
A label-free method to track individuals and lineages of budding cells1

Julian M. J. Pietsch
1
, Alán F. Muñoz
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Abstract7

Much of biochemical regulation ultimately controls growth rate, particularly in microbes. Although time-lapse8

microscopy visualises cells, determining their growth rates is challenging because cells often overlap in images, par-9

ticularly for those that divide asymmetrically, like Saccharomyces cerevisiae. Here we present the Birth Annotator10

for Budding Yeast (BABY), an algorithm to determine single-cell growth rates from label-free images. Using a11

convolutional neural network, BABY resolves overlaps through separating cells by size and assigns buds to mothers12

by identifying bud necks. BABY uses machine learning to track cells and determine lineages, estimates growth rates13

as the rate of change of volumes, and identifies cytokinesis by how growth varies. Using BABY and a microfluidic14

device, we show that bud growth is first sizer- then timer-controlled, that the nuclear concentration of Sfp1, a15

regulator of ribosome biogenesis, varies before the growth rate does, and that growth rate can be used for real-time16

control. Growth rate and fitness are strongly correlated, and BABY should therefore generate much biological17

insight.18

Introduction19

For microbes, growth rate correlates strongly with fitness [1]. Cells increase growth rates through balancing their20

synthesis of ribosomes with their intake of nutrients [2–4] and target a particular size through coordinating growth21

with division [5–8]. Multicellular organisms, too, not only coordinate growth over time but also in space to both size22

and position cells correctly [9].23

To understand how growth rate is regulated, studying single cells is often most informative [10]. Time-lapse24

microscopy, particularly with microfluidic technology to control the extracellular environment [11,12], has been pivotal,25

allowing, for example, studies of the cell-cycle machinery [7], of the control of cell size [13–15], of antibiotic e↵ects26

[16, 17], of the response to stress [18–20], of feedback between growth and metabolism [21], and of ageing [22].27

For cells that bud, like Saccharomyces cerevisiae, estimating an instantaneous growth rate for individual cells is28

challenging. S. cerevisiae grows by forming a bud that increases in size while the volume of the rest of the cell remains29

relatively unchanged. Although growth rate is typically reported as the rate of change of volume [13,15,23–26], which30

approximates a cell’s increase in mass, these estimates rely on solving multiple computational challenges: accurately31

determining the outlines of cells – particularly buds – in an image, extrapolating these outlines to volumes, tracking32

cells over time, assigning buds to the appropriate mother cells, and identifying births. Growth rates for budding33

yeast are therefore often only reported for isolated cells using low-throughput and semi-automated methods [13, 26].34

In contrast, for rod-shaped cells that divide symmetrically, like Escherichia coli, the growth rate can be found more35

simply, as the rate of change of a cell’s length [21].36

A particular di�culty is identifying cell boundaries because neighbouring cells in images often overlap – yeast, like37

other microbes, grows in colonies. Although software that automatically identifies and tracks cells in bright-field and38

phase-contrast images is well established [27–31] – with deep learning now improving both accuracy and speed [32–34],39

only a few algorithms allow for overlaps [30,33]. For example, the convolutional neural network U-net [35], a workhorse40

in biomedical image processing, performs semantic segmentation, lumping adjacent objects in the same category under41

one label, and instances of individual cells must be found using post-processing. Even then di↵erent instances typically42

cannot overlap [32,34]. Other deep-learning approaches, like Mask-RCNN [36] and extended U-nets like StarDist [37],43

can identify overlapping instances in principle, but typically do not, by either implementation [37] or the labelling44

of the training data [33]. Furthermore, assigning lineages and births is often performed manually [13, 23] or through45

fluorescent markers [15, 25], but such markers use an imaging channel.46

Here we describe the Birth Annotator for Budding Yeast (BABY), a complete pipeline to robustly and accurately47

determine single-cell growth rates from label-free images of budding yeast. In developing BABY, we solved multiple48
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image-processing challenges generated by cells dividing asymmetrically. BABY resolves overlapping instances – buds,49

particularly small ones, usually overlap with their mothers and neighbouring cells – by extending the U-net architec-50

ture with custom training targets and post processing. It tracks cells between time points with a machine-learning51

algorithm, which is able to resolve any large movements of cells from one image to the next, and assigns lineages with52

another informed by the U-net. These innovations substantially improve performance. BABY produces high-fidelity53

time series of the volumes of both mother cells and buds and so the instantaneous growth rates of single cells at fine54

temporal resolution.55

Using BABY, we find that concurrent behaviour in the growth rates of the mother cell and its bud enables us to56

identify cytokinesis from bright-field images and so accurately estimate birth times. We see a peak in growth rate57

during the S/G2/M phase of the cell cycle and show that this peak marks a transition in the bud’s growth from58

being sizer- to timer-controlled. Studying Sfp1, a regulator of ribosome synthesis, we observe correlated fluctuations59

between this regulator’s nuclear concentration and growth rate. Finally, we demonstrate that BABY is su�ciently60

fast to enable real-time control, running an experiment where changes in the extracellular medium are triggered when61

the growth of the cells being imaged crosses a pre-determined threshold.62

Results63

Segmenting overlapping cells using a multi-target convolutional neural network64

To estimate single-cell growth rates from time-lapse microscopy images, accurately identifying and segmenting cells is65

essential. Poorly defined outlines, missed time points, and mistakenly joined cells all substantially a↵ect how reported66

volumes vary with time.67

Correctly segmenting asymmetrically dividing cells, such as budding yeast, is particularly challenging because the68

imbalance in the size of the mother and bud gives each distinct appearances and behaviours. Even when constrained in69

a microfluidic device, small buds imaged in a single Z section may appear to overlap with their mother and neighbouring70

cells (Fig. 1a & 1b). Even if cells can be semantically separated, then the area of either the bud or the neighbouring71

cells is often underestimated and the bud may even be undetected (Figure 1—figure supplement 1). Buds also move72

more in the Z-axis compared to mother cells, changing how they appear in bright-field images (Fig. 1c). Depending73

on the focal plane, a bud may be di�cult to detect even by eye.74

Our BABY algorithm, however, has high reliability (Fig. 1e). We leverage the relative simplicity of the U-net [35],75

but extend this semantic approach to identify overlapping cells by combining custom training targets with a post-76

processing algorithm to segment instances.77

To identify potentially overlapping cells from the semantic output of a convolutional neural network (CNN) like the78

U-net (Fig. 2a), we noted that the frequency and extent of overlap varies with cell size (Appendix 3 Fig. 2). Therefore79

by dividing training masks – filled cell outlines – into categories of di↵erent sizes, we could define training images80

for each size category that reduced whether cells overlap. We further decreased overlaps by applying and optimising81

a morphological erosion to the training masks (Fig. 2b; Appendix 3 Figs. 2 & 1). With these data, we trained a82

multi-target CNN whose output then predominantly comprised separated interiors of cells (Fig. 2c).83

Using a four-layer U-net, we achieved high accuracies for predicting these targets early in training and with84

relatively few training images (588 trap images – 1813 annotated cells in total; Appendix 3 Fig. 3). Using standard85

image processing, we then readily identified cell instances and applied a morphological dilation appropriate for each86

size category to recover the training masks (Appendix 3 Fig. 4).87

To alleviate any loss in resolution from the morphological erosion used to generate the training masks, we incorpo-88

rated the training masks’ edge pixels as an additional set of training targets for each size category (Fig. 2d). Like the89

StarDist [37] and DISCO algorithms [30], we parameterise masks using a radial representation: it naturally describes90

the elliptical shape of a yeast cell but also specifies any star-convex shape, including non-convex pinched ones. Specif-91

ically, we fit radial splines with 4-8 rays depending on the cell’s size to a re-weighted version of the edge pixels and use92

outlines estimated from the CNN targets of the cells’ interiors as initial guesses (Appendix 3 Fig. 5). The resulting93

masks improve the intersection-over-union score on test images (Figure 3—figure supplement 1). Importantly, our94

method successfully detects and segments buds that overlap with adjoining mother and daughter cells (Fig. 1b & 1c).95

Other features further improve performance. We developed a powerful graphical user interface (GUI) to label and96

annotate overlapping cells with radial splines (Appendix 2 Fig. 1). The GUI allows concurrent viewing of the same97

cell across both Z-sections and time and so enables errors in segmentation and tracking errors to be rapidly identified98

and fixed. We therefore focused on challenging cases, iteratively cycling between training and curating in what was99

e↵ectively active learning. For training, we developed scripts that optimise the hyper-parameters, and so no specialist100

knowledge is required to change to other imaging modalities and cell types. Finally, although BABY can predict101

overlapping outlines from a single 2D image, performance is improved by using multiple Z-sections (Figure 3—figure102

supplement 1).103

The algorithm is highly accurate (Fig. 3a). For larger cell sizes, BABY performs comparably with both our104
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Figure 1: Reliably identifying individual cells makes automating label-free segmentation of budding cells

challenging. a A schematic of a budding cell constrained in a microfluidic device showing how a mother cell can
produce a bud beneath the previous daughter. The microscope, denoted by the eye, sees a projection of these cells.
b A time series of bright-field images of budding yeast trapped in an ALCATRAS microfluidic device [38], in which a
growing bud (white arrowheads) overlaps with both its sister and mother. On the duplicated images below, we show
outlines produced by BABY. c Bright-field images of growing buds (white arrowheads) taken at di↵erent focal planes
demonstrate how the appearance of small buds may change. d Cells can move substantially from image to image.
Here medium flowing through the microfluidic device causes a cell to wash out between time points and the remaining
cells to pivot. We show the correct lineage assignment with white arrowheads and the correct tracking by the numbers
within the BABY outlines. e A time series of a mother (purple) and its buds/daughters for a switch from 2% to
0.1% glucose is shown using volumes and growth rates estimated by BABY. Bud growth rates are truncated to the
predicted time of cytokinesis (triangles). Shaded areas are twice the standard deviation of the fitted Gaussian process.
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Figure 2: BABY uses multiple bright-field Z-sections, a multi-target convolutional neural network fol-

lowed by instance segmentation, and two machine learning classifiers to identify cells and their buds

reliably from image to image. a Multiple bright-field Z-sections are input into a multi-target U-net CNN. b The
curated training data comprises multiple outlines that are categorised by size to reduce overlap within each category.
c The CNN is trained to predict a morphological erosion of the target masks, which act as seeds for segmenting
instances. d Edge targets from the CNN are used to refine each cell’s outline, parameterised as a radial spline. e A
bud-neck target from the CNN and metrics characterising the cells’ morphologies are used to estimate the probabil-
ity that a pair of cells is a mother and bud with a machine-learning classifier. f Another classifier uses the same
morphological metrics to estimate the probability that an outline in the previous time point matches the current one.
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Figure 3: BABY outperforms existing algorithms for segmenting and tracking as well as accurately

estimating doubling times. a Comparing the intersection-over-union (IoU) score between manually curated masks
of single-cell outlines and masks predicted by the BABY, YeaZ and DISCO algorithms shows that BABY performs
best, particularly for buds and small cells. b BABY tracks best when comparing the distribution of track IoUs between
manually curated single-cell tracks and predicted tracks. c BABY accurately predicts both the times between budding
events, TM, and the times from birth to a cell’s first budding event, TD. d The predicted distributions of TM and TD

shift to longer times, as expected, when steady-state growth in 2% glucose is compared to 2% palatinose, a poorer
carbon source. We estimate too the population doubling times [39] using the median times (upper bar plot with mean
and 95% confidence interval from 10 bootstraps of the doubling time distributions).
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previous algorithm DISCO [30], which segments instances, and a recent algorithm YeaZ [34], which uses a U-net. For105

smaller cell sizes, there is substantial improvement. By using size categories, BABY overcomes the di�culties from106

the imbalance in size of mothers and buds and identifies buds overlapping with mother cells that both DISCO and107

YeaZ therefore miss.108

Using machine learning to track lineages robustly109

To determine growth rates accurately, estimates of both the volumes of the mother and the bud are necessary because110

the majority of growth occurs in the bud [13, 39]. Not only must we track cells from one time point to the next, but111

also correctly identify, track, and assign buds to their mothers (Appendix 4 Fig. 4).112

Budding raises multiple issues. With their small initial size, buds frequently first appear surrounded by cells and113

displace their neighbours as they grow (Fig. 1b), potentially making assigning a bud to its mother ambiguous (Fig. 1d).114

Additional challenges arise when the connected mother and bud react to the flow of medium. Buds may pivot around115

the mother, and such movements are especially prevalent, and can even involve multiple cells (Fig. 1d), in microfluidic116

devices that allow long-term imaging by washing away daughter cells. If tracked incorrectly, a pivoting bud is likely117

to be treated as newly detected – both overestimating budding rates and underestimating lag times.118

To help assign buds to mothers, we included an additional ‘bud-neck’ training target for the CNN (Fig. 2e; Appendix119

4) because cytokinesis is sometimes visible as a darkening of the bud neck in bright-field images. We then estimate120

the probability that a pair of cell outlines is a mother and bud using a machine-learning classifier trained on both121

morphological features derived from the segmented outlines and the CNN’s predictions of bud-necks (Appendix 4 Fig.122

