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Abstract

Aim: Until recently, complete information on global reptile distributions has not been widely 
available. Here, we provide the first comprehensive climate impact assessment for reptile 
distributions at a global scale.

Location: Global, excluding Antarctica

Time period: 1995, 2050, 2080

Major taxa studied: Reptiles

Methods: We performed species distribution models for 6296 reptile species and assessed 
potential global as well as realm-specific changes in species richness, the change in global 
species richness across climatic space and species-specific changes in distribution and range 
extent and overlap, under future climate change. To assess the future climatic impact of 3768 
non-modeled species, we compared the future change in climatic conditions between both 
modeled and non-modeled species.

Results: Reptile richness was projected to decline significantly over time, globally but also for 
most zoogeographic realms, with the strongest decrease in Brazil, Australia and South Africa. 
Species richness was highest in warm, but moist regions, which were projected to shift further to 
climate extremes in the future. Extents of occurrence were projected to decline considerably in 
the future, with a low overlap between projected current and future ranges. Shifts in range 
centroids differed among realms and taxa, with a dominating global poleward shift. Non-
modeled species were significantly stronger affected by climatic changes than modeled species.

Main conclusions: Reptile richness was projected to decrease significantly across most parts of 
the world with ongoing future climate change. This effect is visible across lizards, snakes and 
turtles alike and has considerable impact on species’ extent of occurrence (EOO) and range 
distribution. Together with other anthropogenic impacts, such as habitat loss and harvesting, this 
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is cause for concern. Given the historical lack of information on global reptile distributions, this 
calls for an re-assessment of global conservation efforts towards reptile species, with specific 
focus on anticipated future climatic changes.

KEYWORDS: species distribution model, turtle, snake, lizard, ISIMIP, bioclim, global 
warming, environmental niche model

Introduction

Emissions from anthropogenic activities have lead to an increase in global surface temperature of 
around 1°C in the last 100 years. This has already led to changes in weather and climate 
extremes in every region across the globe (IPCC, 2021). Unless emissions are vastly reduced in 
the coming decades, global warming will continue and exceed 1.5°-2°C compared to pre-
industrial levels by the end of the 21st century (IPCC, 2021).

Climate change has already had adverse effects on biodiversity and ecosystem functioning and 
these effects are likely to worsen as warming proceeds in future (IPBES, 2019; IPCC, 2022). 
Climate change impacts on ecological processes scales from genes to entire ecosystems, can 
affect organisms, populations or entire communities and vary between physiological, 
morphological, phenological and distributional shifts (Bellard et al., 2012; Scheffers et al., 
2016). Especially changes in species abundance and distribution due to climate change have 
already been frequently observed (Bowler et al., 2017; Lenoir et al., 2020), with many species 
shifting their range towards higher latitudes and elevations (Chen et al., 2011). However, some 
species also respond to climate change by idiosyncratic range shifts (Gibson-Reinemer & Rahel, 
2015).

Species distribution models (SDMs) are a common way of assessing species-specific responses 
to climate change (e.g. Engelhardt et al. (2020)), but also to assess climate change impacts on 
biodiversity (Thuiller et al., 2005). SDMs statistically infer a relationship between the observed 
distribution of a species to the underlying climatic conditions (Elith & Leathwick, 2009) and can 
then be used to project current distributions into the future (Elith et al., 2010), assuming that the 
species maintains its climatic niche (Wiens & Graham, 2005). By doing this for multiple species, 
these projections can be combined to assess future changes in species richness (Hof et al., 2018; 
Newbold, 2018; Thuiller et al., 2019).

In the past most climate change impact assessments on vertebrate biodiversity have focused on 
endotherms (birds & mammals). Reptiles, though accounting for a third of global terrestrial 
vertebrate diversity, have been largely ignored (Pacifici et al., 2015). Previous studies that 
assessed climate change impacts on reptiles species, have either only used a subset of species 
(Warren et al., 2018; Newbold, 2018) or have not been of global extent (Araújo et al., 2006). 
Until recently, this was largely due to the unavailability of global reptile distribution data, but 
this has changed with the release of the global distribution database by the Global Assessment of 
Reptile Distributions (GARD) initiative (Roll et al., 2017) and the release of the full set of IUCN 
reptile range maps (IUCN, 2022).

Global biodiversity assessments further often either consider overall effects on a single taxon 
(Baisero et al., 2020; Voskamp et al., 2021) or compare multiple taxa (Hof et al., 2018; 
Newbold, 2018; Warren et al., 2018; Thuiller et al., 2019), but only very rarely compare 
different taxonomic groups within one taxon (but see, for example Hof et al. (2011)). This may 
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be problematic as pooling all species may obscure the evolutionary and biogeographic history of 
major lineages, and from a global conservation perspective ignores the fact that hotspots of total 
reptile richness hardly overlap with those of lizard or turtle richness (Roll et al., 2017).

