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Abstract

Animal sensory systems are more sensitive to common features in the
environment than uncommon features. For example, small deviations
from the more frequently encountered horizontal orientations can be
more easily detected than small deviations from the less frequent diagonal
ones. Here we find that artificial neural networks trained to recog-
nize objects also have patterns of sensitivity that match the statistics
of features in images. To interpret these findings, we show mathe-
matically that learning with gradient descent in deep neural networks
preferentially creates representations that are more sensitive to common
features, a hallmark of efficient coding. This result suggests that efficient
coding naturally emerges from gradient-like learning on natural stimuli.

Introduction

Careful psychophysical studies of perception has revealed that neural representations

do not encode all aspects of stimuli with equal sensitivity (Fechner, 1948). The ability

to detect a small change in a stimulus, for instance, depends systematically on stim-

ulus value. A classic example of this is the so-called ‘oblique effect’ in which changes
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in visual orientation are easier to detect near vertical or horizontal than oblique ori-

entations (Appelle, 1972). The fact that these sensitivity patterns are ubiquitous

and widely shared between animals motivates us to study the potential underlying

reasons why they exist.

The efficient coding hypothesis has become a standard explanation for the emer-

gence of these non-homogeneous sensitivity patterns (Barlow, 1961). It predicts that

sensory systems should preferentially encode more common aspects of the world

at the expense of less common aspects, as this is the most efficient way (in the

information-theoretical sense) to make use of limited coding resources. Indeed, per-

ceptual sensitivity typically reflects the statistics of the visual environment (Coppola

et al, 1998; Ganguli and Simoncelli, 2010; Girshick et al, 2011; Wei and Stocker,

2015, 2017). While much is known about efficient neural codes and their link to the

stimulus statistics and perceptual behavior, the mechanisms that give rise to such

codes remain unknown.

Brains are not born with fully developed sensory representations. Many develop-

mental studies of perception in infants and young children have shown that visual

sensitivities improve with age and visual experience even until adolescence (Arm-

strong et al, 2009; Braddick and Atkinson, 2011; Mayer and Dobson, 1982; Teller and

Movshon, 1986). The maturing optics of the developing eye and retina explain some

of this improvement, but much of the improvement depends on visual experience and

is due to neural changes downstream (Banks and Crowell, 1993; Maurer et al, 1999;

Movshon and Kiorpes, 1993; Gold et al, 1999; Schoups et al, 2001). This suggests that

perceptual sensitivity depends on the neural representation of sensory information

and how these representations change with experience during development.

We hypothesize that general, task-oriented learning is the mechanism that gives

rise to efficient sensory representations in the brain. Any gradual learning process can

only learn so much at a time. This means that an effective learning algorithm should

prioritize learning more important aspects before less important ones. Conveniently,

features that are more common are also easier to learn from a limited exposure to the

world. This suggests that effective learning rules for neural networks might naturally

produce better representations for common features, hence providing a mechanism

for the emergence of efficient codes. This phenomenon is equivalent to the notion

that learning provides a second, implicit constraint on neural coding in addition

to the explicit constraint imposed by the limited neural resources. Our hypothesis

directly predicts that we should find forms of efficient coding not just in biological

neural networks but also in other learning systems. Especially, we expect artificial

neural networks trained to perform visual recognition tasks to exhibit efficient neural

representations similar to those found in the visual cortex of biological brains despite

their many differences in their local structural properties (e.g. noise) and connectivity.

A study of the consequences of effective yet gradual learning on sensory repre-

sentations must begin from a specific learning rule. One canonical learning rule is

gradient descent, which proposes that neural updates are as small as possible to elicit

a given improvement in behavior. Though the brain may use more complicated learn-

ing rules, gradient descent is arguably the simplest rule for general learning and thus

a baseline for theorizing about learning in the brain. If gradient descent produces



efficient codes, this would provide a strong proof of principle that efficient codes can

emerge from general-purpose learning algorithms.