3). Although the CNN’s performance in this task is lower than it is for identifying cells (Appendix 3 Fig. 3), the123

mother-bud classifier achieves a precision of 80% on test data.124

We construct the most probable lineage tree by first identifying cells that are likely to be buds and then assigning125

their mothers. For each bud, we pick its mother cell as the cell that has the highest accumulated probability of being126

in a pair with the bud, where the probability is accumulated over all previous images containing the bud and the127

potential mother cell (Appendix 4).128

We use another classifier to track cells between time points. This classifier is trained on the morphological properties129

of the cell outlines with only weak constraints on distance – the cells should only be near a microfluidic trap – allowing130

pivots (Fig. 1d) to be correctly tracked. Other tracking algorithms, in contrast, typically rely on distance, either131

explicitly by using the Hungarian algorithm to assign pairs of cells between images [25,28,34] or implicitly by seeding132

the detection of tracked cells either forwards [30] or backwards [31] in time. Using the classifier we find the probability133

of a match for all pairs of outlines between two time points (Fig. 2f; Appendix 4) and identify unmatched outlines134

too – those that have no pairings above a threshold probability. Such outlines are treated either as new buds or as135

disappearing or appearing cells because cells may be washed into or out of the field of view by the medium. To be136

resilient to transient errors in segmentation and in acquisition, like a loss of focus, we aggregate tracking predictions137

over the last three time points and defer to a classifier with stronger constraints on distance if assignment is ambiguous138

(Appendix 4).139

Comparing with the DISCO [30] and YeaZ [34] algorithms, BABY finds more than three times as many complete140

or near-complete tracks (Fig. 3b). DISCO uses previously detected cells as priors for tracked cells in subsequent time141

points, and YeaZ uses the Hungarian algorithm to assign pairs that minimise di↵erences in space and morphology.142

Each algorithm was assessed against manually curated data by calculating the intersection-over-union score (IoU)143

between cell masks in a reference track with those in a predicted track. We report the track IoU – the time points144

where the masks match relative to the total duration of both tracks. Where multiple predicted tracks could match145

a reference track, we use the match with the highest track IoU. Any predicted tracks left unassigned receive a track146

IoU of zero. BABY excels because it detects buds earlier, which both increases the track IoU and prevents buds from147

being tracked to daughters rather than mothers.148

We are unaware of other algorithms that assign lineages from bright-field images of budding yeast and so compared149

estimates of doubling times derived by BABY with those from manual curation (Fig. 3c). The mother’s time between150

budding events, TM, is expected to be shorter than the time a newly born daughter takes to produce its first bud,151

TD [39], and so we consider both types of doubling separately (Fig. 3c). There are fewer results for TD because152

observing a daughter cell that buds before being lost in the flow is rare – the microfluidic device is designed to retain153

mothers not daughters [38]. Although the estimates of TD are consistent, BABY does not give estimates for all curated154

daughters, usually because some buds forming on daughter cells appear for only a few time points before both daughter155

and bud are washed away.156

As an additional test, we ran BABY for images of cells growing in palatinose and in glucose (Fig. 3d). Estimates157

of TM are on average shorter than TD, and, at least for glucose where we have more division events from the faster158

growth, we observe that the distribution of TD is broader than that for TM.159

A useful control is to compare the population’s doubling time with that in batch growth. We estimated the160

doubling time from the medians of TM and TD with the formula of Hartwell and Unger [39]. The results for glucose161
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(Fig. 3d) agree with our measurements of batch growth (Figure 3—figure supplement 2). BABY, however, estimates162

a shorter doubling time in palatinose, a sugar similar to maltose. In batch growth, the concentration of the carbon163

source is not constant like it is in a microfluidic device, and cells both prepare for and switch from fermentation to164

respiration [40], slowing growth. This switch complicates comparing with constant conditions and is likely to happen165

for higher concentrations of palatinose than glucose because cells strongly prefer to ferment glucose.166

Estimating growth rates167

From the time series of segmented cells, we estimate instantaneous single-cell growth rates as time derivatives of168

volumes. We use a conical method to find each cell’s volume from its outline in an image [27] (Fig. 1e) and then a169

Gaussian process to both smooth the time series of volumes and to estimate its time derivative [41].170

We independently estimate the growth rates of mothers and their buds. Both are informative. Like others [13,42],171

we observe periodic changes in growth rate across the cell cycle (Fig. 1e).172

BABY predicts cytokinesis from bright-field images173

To better characterise how growth rate varies during the cell cycle, we ran experiments for cells with the gene MYO1174

tagged with Green Fluorescent Protein. As part of the actin-myosin contractile ring, Myo1 localises to the bud neck175

in late G1 and delocalises at cytokinesis [43] (Fig. 4a), marking the birth of a daughter. We could therefore identify176

the G1 and S/G2/M phases of the mother cells and the first G1 of independent daughters (Appendix 5 Fig. 1). By177

aligning the growth rates at cytokinesis, we observed two phases of growth (Fig. 4b). The bud dominates growth178

during S/G2/M, with its growth rate peaking approximately midway through (Fig. 4b) [13]. We further observe that179

the bud’s average growth rate positively correlates with the volume of the new daughter it becomes (Figure 4—figure180

supplement 1). The mother’s growth rate, in contrast, peaks during G1.181

We determined that we could predict cytokinesis from growth rate because at cytokinesis the mother’s and bud’s182

growth rates often reach a similar magnitude (Appendix 5). The predictions coincide with the drop in Myo1’s183

fluorescence as expected (Fig. 4c) and hold in di↵erent media, with the Myo1-based and predicted points of cytokinesis184

having a Pearson correlation coe�cient above 0.94 (Appendix 5 Fig. 2).185

Nutrient modulation of birth size occurs after the peak in growth rate186

This tight coordination between growth rate and cytokinesis suggested that the peak in growth rate preceding cytoki-187

nesis marks a regulatory transition. Comparing growth rates over S/G2/M for buds in a rich versus a poor carbon188

source, we found that the maximal growth rate occurs at similar times for both carbon sources despite substantial189

di↵erences in the durations of the S/G2/M phases (Fig. 4d).190

Daughters born in rich media are larger than those born in poor media, and some of this regulation is known to191

occur during S/G2/M [5,6,24]. Understanding the mechanism, however, is confounded by the longer S/G2/M phases192

in poorer media (Fig. 4d) [24], which counterintuitively gives daughters that should be smaller longer to grow.193

Given that the time between maximal growth and cytokinesis appears approximately constant in di↵erent carbon194

sources (Fig. 4d), we hypothesised that the growth rate falls because the bud has reached a critical size and that size195

is regulated during the subsequent period of falling growth to reach the desired daughter size. The faster growth in196

richer carbon sources would generate larger daughters. Consistently, the buds’ growth rates peak when the buds reach197

a similar size in both carbon sources, whereas their sizes at birth are distinct (Fig. 4e). Size regulation in S/G2/M is198

therefore likely to be implemented as cells approach cytokinesis.199

Changes in ribosome biogenesis precede changes in growth200

An important advantage of the BABY algorithm is that single-cell growth rates can be estimated without fluorescence201

markers, freeing fluorescence channels for other reporters. Here we focus on Sfp1, a transcription factor that helps202

coordinate ribosome synthesis with the availability of nutrients [6].203

Sfp1 promotes the synthesis of ribosomes by activating the ribosomal protein (RP) and ribosome biogenesis (RiBi)204

genes [6,44] and enters the nucleus in response to two conserved nutrient-sensing kinases – TORC1 and PKA [6,45,46]205

(Fig. 5a). In steady-state conditions, levels of ribosomes positively correlate with growth rate [47], and we therefore206

assessed whether Sfp1’s activity predicts changes in instantaneous single-cell growth rates.207

Shifting cells from glucose to the poorer carbon source palatinose and back again, we observed that Sfp1 responds208

quickly to both the upshift and downshift and that growth rate responds as quickly to downshifts but more slowly209

to upshifts (Fig. 5b). As a target of TORC1 and PKA, Sfp1 acts as a fast read-out of the cell sensing a change in210

nutrients [20]. In contrast, synthesising more ribosomes is likely to be slower and explains the lag in growth rate after211

the upshift. The fast drop in growth rate in downshifts is more consistent, however, with ribosomes being deactivated,212

rather than their numbers being regulated. Measuring the half-times of these responses (Fig. 5b boxplots), there is a213

mean delay of 30± 2 minutes (95% confidence; n = 245) from Sfp1 localising in the nucleus to the rise in growth rate214

in the upshift. This delay is only 8± 1 minutes (95% confidence; n = 336) in the downshift, and downshift half-times215

are less variable than those in upshifts, consistent with fast post-translational regulation. Although changes in Sfp1216
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Figure 4: A peak in growth rate of the bud is predictive of cytokinesis and implicated in size control. a

Using MYO1-GFP as a marker, we split individual cell cycles of mother cells into G1 and S/G2/M phases. We show
bright-field and fluorescence images for a representative cell during one cell cycle. Myo1’s fluorescence at the bud neck
abruptly disappears at cytokinesis. The cell’s growth rate (purple) and that of its bud (blue) are found from their
volumes and shown with a measure of Myo1’s localisation (orange). We estimate the point of cytokinesis from the
drop in Myo1 fluorescence (orange dashed line) and also from the mother’s and bud’s growth rates (blue dashed line).
b The time series with shading indicating growth rates for the buds/daughters of 268 cells growing initially in 2% and
switched to 0.1% glucose are shown as horizontal lines. Cells are aligned by the time of the drop in Myo1’s fluorescence.
The corresponding median growth rates of mother and bud/daughter are plotted below, with the interquartile range
shaded. The longer cell cycles likely occur during the glucose switch. c We show the fluorescence signal for the same
cells, but align by the point of cytokinesis predicted from the mother’s and daughter’s growth rates. For almost all
cells, Myo1’s fluorescence drops near the predicted time of cytokinesis. d Although buds grow faster in richer media,
the time of the maximal growth rate relative to cytokinesis is approximately constant, unlike the durations of the
mothers’ S/G2/M phases. Cells are grown in either 2% glucose or 2% palatinose. We show median growth rates
with the interquartile range shaded. e Binning median growth rates according to volume, with the interquartile range
shaded, shows that the buds’ volumes when their growth rate is maximal are similar in both carbon sources, although
those at birth are not.
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Figure 5: The dynamics of the ribosomal regulator Sfp1 anticipate changes in single-cell growth rates.

a The transcription factor Sfp1 is activated by the kinases TORC1 and PKA when extracellular nutrients increase
and promotes synthesis of ribosomes and so higher growth rates. b Growth rate follows changes in Sfp1’s nuclear
localisation if nutrients decrease but lags if nutrients increase. We show the median time series of nuclear Sfp1-GFP
in mothers (green) and the summed bud and mother growth rates (black) for cells switched from 2% palatinose to 2%
glucose and back. The interquartile range is shaded. Data was filtered to those cell cycles that could be unambiguously
split into G1 and S/G2/M phases by a nuclear marker, and we display the number in each phase in the area plot.
Above the switches, we show box plots for the distributions of half-times: the time of crossing midway between the
minimal and maximal values. c The mean single-cell autocorrelation of nuclear Sfp1 and the summed mother and
bud growth rates are periodic because both vary during the cell cycle. We calculate the autocorrelations for constant
medium using data four hours before each switch (Appendix 6). The 95% confidence interval is shaded. d The mean
cross-correlation between nuclear Sfp1 and the summed mother and bud growth rate shows that fluctuations in Sfp1
precede those in growth.
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consistently precede those in growth rate, the higher variability in half-times for the growth rate is not explained by217

Sfp1’s half-time (Pearson correlation 0.03, p = 0.6).218

By enabling both single-cell fluorescence and growth rates to be measured, BABY permits correlation analyses [21]219

(Appendix 6). Both Sfp1’s activity and the growth rate vary during the cell cycle. The autocorrelation functions for220

nuclear Sfp1 and for the growth rate are periodic with periods consistent with cell-division times (Fig. 5c): around221

90 minutes in glucose and 140 minutes in palatinose for Sfp1 and 95 minutes and 150 minutes for the growth rate. If222

Sfp1 acts upstream of growth rate, then its fluctuations in nuclear localisation should precede fluctuations in growth223

rate. Cross-correlating nuclear Sfp1 with growth rate shows that fluctuations in Sfp1 do lead those in growth rate, by224

an average of 25 minutes in glucose and by 50 minutes in palatinose (Fig. 5d). Nevertheless, the weak strength of this225

correlation suggests substantial control besides Sfp1.226

During the downshift, we note that the growth rate transiently drops to zero (Fig. 5b), irrespective of a cell’s stage227

in the cell cycle (Figure 5—figure supplement 1), and there is a coincident rise in the fraction of cells in G1 (Fig. 5b228

bottom), suggesting that cells arrest in that phase.229

Using growth rate for real-time control230

With BABY, growth rate can be used as a control variable in real time because BABY’s speed and accuracy enables231

cells to be segmented and their growth rates estimated during an experiment (Fig. 6a). As an example, we switched232

the medium to a poorer carbon source and used BABY to determine how long cells should be kept in this medium if we233

want approximately 50% the cells to have resumed dividing before switching back to the richer medium (Appendix 7).234

After five hours in glucose, we switched the carbon source to ethanol (or galactose – Figure 6—figure supplement 1).235