Here, we tried to fill the gaps outlined above, by providing a detailed account of projected 
climate change impacts on global reptile distributions and diversity, looking at species-specific 
changes as well as broad-scale geographic trends across and within different taxonomic groups. 
We assessed changes in reptile richness globally, within each zoogeographic realm and across 
their respective climate space. For each species, we further quantified the change in extent of 
occurrence (EOO), range overlap and range distribution and again assessed differences across 
zoogeographic realms and taxonomic groups. Given that we cannot model range restricted 
species, we also performed a more general assessment of species-specific changes in climatic 
space across both modeled and non-modeled species.

Methods

Species data

We obtained global range maps of 10,064 reptile species from the Global Assessment of Reptile 
Distributions (GARD, https://doi.org/10.5061/dryad.83s7k). Roll et al. (2017) provide a detailed 
description of the methodology used for deriving the range maps. The range maps cover lizards, 
snakes, turtles, worm lizards, crocodiles and the tuatara, but in this paper, similar to (Roll et al., 
2017), we only contrast snakes, turtles and paraphyletic lizards (the latter of which we 
subsequently refer to as lizards for simplicity).

Range maps were gridded to a 0.5° x 0.5° grid in WGS84, considering any cell that intersected 
with the range polygon, and pseudo-absence data for each species were generated by randomly 
selecting absences using a distance-weighted approach (see Hof et al., 2018). The number of 
absences was either equal to the number of presences or 1000 absences for species with less than 
1000 presences. For each species we derived 10 sets of pseudo-absences, which were modeled 
separately.

Climate data

Global bias-corrected daily climate (minimum temperature, maximum temperature and 
precipitation) data at a spatial resolution of 0.5° (WGS84) was obtained from the meteorological 
forcing dataset ‘EartH2Observe, WFDEI and ERA-Interim data Merged and Bias-corrected for 
ISIMIP’ (EWEMBI; Lange, 2016) for current conditions (1980 - 2009) and from the Inter-
Sectoral Impact Model Intercomparison Project phase 2b (ISIMP2b; Frieler et al., 2017) for 
future simulations (2036 - 2065 & 2066 - 2095). Future climate simulations were available from 
four global circulation models (GCMs; GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR and 
MIROC5) and for three representative concentration pathways (RCPs; RCP2.6, RCP6.0 and 
RCP8.5). Monthly means of each climatic variable over the respective 30-year time periods, 
centered around 1995, 2050 and 2080, and for each future scenario (GCM & RCP) were used to 
calculate 19 bioclimatic variables using the ‘dismo’ package (Hijmans et al., 2021) in R (R Core 
Team, 2021). We used the same model selection approach as described in Hof et al. (2018) and 
fitted our models using the best-performing combination of four explanatory variables, which 
was temperature seasonality, maximum temperature of the warmest month, annual precipitation 
and precipitation seasonality.
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Species Distribution Models (SDMs)

Projections based on SDMs vary considerably among the model algorithm considered, for this 
we fitted two modeling algorithms with a good performance and discrimination capacity 
(Meynard & Quinn, 2007; Elith et al., 2010), an additive (Generalized Additive Model (GAM)) 
and a regression tree based model (Generalized Boosted Regression Models (GBM)).

GAMs were fitted with a Bernoulli response, a logit link and thin-plate regression splines using 
the ‘mgcv’ package (Wood, 2003, 2011) in R (R Core Team, 2021). GBMs were fitted with the 
‘gbm’ package (Greenwell et al., 2020) in R (R Core Team, 2021) and the optimal parameter 
settings for learning rate (0.01 and 0.001), tree complexity (1, 2 and 3) and number of trees 
(1000-10000) for each species were identified by cross-validation (Bagchi et al., 2013).

Spatial autocorrelation in species distributions can bias parameter estimates and error 
probabilities (Kühn, 2007). Two different methods were used to account for spatial 
autocorrelation in the SDMs. Species with equal or more than 50 presences were modeled using 
an ecoregion-blocking approach. Here the world was divided into 10 blocks, based on a 
representative subset of the climatic space of each of the world’s ecoregions (Olson et al., 2001), 
and 10 models were built leaving out one block at a time, using the left out block for model 
evaluation (Bagchi et al., 2013). For range-restricted species (10 - 49 presences), we split the 
data into 10 datasets by repeatedly randomly selecting 70% of the data, using the left-out 30% 
for model evaluation. Species occurring in less than 10 grid cells were not modeled (N = 3602, 
Table 1).

