in Study 2. The probability drifts of contingent feedback presented to the first (top) and second (bottom) 
half of the participants. B. The results of the winning Gaussian mixture model for clustering of the efficacy 
learning rates. One of the clusters (blue dots) included only the subjects with extremely small learning rates (all 
learning rates < 0.03; N=20; group 1 – blue dots). These subjects were excluded from the further analyses with the 
assumption that they did not pay attention to the feedbacks or that they were giving random answers to the probes. 
C. Histograms of the positive and negative learning rates and their clusters. For both then negative (left) and 
positive (right) learning rates cluster 1 included only the participants with very low learning rates.  

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 7, 2022. ; https://doi.org/10.1101/2020.10.09.333310doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.09.333310
http://creativecommons.org/licenses/by-nd/4.0/


Learning when effort matters  44 

 

  733 

Figure S3. Self-reported and model-based efficacy estimates for subjects excluded from Study 2 based on very 
low learning rates. Subjective efficacy estimates (grey) and model-based efficacy estimates for each of the 19 
subjects identified to form a cluster due to very low learning rates (both learning rates < 0.03) based on the 
unsupervised clustering algorithm using Gaussian mixture models. These subjects had low variance in their self-
reported efficacy estimates, or did not appear to update their efficacy estimates based on feedbacks, suggesting that 
they were not paying attention to the feedbacks, or always providing very similar efficacy estimates.  
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Table S1 

Study 1 regression weights for the models predicting subjective efficacy and reward rate estimates 

based on efficacy and reward feedback 5 trials back. 

 

Parameter             Estimate 95% Credible 
interval  

Posterior 
probability (p<0) 