There is a lag in growth as cells adapt. Using BABY, we automatically determined the fraction of cells that have236

escaped the lag at each time point – cells that have at least one daughter whose growth rate exceeds a threshold (Fig.237

6b). This statistic is read by the software running the microscope, and the switch back to glucose is triggered when238

50% of the cells have escaped (Fig. 6c). All cells resume dividing in glucose and initially grow synchronously because239

of the rapid change of media. This synchrony is most obvious in those cells that did not divide in ethanol (Fig. 6c).240

This proof-of-principle shows that BABY can be used in more complex feedback control, where a desired response241

is achieved by comparing behaviour with a computational model to predict the necessary inputs, such as changes242

in media [48–53]. Unlike previous approaches though, which typically measure fluorescence, BABY not only allows243

single-cell fluorescence but also growth rates to be control variables, and growth rate correlates strongly with fitness [1].244

Discussion245

Here we presented BABY, a freely available algorithm to routinely extract growth rates from label-free images obtained246

by time-lapse microscopy. BABY tackles previously unaddressed challenges in analysing images of budding cells and247

provides fully automated tracking of lineages of budding yeast – from identifying cells to estimating births. We248

introduce both a segmentation algorithm that allows instances to overlap and general machine-learning methods to249

track and assign lineages. These approaches individually and together provide substantial gains in performance. As250

a result, BABY reliably estimates time series of cellular volumes and consequently instantaneous single-cell growth251

rates. There is no prohibitive penalty on speed, and BABY performs real-time processing.252

BABY improves segmentation largely because it allows cells to overlap. Samples for microscopy are often prepared253

to encourage cells to grow in a monolayer [11], but growth can be more complex because cells inevitably have di↵erent254

sizes. We observe substantial and frequent overlaps between buds and neighbouring cells in ALCATRAS microfluidic255

devices [38]. Inspecting images obtained by others, we believe overlap is a common, if undeclared, problem, occurring256

during growth in CellASIC devices [31,34], against an agar substrate [15,28], in a microfluidic dissection platform [26],257

and by surface attachment [54]. BABY alleviates having to constrain cells to completely exclude their neighbours,258

at least when determining growth rates. Moreover we anticipate that BABY will segment mixtures of cells with259

a range of sizes even if they do not bud, such as persister cells that transition at di↵erent rates from smaller to260

larger morphologies [55]. For substantial growth beyond a monolayer, however, a di↵erent approach with full three-261

dimensional imaging and segmentation is likely required [32].262

Our algorithm uses a convolutional neural network that is smaller than the typical networks, with performance263

relying instead on the choice of output targets. U-nets usually involve five contracting layers [32, 34, 35], whereas we264

found four layers were optimal, presumably because our problem is of lower than usual complexity. Unlike others [30,265

56], we need not explicitly ignore features in the image because the network quickly learns to disregard both the traps266

in ALCATRAS devices and any debris.267

The neural network represents cell edges at their native resolution, unlike alternative algorithms that also allow268

instances to overlap: the Mask-RCNN scales regions of interest to a standard low-resolution image [36] and StarDist269

represents an object’s edge pixels as star-convex shapes with a constant and necessarily limited number of rays at270

fixed angles [37]. Though BABY’s final masks for segmentation are also star-convex, we optimise both the number271

of rays and their angles to fit the high-resolution edge and use smoothing splines for the cell outlines. Instances are272
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Figure 6: BABY allows growth rate to be used as a variable for real-time control. a Integrating BABY
in real time with an experiment allows the cells’ growth rate to control changes in media. Cells growing in the
ALCATRAS microfluidic device are fed from one of two syringe pumps containing di↵ering media. Following five
hours in 0.5% glucose, growth is arrested by a switch to 2% ethanol, a poorer carbon source. The images collected are
analysed by BABY and growth rates are determined. When the majority of cells have resumed dividing, detected by
the growth rate of at least one of their daughters exceeding 15 µm3/hour, the software triggers a change in pumping
and returns glucose to the device. b The fraction of cells that have escaped the lag and resumed dividing increases
with the amount of time in ethanol. All cells divide shortly after glucose returns. c The growth rates of the buds for
each mother cell drop substantially in ethanol and resume in glucose. Each row shows data from a single mother cell
with the daughters’ growth rate indicated by the heat map. Rows are sorted by the time each cell resumes dividing
in ethanol.
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therefore represented in an expanded morphological space, which aligns the rays with how a cell is oriented. With273

extra training data, we expect BABY to segment atypical morphologies, such as those of ageing cells, but for more274

deviant shapes specialised algorithms may be required [34].275

We use a flexible, generalizable approach to tracking cells and lineages. To identify the same cell from one image276

to the next, tracking algorithms often use both Euclidean distance and morphological similarity, with the weighting277

between the two tuned to the type of image [34, 57]. We generalise this approach by applying machine learning278

to assign pairs. We thus both formalise how weights are determined and find a probability for each assignment.279

With these probabilities, we are able to distinguish rigorously between a cell that is correctly tracked and a new cell280

replacing another and so avoid having to arbitrarily set thresholds. Because buds appear as independent objects that281

need pairing with mother cells, we apply the same approach to tracking lineages and obtain high accuracies by using282

features derived from the neural network’s prediction of bud necks.283

Once we have generated time series of cellular volumes, we make only weak assumptions about the nature of growth284

to estimate instantaneous growth rates. Single-cell growth rates in yeast have been variously modelled – for example,285

as bilinear [13,24,25,42] and as exponential [7,15,23,58] – but that choice has implications for size control [8]. Instead286

we use Gaussian processes to estimate growth rates [41] and so make assumptions only on the class of functions that287

describe growth rather than their precise functional form. As well as consistently estimating errors and interpolating288

to new time points, we show that this non-parametric analysis yields detailed instantaneous growth rates both across289

the cell cycle and in response to shifts in nutrients.290

A well-known challenge in automating segmentation is determining when two cells become independent [57], which291

we answer by exploiting characteristics of yeast’s growth. Like others [13, 42], we observe that growth rate varies292

during the cell cycle and in particular peaks during budded growth. This peak is su�ciently regular that we are able293

to use it to reliably predict the time of cytokinesis.294

Our results highlight the importance of single-cell growth rates as phenomenological readouts. We hypothesise295

that the peak in the bud’s growth rate marks a regulatory transition, triggered when the bud’s size reaches a nutrient-296

independent threshold. Although the bud’s size is known to be regulated during M phase [24, 25], our data suggest297

a sequential mechanism that matches size to growth rate, with a nutrient-independent sizer followed by a nutrient-298

dependent timer. This peak in bud growth may be monitored by Gin4-related kinases [59]. We also report that299

activation of Sfp1 – a downstream target of TOR kinase [60] – anticipates growth rate, both within a cell-cycle and300

after a shift in nutrients, consistent with growth being powered by translation [6].301

Much of cell biology is focused on understanding how cells respond to change [10], and watching individual cells in302

real time as their environment alters gives great insight [11]. Together time-lapse microscopy, microfluidic technology,303

and fluorescent proteins allow us to control extracellular environments, impose dynamic changes, and phenotype304

cellular responses over time. With BABY, we add the ability – with no extra imaging costs – to measure what is305

often our best estimate of fitness, single-cell growth rates. The strategies used by cells in their decision making are of306

high interest [61, 62]. With BABY, or comparable software, we are not only able to rank the strategies that each cell307

adopts by their fitness, but also to investigate the strategies used to regulate fitness itself through how cells control308

their growth, size, and divisions.309

Methods310

Strains and media311

Strains included in the curated training images were all derivatives of BY4741 [63]. Both BY4741 Myo1-GFP Whi5-312

mCherry and BY4741 Sfp1-GFP Nhp6A-mCherry were derived from the respective parent in the Saccharomyces313

cerevisiae GFP collection [64] by PCR-based genomic integration of mCherry-KanR from pBS34 (EUROSCARF) to314

tag either Whi5 or the chromatin-associated Nhp6A protein. All tags were validated by sequencing. Media used for315

propagation and growth was standard synthetic complete (SC) medium supplemented either with 2% glucose, 2%316

palatinose or 0.5% glucose depending on the starting condition in the microfluidics devices. Cells were grown at 30�C.317

Microscopy and microfluidics318

Device preparation and imaging319

Overnight cultures were inoculated with low cell numbers such that they would reach mid-log phase in 13-16 hours.320

Cells were diluted in fresh medium to OD600 of 0.1 and incubated an additional 3–4 hours before loading into microflu-321

idic devices at OD600 of 0.3–0.4. To expose multiple strains to the same environmental conditions and to optimise322

data acquisition, we use multi-chamber versions of ALCATRAS [38,65,66], which allow for either three or five di↵er-323

ent strains to be observed in separate chambers while exposed to the same extracellular medium. The ALCATRAS324

chambers were pre-filled with growth medium with added 0.05% bovine serum albumin (BSA) to facilitate cell loading325

and reduce clumping. All microfluidics media were passed through 0.2 µm filters before use.326
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We captured images on a Nikon Ti-E microscope using a 60⇥, 1.4 NA oil immersion objective (Nikon), OptoLED327

light source (Cairn Research) and sCMOS (Prime95B) or EMCCD (Evolve) cameras (both Photometrics) controlled328

through custom MATLAB software using Micro-manager [67]. The microscope and syringe pumps containing media329

were maintained at 30�C in a custom-made incubation chamber (Okolabs).330

Changing the extracellular environment331

For experiments in which the cells experience a change of media, two syringes (BD Emerald, 10ml) mounted in syringe332

pumps (Aladdin NE-1002X, National Instruments) were connected via PTFE tubing (Smiths Medical) to a sterile333

metal T-junction. The T-junction’s output was delivered via PTFE tubing to the microfluidic device. Initially the334

syringe with the first medium infused at 4 µL/min while the second pump was o↵. To remove back pressure and335

achieve a rapid switch, medium was infused at 150 µL/min for 40s from the second pump while the first withdrew at336

the same rate. The second pump was then set to infuse at 4 µL/min and the first switched o↵. This sequence was337

reversed to achieve a second switch in some experiments. All changes of the flow rates and directions of the pumps338

were controlled through Matlab software, via RS232 serial ports.339

Data and code availability340

Data is available at https://doi.org/10.7488/ds/3427 and code from341

https://git.ecdf.ed.ac.uk/swain-lab/baby.342

Birth Annotator for Budding Yeast (BABY) algorithm343

The BABY algorithm takes either a stack of bright-field images or a single Z-section as input and coordinates multiple344

machine-learning models to output individual cell masks annotated for both tracking and lineage relationships.345

Central to segmenting and annotating lineages is a multi-target convolutional neural network (CNN). Each target346

of the CNN is semantic – binary labels are assigned to each pixel. These targets are defined to ease both segmenting347

overlapping instances and assigning lineages in post-processing steps. The reverse task of identifying cell instances from348

the semantic outputs of the CNN comprises two steps: image processing to identify candidate masks and optimising349

a radial spline to refine mask edges. Details are given in Appendix 3.350

To track cells and lineages, we use machine-learning classifiers both to link cell outlines from one time point to the351

next and to identify mother-daughter relationships. The classifier converts a feature vector, representing quantitatively352

how two cell masks are related, into probabilities for two possible classes. For cell tracking, the probability of interest353

is the probability that the two cells at di↵erent time points are in fact the same cell. For assigning lineages, the354

probability of interest is the probability that the two cells have a mother-daughter relationship. A target of the CNN355

dedicated to assigning lineages is aggregated over time to determine this probability. Details are given in Appendix 4.356

Scripts automate the training process, including optimising hyperparameters – like the size categories and CNN357

architecture – and post-processing parameters. We split the training data into training, validation, and test sets [68],358

with these categories consistently carried through the training pipeline. The training set is used for training the CNN359

and the validation set for optimising hyperparameters and post-processing parameters. The test set is excluded during360

this optimisation and is used only to assess performance and generalisability after training.361

The algorithm is implemented in Python and depends on Tensorflow [69] for the deep-learning models, Scikit-362

learn [70] for machine learning, and Scikit-image [71] for image processing. The code can be run either directly from363

Python or as an HTTP server that processes submitted requests and enables access from other languages, such as364

Matlab.365

Measuring growth366

Calculating cell volumes367

To estimate cell volumes, we model a 3D cell from our 2D outline. Although the neural network uses information in368

the z-direction, the resulting segmentation is 2D not 3D, partially because 3D measurements made by epifluorescence369

microscopy are anisotropic. In our experiments, the distance between two z-positions is usually approximately three370

times larger than the pixel size in the x and y directions.371

We use a conical method [27], which is robust to various common cell shapes, to estimate cell volume from an372

outline. The method makes two assumptions: that the outline obtained cuts through the widest part of the cell and373

that the cell is ellipsoidal. We build a cone with a base shape that is the filled segmentation outline of the cell by374

iteratively eroding the mask of the cell and stacking these masks in the z dimension. We find the volume of the cone375

by summing the voxels in the corresponding 3D mask. Finally, we multiply this sum by four to obtain the volume of376

the cell, because a cone whose base is the equatorial plane of an ellipsoid will have a volume that is a quarter of the377

corresponding ellipsoid’s volume [27].378

Estimating single-cell growth rates379

Depending on the need for computational speed, we use one of two methods for estimating instantaneous growth rates.380
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For long-term, and stored, analysis, we estimate growth rates by fitting a Gaussian process with a Matern covariance381

function to the volume time series for each cell [41]. We set the bounds on the hyperparameters to prevent overfitting.382