The performance of the fitted SDMs was evaluated by calculating the overall AUC for each 
species (the average AUC across the 10 blocks and the 10 sets of pseudo-absences). Models with 
an overall AUC smaller than 0.7 were dropped (N = 166), which left us with SDMs for 6296 
reptile species (see Fig. S1.1 in Appendix S1 in Supporting Information), which represents 62.6 
% of the total number of available species by GARD (Table 1).

The same modeling approach has been used previously to assess climate change impacts on 
birds, amphibians and reptiles, see Hof et al. (2018) and Biber et al. (2020). The former provides 
a more detailed explanation of the modeling methodology, while the latter gives a thorough 
account of the caveats and uncertainties associated with species distribution models.

Future projections

Future species distributions were derived by predicting the models using the future bioclimatic 
variables of the two future time periods (2050, 2080) and the respective future scenario (GCM & 
RCP). Future projections of each species were limited to their original and the extent of their 
neighboring ecoregions, to avoid predictions to areas with analogue climatic conditions. Future 
projections were further limited by applying a species-specific dispersal buffer. For most species 
considered here species-specific dispersal distances are still unknown (Nathan et al., 2012), 
hence we used species-specific dispersal buffers, which were based on the diameter (d) of the 
largest range polygon of a species. We used three species-specific dispersal scenarios (d/4, d/8, 
d/16, see Fig. S1.2 in Appendix S1) and provide a detailed comparison of these in the Supporting 
Information (see Appendix S4), but below provide the results under the medium dispersal 
scenario d/8, with a mean dispersal distance of 2.4 km per year.
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Impact analysis

The current and future probabilities of occurrence of the individual SDMs were thresholded into 
binary presence-absence data using species-specific thresholds according to the true skill statistic 
(MaxTSS; Allouche et al., 2006). Thresholded species occurrences were then used to calculate 
current and future species richness, as well as richness increase, decrease, change and relative 
change (%). Richness increase and decrease was identified by using the presence information of 
each individual species and then summing up the number of species that newly occur in a given 
grid cell (species increase) or species that disappear from the respective grid cell (species 
decreae).

As stacked thresholded data frequently overestimates species richness, we also present the results 
using the stacked raw probabilities of occurrence, as suggested by Calabrese et al. (2014), of the 
individual SDMs without thresholding where applicable, in the Supporting Information (see 
Appendix S3).

We calculated the overall mean projected species richness globally and for each zoogeographic 
realm, as defined by Holt et al. (2013), for each time period and tested for significant changes in 
species richness over time using a paired t-test with Holm correction. To assess how species 
richness and changes in species richness are related to the overall change in climatic conditions, 
we assessed both across univariate temperature and precipitation as well as the interaction of 
temperature and precipitation conditions. To assess potential future climate effects on individual 
species, we quantified the proportion of change in EOO and the proportion of range overlap for 
species. And to assess the geographic change between each current and future species range, we 
calculated the range centroid for current and future conditions of each species and then identified 
the distance and direction of change between current and future range centroids.

Given that 37.4% of reptile species for which data was available could not be modeled (largely 
due to their restricted range extent, Table 1), we performed an additional analysis considering all 
10,064 species for which data were available. We used the same 4 bioclimatic variables used for 
the SDMs to transform the multidimensional climate data in a two-dimensional climate space 
using the first two axes of a principal component analysis (PCA). PCAs were performed for both 
current and future conditions, considering the same GCMs, RCPs and time periods as before 
(Fig. S1.3). For each scenario combination, we then calculated the Euclidean distance between 
the two PCA-axes of current and future conditions, to get a measure of climatic change (Fig. 
S1.4). We then extracted the climatic distance for the gridded locations of each species and 
compared the climatic distance of modeled and non-modeled species using a non-paired t-test 
with Holm correction.

Where no specific groups (lizards, snakes, turtles) are mentioned, we present the results for all 
reptile species together. Results are presented as the ensemble mean, across the four GCMs and 
two model algorithms considered, for the year 2080 under a medium representative 
concentration pathway (RCP6.0). A sensitivity analysis with regards to the variation across years 
and RCPs is shown in the Supporting Information (see Appendix S4).

