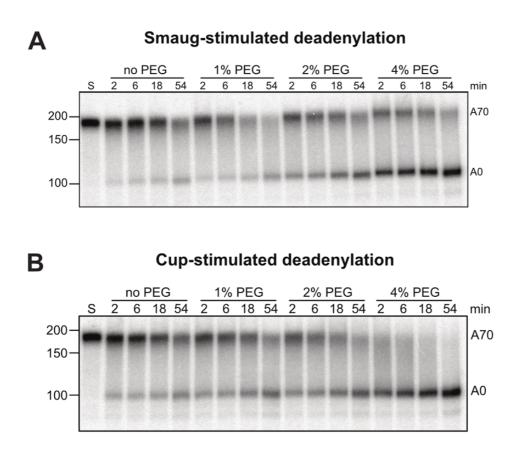

Supplement to

RNA binding proteins Smaug and Cup induce CCR4-NOT-dependent deadenylation of the *nanos* mRNA in a reconstituted system

Filip Pekovic, Christiane Rammelt, Jana Kubíková, Jutta Metz, Mandy Jeske, Elmar Wahle

Inventory:

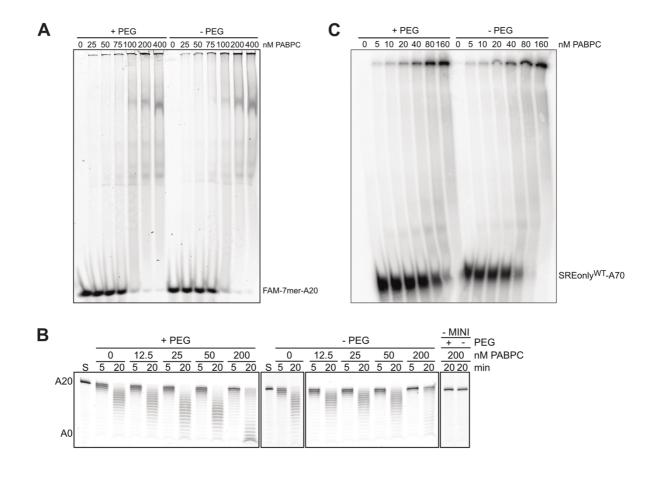
Supplemental Figure 1 Supplemental Figure 2 Supplemental Figure 3 Supplemental Figure 4 Supplemental Figure 5 Supplemental Table 1 Supplemental Table 2



Supplemental Figure 1. Activity of CCR4 and CAF1 depends on other subunits of CCR4-NOT and on ionic conditions

(A) Deadenylation activity of the CCR4-Caf1 heterodimer is enhanced by other subunits of the CCR4-NOT complex. 50 nM FAM-7mer- A_{20} RNA was incubated with either 5 nM of ^{Dm}CCR4-NOT_{MINI} or 250 nM of ^{Dm}CCR4-Caf1, and aliquots were withdrawn as indicated. At the 50fold higher concentration, CCR4-Caf1 shows activity comparable to that of the CCR4-NOT_{MINI} complex.

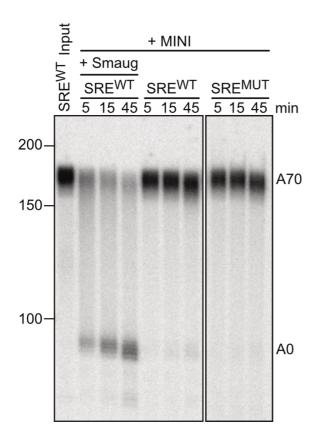
(B) Deadenylation activity of ^{Dm}CCR4-NOT complex is sensitive to Mg²⁺ and K⁺ concentrations. Top panel: 25 nM FAM-TCE^{MUT}-A₇₀ RNA was incubated with 25 nM of ^{Dm}CCR4-NOT_{MINI} in the presence of varying concentrations of magnesium acetate. Aliquots were withdrawn and analyzed at the time points indicated. In this assay, relatively high concentrations of enzyme were used as stability of the CCR4-NOT complex had not yet been optimized. Bottom panel: 10 nM FAM-7mer-A₂₀ RNA was incubated with 5 nM of ^{Dm}CCR4-NOT_{MINI} in the presence of increasing concentrations of potassium acetate. These assays were done in the absence of BSA. Deadenylation was stopped after 60 minutes. In addition to the varying concentrations of potassium acetate, the reactions contained 3 mM NaCl introduced with the protein buffer. The strong diffuse band visible at the bottom is bromophenol blue.