To show that efficient coding emerges from gradient descent requires a formal

understanding of how learning with gradient descent biases what is represented about

the stimulus. This parallels an active effort in the study of deep learning. It is now

recognized that what neural network learn about their inputs is constrained not just

by their connectivity but also implicitly by their learning algorithm (Zhang et al,

2021). Many potential implicit constraints have been propose due to their importance

in explaining why large neural networks work well on unseen data (i.e. generalize)

(Jacot et al, 2018; Neyshabur et al, 2017; Smith and Le, 2017; Tishby and Zaslavsky,

2015). One prominent theory is gradient descent in a multilayer network produces

nontrivial learning dynamics that supplies key biases on what is learned first (Arora

et al, 2019; Gidel et al, 2019; Gunasekar et al, 2018; Razin and Cohen, 2020; Saxe

et al, 2013). This raises the possibility that such ideas could also demonstrate whether

gradient descent learning is biased towards efficient codes.

In this paper, we demonstrate that learning with gradient descent biases feature

learning towards common input features, thus reproducing the relationship between

stimulus statistics and perceptual sensitivity (Fig. 1). This effect occurs in otherwise

unconstrained and noiseless networks as well as for multiple learning objectives (i.e.

not limited to information maximization). We examine two model systems. First,

we show that deep artificial networks trained on natural image classification show

similar patterns of sensitivity as humans, and that this is a partly a consequence of

image statistics (also see Benjamin et al (2019); Henderson and Serences (2021)) but

is also partially due to factors inherent in network architecture. We then leverage

results from the study of linear networks to mathematically describe how gradient

descent naturally causes learned representations to reflect the input statistics. To

demonstrate that this framework can be applied to explain development, we also show

that changes in sensitivity resembling changes in visual acuity in human children can

be reproduced in a simple model trained with gradient descent on natural images.

Our results show how learning provides a natural mechanism for the emergence of a

non-uniform sensory sensitivity that matches input statistics.

Results

Humans and animals show sensitivity that depends on the orientation of stimuli. In

humans, the sensitivity of internal representations can be inferred from psychophysi-

cal data on discrimination thresholds (Ganguli and Simoncelli, 2010) or the empirical

distribution of tuning curves in V1 (Schoups et al, 2001; Stringer et al, 2021) (Fig.

2a). In many animals, internal representations are most sensitive at near vertical and

horizontal orientations (Appelle, 1972). This raises the question if neural networks

trained on natural stimuli are similarly sensitive in a non-uniform way.

To ask if neural networks would show a similar phenomenon, we first obtained a

set of relevant networks and measured their response to artificial stimuli. We specif-

ically investigated deep neural networks trained on the ImageNet task (Deng et al,

2009) as such networks show a number of other similarities to human ventral stream



Fig. 1 Reasons for efficient coding. A) One consequence of efficient coding is that percep-
tual sensitivity reflects the empirical frequency of perceptual variables. B) Efficient coding
can be justified normatively as the most effective way to allocate finite neural resources to
encode a stimulus ensemble. In this work we describe a mechanism for efficient coding due
to learning components of the inputs at different rates dependent on their frequency.

visual processing (Güçlü and van Gerven, 2015; Khaligh-Razavi and Kriegeskorte,

2014; Yamins et al, 2014). We analyzed a range of architectures, including two large

convolutional neural networks (CNNs), VGG16 and Resnet18, and Vision Trans-

formers which operate largely without convolution (Dosovitskiy et al, 2020; He et al,

2016; Simonyan and Zisserman, 2014). Then, to measure sensitivity, we measured

the squared magnitude of the change in network activations given a change in the

angle of oriented Gabor stimuli (Fig 2b; see Methods). For all three networks, we

found that the internal representations were most sensitive to changes near cardinal

orientations (Fig. 2c). The effect was more pronounced deeper in each network. The

coarse pattern of sensitivity of ImageNet-trained deep networks to orientation is thus

similar to that of animals and animals.