Maximising the likelihood of the hyperparameters, we are able to obtain the mean and first and second time derivatives383

of the volume, as well as estimates of their errors. The volume’s first derivative is the single-cell growth rate.384

During real-time processing where the growth rate may be used to control the microscope, fitting a Gaussian385

process is too slow. Instead we estimate growth rates from the smoothed first derivative obtained by Savitzky-Golay386

filtering of each cell’s volume time series. Though faster, this method is less reliable than a Gaussian process and does387

not estimate errors. For time series of mothers, we use a third-order polynomial with a smoothing window of seven388

time points; for time series of daughters, we use a fourth-order polynomial also with a smoothing window of seven389

time points.390

We estimate growth rates separately for mothers and their buds because both are informative. We find that the391

summed results are qualitatively similar to previous estimates of growth rate, which fit the time series of the combined392

volume of the mother and its bud [13,42].393
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Appendix 1545

Quantifying localization546

During each experiment, we acquired bright-field and fluorescence images at five z-sections spaced 0.6 micron apart.547

The maximum projection of these images (the maximum pixel values across all z-sections) was used for quantification.548

For each cell, we determined its fluorescence image by subtracting the median fluorescence of the cell’s pixels and549

setting all non-cell pixels to zero. This median fluorescence will be determined by a cytoplasmic pixel, and we assume550

that it results from autofluorescence only, which requires su�ciently low numbers of fluorescent markers.551

To quantify fluorescent markers in the nucleus, we noted that fluorescence in the nucleus appears in an image552

as a two-dimensional Gaussian distribution because of point spreading in epifluorescence microscopes. We therefore553

identified the most probable location of the nucleus for each cell by convolving a Gaussian filter with the fluorescence554

image. The maximal value in the resulting filtered image marks the location that most closely matches this filter.555

Using data from nuclei segmented via Nhp6A-mCherry reporters [20], we observed that the area of the nucleus556

Anuc scales as a fraction of cell area Acell with a scaling factor fnuc ' 0.085. We used this result to estimate a standard557

deviation � for the Gaussian filter. If the nucleus is approximately circular then its radius can be estimated as558

rnuc =

r
fnucAcell

⇡
. (1)

Assuming that 95% of the fluorescence in the nucleus is contained within the segmented area of nucleus, then we559

choose the � of the Gaussian filter so that 95% of its probability is obtained by integrating over a circle of radius rnuc.560

Writing ↵ = 0.95, we have561

↵ =

Z

Anuc

dxdy
e�

x2+y2

2�2

2⇡�2

= 2⇡

Z rnuc

0
dr r

e�
r2

2�2

2⇡�2

= 1� e�
r2nuc
2�2

(2)

switching to polar coordinates. Using that the cumulative distribution function of the �2 distribution with two degrees562

of freedom is F�2(x) = 1� e�x2/2, we can rearrange Eq. 2 and combine with Eq. 1 to give563

� =

s
fnucAcell

⇡F�1
�2 (↵)

. (3)

We next assume an ideal fluorescence image of the nucleus can be described by the same Gaussian filter but564

rescaled by some amplitude af . If we apply the Gaussian convolution G to the pixel in this ideal image with maximal565

fluorescence, we obtain566

afkG2k (4)

where kG2k is the sum of the squared values of the Gaussian filter. This quantity should in principle be equal to567

↵max(C), where C is the Gaussian filtered fluorescence image of the actual cell. Therefore568

af =
↵max(C)

kG2k . (5)

Finally, af is our prediction of the total nuclear fluorescence, but the concentration is more biologically relevant569

and, if denoted N , is570

N =
af

fnucAcell

=
↵max(C)

fnucAcellkG2k

(6)

which is the measure we use.571

For quantifying the localization of Myo1-GFP to the bud neck, we note that N is a sensitive proxy for localization572

and assume that it applies equally well in this case.573
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Appendix 2574

Training data and a graphical user interface for curating575
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Figure 1: Main features of the graphical user interface used for annotation. A custom graphical user interface
(GUI) was developed in Matlab for e�cient annotation of overlapping cell instances, tracks and lineages over long time
courses. The screen-shot shows the GUI in its horizontal layout with 3 bright-field sections and a fluorescence channel
selected for parallel view. Annotated outlines and arrows indicating lineage relationships have each been toggled on
for display. Up to 9 time points can be displayed in parallel; the slider at the bottom allows fast scrolling through the
entire time-lapse. A time-course summary panel is displayed above the slider and has been set to show the outline
areas for a mother and all its daughters. An overview image of the entire position allows navigation between traps.
Multiple editing modes can be selected for manipulating annotations in the parallel view region, including modes for
draggable outline editing, track merging/splitting and lineage reassignments.

Training data for the machine learning models consisted of bright-field time-lapse images of yeast cells trapped576

in ALCATRAS devices [38] and manually curated annotations: a bit-mask outline for each cell and its associated577

tracking label and lineage assignment, if any. All images were taken with five Z sections and 60⇥ lens, including578

examples taken using cameras with di↵erent pixel sizes (0.182 µm and 0.263 µm).579

To ease annotating overlapping instances, cell tracks and lineage relationships, we developed a Graphical User580

Interface (GUI) in Matlab that allows parallel viewing of multiple Z sections and time points (Appendix 2 Fig. 1).581

This parallel view helps curate buds obscured by a lack of focus and those that might be missed without simultaneously582

observing multiple time points. Manipulations made to outlines and tracks are mirrored to all views in real time. The583

interface is highly customisable, with multiple layouts available and the ability to select which sections and channels584

are displayed. To edit outlines for smaller cells, the level of zoom can be adjusted. Further, starting outlines can be585

copied across time points and interpolated forwards or backwards in time (interpolated outlines are annotated as such586

until they are manually adjusted).587

Annotations are saved in a custom format for computational e�ciency, but various export options are available.588

For training we exported annotations in PNG format with one image per time point. Because outlines can potentially589
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overlap, they are tiled, with one cell instance per tile. The metadata of the PNG file is used to store track and lineage590

annotations.591

The GUI also includes features to e�ciently detect and correct rare errors. A track display panel provides visual592

aids to summarise tracks across the entire time course. In particular, the ‘Display mother and daughter areas’ mode593

uses this panel to plot the area of the currently selected cell and all of its daughters over the time course. Using this594

mode, many segmentation and tracking errors are highlighted as unexpected jumps in area or changes in track label595

(denoted in colour). We use a slider to navigate to these errors where they can be either corrected in place or saved596

for future curation.597

Although the GUI can be used on whole images, it includes features to navigate and annotate images that can be598

partitioned into regions, such as the traps of our ALCATRAS devices. Then the trap navigation image shows trap599

locations and can be used to move between traps.600
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Appendix 3601

The BABY algorithm: identifying cells and buds602

Mapping cell instances to a semantic representation603

For epifluorescence microscopy, samples are typically prepared to constrain cells in a monolayer. If the cells have604

similar sizes and match the height of this constraint, they will be physically prevented from overlapping. If cells are605

of di↵erent sizes, however, then a small cell can potentially fit in gaps and overlap with others. This phenomenon is606

especially prevalent for cells that divide asymmetrically, where a small daughter grows out of a larger mother.607

Few segmentation algorithms identify instances of overlapping cells. Most, including recent methods for budding608

yeast [31, 34, 56], make the assumption that cells can be labelled semantically – each pixel of the image is identified609

with at most one cell. Similarly, most tools for annotating also label semantically, and consequently curated training610

data does not allow for overlaps [34], even when the segmentation algorithm could [33]. Our laboratory’s previous611

segmentation algorithm included limited overlap between neighbouring cells [30], but not the substantial overlap seen612

between the smaller buds and their neighbours.613
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Figure 1: Mapping cell instances to semantic targets of a CNN. a Bright-field Z-sections of cells trapped in
an ALCATRAS device. b Curated cell outlines overlaid on one bright-field section. c Outlines are separated into
categories by size. Each category is chosen to retain some overlap with neighbouring categories. Here the red outline
in the medium category is duplicated in the small category. d Interior targets are cell masks after di↵erent rounds of
morphological erosions appropriate for each size category: no erosion for small cells, four iterations for medium, and
five for large. On the right, outlines are overlaid on the target masks for reference. e Edge targets are the outlines for
each size category. f The curated cell outlines of b, but with arrows to show the lineages assigned during curation.
g Using these curated lineages, the ‘bud neck’ target is defined as the overlap of the bud mask with a morphological
dilation of the mother mask (right).

Separating cells by size to disjoin overlapping cells We rely on two consequences of the height constraint to614

segment overlapping instances. First, cells of di↵erent sizes show di↵erent patterns of overlap; second, cells rarely615

have coincident centres. Very occasionally, we do observe small buds stacked directly, one on top of the other, but616

neglecting these rare cases does not degrade performance. We therefore use morphological erosions to obtain semantic617

images by shrinking cell masks within a size category and morphological dilations to approximate the original cell618

outlines from each resulting connected region.619

To separate overlapping cells, we define three size categories and treat instances in each category di↵erently.620

Appendix 3 Fig. 1 illustrates our approach, where we segment a bud (orange outline) that overlaps a mother cell621

(green outline). The bud is only visible in the third and fourth Z sections of the bright-field images (Appendix 3622
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Fig. 1a). If used for training, the manually curated outlines in this example (Appendix 3 Fig. 1b) would be split into623

di↵erent size categories (Appendix 3 Fig. 1c). The bud is assigned to the small category. When the outlines in this624

category are filled and the image converted into a binary one (Appendix 3 Fig. 1d), the cell masks are distinct from625

each other. For the large category, however, the masks are not separable when immediately converted, but become626

so when the filled outlines are first morphologically eroded (Appendix 3 Fig. 1d). The largest size category tolerates627

more erosions than smaller ones, for which the mask may disappear or lose its shape.628

Determining the size categories Using the training data – curated masks for each cell present at each trap at629

each time point, we identify the size categories that best separate overlapping cells. To begin, we calculate the overlap630

fraction – the intersection over union – between all pairs of cell masks. Its distribution reveals that the most substantial631

overlaps occur between cells of di↵erent sizes (Appendix 3 Fig. 2a – upper triangle).632
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Figure 2: Overlaps between cells are reduced through categorising cells by size. a Upper triangle: plotting
the overlap fraction for each pair of cells – the intersection over union of their bit masks, shows that the majority of
overlaps occur for cells of di↵erent sizes. Almost all overlaps have the size of cell 2 greater than the size of cell 1 and
lie o↵ the diagonal. Lower triangle: With a single fuzzy size threshold, cells in the small category have sizes less than
the upper threshold (dashed line), and cells in the larger category have sizes greater than the lower threshold (dotted
line). Within each category, the overlap fractions are mostly small; between the two categories, overlaps are mostly
large (excluded cells in red). By converting the bit masks into two binary images, one for each size category, rather
than a single binary image, we therefore eliminate, or exclude, most of the substantial overlaps. b The distribution
of all mask areas in the same training data for comparison. Size thresholds are indicated as in a. c The distributions
of overlap fractions for mask pairs grouped using the fuzzy size threshold described in a. We omit pairs that do not
overlap for clarity. d Applying morphological erosions of the cell masks reduces the number of overlapping cell pairs,
but generates smaller masks. We judge masks with areas below 10 pixels squared to be too small. e The numbers
of overlapping cell pairs remaining from the training, validation and test sets either before (denoted None) or after
splitting into size categories and applying an optimised number of erosions.