(C) ^{Dm}CCR4-NOT_{FULL} and ^{Dm}CCR4-NOT_{MINI} behave similarly in Smaug- or Cupdependent deadenylation. Reactions contained 20 nM SRE^{WT}-A₇₀ RNA, 1 nM of the CCR4-NOT complex indicated and 80 nM Smaug or Cup where indicated. Aliquots were withdrawn and analyzed at the time points indicated. S, unreacted substrate.

Supplemental Figure 2. Smaug- and Cup-dependent deadenylation is enhanced by a crowding reagent

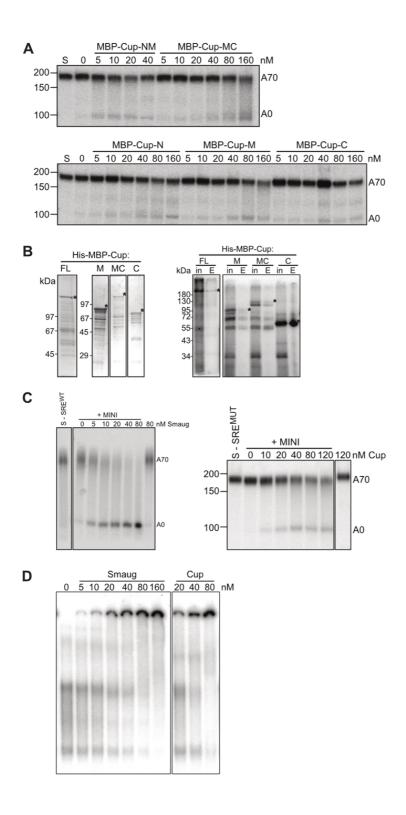
(A) Smaug-dependent deadenylation is stimulated by a crowding reagent. Deadenylation time courses were carried out with 10 nM SRE^{WT}-A₇₀ RNA, 80 nM Smaug and 2 nM ^{Dm}CCR4-NOT_{MINI} in the presence of different concentrations of PEG 20,000.

(B) Cup-dependent deadenylation is stimulated by a crowding reagent. Deadenylation time courses were carried out as in (A) except that 80 nM Cup replaced Smaug.



Supplemental Figure 3. PABPC modestly stimulates deadenylation

(A) Binding of PABPC to the FAM-7mer- A_{20} RNA. Indicated concentrations of PABPC were incubated with 25 nM FAM 7mer- A_{20} RNA at 25 °C for 20 minutes in the presence or absence of PEG. Then, RNA-protein complexes were separated by electrophoresis on a nondenaturing polyacrylamide gel run at 200 V and room temperature.


(B) PABPC stimulates deadenylation of FAM 7mer. FAM 7mer-A₂₀ RNA (25 nM) was incubated with the indicated concentrations of PABPC in the presence or absence of PEG. In these assays, tRNA was present as in the binding assay (**panel A**). The deadenylation reaction was started with $^{Dm}CCR4$ -NOT_{MINI} (1 nM) and was allowed to proceed for 5 or 20 min as indicated.

(C) Binding of PABPC to SRE^{WT}only-A₇₀ RNA. SRE^{WT}only-A₇₀ RNA (5 nM) were incubated with the indicated concentrations of PABPC in the presence or absence of PEG, and RNA-protein complexes were analyzed as in **(A)**. With an A₇₀ tail and one molecule of PABPC covering ~27 nt, saturation of the substrate RNA would have been expected at ~15 nM PABPC.

Supplemental Figure 4. Smaug-independent deadenylation of a long substrate RNA is distributive

20 nM SRE^{WT}only-A₇₀ RNA was preincubated for 20 min with 80 nM Smaug or buffer. SRE^{MUT}only-A₇₀ RNA was preincubated with buffer. Deadenylation was then initiated by the addition of 5 nM ^{Dm}CCR4-NOT_{MINI}, and aliquots were withdrawn at the time points indicated. Co-existence of full-length RNA and completely deadenylated product in the Smaug-containing reaction confirms processive activity, as in **Fig. 6B**. In the absence of Smaug, modest shortening of the entire population of substrate RNA, mostly visible at the latest time point, indicates weak, distributive activity. In this reaction, very small amounts of completely deadenylated product are also visible. These are no longer present when an SRE^{MUT} substrate is used, suggesting the possibility that the CCR4-NOT preparation is contaminated by small amounts of a Smaug-like protein.