We next investigated whether this pattern was due to factors inherent in the net-

work or due to the statistics of the inputs on which it was trained. Before training,

randomly initialized networks largely do not show this pattern, nor do networks in

which all weights after training are randomly shuffled (SI Fig. 1a). After training net-

works on a version of ImageNet in which all images are rotated by 45º, the networks

lose sensitivity to cardinals and gain sensitivity to oblique angles (SI Fig. 1b). This

finding recapitulates our preliminary findings and concurrent work of colleagues, and

points to an origin in image statistics (Benjamin et al, 2019; Henderson and Ser-

ences, 2021). However, we also found that networks trained on rotated images do

partially retain sensitivity to cardinal orientations; they do not simply rotate their

sensitivity by 45º (SI Fig. 1b). This indicates that increased sensitivity to cardi-

nals is partially due to factors inherent in the convolutional architecture. Indeed, we

found that the use of spatial pooling with overlapping receptive fields (such as in

AlexNet; Krizhevsky et al (2012)) involves oversampling a rectangular grid and that

this produces a significant cardinal sensitivity (SI Fig 1c). The pattern of orienta-

tion sensitivity is thus both a product of the input statistics and inherent factors like

architecture.

To separate effects related to architecture and learning, we next examined the

sensitivity of artificial neural networks to changes in hue, as this is unlikely to be



Fig. 2 Artificial neural networks trained to classify naturalistic images show similar
patterns of sensitivity as humans. a) Discrimination thresholds for orientation vary system-
atically in humans. The sensitivity of the underlying internal representations, as the Fisher
Information, can be inferred as the inverse square of the threshold (Ganguli and Simoncelli,
2010; Wei and Stocker, 2017). b) We measured the sensitivity of each layer in an artifi-
cial network as the change in layer’s response due to a given change in orientation, i.e. the
squared norm of the gradient with respect to orientation. c) Relative (normalized) sensitiv-
ity to orientation for three networks trained on ImageNet, plotted for various layers in each
network.

affected by rectangular convolutional processing. We found that hue sensitivity after

training was related to the empirical frequency of hues in ImageNet (Fig. 3c) mea-

sured in HSV color space. The location of the peaks of network sensitivity roughly

matched the patterns of human sensitivity to changes in hues in the HSV color space

(Fig. 3b). To test if this pattern is causally related to the input statistics, we trained

a Resnet18 network on a version of ImageNet in which the hue of all pixels was

shifted by 90º and observed a corresponding shift in the hue sensitivity (Fig. 3d).

This suggests that in general the frequency of low-level visual features determines

the sensitivity of artificial neural networks trained on object classification.

Sensitivity may track input statistics in artificial networks for a similar reason as

in humans. In psychophysics, one leading explanation proposes that there is some

constraint that limits the amount of information a neural population can contain

about its inputs. Due to this constraint, an optimal code will allocate more resources

(and be more sensitive) to inputs that occur frequently (Ganguli and Simoncelli,

2010; Wei and Stocker, 2016). However, the networks above are overparameterized,

in the sense that internal layers contain a greater number of nodes than there are

input pixels, and furthermore contain no source of information-limiting noise dur-

ing evaluation. Thus, the frequency/sensitivity correspondence in artificial networks

likely does not arise from an optimal encoding of the inputs despite inherent and

unresolvable architectural constraints.

One alternative possibility to an explicit constraint like noise is that incremental

learning via gradient descent naturally leads to a frequency/sensitivity correspon-

dence. This hypothesis relates to the idea from connectionist models of development

that the most general aspects of a problem are often learned first (Munakata and



Fig. 3 The sensitivity of ANNs to hue also matches image statistics. a) The color of a
uniform image is varied; in HSV color space, saturation and value are held fixed and the
hue is varied. Results are averaged over possible saturations and values. b) In humans, the
sensitivity to the H axis can be inferred by the perceptual distance between uniformly spaced
H values (calculated using the approximately perceptually uniform color space CIELAB) at
S=V=1. c) The sensitivity to hue in each layer in a trained ResNet18 tracks the empirical
frequency of hues in the ImageNet dataset. d) Training ResNet18 on a version of ImageNet
in which hues are rotated results in a corresponding shift in hue sensitivity.