Results

Projected reptile richness for current conditions varied between 0 (high latitudes) and 251 in the 
tropics, with particular hotspots in Brazil, Cameroon and Indonesia (Fig. 1a). Overall, reptile 
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richness was dominated by lizard species (N = 3695), followed by snakes (N = 2305), while 
turtle species only contributed marginally to the total number of modeled species (N = 296, 
Table 1). Looking at the spatial configuration of species richness across the three groups, snakes 
had the highest mean species richness (μmean = 30.4 ± 0.15), followed by lizard (μmean = 24.3 ± 
0.09 SE) and turtle richness (μmean = 3.71 ± 0.02 SE), while the mean total richness was 58.4 ± 
0.24 (SE; Fig. 1b, Fig. S2.5, Appendix S2). A large number of reptile species was projected to 
disappear and at the same time a large number of new species were projected to appear in Brazil 
and Australia, while other regions showed either a strong species decrease or increase (Fig. 1 
c,d). The strongest future species decreases were projected east of the Caspian Sea and in South 
Africa (Fig. 1 c), while strong future increases were predicted in the south-west of China and in 
the eastern United States (Fig. 1 d). Overall, species decrease was stronger than species increase, 
which resulted in a stronger negative net change in species richness from 1995 to 2080 (Fig. 
1c,d,e). The lowest negative net change in species richness was observed in Brazil, Australia and 
South Africa, while the highest positive net change was projected for south-west China and the 
western United States (Fig. 1 e). Relative change (%) was projected to be negative in particular 
for most of the southern hemisphere, while the high northern latitudes showed a strong positive 
relative change (Fig. 1 f).

Spatial patterns in species richness changes varied strongly across the three taxa, with lizards 
seeing both strong increases and decreases in Australia, snakes showing a strong decrease in 
South America and turtles seeing a strong increase in eastern North America (Fig. S2.6). All 
three taxa showed a positive net change in species richness in northern latitudes (Fig. S2.7), 
while lizards decreased in parts of Australia (Fig. S2.7 a,b), snakes in large parts of South 
America (Fig. S2.7 c, d) and turtles showed a strong negative net change in parts of South 
America and southern Africa (Fig. S2.7 f).

Globally reptile richness was projected to decline significantly (p < 0.01) from 1995 to 2080, 
with a decline in mean reptile richness from 58.4 ± 0.24 (SE) in 1995 to 53.39 ± 0.19 (SE) in 
2080 (Fig. 2 a). 8 out of 11 zoogeographic realms showed a significant decline in reptile richness 
by 2080 (Fig. 2 b, c, d, f, g, h, j, k), while the Nearctic and Palearctic realm showed a significant 
increase (Fig. 2 e, i) and the Sino-Japanese realm showed no significant change (Fig. 2 l).

The different taxonomic groups (lizards, snakes and turtles) showed changes in global species 
richness that were similar to all reptiles, while there were slight differences across the individual 
realms. Lizards only showed a significant increase in richness in the Palearctic realm and no 
significant change in richness in the Sino-Japanese realm, while in all other realms they showed 
a significant decrease (Fig. S2.8). Snake and turtle richness increased significantly in the 
Nearctic and Palearctic realm. Snake richness decreased significantly in all other realms apart 
from the Sino-Japanese one, while turtle richness significantly decreased in all other realms apart 
from the Saharo-Arabian and the Sino-Japanese one (Fig. S2.9, S2.10).

Reptile richness strongly differed across conditions of varying combinations of temperature and 
precipitation (Fig. 3 a,b,c). For 1995 reptile richness was projected to be highest in areas with a 
temperature around 28.5°C, a precipitation of about 5500 mm and when considering temperature 
and precipitation together in warm, but moist regions (21°C & 3000 mm, Fig. 3 c). The climatic 
conditions with the highest richness shifted to even more extreme (warmer & wetter) novel 
climate conditions by 2080 (Fig. 3 a,b,d).
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Looking at the species richness change across the 2-dimensional climate space, net change was 
positive at the upper precipitation limits across all temperatures and the very hot and very dry 
conditions and negative throughout the entire precipitation range especially for the higher 
temperatures. Overall the negative change was much stronger and more pronounced than the 
positive net change (Fig. 3 e). The highest positive and negative relative change values were 
clustered, both occurred at the upper precipitation limits at low and medium temperatures (Fig. 3 
f). A considerable proportion of the climate space (29.5 %) was shifting towards novel climatic 
conditions, for which no change in species richness could be estimated, while only few discrete 
climatic conditions as well as very cold & very dry conditions (4.75 %) got lost (Fig. 3 e,f).