Supplemental Figure 5. Cup contributes to deadenylation

(A) The ability of Cup to stimulate deadenylation is distributed over the protein. 5 nM ³²P-SRE^{MUT}only-A₇₀ RNA was preincubated in the presence of varying concentrations of different Cup fragments or in their absence, as indicated. Deadenylation was started by the addition of 1 nM ^{Dm}CCR4-NOT_{MINI}. Reactions were allowed to proceed for 30 min. Controls in a separate experiment showed that the Cup fragments were devoid of nuclease activity, i. e. deadenylation was CNOT-dependent.

Supplemental Figure 5 (continued). Cup contributes to deadenylation

(B) Fragments of Cup can be UV cross-linked to RNA. Left panel, Coomassie-stained SDS-polyacrylamide gel lanes showing His-MBP-tagged Cup and Cup fragments. Bands corresponding to the desired proteins are marked. Right panel: Proteins shown in the left panel were UV-cross-linked to RNA (in, input fraction; 30 % of total reaction). 70% of each reaction were incubated with Ni-NTA matrix in the presence of 6M urea and 0.05 % NP-40, and bound protein-RNA complexes were eluted (E, eluate). Input and eluate were analyzed by SDS-polyacrylamide gel electrophoresis and autoradiography. Bands corresponding to the proteins of interest are labeled. (C) Titration of Smaug (left panel) and Cup (right panel) in deadenylation. 20 nM SREonly-A₇₀ RNA, wild-type or mutant as indicated, was preincubated for 30 min with the indicated concentrations of Cup or Smaug, respectively, then deadenylation was started by the addition of 2 nM ^{Dm}CCR4-NOT_{MINI} and stopped after 40 min. PEG was present in the Smaug titration, but not in the Cup titration.

(D) Titration of Smaug and Cup in RNA binding. 10 nM SRE^{WT}only-A70 RNA was incubated at 25 °C for 20 minutes with the indicated concentrations of Smaug or Cup in the absence of PEG. Then, RNA-protein complexes were separated by electrophoresis on a non-denaturing polyacrylamide gel. Retarded RNA-protein complexes were stuck in the wells.

Supplemental Table 1. Sequences of synthetic oligonucleotides Capital letters indicate the start of the corresponding gene. Point mutations are indicated with bold letters.

Gene etc.	Forward sequence (5'-3')	Reverse sequence (5'-3')	Plasmid	
NOT1 PC	gctctagaATGGCTAGTAACG TAGAGAGCCAACTG	TGGCTAATAGCACGCGCT ATC	pFBDM-His-NOT2_NOT1(Full)	
NOT1 PE	gctctagaATGGCTAGTGACA CATCTTGGATTAATC	TGGCTAATAGCACGCGCT ATC	pFBDM-His-NOT2_NOT1(PE)	
NOT1 MINI	ggactagtatgcatcatcaccatcacc atcaccatGTGACTGTGCCAC CAGAG	cccaagcttTCAGTTGATGGT GGCTAC	pET28a-MBP-His8-NOT1(MINI)	
			pFBDM-His8-NOT2_His8- NOT1(MINI)	
NOT2	tcccccgggatgcatcatcaccatcac catcaccatATGGCGAATTTA AATTTTC	ggggtaccTTATACAGACTGT CCATTC	pFBDM-His8-NOT2_His8- NOT1(MINI)	
NOT3	tcccccgggatgcatcatcaccatcac catcaccatATGGCTGCGACG AGAAAATTG	ggggtaccTCAATTCAGCTCC TTGTC	pFBDM-CAF40-FLAG_His8- NOT3	
Caf40	ggaattcATGAGTGCTCAAC CGAGTC	cccaagcttctacttatcgtcgtcatcct tgtaatcGGAGCCCAGTGGC GACATG	pFBDM-CAF40-FLAG_His8- NOT3	
CAF1	gcgcggatccatgtctcatcatcatcat catcatcaccacATCAAATGGA CAATGCCC	gctctagaTCATGAAGCGCTG TTCGTC	pFBDM-CCR4-FLAG_His8- CAF1	
CCR4	ggatctcgagATGAAAGGCAA TCATTATAAA	tcccggtaccttaatccttgtcatcgtcg tccttgtagtcGGCCCGGCGAT TGATCAGC	pFBDM-CCR4-FLAG_His8- CAF1	
CAF1 (MUT)	CACTATGTGGCCATGG c C ACCG c GTTTCCAGGCGTG GTAG	CTACCACGCCTGGAAACg CGGTGgCCATGGCCACAT AGTG	pFBDM-CCR4-FLAG_His8- CAF1(MUT)	
			pFBDM-CCR4- FLAG(MUT)_His8-CAF1(MUT)	
CCR4 (MUT)	GCTGCTGCTGTGCGGTGc CTTCgcCTCGCTACCCGAT TCAG	CTGAATCGGGTAGCGAGg cGAAGgCACCGCACAGCA GCAGC	pFBDM-CCR4- FLAG(MUT)_His8-CAF1	
			pFBDM-CCR4- FLAG(MUT)_His8-CAF1(MUT)	
Smaug	ctagctagcATGAAGTACGCA ACTGGAAC	ataagaatgcggccgcctatttatcatc atcatctttataatcGAATAGCGT AAAATGTTG	pFBDM-Smaug-FLAG	
Сир	tcccccgggctttattttcagggc	ccgctcgagttacttatcgtcgtcatcct tgtaatcATGAAACTCATCCC CGC	pFBDM-Cup-FLAG	
Tral	cggaattcATGAGCGGGGGA TTACCG	atagccatggtcagtggtgatgatgat gatgatgatgTTGTGAAACTGC CGCCAC	pFBDM-Tral-His8	