McClelland, 2003). To investigate this possibility, we analyzed a category of artifi-

cial neural networks amenable to mathematical study: deep linear networks. Deep

linear networks contain no nonlinearities and are equivalent to sequential matrix

multiplication. Despite their simplicity, deep linear networks show many of the same

learning phenomena as nonlinear networks (Saxe et al, 2013; Arora et al, 2019) and

humans (Lee et al, 2014; Saxe et al, 2019). Moreover, this simplified setting allows

us to separate the effects of gradient descent from those of network nonlinearity.

How can we characterize learning in this linear setting? At a high level, the

network becomes responsive to features earlier when those features are more common

(Fig. 4). When learning ends due to finite training time, finite data, or saturating

performance, there is a residual higher sensitivity for common features. We will

expand on this phenomenon below. Overall, the link between learning rate and input

frequency, combined with finite training time, is an additional inductive bias beyond

what features are useful for the task and means that trained networks will tend to

be more sensitive to frequent features.

To more concretely demonstrate this phenomenon we will focus on the task of

reconstructing natural images with a linear network (Fig. 5). This network can be

as shallow as a single layer, in which case the reconstructed images are given by the

matrix multiplication X̂ = WX. Importantly, this problem can be solved exactly

with the solution that the weight matrix W is the identity matrix I. This is an

unconstrained problem; if there is any non-uniformity in the sensitivity of the output

X̂ to changes in X it must be due to the implicit constraints posed during learning.

Analyzing the output sensitivity in this simple model will help to better understand

the implicit preferences of learning with gradient descent.

In our demonstrative task we will examine the sensitivity of the output X̂ to the

magnitude of each principal component that makes up an image (as provided by PCA



Fig. 4 Schematic of how the learning dynamics of linear networks causes a correspondence
between network sensitivity and input statistics. The learning problem is broken into com-
ponents, each of which learns at a specific rate. The frequency or variance of a feature of the
input data (e.g. the color red) in part determines the learning rate of the components that
encode it. This means that the network becomes sensitive to frequent features first. Training
may end before all features are fully encoded.

on the inputs, Fig. 5b). The mathematical analysis for this feature is much simpler

than, say, for orientation. In this case also we have some expectation as to what

pattern of sensitivity the efficient coding framework predicts because the principal

components (PCs) are ordered by their variance. An efficient code in the presence

of independent internal noise should be more sensitive to earlier PCs. Indeed, earlier

PCs are composed of lower spatial frequencies, and humans are better at detecting

changes in lower spatial frequencies (Fig. 5e). If gradient descent provides a similar

effect, we should find that the output X̂ becomes sensitive to lower PCs first.

In our linear model it is possible to describe analytically how the sensitivity

changes due to gradient descent. This is done by examining how the weights change.

We first decompose the weights W via singular value decomposition (SVD), W =

USV T =
∑

i σiuiv
T
i , as a product of unit-length singular vectors (u, v) and their

corresponding singular values σi. The evolution of these components under gradient

descent is known as long as certain basic conditions are met, such as a very small

weight initialization (Arora et al, 2019; Saxe et al, 2013). One key previous finding is

that the singular vectors v of the weight matrix rotate to align with the PCs of the

input (see Theorem 2 in the Appendix) (Arora et al, 2019). Due to this alignment, the

sensitivity of the output X̂ to the ith PC is controlled by the size of the corresponding

singular value in the weights, σi. This is more formally derived in Methods. If σi

remains near its initialization close to zero, then the projection of data upon the ith

PC will be filtered out and the output will not be sensitive to the corresponding PC.

The sensitivity of X̂ to each PC and how it changes with learning can be understood

entirely by the growth of the singular values of W .