The EOO of most species (n = 6021) showed a considerable decrease (μmean = -27.7 ± 0.16 SE, 
Fig. 4 a,c,e). Lizard species showed the strongest decline (μmean = -31.8 ± 0.22 SE) in EOO 
(Fig. 4 a), followed by snakes (μmean = -22.6 ± 0.25 SE), while almost equal numbers of turtle 
species showed a decline (n = 274) and an increase (n = 205) with decreases being much more 
pronounced than increases (μmean = -17.5 ± 0.72 SE, Fig. 4 e). Almost half of the modeled 
reptile species (n = 3029) showed a strong change in range position, demonstrated by a relatively 
low range overlap (<= 60 %), which was consistent across all three groups (Fig. 4 b,d,f).

Most of the range centroids (58 %) of all reptile species fell within the Neotropical (n = 1133), 
Afrotropical (n = 1039), Oriental (n = 785) and Australian realm (n = 698). Turtle species had 50 
% of their range centroids in the Nearctic (n = 58), Oriental (n = 53) and Afrotropical realm (n = 
38), while lizards and snakes reflected the overall, total reptile, patterns (Fig. 5 d). Range 
centroids were highly clustered within the different realms, which reflects the overall richness 
hotspots, and hardly any centroids were found in the high northern latitudes (Fig.5 d). By 2080 
species centroids were projected to shift by a mean distance of 111 km ± 0.9 SE mostly towards 
a southerly direction. Lizards showed a shift towards all directions, with a slight trend in the 
number of species towards the South (Fig. 5 a), while snakes and turtles show a more 
pronounced shift of species towards the North (Fig. 5 b, c). Turtle ranges shifted by the largest 
distances, followed by snakes (Fig. 5 a-c). The northern realms (Nearctic, Saharo-Arabian, 
Paleartic und Sino-Japanese) showed a dominant shift towards the North, while the southern 
realms (Neotropical, Afrotropical and Australian) showed a dominant shift towards the South. 
The Panamanian, Madagascan and Oriental realms also showed a northerly shift, while the 
Oceanian realm showed a bi-directional shift to the Northwest and Southeast (Fig. 5 d, Fig. 
S2.11). Large realms had a larger proportion of species that shifted their range for a larger 
distance (Fig. S2.11).

37.4 % of reptile species, for which data would have been available, could not be modeled using 
SDMs, either due to a small sample size or a low model performance (Table 1). We found that 
the species that could not be modeled showed a significant higher mean climatic distance 
between current and future conditions compared to the modeled species and thus occurred in 
areas that experience a stronger change in climatic conditions. This pattern was consistent across 
all three taxa (Fig. 6).

Looking at the sum of occurrence probabilities, we found similar spatial patternsand a similar 
magnitude in change (Fig. S3.13 - S3.15). Projected richness values and their future changes 
were slightly larger under a larger dispersal ability (d/4), but overall all results were consistent 
across the three dispersal scenarios considered (Fig. S4.16 - S4.21). Climate change impacts on 
future species richness increased over time, with stronger effects seen for 2080 than 2050, and 
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the strongest impacts being observed under a high emission scenario (RCP8.5) compared to the 
two lower scenarios (Fig. S5.22 - S5.32).

Discussion

Reptile richness was projected to decrease significantly across most parts of the world in the 
future (Fig. 1 & 2). This effect was visible across lizards, snakes and turtles alike, although 
regional and species-specific responses differed across the three groups (Fig. S2.7 - S2.10).

Reptile richness is projected to decrease in Brazil, Australia and South Africa, and to increase in 
south-western China and the western United Sates (Fig. 1 e). These areas overlap strongly with 
the biotic convergence zones identified for the conservation of Lepidosaurians (Diele-Viegas et 
al., 2020). Brazil in particular is not only characterized by a high reptile richness (Roll et al. 
(2017), Fig. 1 a), but also hosts a large proportion of threatened reptile species (Böhm et al., 
2013). Furthermore, most protected areas within Brazil are only of low conservation status 
(IUCN Categories V - VI) and the stricter ones underrepresent a large proportion of the Brazilian 
biophysical environment (Baldi et al., 2019). While the areas that were projected to show an 
increase in reptile richness with climate warming, i.e. south-west China and the western United 
States, partially overlap with the areas that have the largest proportion of reptile species, they are 
also the ones most threatened by habitat loss from agriculture and logging or harvesting (Böhm 
et al., 2013).  