BF10 

Subjective efficacy 

Intercept  0.52 0.49, 0.55 0.00  

T1 Performance-Based - Random  0.14 0.12, 0.16 0.00 >100 

T2 Performance-Based - Random  0.12 0.10, 0.14 0.00 >100 

T3 Performance-Based - Random  0.08 0.05, 0.10 0.00 >100 

T4 Performance-Based - Random  0.03 0.01, 0.05 0.00 2.20 

T5 Performance-Based - Random  0.03 0.01, 0.05 0.00 1.72 

T1 Reward - No Reward  0.02 0.00, 0.04 0.02 0.37 

T2 Reward - No Reward  0.03 0.01, 0.05 0.00 4.23 

T3 Reward - No Reward  0.03 0.01, 0.05 0.01 0.95 

T4 Reward - No Reward  0.02 0.00, 0.04 0.02 0.39 

T5 Reward - No Reward  0.00 -0.02, 0.02 0.46 0.05 

Subjective reward rate 

Intercept  0.50 0.46, 0.54 0.00  

T1 Reward - No Reward  0.19 0.17, 0.21 0.00 >100 

T2 Reward - No Reward  0.16 0.14, 0.18 0.00 >100 

T3 Reward - No Reward  0.09 0.07, 0.11 0.00 >100 

T4 Reward - No Reward  0.05 0.03, 0.06 0.00 30.86 

T5 Reward - No Reward  0.05 0.03, 0.07 0.00 >100 

T1 Performance-Based - Random -0.01 -0.03, 0.01 0.73 0.06 

T2 Performance-Based - Random  0.00 -0.01, 0.02 0.33 0.05 

T3 Performance-Based - Random  0.01 -0.01, 0.03 0.00 0.05 

T4 Performance-Based - Random  0.02 -0.01, 0.03 0.20 0.08 

T5 Performance-Based - Random  0.02 0.00, 0.03 0.04 0.20 
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Figure S4. Efficacy learning in Study 1 – the effect of different feedback probability drifts on learning. 
A. The probability drift of contingent feedback presented to the first half of subjects. B. Learning rates for 
contingent and random feedback for the first half of subjects. Learning rates for the contingent and random 
feedback did not differ (b = 0.01; 95% CrI [-0.06, 0.08]; pb < 0 = 0.38; BF10 = 0.09). C. The inversed 
probability drift of contingent feedback presented to the second half of participants. D. Learning rates for 
contingent and random feedback did not differ (b = 0.02; 95% CrI [-0.06, 0.11]; pb < 0 = 0.31; BF10 = 0.10).  
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Figure S5. The influence of efficacy estimates on efficacy feedback processing 
and proactive cognitive control allocation. A. Means for the P3b amplitude in 
response to performance-based and random feedbacks across each quartile of the 
model-based efficacy estimates calculated for each subject. The P3b amplitude in 
response to performance-based feedback is higher when efficacy estimates are lower, 
suggesting more updating based on feedback. Error bars represent standard errors of 
the mean. B. Means for the CNV amplitude pre target onset across quartiles of the 
model-based efficacy estimates calculated for each subject. The CNV amplitude is 
more negative (more proactive control allocation) when efficacy estimates are higher. 
Error bars represent standard errors of the mean.   
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Figure S6. The influence of efficacy estimates on behavioral performance. A.  
Means for the reaction times (left) and accuracy (right) across quartiles of model-based 
efficacy estimates in Experiment 1. Reaction times are faster when efficacy estimates 
are higher, while there is no consistent pattern in accuracy data. Error bars represent 
standard errors of the mean. B. Means for the reaction times (left) and accuracy (right) 
across quartiles of model-based efficacy estimates in Experiment 2. Participants are 
faster to respond and more accurate when efficacy estimates are high relative to low. 
Error bars represent standard errors of the mean.    
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Figure S7. Behavioral effects of congruency in Study 1 and Study 2. A. In comparison 
to the neutral trials in Study 1, participants were faster to respond to congruent (b = 9.95; 
95% CrI [3.33, 16.59]; pb<0 = 0.00; BF = 1.60) and slower to respond to incongruent trials 
(b = 61.24; 95% CrI [49.50, 72.59]; pb < 0 = 0.00; BF = 6.73). B. In comparison to the neutral 
trials in Study 1, participants were equally likely to be correct when responding to congruent 
(b = -0.11; 95% CrI [-0.29, 0.06]; pb > 0 = 0.091; BF = 0.01) and less likely to be correct 
when responding to incongruent trials (b = -0.48; 95% CrI [-0.64, -0.33]; pb > 0 = 0.00; BF 
> 8.22). The regression weights for the accuracy analysis are in log odds. C. In Study 2 
participants were slower to respond to incongruent relative to congruent trials (b = 47.48; 
95% CrI [40.69, 52.22]; pb < 0 = 0.001; BF = 50). D. In Study 2 participants were less accurate 
when responding to incongruent compared to congruent trials (b = -0.48; 95% CrI [-0.57, -
0.39]; pb < 0 = 1; BF > 100).   
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Table S2 

Study 1 regression weights for the models predicting the P3b to efficacy feedback. 

 

Parameter Estimate 95% 
Credible 
interval  

Posterior 
probability 
(p<0) 

BF10 

Efficacy feedback 

Intercept  1.38  0.67, 2.09 0.00  

Model-based efficacy -0.29 -1.56, 0.97 0.68 0.23 

Efficacy feedback type (PB-R)  0.86  0.42, 1.31 0.00 30.86 

Model-based reward rate -0.19 -1.50, 1.18 0.62 0.23 

Model-based efficacy × Efficacy feedback type -2.40 -4.07, -0.74 1.00 24.40 

Model-based efficacy slope for Performance-Based feedback -1.49 -2.72, -0.27 0.97 1.52 

Model-based efficacy slope for Random feedback  0.91 -0.34, 2.21 0.12 0.44 

Predictions errors and learning rates 

Intercept  1.31 0.51, 2.09 0.00  

Unsigned prediction error  1.25 0.35, 2.15 0.01 5.84 

Learning rate  2.00 -2.21, 6.04 0.17 1.08 

Model-based reward rate -0.09 -1.48, 1.34 0.55 0.23 

Unsigned prediction error ×Learning rate  0.57 -4.87, 6.14 0.41 0.91 
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Table S3 

Study 1 regression weights for the models predicting reaction times and accuracy 

based on efficacy and reward rate estimates. 

 

Parameter Estimate 95% Credible 
interval  

Posterior 
probability 
(p<0) 

BF01 

Reaction times 

Intercept   655.37 635.09, 675.51 0.00  

Facilitation   9.95 3.33, 16.59 0.00 1.60 

Interference   61.24 49.50, 72.59 0.00 6.73 

Model-based efficacy -16.00 -34.91, 2.96 0.95 1.68 

Model-based reward rate -1.56 -27.66, 24.04 0.54 1.36 

Accuracy 

Intercept  1.56 1.33, 1.80 0.00  

Facilitation -0.11 -0.29, 0.06 0.91 0.01 

Interference -0.48 -0.64, -0.33 1.00 8.22 

Model-based efficacy  0.12 -0.20, 0.44 0.23 1.99 

Model-based reward rate -0.36 -0.73, 0.03 0.97 0.29 
 741 

 742 

  743 
Table S4 

Study 1 regression weights for the models predicting the CNV based on efficacy and 

reward rate. 