PABPC	cgcggatccatgcatcatcatcatcat catcaccacATGGCTTCTCTA TACGTC	ccgctcgagTTAGTTGGCGG GCTCGGTG	pET28a-PABPC	
Belle	tgcagtctcgagatgcatcatcatcatc atcatcaccacAGTAATGCTAT TAACC	gtcgacaagcttTCATTGAGCC CACCA	pFastBac1-His8-Belle	
CupNM	ccgctcgagATGCAAATGGCC GAAGC	cgcctaggTTATCGACGCCAT TTG	pnEK-His8-MBP-CupNM	
CupMC	ccgctcgagGACGAGTCCATC	ccgcctaggTTAATGAAACTC ATCC	pnEK-His8-MBP-CupMC	
CupN	ccgctcgagATGCAAATGGCC GAAGC	cgcctaggTTAGTCACTGATT AGGTTC	pnEK-His8-MBP-CupN	
СирМ	ccgctcgagGACGAGTCCATC	cgcctaggTTATCGACGCCAT TTG	pnEK-His8-MBP-CupM	
CupC	ccgctcgagCGAAACTCACTG AAC	ccgcctaggTTAATGAAACTC ATCC	pnEK-His8-MBP-CupC	
SmaugNM	cgggatccATGAAGTACGCA ACTGGAAC	tcccccgggTTAAATATTGGC CCGTTCCTTC	pET28a-SmaugNM	
SmaugMC	cgggatccTGCCCCGCAAGC GGCAG	tcccccgggTTAGAATAGCGT AAAATGTTG	pGEX6p1-SmaugMC	
SmaugN	cgggatccATGAAGTACGCA ACTGGAAC	tcccccgggTTACAACGAGGA TGAGGCCAC	pGEX6p1-SmaugN	
SmaugM	atatggtctcatggtAATTATATTA AGTTCCACACGCGC	tatctcgagttaATTATTCAGCG ACCGGC	pET-SUMOadapt-SmaugM	
SmaugC	cggaattcCTTAACCGGGTAG AACAAG	tcccccgggTTAGAATAGCGT AAAATGTTG	pGEX6p1-SmaugC	
His-tag	catgggcagcagccatcatcaccatc accatcaccattc	catggaatggtgatggtgatggtgatg atggctgctgcc	pnEK-His8-MBP	
2xBoxB	gatccGGGCCCTGAAGAAG GGCCCATATAGGGCCCTG AAGAAGGGCCCt (BamHI fragment)	ctagaGGGCCCTTCTTCAG GGCCCTATATGGGCCCTT CTTCAGGGCCCg (Xbal fragment)	pBSK-nLuc-2xBoxB	
BREWT	ggaagatctGAATTCGCTTAG TTTTAATATG	gctctagaggatccTTAAATCTA ACATAGAAC	pBSK-nLuc-BRE ^{WT}	
BRE ^{MUT} EcoRI	AATTCGCTTAGTTTTAATta GTTTTtaATtgAGatTGTTCT CTGTCTTTGTTatTTTAgATt TTCGTGCACTT (EcoRI fragment1)	AAaATcTAAAatAACAAAGA CAGAGAACAatCTcaATtaA AAACtaATTAAAACTAAGC G (EcoRI fragment2)	pBSK-nLuc-BRE ^{M∪T}	
BRE ^{M∪T} Ba mHI	GTCCTAGTCCATTATTtTAg ATTATTtTGgGTTTTGgtTT CTtaGTTAGATTTAAG (BamHI fragment1)	GATCCTTAAATCTAACtaA GAAacCAAAACcCAaAATA ATcTAaAATAATGGACTAG GACAAGTGCACG (BamHI fragment2)		

Supplemental Table 2. ReLo and Y2H DNA constructs used in this study.