Species richness changes varied strongly across different regions and different taxa, with lizards 
seeing a strong species increase and decrease in Australia, snakes seeing a strong decrease in 
species richness in South America and turtles seeing a strong increase in the eastern part of the 
United States (Fig. S2.7). All three taxa saw a positive net change in the northern latitudes (Fig. 
S2.7), while lizards saw a decrease in parts of Australia (Fig. S2.7 a,b), snakes in large parts of 
South America (Fig S.2.7 c,d) and turtles saw a strong relative net change in parts of Australia 
and northern Africa (Fig S2.7 f). These differences across groups are also reflected in their 
original richness patterns. Species richness of amphibians, birds and mammals together is a good 
spatial surrogate for species richness of all reptiles combined and of snakes, but not for lizard or 
turtle richness (Roll et al., 2017). Thus, it is not surprising that the areas with the highest decline 
in overall reptile richness (see Fig. 1) strongly overlap with the areas of highest projected 
changes in vertebrate species richness (amphibians, birds and mammals) found by Hof et al. 
(2018), although global reptile richness is largely constrained by temperature, while global 
richness of all other vertebrate groups is mostly constrained by the availability of energy and 
water (Qian, 2010). Historical shifts in geographical ranges and climatic niches further showed 
that niche shifts in endotherms are significantly faster than in ectotherms (Rolland et al., 2018). 
Newbold (2018) further found that Brazil is strongly affected by vertebrate diversity loss due to 
climate change, and together with Australia is also likely to be strongly affected by future land-
use changes, especially under a high-emission scenario (RCP8.5).

Globally reptile richness was projected to decline significantly, from about 58 to 53 (9.4 %) 
species on average per grid cell from 1995 to 2080 (Fig. 2 a). This estimate is slightly lower than 
the reptile richness decline predicted by Newbold (2018). One explanation for this difference 
could be that Newbold (2018) only used a subset of species but they also applied a much smaller 
dispersal buffer, which might indicate that our projections provide a rather optimistic scenario. 
Newbold (2018) further found that reptiles together with amphibians are disproportionately 
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sensitive to future human land-use. Given the synergistic effect of future climate and land-use 
change on biodiversity (Brook et al., 2008) as well as species population s (Williams et al., 
2022), land-use change might further exacerbate climate change impacts on global reptile 
distribution and diversity. 

Changes in reptile richness differed among zoogeographic realms, but species richness declined 
significantly across most realms over both time periods (Fig. 2 b,c,d,f,g,h,j,k). Lizards, snakes 
and turtles all showed similar declines in global species richness and across most realms, but 
slightly differed across individual realms. This is in line with a previous study covering various 
realms from tropical to temperate regions which found that 60 % of assessed Lepidosaurian 
species (n = 1114) were vulnerable to changes in climate (Diele-Viegas et al., 2020). We found 
that only the Oceanian and Madagascan realms did not show a consistent decline in species 
richness, which partially corresponds with the results of Diele-Viegas et al. (2020), who found 
that the Madagascan and Oceanian realm were the ones where Lepidosaurians were the least 
vulnerable to climatic change. However, given that the Madagascan realm boasts over 90% of 
endemic reptile species and genera (Glaw & Vences, 2007) and that both realms are completely 
composed of island territories which are usually considered highly vulnerable to climate change 
and might also be affected by future sea level rise and erosion (Diele-Viegas et al., 2020), our 
estimates might in fact underestimate potential climate change impacts in these realms.

Reptile richness differed strongly across temperature and precipitation, with the highest richness 
being observed in warm, but moist conditions. Under future climate, the climatic conditions with 
high species richness were projected to shift to even more extreme (warmer & wetter) conditions 
(Fig. 3). Reptiles cannot regulate their body temperature internally, so are strongly dependent on 
solar energy captured by the environment to regulate their body temperature (Huey, 1982). This 
might lead to overheating when temperatures reach beyond a species’ critical limit, which makes 
them particularly susceptible to climatic changes (Sinervo et al., 2018). However, this might be 
compensated by other biological processes that help species to buffer climate change effects, i.e. 
genomic and phenotypic plasticity (Rodrı́guez et al., 2017) as well as behavioral and 
physiological adaptation Sunday et al. (2014). Overall, the persistence of reptile species would 
be much more affected by climate cooling than warming, but increasing droughts, which will be 
a consequence of continued warming, have been suggested to pose a significant future threat to 
European reptiles (Araújo et al., 2006). Climate warming will likely have an additional impact 
on reptiles that have temperature-dependent sex determination. Altered sex ratios will not only 
result in a higher extinction risk of local populations, but, together with a reduction in nesting 
sites due to habitat destruction and fragmentation, will also affect the dispersal and potential 
range expansion of a species. Therefore it could also have an impact on population demography 
and size unless temperature shifts in sex determination or female nest-site choice evolves in pace 
with rising temperatures (Boyle et al., 2016; Gibbons et al., 2000).