 

Parameter Estimate 95% Credible 
interval  

Posterior 
probability 
(p<0) 

BF01 

CNV 

Intercept -0.37 -0.58, -0.16 0.00  

Model-based efficacy -0.35 -0.85, 0.16 0.09 2.73 

Model-based reward rate -0.09 -0.72, 0.55 0.38 2.19 
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  745 
Table S5 

Study 1 regression weights for the models predicting reaction times and accuracy 

based on the CNV. 

 

Parameter Estimate 95% Credible 
interval  

Posterior 
probability 
(p<0) 

BF10 

Reaction times 

Intercept 655.28 635.44, 675.91 0.00  

CNV amplitude 11.41 8.09, 14.72 0.00 >100 

Accuracy 

Intercept  1.33 1.11, 1.53 0.00  

CNV amplitude -0.07 -0.12, -0.01 0.99 3.14 
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Figure S8. Reward rate learning – model-based analyses for Study 1. A. Regression weights for 
the influence of the current (t) and previous feedbacks on the subjective estimates of reward rate (left) 
and efficacy (right). Reward rate estimates are strongly predicted by the previous reward feedbacks, 
but not efficacy feedbacks. The reverse is true for the subjective efficacy estimates. Error bars represent 
50% and 95% highest density intervals. B. Model comparison between the fitted learning models for 
the reward rate learning model. C. Positive and negative learning rate estimates for all subjects for the 
reward rate learning model. Negative learning rates were numerically, but not statistically larger than 
positive ones (b = 0.01; 95% CrI [-0.07, 0.09]; pb < 0 = 0.38; BF10 = 0.09)  
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ERP analyses of the reward rate feedback in Study 1 747 

 To investigate the effect of the model-based reward rate estimates on the processing of 748 

reward, we performed complementary analyses on the P3b related to the processing of the 749 

reward feedback (Figure S9A). We expected that a similar learning mechanism should operate 750 

on both reward and efficacy feedback, but that the neural markers of feedback processing should 751 

be sensitive to different model-based estimates. Thus, we expected the reward-locked P3b to be 752 

sensitive to reward-rate estimates, but not to efficacy estimates.  753 

 Our results showed larger P3b amplitudes to no reward compared to reward feedback 754 

(note that reward rate was approximately .80 and negative feedback less expected overall), and 755 

the processing of the reward feedback was influenced by reward-rate estimates, although to 756 

lesser extent than for the P3b (Figure S9B; Table S6). Probing the effects of learning directly, we 757 

found robust effects of the prediction errors and learning rates (Figure S9C). The P3b to reward 758 

feedback was not influenced by the model-based efficacy estimates in either of these analyses.   759 

  760 
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Figure S9. Learning reward rate estimate from reward feedback in Study 1. A. ERP 
average for the P3b locked to the onset of reward feedback. B. Interaction between 
reward feedback and the model-based reward rate estimate. C. The effects of unsigned 
prediction errors (left) and learning rates (right) on the P3b.  
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Table S6 

Study 1 regression weights for the models predicting the P3b to reward feedback. 

 

Parameter Estimate 95% Credible 
interval  

Posterior 
probability 
(p<0) 

BF10 

Efficacy feedback 

Intercept  0.93 0.08, 1.74 0.02  

Model-based efficacy  0.45 -0.45, 1.32 0.16 0.15 

Reward feedback type (R-NR) -0.35 -0.90, 0.18 0.90 0.12 

Model-based reward rate -0.15 -1.55, 1.23 0.59 0.14 

Model-based reward ×Reward feedback type -1.26 -3.73, 1.19 0.85 0.41 

Model-based efficacy slope for No Reward feedback  0.48 -1.34, 2.34 0.87 0.23 

Model-based efficacy slope for Reward feedback -0.78 -1.96, 0.39 0.32 0.21 

Predictions errors and learning rates 

Intercept  0.89 0.15, 1.64 0.01  

Unsigned prediction error  1.09 0.38, 1.81 0.00 4.82 

Learning rate  6.68 -0.07, 12.99 0.03 4.72 

Model-based efficacy  0.39 -0.47, 1.24 0.19 0.13 

Unsigned prediction error ×Learning rate  0.94 -8.06, 9.71 0.42 0.92 
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Figure S10. Efficacy and reward learning – model-based analyses for Study 2. A. Regression 
weights for the influence of the current (t) and previous feedbacks on the subjective estimates of 
reward rate (left) and efficacy (right). Reward rate estimates are strongly influenced by the 
previous reward feedbacks, and the reverse is true for the subjective efficacy estimates. Error bars 
represent 50% and 95% highest density intervals. B. Model comparison between the fitted 
learning models for the reward learning model. C. Positive and negative learning rate estimates 
for all subjects for the reward learning model. Positive learning rates were numerically, but not 
statistically larger than negative ones (b = 0.02; 95% CrI [-0.01, 0.05]; pb < 0 = 0.11; BF10 = 0.06)
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Table S7 

