
1 Fitted Q-learning can design optimal experiments on a simple
Monod growth system

To test the potential of using reinforcement learning for OED, we first applied the Fitted Q-learning
algorithm to a simple non-linear system with Monod dynamics to investigate whether the agent is
capable of optimising the D-optimality score with the given information. We compare the performance
of the FQ agent with a one step ahead optimiser (OSAO). In this system we have one state variable, x,
and no measurement noise so that output Y = x. There is one control variable u that is controlled by
the OSAO or the RL controller. The dynamics of the system are given by a simple Monod relationship
between dx

dt and u:

dx

dt
=

p1u

p2 + u
x,

where p1 and p2 are the parameters to be estimated.
In the following p1 = p2 = 1. Both the RL and OSAO implementations start from initial condition

x0 = 1, u0 = 0.5 and are able to choose u between 0 ≤ u ≤ 0.1. The FQ agent works in a discrete
action space and therefore has ten equally spaced discrete actions to choose from (distributed uniformly
between 0 and 0.1). Figure S1A shows the experimental input profiles chosen by the FQ agent and
OSAO, which are similar. These consist of inputs at the highest level available and a value about half
way between the maximum and minimum values. The FQ agent selects inputs values that straddle the
optimum found by the OSAO, likely due to the discrete nature of its action space. Figure S1B shows
the system trajectories of both controllers. As expected these are very similar. Figure S1C shows the
performance of the FQ agent as it was trained for 500 episodes, compared to the performance of the
trajectory found by the OSAO. Their performance is similar; by the end of training, the FQ agent is
performing slightly better than the OSAO.
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Figure 1: Reinforcement learning for optimal experimental design on a simple non-linear system. (A)
The input profiles of the two agents. (B) The corresponding state trajectories. (C) The training
performance of the RL agent compared to the performance achieved by the OSAO.
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2 Full value fitting results
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Figure 2: Full value fitting results (A) Training and testing performance of all agents over 1000 Fitted
Q-iterations. (B) The true vs predicted return of 10 experiments for all agents after training.
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3 Recurrent FQ

Figure 3: Recurrent FQ for optimal experimental design to infer the values of model parameters for
an auxotrophic bacterial strain growing in a chemostat. Average training progress of nine recurrent
FQ-agents over 50000 episodes. The return of the FQ-agents is averaged across the 9 repeats. The
mean is shown, along with error bars indicating one standard deviation.
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4 RT3D performance for different parameter samples

Parameter value [µmax,Km,Km0] MPC RL

[0.552564, 0.000400962, 0.0000775143](S1) 18.85 17.63
[0.708972, 0.000500437, 0.0000490196](S2) 20.05 19.03
[0.500478, 0.00041873, 0.000029529](S3) 18.02 16.81

[1.45073, 0.000810734, 0, 0000961402](S4) 21.52 20.41
[0.5, 0.0001, 0.00001] (Lower bound) 18.01 16.78

[1.25, 0.00055, 0.000055] (Centre) 20.79 20.31
[1, 0.00048776, 0.00006845928] (Nominal params) 20.07 20.11

[2, 0.001, 0.0001] (Upper bound) 21.86 20.15

Table 1: Comparison of RL OED controller trained over a parameter distribution compared with
an MPC with perfect system knowledge. The optimality score of the experiments produced by each
controller is shown for different samples within the distribution.
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