Thus far we have linked sensitivity to the weights, but it remains to input statistics

to how the weights change. The input statistics affect the growth of the singular

values of the weight matrix. Each σi grows at a different rate. For this objective of

reconstruction, the growth rate of σi is proportional to the standard deviation of the

corresponding ith PC in the data (see Methods). These decay as a power law for

natural images and are shown in the spectrum in Fig. 5b. As a result, the network

output will become sensitive first to the first (largest-variance) PCs and later to the



later PCs. This is verified empirically in Fig. 5c. Only at infinite training times does

the weight matrix encode all PCs equally and recover the exact solution W = I.

We thus see that, at any finite learning time, the output of the linear network will

be more sensitive to the earlier PCs. Note that this non-uniformity in sensitivity

emerges despite the lack of any constraints on W other than learning.

Fig. 5 The effect of input statistics on network sensitivity can be understood with linear
network models. Despite their simplicity these show human-like learning phenomena. a)
We trained linear networks to reconstruct black and white patches of natural images. b)
The statistics (here, variance) of each PC is given by its singular value, which for natural
images shows a characteristic power law decay. c) When learning with gradient descent,
the weight matrix learns each PC separately and in order of their variance. The sharpness
of the sigmoidal learning curve is controlled by the network depth (SI Fig. 2) d) Human
perceptual learning curves are also sigmoidal, and increasing task difficulty delays learning
dynamics. Data replotted from Ahissar and Hochstein (1997); subjects trained to detect the
orientation of a line, and the difficulty of the task was controlled by a masking stimulus.
e-i) Sensitivity to spatial frequency. f) Every 50 learning steps we plotted the inverse square
root of the sensitivity to spatial frequency, which is a proxy for detection thresholds. At
each step note the linear increase above an elbow. g) Human data on spatial frequency
thresholds replotted from Caelli et al (1983). h) An artificial spatial ‘acuity’ grows nearly
linearly with training; ‘acuity’ is defined as the maximum spatial frequency for which the
artificial threshold is below a value of 0.1. i) In infants and children, the spatial acuity – the
highest spatial frequency observable for high-contrast gratings – increases linearly with age.
Replotted from Mayer and Dobson (1982).

Having introduced this model to explain our findings in artificial networks, we

next wondered how it would compare to human behavioral data. We first examined

the sensitivity of the linear model to the spatial frequency of a sinusoidal grating

(Fig. 5e). In adult humans, the detection threshold to changes in frequency increases

linearly with frequency (Fig. 5g) (Caelli et al, 1983). To compare to human data,

we can plot the “detection threshold” of an artificial network as the inverse squared

sensitivity of the network output to frequency. This is proportional to the error rate

of an optimal read-out of frequency given injected Gaussian noise (Rao, 1945). At

several snapshots during training, we observed that the spatial frequency threshold

increased linearly with frequency above a certain cutoff frequency, below which the

threshold saturated at a low value (Fig. 5f). Even a single matrix trained to recon-

struct images reproduces human-like sensitivity to spatial frequency when trained

with gradient descent.



If the human perceptual system is also implicitly constrained by learning dynam-

ics, this would be apparent in psychophysical studies of young children. Indeed, the

highest observable frequency of a sinusoidal grating continues to improve with age

even up to adolescence (Fig. 5i) (Leat et al, 2009; Mayer and Dobson, 1982). This

is experience-dependent; when sight is restored in young children by the removal of

cataracts their spatial acuity gradually improves (Maurer et al, 1999). These effects

can be reproduced in our model of linear image reconstructions. By measuring the

network’s spatial acuity as a function of training episode as the highest spatial fre-

quency whose simulated detection threshold (inverse squared sensitivity) was below

a fixed cutoff, we found we could reproduce a linear increase of spatial acuity with

age (Fig. 5h). Learning with gradient descent reproduces not only an efficient encod-

ing of spatial frequency but also the way in which visual acuity increases linearly

with age.