The EOO of most species considerably decreased, with lizard species showing the strongest 
decline (Fig. 4 a). Most reptiles further showed a strong decline in range overlap, which was 
consistent across all three groups (Fig. 4). This is in line with results by Warren et al. (2018), 
who found that range losses of more than 50% occur in 35% of considered reptile species, 
although this study included only a fraction of all reptile species and dispersal was not 
considered.  
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Terrestrial reptiles have narrow niche requirements and small ranges, compared to other 
vertebrate groups, which makes them more susceptible to threats such as habitat loss or invasive 
species (Böhm et al., 2013). 21 % of reptilian species are currently threatened with extinction 
(IUCN, 2022), while adequate baseline data to inform conservation actions is often missing (Roll 
et al., 2017). In addition, cascading effects generated by disease, invasive species, habitat loss 
and climate change might lead to declines of sympatric species and a faster deterioration of 
ecosystem structure than anticipated by climate change alone (Zipkin et al., 2020). 

The majority of reptile species showed a shift towards the South, which was largely driven by 
range shifts in lizards. Turtle ranges overall shifted farthest, followed by snakes (Fig. 5). This is 
likely due to the fact that lizards have the smallest range sizes across the three groups (Roll et al., 
2017), which in our case also resulted in smaller dispersal distances (Fig. S1.3).  

Range restricted (non-modeled) species are projected to experience significantly higher shift in 
climatic distance than modeled species (Fig. 6), indicating that range-restricted species are 
disproportionately affected by climate change. This highlights once more that sample size 
restrictions of SDMs downplay climate change effects on narrow-ranging and threatened species 
(Platts et al., 2014). Hof et al. (2018) also found significant impacts of climate and land-use 
changes on range-restricted vertebrate species, excluding reptiles. However, similar to the latter 
study we only look at climate anomalies (Euclidean distance between current and future climatic 
conditions) as a metric of climate change, while different metrics have been found to show 
contrasting climate change patterns on a global scale (Garcia et al., 2014). In addition to climate 
change effects, habitat modification has been found to have a more negative effect on small-
ranging reptile species, as well as species with a small clutch size (Doherty et al., 2020). While 
habitat modification would be an additional factor worthwhile to consider in future impact 
assessments, this would go beyond the scope of this study. 

Our results were strongly dependent on the dispersal, time period and emission scenario (RCP) 
considered, but the overall patterns and richness changes were consistent throughout (see 
Supporting Information). Previous studies have highlighted differences among dispersal, time 
period and RCP across various vertebrate taxa (Thuiller et al., 2019), but also specifically for 
reptiles (Araújo et al., 2006; Newbold, 2018; Warren et al., 2018). Reptile-specific studies have 
either considered no dispersal at all (Araújo et al., 2006; Warren et al., 2018) or a dispersal rate 
of 0.5 km per year (Newbold, 2018). We use a slightly higher biologically informed dispersal 
scenario, with an average of 2-5 km per year, which might be overly optimistic. The considered 
dispersal distances are species-specific and thus strongly depend on the range size of each 
species. Given that our model results as well as the underlying climate scenarios are based on a 
0.5° grid size, small differences in the dispersal distances considered here did not have a strong 
impact on our results (see Appendix S4).

The projected changes in species distributions help to investigate potential changes in global 
reptile richness patterns and to highlight hotspots of climate change impacts. They also allow to 
compare climate change vulnerability across taxonomic groups. However, these projections are 
far from reality and have to be interpreted with caution. Future studies should try to consider 
additional factors, such as biotic interactions (Davis et al., 1998) and the reshuffling of species 
communities (Voskamp et al., in prep), which might lead to a change in competitive balance 
(Ockendon et al., 2014), altered predator-prey relationships (Harley, 2011) or changes in 
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functional diversity (Stewart et al., 2022) and thus the provision of ecosystem functions and 
services (Pecl et al., 2017).

Conclusion

In addition to climate and land-use changes, reptile species are threatened by habitat loss and 
degradation, invasive species, environmental pollution, disease and biological resource use (e.g., 
hunting and timber harvesting) (Gibbons et al., 2000, Chapple2021).

Existing protected areas, sites of biodiversity significance and global conservation schemes do 
not effectively protect reptiles, particularly lizards and turtles (Roll et al., 2017) and 61% of the 
world’s skinks do not overlap at all with protected areas (Chapple et al., 2021). The climatic 
space of protected areas is projected to shift considerably with future climate warming (Elsen et 
al., 2020), though even if existing nature reserves would adequately represent reptiles now, they 
might be inadequate to preserve biodiversity in the future. 