We therefore choose the size categories so that most overlaps occur between pairs of cells in di↵erent categories633

and little overlap occurs between pairs of cells within a category. For example, rather than converting the cell masks634

directly into a single binary image for training, if first we divide cells into two size categories and convert the masks635

within each category to a separate binary image, giving two images rather than one, then in these two images we have636

eliminated all overlaps occurring between cells in the smaller category with cells in the larger category (Appendix 3637

Fig. 1 & 2a – lower triangle).638

To divide the cell masks into two categories, we define a fuzzy size threshold using a threshold T and padding639

value P . The set of smaller masks is all masks whose area is less than T + P ; the set of larger masks is all masks640

whose area is greater than T � P . Consequently, it is possible to have the same mask in both sets (Appendix 3 Fig.641

1c). This redundancy ensures the CNN can produce confident predictions even for cells close to the size threshold –642

we eliminate any resulting duplicate predictions in post-processing. A pair of masks are prevented from overlapping,643

by being converted into distinct binary images, if their sizes are separated by the threshold (after padding): the two644
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masks must be in di↵erent size categories, and so the smaller cell must have a size < T � P and the larger cell must645

have a size > T + P . To scale with pixel size, we set P to be 3% of the area of the largest mask in the training set.646

To determine an optimal fuzzy threshold, we test 29 values evenly spaced between the minimal and maximal mask647

sizes and choose the threshold that minimises the summed overlap fraction for all mask pairs not excluded by the648

threshold. Even with just one fuzzy threshold (Appendix 3 Fig. 2a), most of the pairs with substantial overlap –649

typically buds with neighbouring cells – are excluded (Appendix 3 Fig. 2c).650

After applying the threshold, overlaps between cells within a size category remain, and we reduce such overlaps651

using morphological erosions (Appendix 3 Fig. 1). We use the training data to optimise the number of erosions applied652

to each size category. As the number of iterations increases, there is a trade-o↵ between the number of overlapping653

mask pairs and the number of masks whose eroded areas become too small to be confidently predicted by the CNN654

(Appendix 3 Fig. 2d). Without erosion, many of the large cells show overlaps; with too much erosion, the smallest655

masks distort their shapes or disappear completely. We therefore optimise the number of iterations separately for each656

size category, picking the highest number of iterations that can be applied without any of the training masks in that657

size category falling below an absolute minimal size, defined as 10 pixels squared.658

Combining categorising by size with eroding reduces the number of pairs of overlapping masks almost to zero659

(Appendix 3 Fig. 2e). We arrive at three size categories by first introducing an additional fuzzy threshold for each660

of the two initial size categories. These thresholds are similarly determined by testing 29 fuzzy threshold values and661

calculating the overlap fraction for all mask pairs not excluded by either the original or the new threshold. We only662

keep one of the new thresholds – the one minimising the overlap fraction, giving three size categories in total. This663

extra category results in a further, although proportionally smaller, decrease in the number of overlapping masks.664

After erosion, mask interiors within each size category are easily identified, but with less resolved edges. To help665

alleviate this loss, we generate edge targets from the training data (Appendix 3 Fig. 1e) – the outlines of all cells666

within each size category.667

Three types of training targets The curated data is further annotated with lineage assignments (Appendix 3668

Fig. 1f), which we use to generate ‘bud neck’ targets (Appendix 3 Fig. 1g).669

In total, then, the training targets for the CNN are the mask interiors and the edges for three size categories and670

the bud necks.671

Predicting semantic targets with a convolutional neural network672

We trained fully convolutional neural networks [68] to map a stack of bright-field sections to multiple binary target673

images. Example inputs and outputs are shown in Appendix 3 Fig. 1, but we also trained networks with only674

one or three bright-field sections. The intensities of the bright-field sections were normalised to the interval [�1, 1]675

by subtracting the median and by scaling according to the range of intensities expected between the 2nd and 98th676

percentiles.677

Each output layer of the CNN approximates the probability that a given pixel belongs to the target class, being a678

convolution with kernel of size 1 ⇥ 1 and sigmoidal activation. All other convolutions had kernels of size 3 ⇥ 3 with679

ReLU activation and used padding to ensure consistent dimensions for input and output layers. Di↵erent core network680

architectures were tested and trained.681

Augmenting the training data To prevent over-fitting and improve generalisation, we augmented the training682

data [68]. Each time a training example was presented to the CNN, a randomly selected series of image manipulations683

was applied to the input and target. The same training example therefore typically appears di↵erently for each epoch.684

One augmentation was always applied and the others applied with a certain probability. If the bright-field input685

had more Z sections than expected by the network, we selected a random subset, excluding any subsets with selected686

sections that were separated by two or more missing sections. The remaining augmentations were applied with a687

probability p and comprised vertical and horizontal translation (each with p = 0.25), image rotation (p = 0.2), re-688

scaling (p = 0.08), vertical and horizontal flips (each with p = 0.08), addition of white noise (p = 0.08), and a step689

shift of the Z sections (p = 0.08). The probability of not augmenting was thus p = 0.30. To show a di↵erent region of690

each image-mask pair at each epoch, translation, rotation and re-scaling were all applied to images and masks before691

cropping to a consistent size (96 ⇥ 96 pixels for a pixel size of 0.182 µm). Using reflection to handle the boundary,692

translations were over a random distance and rotations over a random angle. The factor used for re-scaling was693

randomly adjusted by up to 5%. Augmentation by addition of white noise involved adding random Gaussian noise694

with a standard deviation picked from an exponential distribution with rate 0.003 to each pixel of the (normalised)695

bright-field images.696

To reduce aliasing errors when manipulating binary masks during augmentation, all image transformations were697

independently applied to each filled mask before converting the transformed masks into one binary image. Further,698

before a transformation, each binary filled outline was smoothed with a 2D Gaussian filter, and after the transformation,699

the transformed binary outline was found by the Canny algorithm. To determine the standard deviation of this700

Gaussian filter, �, we tested a range of values on the training outlines. For each filled outline and �, we applied701
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the filter followed by edge detection and filling. We then calculated the intersection over union of the resulting filled702

outline with the original filled outline. We observed that as a function of edge length, defined as the number of pixels703

in the outline, the � producing the highest intersection over union increased exponentially. We consequently used an704

exponential fit of this data to estimate an appropriate � for each outline.705
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Figure 3: Training performance of the multi-target U-Net. a Schematic U-Net architecture with depth d = 3.
Labels above convolution operations indicate number of output filters as a multiple of n. Layer heights indicate
reduction in image width/height with network depth. b Training (solid) and validation (dot-dash) loss for 10 training
trials using the U-Net architecture each with randomly chosen hyperparameters. c Loss for the fully trained U-Net
with hyperparameters chosen from the trial network with the lowest final validation loss (a U-Net with depth d = 4,
filter factor n = 8 and batch normalisation). d–f Performance of (d) interior, (e) edge and (f) bud neck targets by the
U-Net of c decomposed into the three di↵erent size categories when possible. The Dice coe�cient reports similarity
between prediction probabilities and target masks with a value of 1 indicating identity. For two sets X and Y , the
Dice coe�cient is 2|X\Y |

|X|+|Y | .

Training Networks were trained using Keras with TensorFlow 1.14. We used Adam optimisation with default706

parameters except for a learning rate of 0.001 and regularised by keeping only the network weights from the epoch707

with the lowest validation loss (similar in principle to the early stopping method) [68]. We train for 400 epochs, or708

complete iterations over the training data set.709

The loss function is the sum of the binary cross-entropy and one minus the Dice coe�cient across all targets:710

L = �
X

i

h
yi log ŷi + (1� yi) log(1� ŷi)

i
+ 1�

2
P

i yiŷiP
i yi +

P
i ŷi

(7)

where y is the tensor of true values, ŷ is the CNN’s sigmoid tensor output of the CNN, and i is a vectorised index.711
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Each CNN is trained to a specific pixel size, and we ensured that training images and masks with di↵erent pixel712

sizes were re-scaled appropriately713

CNN architectures We trialled two core architectures for the CNN – U-Net [72] (Appendix 3 Fig. 3a) and Mixed-714

Scale-Dense (MSD) [73] – and optimised hyperparameters to find the smallest loss on the validation data.715

The U-Net performed best (see ‘Optimising hyperparameters’ below). The U-Net has two parts: an encoder that716

reduces the input into multiple small features and a decoder that upscales these features into an output [72]. Each step717

of the encoder comprises a convolutional block, which creates a new, larger set of features from its input. To force the718

network to keep only small, relevant features, a down-sampling step is applied after three convolutional blocks. This719

maximum pooling layer reduces the size of the features by half by replacing each two-by-two block of pixels by their720

maximal value. The decoder also comprises convolutional blocks, but with up-sampling instead of down-sampling.721

The up-sampling step is the inverse of down-sampling: each pixel is turned into a two-by-two block by repeating its722

value. Finally, most characteristic of the U-Net is its skip layers. These layers preserve information on the global723

organisation of the pixels by passing larger-scale information from the encoder to the decoder after each up-sampling724

step. They act by concatenating the same-size layer of the encoder into the decoder layers, which are then used as725

inputs for the next step of the decoder. The decoder is therefore able to create an output from both the local features726

that it upsampled and from the global features that it obtains from the skip layers.727

For the U-Net, we optimised for depth, for a scaling factor for the number of filters output by each convolution,728

whether or not to include batch normalisation, and for the proportion of neurons to drop out on each batch. For the729

MSD, we optimised for depth, defined as the total number of convolutions, for the number of dilation rates to loop730

over, with each loop increasing dilation by a factor of two, for an overall dilation-rate scaling factor, and whether or731

not to include batch normalisation.732

Optimising hyperparameters We used KerasTuner with TensorFlow 2.4 to optimise hyperparameters (Appendix733

3 Fig. 3b), choosing random search with default settings, training for a maximum of 100 epochs, and having 10 training734

and validation steps per epoch. The U-Net and MSD networks with the lowest final validation loss were then re-trained735

as described (Appendix 3 Fig. 3c), and the network with the lowest validation loss chosen.736

For our data, the best performing model was a U-Net with depth four, and so three contractions, with a scaling737

factor of eight for the number of filters output by each convolution, giving 8, 16, 32 and 64 filters for each of the two738

chained convolution layers of the encoding and decoding blocks, with batch normalization, and with no drop-out. Its739

performance is shown in Appendix 3 Fig. 3d–f.740

Identifying cells741

To identify cell instances from the semantic predictions of the CNN, we developed a post-processing pipeline (Appendix742

3 Fig. 4a). Post-processing can be split into two parts: proposing unique cell outlines and refining edges.743

The pipeline includes multiple parameters that we optimise on validation data by a partial grid search. We favour744

precision (the fraction of predicted positives that are true) over recall (the fraction of ground truth positives that are745

predicted) by maximising the F� score with � = 0.5. Recall that for true positives TP, false negatives FN, and false746

positives FP,747

F� =
(1 + �2)TP

(1 + �2)TP + �2FN + FP
. (8)

We measure how well two masks match using the intersection over union (IoU) and consider a match to occur when748

the IoU > 0.5. Nevertheless, multiple predictions may match a single target mask because predicted masks can749

overlap too. We therefore count true positives as target masks for which there is at least one predicted mask with750

IoU > 0.5. Any predicted masks in excess of the true positive count become false positives, thus avoiding double751

counting. Unmatched target masks are false negatives.752

Proposing cell outlines The post-processing pipeline starts by identifying candidate outlines independently for753

each size category. The CNN’s outputs are images p(S,C)
xy 2 [0, 1] approximating the probability that a pixel at position754

(x, y) belongs to either the small, medium, or large size categories, denoted S, and to either the interior (Appendix 3755

Fig. 4b) or edge (Appendix 3 Fig. 4e & f) target classes, denoted C.756

In principle, we could find instances for each size category by thresholding the interior probability p(S,interior)xy757

and identifying connected regions as outlines. To further enhance separability, however, we also reweight the interior758

probabilities using the edge probabilities. Specifically, we identify connected regions from semantic bitmasks b(S,interior)xy759

by those pixels that satisfy760

p(S,interior)xy

h
1�DilateNdilate

⇣
p(S,edge)xy

⌘i
> Tinterior (9)

where DilateN specifies N iterations of a grayscale morphological dilation and Tinterior is a threshold. We optimise761

the thresholds Tinterior 2 [0.3, 0.95], number of dilations Ndilate 2 {0, 1, 2}, and the order of connectivity (1- or 2-762

connectivity) for each size category.763
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Figure 4: Segmenting overlapping cell instances from the CNN output. a Flow chart summarising the post-
processing for identifying individual instances from the CNN’s multi-target output. Here and below, we show results
using the five Z sections of Appendix 3 Fig. 1 as input for the CNN. One of which is repeated here. b Probability maps
output by the CNN for the interiors of small, medium and large cells. c Bitmasks obtained by thresholding on the
CNN’s output. Darker shading shows bitmasks before each instance is dilated to compensate for the erosion applied
when generating the training targets. Colour indicates distinctly identified instances. d The initial, equiangular radial
splines proposed for each instance overlaid on the dilated bitmasks from c. The rays defining placement of the knots
are shown as spokes. e The same initial proposed radial splines overlaid on the edge target probability maps output by
the CNN. f The radial splines after optimisation to match edge probabilities. The outline in the medium size category
is detected as a duplicate and is not optimised.

The connected regions in b(S,interior)xy define masks that are initial estimates of the cells’ interiors (darker shading in764

Appendix 3 Fig. 4c). The actual cell interiors used to train the CNN are generated by iterative binary morphological765

erosions of the full mask, where the number of iterations Nerosion is pre-determined for each size category. First, we766

remove small holes and small foreground features by applying up to two binary morphological closings followed by up767

to two binary morphological openings. Second, we estimate full masks b(S,full)xy from each putative mask by applying768

Nerosion binary dilations (light shading in 4c), undoing the level of erosion on which the CNN was trained. Both the769

numbers of closing, Nclosing, and opening, Nopening, operations are optimised.770

Masks whose area falls outside the limits for a size category are discarded. For each category, however, we soften771

these limits, on top of the fuzzy thresholds, by optimising an expansion factor Fexp 2 [0, 0.4], which extends the limits772

by a fractional amount of that category’s size range. We also optimise a single hard lower threshold Tmin 2 [0, 20] on773

mask area.774

Using splines to describe mask edges To prepare for refining edges and to further smooth and constrain outlines,775

we use a radial spline to match the edge of each of the remaining masks (Appendix 3 Fig. 4d). As in DISCO [30],776

we define radial splines as periodic cubic B splines using polar coordinates whose origin is at the mask’s centroid.777
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Parameter S = small S = medium S = large

Tinterior 0.35 0.5 0.95
Ndilate 0 0 0
Connectivity 2 1 1
Nclosing 0 0 0
Nopening 0 0 2
Fexp 0.32 0.06 0.28
Tedge 0.0012 0.0028 0.0
Tmin 19
Tcontainment 0.85

Table 1: Optimised post-processing parameters for standard model. The standard model takes five brightfield
Z sections with a pixel size of 0.182 µm as input. Excepting Tmin and Tcontainment, parameters are optimised separately
for each size category.