The theory of learning in deep networks makes several further predictions for

human perception, many of which have been explored previously (Saxe, 2015; Wen-

liang and Seitz, 2018). A central feature of this framework is a characteristic sigmoidal

curve for perceptual learning tasks (Fig. 5c). Such sigmoidal learning curves are

observable in humans on perceptual learning tasks that are sufficiently difficult (Fig.

5d) (Ahissar and Hochstein, 1997). This curve is sigmoidal because the rate of

improvement depends upon the current level of sensitivity as well as the difference

from asymptotic sensitivity (see Methods). This causes sensitivity to rise exponen-

tially at first but eventually converge exponentially towards an asymptote. In human

perceptual learning experiments, the learning curve is indeed better described as an

exponential than other functional forms such as power laws (Dosher and Lu, 2007).

Although gradient descent in linear systems is a simple model, it accurately captures

the functional form of how perception improves with experience.

In the analysis above we trained towards the objective of reconstructing inputs,

which is an unsupervised objective. However, the mathematical reason why gradi-

ent descent learns frequent inputs first also applies to supervised learning. For two

features with equal correlation with the output labels but different variance in the

inputs, the network will learn to use the higher-variance feature first (see Methods

for derivation). Due to this additional bias beyond task usefulness, networks trained

on a wide range of objectives will show greater sensitivity for frequent features.

The emergence of efficient coding in supervised tasks can be verified with a simple

task in which the frequency and usefulness of input features are varied independently

(Fig. 6). We trained a nonlinear 3-layer neural network to decode the orientation of a

sinusoidal grating appearing with a set probability distribution. We also applied noise

to the output labels to control the information in each stimulus about the labels. As

expected, both the input frequency and output noise separately affect the sensitivity

of learned representations (Fig. 6b,c). However, this could also be explained by the

effect of frequency and noise on task usefulness, defined as the total information in

the input dataset about each label. To demonstrate that gradient descent introduces

an additional bias beyond task usefulness, we next adjusted the magnitude of the

noise such that the total information is uniform across labels. This requires applying

a greater level of noise onto the labels that are more common, balancing their effects



Fig. 6 Dissociating the effect of frequency and information in supervised learning tasks.
a) We trained 3-layer nonlinear neural networks to classify the orientation of sinusoidal
gratings into 3º bins, varying either input frequency or output noise. b) We controlled
the informativeness of input orientations by injecting noise into the labels as a function of
orientation. The sensitivity of the first layer to input orientation is shown over learning.
With uniform statistics, the more informative features are preferentially learned. c) The
effect of varying input frequency without applying label noise. In this case, the more frequent
features are preferentially learned. d) We then balanced noise and frequency such that the
total information in the input dataset about each output label is uniform (see Methods).
Learning with gradient descent still prefers common angles.

on information. Even in this case, a higher sensitivity to input orientation emerges

for more common orientations (Fig. 6d). This now provides a deeper intuition of

our findings earlier that networks trained on object recognition are more sensitive to

frequent features. The preference for frequent features is a general feature of learning

with gradient descent and is separate from frequency’s effect on the information

about labels.

Discussion

Here we found that the internal representations of artificial neural networks trained

on ImageNet are more sensitive to basic visual features that are more common,

which is a hallmark feature of efficient coding. We show that this hallmark natu-

rally emerges from gradient-based learning. Even a minimal model of gradient-based

learning – linear image reconstruction – reproduced human patterns of sensitivity to

sensory variables and how these change over development. In this minimal model the



dynamics of learning can be understood analytically. The correspondence of sensi-

tivity and statistics emerges due to an implicit bias of gradient descent for common,

high-variance aspects of the input data.

Our result provides a proof of principle that patterns of perceptual sensitivity

in animals could be explained by a similar phenomenon. If plasticity in the brain

approximates the gradient of some task, whether by reinforced Hebbian rules or

some other algorithm, neural populations will preferentially encode the strongest

dimensions in their inputs. As a result, organisms may not need dedicated learning

algorithms for efficient codes in addition to algorithms for task-oriented learning.