Our study shows that reptiles are likely to be considerably impacted by future climate change, 
globally but also within most zoogeographic realms. These impacts are  projected to have a 
considerable effect on species’ extent of occurrence and range position. Thus, to prevent large 
scale declines in reptile species it is detrimental to lower CO2 emissions in order to stop on-going 
climate change but also to maintain adequate habitats of sufficient size and quality, especially of 
grassland and savanna habitats (Roll et al., 2017). Furthermore it is necessary to establish new 
protected areas that help to prevent the extinction of particularly vulnerable species, i.e. by 
establishing high-elevation climate refugia within current species ranges (Sinervo et al., 2018).
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Tables

Table 1. Number of species that were excluded from the species distribution models due to their 
restricted range or low model performance.

Taxonomic group Lizard Snake Turtle Total

No. of species with available data 6328 3414 322 10064

No. of range restricted species (N < 10, removed) 2536 1047 19 3602

No. of species with low model performance (AUC < 
0.7, removed)

97 62 7 166

Total number of species modeled 3695 2305 296 6296

Percentage of available species modeled 58.4 % 67.5 % 91.9 % 62.6 %
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Figures

 
Figure 1. a) Map of projected global terrestrial reptile species richness (1995), b) frequency of 
species richness by taxonomic group (lizard, snake, turtle and total) and c) increase, d) decrease, 
e) net change and f) relative change (%) in reptile species richness under the representative 
concentration pathways RCP6.0 and dispersal scenario d/8 for the time period 2080. All maps 
are in Mollweide equal‐area projection (EPSG:54009). Grey areas are regions for which no 
projections are available. Note that the colour scales differ between the individual panels.
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Figure 2. Terrestrial reptile species richness across the globe and for each zoogeographic realm 
(Afrotropical, Australian, Madagascan, Nearctic, Neotropical, Oceanian, Oriental, Palearctic, 
Panamanian, Saharo-Arabian & Sino-Japanese) over time (1995, 2080) under the representative 
concentration pathways RCP6.0 and the dispersal scenario d/8. Statistical difference between 
years was tested using a paired Student’s t-test with Holm correction (p < 0.05 = *, p < 0.01 = 
**, p < 0.001 = ***, p < 0.0001 = ****). Plots show mean (red point & label), median (black 
horizontal line), 25th to 75th percentiles (box), entire range of data (violin & data points) and 
density of values (width of violin). Figure 5 provides a map outlining the different 
zoogeographic realms.
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Figure 3. Univariate relationship of current (1995) and future (2080 RCP6.0) reptile species 
richness with a) temperature, b) precipitation and the bivariate relationship of temperature and 
precipitation with reptile species richness for c) 1995 and d) 2080 RCP6.0 and the respective e) 
net richness change and f) relative richness change (%) under the dispersal scenario d/8. Lines 
show the mean and ribbons the standard deviation in variance across space, global circulation 
model and algorithm.
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Figure 4. Frequency plots of the mean number of reptile species (a) lizard, b) snake, c) turtle) 
and their potential future change (%) in extent of occurrence (EOO) and the mean number of 
reptile species (d) lizard, e) snake, f) turtle) per potential range overlap class (0-20, 20-40, 40-60, 
60-80, 80-100). Error margins/bars show standard deviation across the different global 
circulation models and model algorithms used. Both shown for 2080 under the representative 
concentration pathway RCP6.0 and the dispersal scenario d/8.

658
659
660
661
662
663
664

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 8, 2022. ; https://doi.org/10.1101/2022.05.07.490295doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.07.490295
http://creativecommons.org/licenses/by-nc/4.0/


 
Figure 5. Cumulative direction and distance of potential range centroid changes per taxonomic 
group (b) lizard, c) snake, d) turtle) and d) range centroids (points on map) and the number of 
species and their directional shift in range centroid position per zoogeographic realm (inset polar 
plots) for 2080 under the representative concentration pathway RCP6.0 and the dispersal 
scenario d/8. Please note that some range centroids did not fall inside the zoogeographic realm 
boundaries and thus were not associated with an realm (n = 477).
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Figure 6. Mean climatic distance for modeled and non-modeled species, split by taxonomic 
group (a) lizard, b) snake, c) turtle and d) total). Statistical difference between modeled and non-
modeled species was tested using a Student’s t-test with Holm correction (p < 0.05 = *, p < 0.01 
= **, p < 0.001 = ***, p < 0.0001 = ****). Plots show mean (red point & label), median (black 
horizontal line), 25th to 75th percentiles (box), entire range of data (violin & data points) and 
density of values (width of violin). Results are shown for 2080 under the representative 
concentration pathway RCP6.0.
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