We generalise this representation to have a variable number n(S,i) of knots per mask specified by n(S,i)-dimensional778

vectors of radii r(S,i) and angles ✓(S,i):779

✓ 7! s
⇣
✓, r(S,i),✓(S,i)

⌘
(10)

A mask’s outline is then fully specified by those pixels that intersect with this spline.780

To initially place the knots, we search along rays originating at the centroid of each mask b(S,full)xy and find where781

these rays intersect with the mask edge. We determine the edge by applying a minimum filter with 2-connectivity782

to the mask and set to true all pixels in the filtered image that are di↵erent from the original one. We then smooth783

the resulting edge image using a Gaussian filter with � = 0.5. For a given polar angle ✓, we find the radius of the784

corresponding knot by averaging the edge pixels that intersect with the ray, weighted by their values. We use the785

major axis of the ellipse with same normalized second central moment (regionprops function from Scikit-image [71])786

as the mask to determine both the number of rays, and so knots, and their orientations. The length `(S,i) of the major787

axis gives the number of rays: four for 0 < `(S,i) < 5; six for 5  `(S,i) < 20; and eight for `(S,i) � 20. For this initial788

placement, we choose equiangular ✓(S,i), with the first knot on the ellipse’s major axis.789

Discarding poor or duplicated outlines The quality of the outline masks ô(S,i)xy derived from these initial radial790

splines are then assessed against the edge probabilities generated by the CNN (Appendix 3 Fig. 4e) and masks of poor791

quality discarded. We calculate the edge score for a given outline as792

⌘(S,edge,i) =
1

NxNy

X

xy

p(S,edge)xy Dilate2
⇣
ô(S,i)xy

⌘
. (11)

We discard those outlines for which the edge score is less than a threshold, where the thresholds Tedge 2 [0, 1) are793

optimised for each size category based on the range of edge scores observed.794

With a smoothed and filtered set of outlines, we proceed by detecting and eliminating any outlines duplicated795

between size categories. We start by filling the outlines to form a set of full masks m̂(S,i)
xy . We then compare these796

masks between neighbouring size categories Sj and Sk. We consider the pair of masks i1 and i2 to be duplicated if797

one of the masks is almost wholly contained within the other:798

P
xy m̂

(Sj ,i1)
xy \ m̂(Sk,i2)

xy

min
⇣P

xy m̂
(Sj ,i1)
xy ,

P
xy m̂

(Sk,i2)
xy

⌘ > Tcontainment (12)

for some threshold Tcontainment 2 [0, 1], optimised on validation data. For pairs that exceed this threshold, we keep799

only the mask with the highest edge score, Eq. 11.800

For each size category, the first part of the post-processing pipeline finishes with the set of outlines that pass these801

size, edge probability, and containment thresholds. Appendix 3 Table 1 gives values for the optimised post-processing802

parameters.803

Refining edges The outlines ô(S,i)xy , defined by the radial splines, do not directly make use of the CNN’s edge targets804

for their shape and deviate from p(S,edge)xy , particularly for those in the large size category (Appendix 3 Fig. 4e).805

We therefore optimise the radial splines to better match the predicted edge. This optimisation is challenging806

because p(S,edge)xy provide only a semantic representation of the edge – the association of a given pixel (x, y) with a807

particular instance i is unknown. Our approach is to use the outlines to generate priors on whether predicted edge808
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pixels associate with a given instance. We then apply standard techniques to optimise the fit of the radii and angles809

of the knots for each outline’s spline to its instance’s likely edge pixels.810
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Figure 5: Optimisation of the radial spline to fit the predicted edge. a Predicted edge pixels by the CNN
in polar coordinates centred on two di↵erent instances (top and bottom panels). Darker shading indicates a higher
probability of being an edge. Open green circles are the manually curated ground truth. Solid lines are the initial radial
splines estimated from the CNN’s predictions of interiors. Insets show the predicted edge in cartesian coordinates
with the instance providing the origin marked by its initial outline and the indicated polar coordinates. b Binned
residuals of the predicted edge pixels with the initial radial spline for the examples shown in a. Only edge pixels with
probability greater than 0.2 are considered. Binned residuals for the ground truth are in green. Black lines show
the function used to re-weight pixel probabilities for each instance. c As for a, but after the edge pixels have been
re-weighted for each instance. Solid lines indicate the optimised radial spline. The inset shows with a solid line the
outline favoured by the instance-association probability and the dashed lines those outlines disfavoured.

To associate pixels with instances, we first calculate the radial distance of each pixel from the initial radial spline811

function s proposed for an instance, 10. To increase speed, we consider only pixels where p(S,edge)xy > 0.2. Expressing812

the edge pixels in polar coordinates as (⇢,�) with the origin at the instance’s centroid, this distance is813

R(S,i)
xy = ⇢� s

⇣
�, r(S,i),✓(S,i)

⌘
(13)

which we will refer to as a pixel’s residual. We give two examples of edge pixels (Appendix 3 Fig. 5a) and of the814

corresponding residuals (Appendix 3 Fig. 5b), which highlight the need to associate pixels with a given instance before815

attempting to optimise the spline.816

We use the residuals, Eq. 13, to assign prior weights to pixels:817

W (R) =

(
e�R2/�G if R � 0

eR/�E ifR < 0
(14)

] where �G = 5 and �E = 1. The function W is a Gaussian function of the residual for pixels exterior to the proposed818

outline and an exponential function for pixels interior (Appendix 3 Fig. 5b). This asymmetry is intended to increase819

tolerance for interior edge pixels, which may belong to neighbouring instances that overlap with the cell of interest.820

In such cases, instance association should be improved, particularly where the edges of each of the cells intersect.821
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With these prior weights, we find the probability that each edge pixel is associated with a particular instance and822

not with the others, via:823

p(S,edge,i)xy = p(S,edge)xy ⇥W (R(S,i)
xy )⇥

0

@1� 1

n� 1

X

j 6=i

W (R(S,j)
xy )

1

A (15)

where n is the number of detected instances in this and adjacent size categories, with j running over all these instances.824

We filter the result, keeping only those edge pixels with p(S,edge,i) > 0.1. Examples are shown in Appendix 3 Fig. 5c.825

We optimise the knot radii r(S,i) and angles ✓(S,i) for each radial spline by minimising the squared radial residual826

between the spline and the edge pixels, Eq. 13. Residuals are weighted by p(S,edge,i)xy , Eq. 15, and initial values are827

taken from each ô(S,i)xy . Radii are constrained to a 30% change from their initial values; angles are constrained to828

a change of ±25% of the initial angular separation between knots: ✓i+1 � ✓i. The resulting optimised radial spline829

provides the outlines output by the BABY algorithm.830
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Appendix 4831

The BABY algorithm: tracking cells and identifying lineages832

To track cells and lineages, we have two tasks: first, link cell outlines from one time point to the next (Appendix 4833

Fig. 4a), and second, identify mother-daughter relationships (Appendix 4 Fig. 4b).834

Figure 1: Determining accurate lineages requires solving two independent tasks. a. We must identify cells
across time points regardless of how they grow and move within the images. b. We have to find the mother-daughter
relationship between cells at every time point.

Tracking cells from image to image835

In our setup, daughter cells may be washed out of the microfluidic device and so disappear from one time point to the836

next. These absences undermine other approaches to tracking, such as the Hungarian algorithm [29].837

To track cells, we use the changes in their masks over time to indicate identity. From each mask, we extract an838

array of attributes, such as the mask’s area, major axis length, etc., and to compare a mask at one time point to a839

mask at another time point, we subtract the two corresponding arrays of features. This array of di↵erences is the840

array of features for the classification algorithm.841

Our training data comprises a series of manually labelled time-lapse images from four experiments. For two842

consecutive time points, we calculated the di↵erence in feature arrays between all pairs of cells and grouped these843

di↵erence arrays into two classes: one for identical cells – cells with the same label – and one for all other cells.844

Using multiple time points in the past To generate additional training data, we use multiple time points845

backwards in time. For example, for time t, we generate not only feature vectors by comparing with cells at t � 1,846

but also with cells at t � 2 and t � 3. We found this additional data increased generalisability, allowing accuracy to847

be maintained across a wider range of imaging intervals and growth rates. For the purpose of training, we treat the848

additional data as consecutive time points – the algorithm does not know whether the features come from one or more849

than one time point in the past.850

As part of testing that all features contribute to the learning, we divided the features into two overlapping sets.851

One set had no features that explicitly depend on distance, comprising area, lengths of the minor and major axes,852

convex area, and area of the bounding box; the second set did include distance-dependent features, comprising area,853

lengths of the minor and major axes, and convex area again, but additionally including the mask’s centroid, and the854

distance obtained from the x- and y-axis locations.855

We compared three standard algorithms for classification [74]: the Support Vector Classifier (SVC), Random856

Forest, and Gradient Boosting, specifically Xtreme Gradient Boosting [75]. We used scikit-learn [70] to optimise857
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over a grid of learning hyperparameters.858

For the SVC, we considered a regularisation parameter C of 0,1, 10, or 100; a � kernel coe�cient of 1, 10�2, or859

10�4; no shrinking heuristic to speed up training; and either a radial basis function or sigmoid kernel.860

For the Random Forest, we explored a range between 10 and 80 estimators and a depth between 2 and 10 levels.861

For Gradient Boosting, we used a maximal depth of either 2, 4, or 8 levels; a minimal child weight of 1, 5, or 10;862

gamma, the minimal reduction in loss to partition a leaf node, of 0.5, 1, 1.5, 2, or 5; and a sub-sampling ratio of 0.6,863

0.8, or 1.864

Figure 2: The importance of the features used by the Random Forest classifier for tracking cells from

time point to time point. Depending on the features with which we train the classifier, the weights, or feature
importances, are more evenly spread. a If we train the classifier using features that explicitly include distance-
dependence, distance drives the decisions, and the remaining features are only used for marginal cases. b If we train
the classifier using distance-implicit features, however, the weights are more uniform. c The precision-recall curve
shows high accuracy for both sets of features.

Within the training data, the number of time points for each experiment is di↵erent and the feature arrays will865

favour linking cells within an experiment. To prevent biases toward long experiments, we define the accuracy as866

the fraction of true positives – cells correctly linked between images, and compare the precision and recall of this867

time-averaged accuracy.868
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After training, we evaluated which features are important for classifying, using the Random Forest. The distribution869

of the features’ importance depends on whether distance is included (Appendix 4 Fig. 2): excluding distance distributes870

the weight of decision more evenly.871

An ensemble model The precision-recall curve indicates that using the distance-explicit features is best, although872

both sets of features have high accuracy (Appendix 4 Fig. 2c). Although performing better on our test data, we873

expect that using the distance-explicit features may perform worse if the cells pivot or are displaced in some other874

way. Therefore, we use the non-explicit features as our main model, but also use the distance-explicit features to875

resolve any ambiguous predictions. The ensemble model performs similarly to the distance-implicit classifier, but for876

more stringent thresholds becomes behaves like the distance-explicit model.877

Making predictions878

To predict with the classifier, we use data from the current time point and the two most recent previous time points.879

We generate feature arrays between t and independently t� 1 and t� 2 and feed both arrays to the classifier. If the880

probability returned is greater than 0.9, we accept the result; if the probability lies between 0.1 and 0.9, we use instead881

the probability returned by the backup classifier, which uses the distance-explicit features.882

Using multiple time points to track cells has two advantages: first, it reduces noise when there is an artefact, either883

in image acquisition, such as a loss of focus, or in segmentation; second, it ensures that cells are more consistently884

identified if their position or shape transiently changes. Including data further back in time is neither computationally885

e�cient nor more accurate – greater than three time points is over 15 minutes in our experiments, about a sixth of a886

cell cycle.887

We apply the linear sum assignment algorithm, via SciPy, on the probability matrix of predictions to assign888

labels (Appendix 4 Algorithm 1), which guarantees at most one outline assigned to each cell by choosing the set of889

probabilities whose total sum is highest. To match a cell with its previous self, we pick the cell in the recent past that890

generates the highest probability when paired with the cell of interest, providing this probability is greater than 0.5.891

A cell is labelled as new if the probabilities returned from pairing with all cells in the recent past is below 0.5.892

Algorithm 1: Cell labelling

Data: probMat, threshold, oldLabels, maxLabel
Result: New cell labels (newLabels)
let newLabels be zeros(ncols(probMat));
for old, new 2 linearSumAssignment(�ProbMat) do

if probMat[old, new] > threshold then

newLabels[new] oldLabels[old];
end

end

for label 2 newLabels do

if label! = 0 then

label = maxLabel+ 1;
maxLabel = label;

end

end

return newLabels

893

Assigning lineages894

We wish to identify which cells are buds of mothers and which mothers have buds. This problem is analogous to895

tracking, but, rather than identifying pairs of cells that are the same cell at di↵erent time points, we must identify896

pairs of cells that are a mother-bud pair at one time point. We therefore seek to determine the probability that a pair897

of cells is a mother-bud pair (Appendix 4 Fig. 3). Unlike for tracking, however, we anticipated that the cell outlines898

alone would be at best a weak indicator of this probability.899

Defining mother-bud features We observed that cytokinesis is sometimes visible in bright-field images as a900

darkening of the bud neck and designed features to exploit this characteristic of mother-bud pairs.901

Multiple of these features rely on the CNN’s prediction of bud necks. For generalisability and to avoid ambiguity,902

we chose to define the corresponding training target using manually annotated outlines and lineage relationships,903

rather than relying on a fluorescent bud-neck marker. Specifically, we define a binary semantic ‘bud-neck’ training904

target that is true only at pixels where a mother mask, dilated twice by morphological dilation, intersects with its905

assigned bud (Appendix 3 Fig. 1). Assigning a time of cytokinesis by eye is challenging, and so we included two906

constraints to identify a bud. First, the bud must be current – as soon as another bud is found associated to the907

mother, the previous bud is excluded. Second, buds are excluded if their area is larger than 10 µm2 (300 pixels for908
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our standard training target with a pixel size of 0.182 µm and corresponding to a sphere of ⇠ 24 µm3).909

Figure 3: Overview of the algorithm for assigning lineages. a Cell outlines. Colours are only illustrative.
b The CNN’s predicted probabilities per pixel of being a bud neck are shown for small cells. White is zero, and
di↵erent colour intensities are probabilities. c Composite features used by the classifier to solve the task. d The
probability of small cells being a bud. e An intermediate element of assigning lineages is defining Mjoining – the red
rectangular box. f Feeding the features into a trained random forest model returns the probability of a pair of cells
being a mother and bud.