Many such local, unsupervised plasticity rules and neural control mechanisms have

been previously proposed as ways the brain might develop efficient codes (Barlow,

1989; Bell and Sejnowski, 1995; Brito and Gerstner, 2016; Hyvärinen and Oja, 1997;

Intrator and Cooper, 1992; Karklin and Simoncelli, 2011; Olshausen and Field, 1996;

Ruderman and Bialek, 1993; Schwartz and Simoncelli, 2001; Zhou and Yu, 2018).

Instead, any general algorithm approximating gradient descent may produce similar

codes when learning towards many objectives.

It is important to note that our mathematical analysis of linear networks is highly

simplified and may not accurately describe how learning affects sensitivity in general.

A number of considerations complicate a generalization to nonlinear artificial neural

networks, let alone brains. Nonlinearity makes linear decompositions inaccurate, and

as a result we cannot say the precise features that gradient descent prefers to learn

before others in nonlinear networks. New techniques from this emerging field may

soon allow a more complete characterization of the dynamics of learning (e.g. Goldt

et al (2020)). However, despite these caveats, we find that this model is useful to

explain why efficient codes emerge in nonlinear artificial networks. It is remarkable

that such a simple model of learning also captures qualitative features of human

perceptual learning, as well. Learning in linear systems provides a valuable source of

intuition for the effects of learning in more complex systems.

While we have shown one mechanism for how learning can induce a statistic-

s/sensitivity correspondence, it is not the only mechanism by which it could do so.

Theories of deep learning often distinguish between the “rich” (feature learning) and

“lazy” (kernel) regimes possible in network learning (Woodworth et al, 2020). Our

models reside in the rich regime, which involves learning new intermediate repre-

sentations and assumes a small weight initialization. In the alternative, lazy regime,

intermediate representations change little over learning and only a readout function

is learned (Jacot et al, 2018). Interestingly, networks in the “lazy” (kernel) regime

evolve under gradient descent as if they were linear in their parameters (Lee et al,

2019), and furthermore have the inductive bias of successively fitting higher modes of

the input/output function as more data is presented (Bordelon et al, 2020; Canatar

et al, 2021). The modes are defined differently, however, via the kernel similarity

matrix rather than the direct input covariance. Despite the dissimilarities in these

mathematical approaches, both center gradient descent and learn important aspects

of the problem before others. These similarities suggest that a statistics/sensitivity

correspondence could be derived for other network regimes.



Our broadest finding — that task-oriented learning can be a mechanism of pro-

ducing efficient codes — is relevant to the discussion in psychophysics of the nature

of the constraints implied by perceptual sensitivity patterns. It has long been rec-

ognized that these patterns imply some limitation upon coding capacity. Here, we

make the distinction between implicit limitations due to (a lack of) learning and

explicit limitations upon the maximum achievable code quality after learning, such

as noise, metabolism, or a limited number of neurons. Although these categories

limit perception with different mechanisms, they produce similar patterns of percep-

tual sensitivity. This distinction is particularly meaningful for explaining perceptual

learning. Previously, perceptual improvements during development have been inter-

preted as a reduction in internal noise accompanied by a continuous maintenance of

optimally efficient codes (Dosher and Lu, 1998; Kiorpes and Movshon, 1998). In our

framework, learning naturally creates codes that reflect environmental statistics at

all stages of learning, and there is no need to invoke a reduction in noise to explain

improvements. This is consistent with the view that perceptual learning increases

the signal-to-noise ratio through neuronal changes that enhance the signal strength

(Gold et al, 1999; Schoups et al, 2001). To be sure, the nervous system is indeed

constrained by hard ceilings such as noise and metabolism; learning probably ceases

eventually. The implicit constraints due to learning are complementary to these and

their relative contribution decreases with age and experience.