Study 2 regression weights for the models predicting subjective efficacy and reward rate estimates 

based on efficacy and reward feedback 5 trials back. 

 

Parameter             Estimate 95% Credible 
interval  

Posterior 
probability (p<0) 

BF10 

Subjective efficacy 

Intercept 0.43  0.37, 0.49 0.00  

T1 Performance-Based - Random 0.17  0.16, 0.19 0.00 >100 

T2 Performance-Based - Random 0.15  0.13, 0.18 0.00 >100 

T3 Performance-Based - Random 0.10  0.08, 0.12 0.00 >100 

T4 Performance-Based - Random 0.06  0.04, 0.08 0.00 >100 

T5 Performance-Based - Random 0.04  0.02, 0.06 0.00 >100 

T1 Reward - No Reward 0.06  0.02, 0.10 0.00 5.42 

T2 Reward - No Reward 0.06  0.01, 0.11 0.01 2.23 

T3 Reward - No Reward 0.03 -0.02, 0.07 0.11 0.23 

T4 Reward - No Reward 0.00 -0.05, 0.04 0.54 0.11 

T5 Reward - No Reward 0.06  0.01, 0.10 0.01 1.69 

Subjective reward rate 

Intercept 0.36  0.29, 0.43 0.00  

T1 Reward - No Reward 0.21  0.17, 0.25 0.00 >100 

T2 Reward - No Reward 0.13  0.09, 0.17 0.00 >100 

T3 Reward - No Reward 0.12  0.07, 0.16 0.00 >100 

T4 Reward - No Reward 0.03 -0.01, 0.06 0.09 0.21 

T5 Reward - No Reward 0.09  0.05, 0.13 0.00 >100 

T1 Performance-Based - Random 0.05  0.03, 0.07 0.00 0.06 

T2 Performance-Based - Random 0.05  0.03, 0.06 0.00 0.05 

T3 Performance-Based - Random 0.00 -0.02, 0.02 0.51 0.05 

T4 Performance-Based - Random 0.03  0.02, 0.05 0.00 0.08 

T5 Performance-Based - Random 0.02  0.00, 0.03 0.03 0.20 
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Table S8 

Study 2 regression weights for the models predicting reaction times and accuracy 

based on efficacy and reward rate estimates. Bayes Factors calculated only for the 

parameters with informative priors. Posteriors from Study 1 were used as priors for 

the effects of congruency, efficacy, and reward.  

 

Parameter Estimate 95% Credible 
interval  

Posterior 
probability 
(p<0) 

BF01 

Reaction times 

Intercept   643.02  625.42, 661.81 0.00  

Incongruent-Congruent   47.48  40.69, 55.22 0.00 0.02 

Model-based efficacy  -10.25 -19.86, -0.20 0.98 2.33 

Model-based reward   -0.17 -21.15, 20.34 0.51 1.24 

Interval length  -1.76 -2.73, -0.83 1.00  

Interval congruency  -5.34 -6.69, -4.00 1.00  

Accuracy 

Intercept  2.35  2.16, 2.52 0.00  

Incongruent-Congruent -0.48 -0.57, -0.39 1.00 >100 

Model-based efficacy  0.23  0.03, 0.43 0.01 >100 

Model-based reward  -0.29 -0.57, -0.01 0.98 1.07 

Interval length -0.13 -0.16, -0.10 1.00  

Interval congruency  0.04  0.00, 0.08 0.03  
  765 
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Table S9 
Drift Diffusion model estimates. 

 

Parameter Estimate 95% Credible 
interval  

Posterior probability 
(p<0) 

Drift rate 

Congruent-Incongruent   0.82  0.74, 0.92 0.00 

Model-based efficacy   0.29  0.14, 0.40 0.00 

Model-based reward    0.20 -0.39, 0.04 0.50 
Threshold 

Model-based efficacy -0.00 -0.04, 0.04 0.57 
Model-based reward rate -0.04 -0.14, 0.05 0.81 
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