We used five image features to characterise a mother-bud relationship. For an ordered pairing of all cells in an910

image, we consider a putative mother-bud pair and define a mask, Mjoining, as the joining rectangle between the911

centres of the mother and bud with a width equal to one quarter the length of the bud’s minor axis. Given Mjoining,912

the features are:913

(i) Fsize, which is the ratio of the mother’s to bud’s area. Mothers generally have a greater size than their bud so914

that Fsize > 1.915

(ii) Fadjacency, which is the fraction of Mjoining intersecting with the union of the mother’s and bud’s masks. Mothers916

should be proximal to their buds so that Fadjacency is close to one – only a small fraction of Mjoining should lie917

outside of the mother and bud outlines.918

(iii) Fbud, which is the mean over the union of the CNN’s output for a small, interior targets and all pixels contained919

in the bud. Fbud approximates the probability that a cell is a bud and should be close to one for mother-bud920

pairs.921

(iv) Fp, which is the mean over the union of the CNN’s output for bud-necks, only including those pixels whose922

probability is greater than 0.2, with the pixels contained in Mjoining. Fp approximates the probability that the923

mother and bud are joined by a bud neck.924

(v) Fc, which is the number of the CNN’s bud-neck target pixels that have a probability greater than 0.2 and are in925

Mjoining normalised by the square root of the bud’s area, or e↵ectively the bud’s perimeter. We interpret Fc as926

a confidence score on Fp because a single spurious pixel with high bud-neck probability could produce high Fp.927
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Training a classifier With these features, we train a random forest classifier to predict the probability that a pair928

of cells is a mother and bud. We train on all pairs of cells in the validation data to ensure that the classifier does not929

rely on the CNN’s high performance on the training data. We optimised the hyperparameters, including the number930

of estimators and tree depth, using a grid search with five-fold cross-validation. We optimise for precision because931

true mother-bud pairs are in the minority and because our strategy for assigning lineages aggregates over multiple932

time points (as detailed below).933

For our standard CNN trained to a pixel size of 0.182 µm2, the random forest classifier had a precision of 0.80 and934

recall of 0.47 on the test data. This data has 211 true mother-bud pairs out of 1654 total pairs. The classifier assigned935

feature importances of 0.42 for Fsize, 0.10 for Fadjacency, 0.26 for Fbud, 0.08 for Fp, and 0.13 for Fc.936

Assigning each cell a unique mother To establish lineage relationships, we need to assign at most one tracked937

mother cell to each tracked cell object. We use the classifier to assign a mother-bud probability p(t)mb for each time938

point at which a pair of tracked objects are found together. We then estimate the probability that a tracked object ĉ939

has ever been a mother using940

p(t)m (ĉ) = max

"
p(t�1)
m (ĉ) ,

X

cb2Ct

p(t)mb (ĉ, cb)

#
, (16)

as well as the probability that it has ever been a bud with941

p(t)b (ĉ) = max


p(t�1)
b (ĉ) , max

cm2Ct

⇣
p(t)mb (cm, ĉ)

⌘�
. (17)

Finally, for a putative mother-bud pair we calculate a cumulative score that is reduced if the candidate bud has942

previously shown a high probability of being a mother:943

S(t)
mb (ĉm, ĉb) = S(t�1)

mb (ĉm, ĉb) + p(t)mb (ĉm, ĉb)
⇣
1� p(t)m (ĉb)

⌘
. (18)

At each time point, we then propose lineages by assigning each putative cell object ĉb with a bud probability944

p(t)b (ĉb) > 0.5 and a mother ĉm = argmaxĉ

⇣
S(t)
mb (ĉ, ĉb)

⌘
. We treat the mother-bud assignments proposed at the945

final time point as definitive, because they have integrated information over the entire time series, and avoid spurious946

assignments by requiring all buds to be present for at least three time points.947

Post-processing948

Though rare, we do have to mitigate occasional detection, tracking and assignment errors. For example, debris can949

occasionally be mistakenly identified as a cell and tracked.950

We discard tracks that have both small volumes and show limited growth over the experiment. Specifically, we951

discard a given cell track i with duration Ti, minimal volume V (min)
i at time T (min)

i , and maximal volume V (max)
i at952

time T (max)
i , if both V (max)

i < 7 µm3 and the estimated average growth rate Gi < 10 µm3/hour, where953

Gi = sign
⇣
T (max)
i � T (min)

i

⌘
⇥

⇣
V (max)
i � V (min)

i

⌘.
Ti. (19)

We also ignore any tracks that have no identified lineage relationships: they are neither assigned as a mother nor as954

a bud/daughter at any time point.955

Our tracking algorithm correctly identifies many instances where a mother and bud pivot with the flow of the956

medium, but exceptions do arise. For a given mother, we therefore join contiguous daughter tracks – pairs of daughter957

tracks where one ends with the other starting on the next time point – if the extrapolated volume of the old track958

falls within a threshold di↵erence of the volume of the new track. Specifically, for the pair of contiguous tracks i and959

j, with track i ending at time point t and track j beginning at time point t+ 1, we calculate960

V (di↵)
ij = min

⇣���V (t)
i +Gi�T � V (t+1)

j

��� ,
���V (t+1)

j �Gj�T � V (t)
i

���
⌘
, (20)

where V (t)
i is the volume of track i at time point t and �T is the time step between time points t and t+ 1. We join961

these tracks if V (di↵)
ij < 7 µm3.962

Finally, we discard any daughter tracks with fewer than five time points.963
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Appendix 5964

Estimating birth times from fluorescent markers965
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Figure 1: Markers for karyokinesis and cytokinesis reveal coincidence with a crossing point in mother

and daughter growth rates. a Time series for a mother (purple) and its buds/daughters for a switch from 2%
palatinose to 2% glucose and back. Volumes and growth rates are as estimated by BABY. Localization of Myo1-GFP
to the bud neck is used to identify times of cytokinesis (vertical black dotted lines) as described in the Supplementary
Text. For comparison, birth times predicted by our growth rate heuristic are also shown (vertical red dashed lines).
b As for (a), but using localization of Nhp6A-mCherry to the nucleus to identify times of karyokinesis (vertical black
dotted lines). Both the raw (points) and smoothed (lines; Savitzky-Golay filter with third degree polynomial and
smoothing window of 15 time points) localization of Nhp6A-mCherry is shown.

We used either Myo1-GFP or Nhp6a-mCherry to estimate the time at which a bud becomes an independent daughter.966

Myo1 – a type II myosin – localises to the bud neck and shows a drop in intensity upon cytokinesis (Appendix 5967

Fig. 1a); Nhp6a, a histone-associated protein localised to the nucleus, shows a drop in intensity upon karyokinesis968

(Appendix 5 Fig. 1b). Although karyokinesis and cytokinesis are distinct events, their timing is similar [24], and969
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we assume both mark the birth of an independent daughter. For Fig. 4a & b, Appendix 5 Fig. 1a and 2, we used970

Myo1-GFP; for Fig. 4d & e, Fig. 5, Appendix 5 Fig. 1b, Figure 4—figure supplement 1, Figure 5—figure supplement 1,971

and Figure 6—figure supplement 1, we used Nhp6a-mCherry.972

Cytokinesis is accompanied by a drop in Myo1-GFP intensity at the bud neck in the mother cell (Fig. 4a), and we973

use this phenomenon to determine when cytokinesis occurs, assuming that it is fast compared to the time interval of974

our imaging. We use the time series of fluorescence localisation within the mother cell over the period where the mother975

has a bud and estimate its time derivative using finite di↵erences (NumPy’s diff function). To obtain candidate time976

points for cytokinesis, we find the dips in this derivative with a minimum prominence, via SciPy’s findpeaks function.977

The actual time of cytokinesis is taken to be the candidate point with the minimal derivative, corresponding to the978

strongest down-shift in fluorescence.979

For Nhp6a-mCherry, the timing of karyokinesis is less obvious, although when the nucleus partitions between the980

mother and its bud there is both a fall in fluorescence localisation in the mother and a rise in the bud (Appendix 5 Fig.981

1b). As karyokinesis completes, both localisation signals level to a similar, often slowly increasing value. We therefore982

identify the completion of karyokinesis as the time point when fluorescence localisation shifts from a fast increase in983

the bud and decrease in the mother to slow increase in both. We thus search for a minimum in the time derivative of984

the localisation signal for the mother that occurs near a maximum in the time derivative of the daughter.985

Specifically, we consider a mother and bud/daughter each with a time series of fluorescence localisation. We apply986

a Savitzky-Golay filter with a third order polynomial and a smoothing window W to obtain the smoothed localisations,987

denoted mt and bt, and their time derivatives. We find candidate time points of karyokinesis by identifying peaks in988

the series
�
3
2@tbt �

1
2@tmt

�
that have a minimal peak prominence P , using Matlab’s findpeaks function. For each989

peak, we define candidate intervals of karyokinesis as {|t� ti|  round (wi/2)} where ti is the time that the peak990

occurs and wi is its width. This set of candidates is filtered by thresholding on peak height, the maximal value of the991

bud’s smoothed localisation, the range of the bud’s localisation, the minimal value of the mother’s localisation minus992

the maximal value of the bud’s, and the minimal value of the time derivative of the mother’s localisation, all calculated993

over the candidate time interval. The smoothing window W , minimal peak prominence P , and each threshold are994

manually curated for every experiment. The first occurring peak that passes all filters defines the time interval of995

karyokinesis, and karyokinesis’s time of completion is taken as this interval’s final time point.996

Predicting cytokinesis from growth rate997

All together, we are able to determine key events of the cell cycle. First, we define a cell cycle for each mother as the998

duration between two birth points, obtained from the lineage assignment. These points approximately correspond to999

shortly after the START checkpoint [76]. Second, assuming that the births are accurately predicted, we identify a1000

single point of cytokinesis within the corresponding cell cycle.1001

We observe three phases of growth during a cell cycle (Fig. 4a-b). First, the bud dominates growth during S/G2/M,1002

with its growth rate peaking midway through that period while simultaneously the mother’s growth rate falls. Second,1003

the bud’s growth rate decreases as cytokinesis is approached. Near cytokinesis, the mother’s and bud’s growth rate1004

have similar magnitudes, becoming identical at multiple timepoints. Finally, the mother’s growth rate increases after1005

cytokinesis, peaking during G1.1006

Using these observations, we developed an algorithm to identify the point of cytokinesis. Our growth rates are1007

defined by both a mean and a standard deviation because they are estimated using Gaussian processes, and we use1008

both quantities to compare growth rates of a mother and its bud. Our algorithm determines the point of cytokinesis as1009

the first time point where the mother and bud’s growth rates are similar, within a threshold g, and the bud’s growth1010

rate is su�ciently large, above a threshold gd. This additional constraint eliminates false negatives when the growth1011

rate of both mother and daughter undergo a sudden drop, which may occur when the extracellular media is changed.1012

In practice, we set gd = g, and the threshold g is a parameter whose optimal value varies from cell cycle to cell1013

cycle, especially with changing extracellular media. A too small g gives poor accuracy for fast-growing cells where the1014

di↵erence between the mother’s and bud’s growth rates is larger; a too large g gives poor accuracy because cytokinesis1015

is predicted too early. We therefore choose g from a range g0, . . . , gn chosen manually to increase the number of cell1016

cycles for which cytokinesis is found, without a↵ecting the error (Appendix 5 Algorithm 2). If the algorithm fails to1017

find a value of g that gives a point of cytokinesis, the cell cycle is marked as unknown and ignored in further analysis.1018

We evaluated the algorithm by the correlation between the real time of cytokinesis and the predicted time (Appendix1019

5 Fig. 2a & c). The prediction is both accurate and robust to di↵erent media, with correlation coe�cients between1020

0.939 and 0.998 for two di↵erent experiments and three di↵erent media. The algorithm is also usually accurate at1021

transitions between two media, when START occurs before and ends after the transition. This result suggests that1022

the relationship between the mother’s and bud’s growth rates is informative despite transient changes in growth rate1023

(Fig. 4b).1024
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Figure 2: Performance of the prediction of cytokinesis from growth rate. The cells in a and b were imaged
for five hours in SC media with 2% glucose, five hours in SC media with 0.1% glucose, and five hours in SC media
with 2% glucose. The cells in c and c were imaged for six hours in SC media with 2% palatinose, six hours in SC
media with 2% glucose, and six hours in SC media with 2% palatinose. a, c Comparison of the real vs predicted
(absolute) time of cytokinesis for each cell cycle. The points are separated by color based on which condition the cell
cycle occurs in, with cell cycles that span a switch marked as Transition (grey). b, d Cumulative counts of mother
cells in each cell cycle stage throughout the experiment, with vertical lines representing the switch (top), with real
(filled) and predicted (dashed) cytokinesis prediction used to delineate between G1 and S/G2/M. The gray line shows
the total number of cells considered in the experiment, defining how many were in an unknown cell cycle state at any
given time. The bottom panel shows the absolute di↵erence between real and predicted number of cells in each cell
cycle phase, as well as in unknown states, across the experiment.