All bait and prey sequences were from Drosophila melanogaster.

The split-ubiquitin Y2H cloning vectors pDHB1-MJ (JK16) and pPR3-N-MJ (JK18) were generated by introducing the blunt end restriction sites Eco47III and Smal into the multiple cloning sites of pDHB1 and pPR3-N (Jeske et al., 2015), respectively. The plasmids pAc5.1-EGFP (T5-MJ), pAc5.1-mCherry (T7-MJ), pAc5.1-PH-mCherry-CAF1 (HK96), pAc5.1-PH-mCherry-CAF40 (HK97), pAc5.1-PH-mCherry-NOT2 (HK99), pAc5.1-PH-mCherry-NOT3 (HK100), pAc5.1-CCR4-mCherry-PH (EB7), and pAc5.1-NOT1-mCherry-PH (EB5) have been described previously (Salgania et al., 2022). Generation of the DNA constructs listed in the table was performed according to the cloning strategy described previously (Salgania et al., 2022).

Vector (insertion site) (code)	Final DNA construct	DNA template information	Code
pAc5.1-EGFP (EcoRV) (T5-MJ)	pAc5.1-EGFP-Smaug	smaug cDNA	F31-MJ
pAc5.1-mCherry (EcoRV) (T7-MJ)	pAc5.1-mCherry-Smaug	smaug cDNA	H28-MJ
pAc5.1-PH-mEGFP (FspAI) (JM50)	pAc5.1-PH-mEGFP- NOT3 1- 241	pFL-Flag-NOT3	JM69
	pAc5.1-PH-mEGFP- NOT3 242-686	pFL-Flag-NOT3	JM70
	pAc5.1-PH-mEGFP- NOT3 687-844	pFL-Flag-NOT3	JM71
pDHB1-MJ (Eco47III) (JK16)	pDHB1-MJ- Smaug	smaug cDNA	JK46
pPR3-N-MJ (Smal) (JK18)	pPR3-N-MJ- CAF1	pMTV5-Myc-CAF1 (Temme et al., 2010)	JK76
	pPR3-N-MJ- CAF40	pET19-CAF40	JK77
	pPR3-N-MJ- CCR4	pMTV5-Myc-CCR4	JK78
	pPR3-N-MJ- NOT2	pSPL_Strep_NOT1_NOT2	JK88
	pPR3-N-MJ- NOT3	pFL-Flag-NOT3	JK89
	pPR3-N-MJ- NOT1 1-751	pSPL_Strep_NOT1_NOT2	JK84
	pPR3-N-MJ- NOT1 752-910	pSPL_Strep_NOT1_NOT2	FH16
	pPR3-N-MJ- NOT1 911-1092	pSPL_Strep_NOT1_NOT2	FH13
	pPR3-N-MJ- NOT1 1093- 1687	pSPL_Strep_NOT1_NOT2	JK86
	pPR3-N-MJ- NOT1 1688- 1964	pSPL_Strep_NOT1_NOT2	FH4
	pPR3-N-MJ- NOT1 1965- 2480	pSPL_Strep_NOT1_NOT2	JK87
	pPR3-N-MJ- NOT3 1-241	pFL-Flag-NOT3	MS5
	pPR3-N-MJ- NOT3 242-686	pFL-Flag-NOT3	MS9
	pPR3-N-MJ- NOT3 687-844	pFL-Flag-NOT3	MS13

REFERENCES

Jeske, M., Bordi, M., Glatt, S., Muller, S., Rybin, V., Muller, C.W., and Ephrussi, A. (2015). The Crystal Structure of the Drosophila Germline Inducer Oskar Identifies Two Domains with Distinct Vasa Helicase- and RNA-Binding Activities. Cell Rep *12*, 587-598.

Salgania, H.K., Metz, J., and Jeske, M. (2022). ReLo: a simple colocalization assay to identify and characterize physical protein-protein interactions. BioRxiv, doi: 10.1101/2022.1103.1104.482790

Temme, C., Zhang, L.B., Kremmer, E., Ihling, C., Chartier, A., Sinz, A., Simonelig, M., and Wahle, E. (2010). Subunits of the Drosophila CCR4-NOT complex and their roles in mRNA deadenylation. RNA *16*, 1356-1370.