Further, we verified that any prediction errors do not change the distribution of cell cycle phases over time. We used1025

the real and predicted points of cytokinesis to split cell cycles into G1 and S/G2/M and counted how many mother1026

cells are in each phase at any given time. We then compared these cumulative counts (Appendix 5 Fig. 2b & d). For a1027
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switch from high to low glucose, although the number of unknowns is larger for the prediction – the cumulative count1028

of G1 and S/G2/M is smaller, the prediction still captures the dynamics of the population (Appendix 5 Fig. 2b). For1029

a switch from palatinose into glucose, the accuracy is less (Appendix 5 Fig. 2d). The oscillations in the number of1030

cells in G1 that occur in glucose are weaker, but we do predict cells accumulating in G1 once palatinose returns.1031

We note that these comparisons necessarily use only cells that are assigned at least one valid cell cycle with the1032

Myo1 method. In the palatinose-glucose-palatinose experiment in particular, there are multiple cells that are therefore1033

ignored despite being assigned at least one valid cell cycle with the growth-rate method. It is possible that discarding1034

these cells a↵ects the overall result.1035

Algorithm 2: Cytokinesis from growth rate

Choose a cell cycle, defined between two birth points t 2 [bi, bi+1]
Get mother growth rate in [bi, bi+1]: (µm,�m)
Get growth rate of daughter di born at time bi: (µd,�d)
Get mother-daughter distance in [bi, bi+1]: dm,d = �2

m + �2
d + (µm � µd)2

for g 2 [g0, . . . , gn] do
for t 2 [bi, bi+1] do

if dm,d(t) < g and µd(t) + �2
d(t) > g then

Set cytokinesis time to t;
end

end

end

1036
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Appendix 61037

Correlating nuclear Sfp1 with growth rate1038

The cross correlation of time series can reveal regulatory relationships [77]. Here we apply cross correlations to1039

investigate if fluctuations in Sfp1’s localisation anticipate fluctuations in growth rate. Analysis by the method of1040

Kiviet et al. [21] assumes steady-state cells. We nonetheless make use of data with a switch from palatinose to glucose1041

and back (Fig. 4b), but limit to time points from either the four hours preceding the switch to glucose – approximately1042

steady growth in palatinose – or the four hours preceding the switch back to palatinose – approximately steady growth1043

in glucose.1044

Correlations may occur on scales longer than the duration of a cell cycle, so we limit our analysis to mother cells1045

that are present over the full four hours of steady growth. We use the summed mother and bud growth rates whenever1046

a bud is present because most of the mother’s growth is in the bud. We identify when a daughter separates from its1047

mother using Nhp6A-mCherry (Appendix 5). Almost all daughters are washed away before they become mothers,1048

making the lineage trees in our data unbranched and simplifying the analysis.1049

For each mother i, we have a time series `(i)1 , . . . , `(i)N of the degree of localisation of Sfp1-GFP and a time series1050

of instantaneous growth rates g(i)1 , . . . , g(i)N . For our sampling interval of �t = 5 min, N is 48. We denote the total1051

number of mother cells by M and calculate the deviation from the population mean for each time series:1052

�`(i)t = `(i)t �
1

M

X

j

`(j)t and �g(i)t = g(i)t �
1

M

X

j

g(j)t . (21)

The cross-covariance of Sfp1 localisation and growth rate at a time lag of r�t is then [21]:1053

C(i)
lg (r�t) =

(
1

N�r

PN�r
t=1 �`(i)t · �g(i)t+r if r � 0

C(i)
gl (�r�t) otherwise.

(22)

We find the cross-correlation through normalising by the standard deviations:1054

R(i)
lg (r�t) =

C(i)
lg (r�t)

q
C(i)

`` (0)C
(i)
gg (0)

. (23)

We determine the auto-correlation for Sfp1 localisation, R(i)
`` (r�t), and for growth rate, R(i)

gg (r�t), similarly. In1055

Fig. 5c–d of the main text, we show the mean and 95% confidence interval over all mother cells (all i).1056
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Appendix 71057

Real-time feedback control1058

In these experiments, we wished to trigger a change in media based on the cells’ growth rate. As an example, we1059

switched medium from a richer to a poorer carbon source and used BABY to determine how long cells should be kept1060

in this medium if we want approximately 50% to have resumed dividing before switching back to the richer medium.1061

Code to implement the feedback control was run on two computers, one controlling the microscope (Appendix 71062

Algorithm 3) and the other both segmenting images (via calls to Python functions) and determining growth rates1063

(Appendix 7 Algorithm 4). The code was written in Matlab and is available on request.1064

We defined the fraction of escaped cells as the proportion of included mothers that have had a bud/daughter1065

exceed a threshold in growth rate of 15µl/hour at any time point after the onset of the lag in growth caused by the1066

poorer carbon source. We define this lag period to begin at the time point when the median daughter growth rate1067

first drops below 5µl/hour. To be included a mother cell must satisfy two requirements: be present in our data for at1068

least 95% of the time points from the 20 time points before the first switch to the current time point; and be assigned1069

a bud/daughter for at least 10% of the time it was observed.1070

To increase processing speed, we use Savitzky-Golay filtering to estimate growth rates. The resulting first derivative1071

is not well constrained at the end-points, making instantaneous growth rates vary widely at the most recently acquired1072

time point. We therefore used growth rates up to and including the time point three steps before the most recent1073

when determining the fraction of escaped cells.1074

We used the strain BY4741 Sfp1-GFP Nhp6A-mCherry in both experiments.1075

Algorithm 3: Feedback control – pseudocode for microscope acquisition software

Set glucose pump to infuse at 4µl/min;
Set ethanol pump o↵;
for 270 timepoints do

image acquired time= current time + 5 min Acquire images at 6 stage positions
Save images in networked directory
while current time<image acquired time do

if time since start � 5 hours and first switch has not happened then

Run switch protocol (fast infuse/withdraw to remove back pressure);
Set glucose pump o↵;
Set ethanol pump to infuse at 4µl/min;

end

read onlinedata.txt
if fraction of escaped mothers is recorded and second switch has not happened then

if fraction of escaped mothers � 0.5 then

Run switch protocol (fast infuse/withdraw to remove back pressure);
Set glucose pump to infuse at 4µl/min;
Set ethanol pump o↵;

end

end

end

end

1076
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Algorithm 4: Feedback control – pseudocode for segmentation software

for 270 timepoints do

while segmentation of all positions is not complete do

for 6 positions do

Check networked data directory
if all images for current position are recorded then

Run BABY segmentation on current position
end

end

end

for 6 positions do

Calculate growth rates by Savitzky-Golay filtering
Append result to array for all positions

end

Write median growth rate to onlinedata.txt
if first switch has happened then

Calculate lag start time as first time point where median growth rate < 5µl/hour
if lag start has happened then

Calculate fraction of escaped mothers and write to onlinedata.txt
end

end

end

1077
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Figure 1—figure supplement 1: Segmentation methods without overlaps can underestimate bud area

or fail to detect buds. The YeaZ segmentation algorithm [34], which segments cells from the semantic output of a
CNN without allowing for overlaps, was used to segment and track the same images used to generate the time series
of Fig. 1e. We show volume time series – estimated from the area of each segmented mask assuming a spherical shape
– for all tracks that overlap (mask IoU > 0.5) with those of the segmented output of BABY (light filled circles). As
YeaZ only accepts a single Z section as input, we performed a systematic search over both Z section and segmentation
parameters and show the closest match to the data obtained with BABY. Vertical dashed lines correspond to the
images shown in Fig. 1b.
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Figure 3—figure supplement 1: Segmentation accuracy is improved by edge optimisation and use of

multiple Z sections as input. a–c The intersection over union (IoU) with curated masks was evaluated on test
data for the predictions of selected stages of the BABY algorithm: masks predicted directly from CNN output with
appropriate morphological dilation (no spline), preliminary fits of these masks with an equal-angle radial spline (initial
spline), or optimised fits of the radial spline to the edge output of the CNN (optimised spline). d–f The IoU with
curated masks was evaluated on test data for the predictions of the full BABY algorithm with CNNs trained to use
either 1, 3 or 5 bright-field Z sections as input. a, d Distribution of IoU with curated outline area. b, e Distribution
of curated outline area for predicted outlines with IoU of zero. c, f Violin plots summarising IoU distributions. Black
horizontal line is the median.
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Figure 3—figure supplement 2: Population growth rates measured by optical density. a The maximal
growth rate for cultures of BY4741 grown in SC with either 2% glucose or 2% palatinose. We plot the greatest local
maxima in growth rate as a function of time for 47 hours of growth in a plate reader (Infinity M200, Tecan Group
Ltd., Switzerland). Cells were cultured for two days in SC with 2% sodium pyruvate at 30�C, diluted 6⇥ with fresh
SC-pyruvate and grown a further 6 hours before being spun down, washed in SC with no carbon source, spun down
again, resuspended in SC, added to a 96-well plate with appropriate carbon sources in each well and placed in the plate
reader [78]. The time-varying growth rate was found from the optical density using a Matern Gaussian process [41].
Error bars are 95% confidence limits estimated by bootstrapping two biological replicates, each with two technical
replicates. b Doubling times as calculated from the growth rates in a.
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Figure 4—figure supplement 1: Growth rates estimated with BABY show expected correlations with

volume. a The mean growth rate of a bud from first detection to birth (completion of karyokinesis determined from
an Nhp6A-mCherry marker as described in the Supplementary Text) correlates with its volume at birth for buds
growing in either 2% glucose or 2% palatinose. b The mean growth rate of a daughter across its first G1 phase (from
birth to detection of its first bud) correlates with its volume at START (detection of its first bud). In our devices,
most daughters are washed away before the appearance of their first bud. c In contrast, the mean growth rate of a
mother during G1 (from birth of a daughter to appearance of the next bud) shows little to no correlation with its
volume at START (appearance of its next bud).
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Figure 5—figure supplement 1: Irrespective of cell cycle phase, growth rates transiently drop for a shift

to a poorer carbon source. Time series of median growth rate (upper) and median Sfp1-GFP localization (lower)
across di↵erent cell cycle phases for a switch from 2% palatinose to 2% glucose and back. A Nhp6A-mCherry reporter
was used to identify completion of karyokinesis (Supplementary Text) so that the time series for each cell could be
partitioned into budding – detection of bud up to karyokinesis, daughter G1 – from karyokinesis up to the detection
of its first bud, mother S/G2/M – from detection of a bud to karyokinesis, and mother G1 – from karyokinesis to the
appearance of its next bud. The interquartile range is shaded.
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Figure 6—figure supplement 1: Live growth rate control of media flow. a Kymograph showing the daughter
cell growth rates calculated during image acquisition for an experiment in which the carbon source in of the second
media is 0.5% galactose. The experimental method is otherwise identical to the experiment with ethanol shown in
Fig. 6 of the main text. Rows representing mother cells are sorted by the time each cell resumes division, with cells
resuming later shown toward the top. Times of the media changes are indicated below. b Time course of the proportion
of cells that have resumed division (”escaped”) following the switch to 2% ethanol (green) or 0.5% galactose. The times
of the two media switches are indicated for each experiment. c Estimated lower bound on the mutual information
between escaping/non-escaping cells and either daughter growth rate (top) or nuclear localization of Sfp1 (bottom)
in experiments with ethanol or galactose as the second carbon source. Mutual information was estimated by the
decoding method [20] for a sliding time-window of 100 minutes, with the mean and 95% confidence interval (shaded
area) of 100 bootstraps of the estimation algorithm shown. Decoding was by a gradient boosting model trained on
concatenated raw, Fourier-transformed, and rank-ordered versions of each time window. d Time courses of estimations
of cell cycle stage for escapers and non-escapers for the experiments using ethanol (left) and galactose (right). There
is an accumulation of cells in G1 during the period in the second carbon source and synchronisation in cell cycles
is evident from the periodic increases and decreases of the proportions of cells in G1 following the reintroduction of
glucose at the second media switch.
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