Although operating at a much shorter time-scale, sensory adaptation induces sim-

ilar behavioral changes as perceptual learning, such as improving sensitivity to small

stimulus differences at the adapted (i.e. learned) stimulus value. It has been argued

that sensory adaptation is a form of efficient coding, optimally re-allocating sensory

encoding resources according to recent stimulus history (Fairhall et al, 2001). While

the adaptation induced changes in neural encoding characteristics such as reduction

in response gain and changes in tuning curves are well characterized (Benucci et al,

2013; Kohn and Movshon, 2004), it is unknown how these local changes in neural

representation accuracy depend on the specific details and dynamics of the sensory

history. Thus it will be interesting to explore the degree to which sensory adaptation

and its dynamics can be explained and predicted by the global objective of a task-

dependent learning rule (gradient descent) in a continually updating (i.e., adapting)

sensory processing system such as the brain.

The model system of gradient descent in linear systems can make several fur-

ther predictions if taken as a model of human perceptual learning. In this model,

the perceptual learning rate can be quantitatively modeled as a function of input

statistics, importance, and current performance. These predictions could be verified

in experiments that separably vary label noise and input statistics in supervised per-

ceptual learning problems. Additionally, learning in the rich domain predicts that

the learning system should represent the outside world in a low-dimensional way,

with additional dimensions being added over time according to their variance and

importance. As such, these learning dynamics naturally give rise to low-dimensional

neural representations. Such learning dynamics may thus underlie the popular idea

in neuroscience of low-dimensional neural manifolds (see Flesch et al (2022)).



A learning framework for perception points to a different sort of normative anal-

ysis of why we perceive the way that we do. Optimality can be defined in two ways.

It can characterize the maximum achievable code quality, in an information-theoretic

sense, given some number of neurons and their biological limitations. Alternatively,

one might also describe responses that are optimal given the limited experience by

which to learn the statistics of the world. Even ideal observers must learn from lim-

ited data, and successful learning from limited data must be constrained (Wolpert

and Macready, 1997). Appropriate learning constraints would be selected for by evo-

lution. Future research may help to unravel these optimal learning algorithms and

characterize their sensory consequences.

Methods

Stimuli and calculation of network sensitivity

In all networks, we defined the sensitivity of a particular layer to a sensory variable

as the squared magnitude of the gradient. For a layer with N nodes and vector of

activations y, the sensitivity with respect to a sensory variable θ is:

D(y; θ) =

N∑
i

∂yi
∂θ

2

(1)

.

This definition of sensitivity can be related to the Fisher Information about a

sensory variable θ in an artificial stimuli set. This is relevant for comparisons to

human psychophysical data as the notion of sensitivity inferred from discrimination

thresholds is the Fisher Information. In particular, our definition of sensitivity can be

interpreted as the Fisher Information of systems with internal Gaussian noise of unit

variance, and furthermore for the orientation of stimuli within an artificial stimulus

ensemble with one stimulus per value of θ. A derivation of this connection can be

found in the Mathematical Appendix.

The sensitivity can be calculated through backpropagation or by the method of

finite differences. We created differentiable generators of stimuli in the automatic

differentiation framework of Pytorch. This allowed calculating the sensitivity directly

via in-built backpropagation methods.

For the figures in the text, we used Gabor stimuli with a spatial frequency of 2

cycles per 100 pixels, a contrast so that pixels span the range of [-1,1] in intensity in

units of z-scored ImageNet image intensities, and a Gaussian envelope with σ = 0.5.

We marginalized over the phase of the Gabor by averaging the sensitivity calculated

with 10 linearly spaced spatial phases tiling the interval [−π, π]. The sinusoidal stim-

uli input to the linear network varied in spatial frequency, and we similarly averaged

sensitivity over spatial phase. Finally, for the hue stimuli, we generated images of a

uniform color in HSV color space and converted pixel values to RGB. Results were

marginalized over the S and V axes in the range [.5, 1] which corresponds to the

calculation of hue histograms on ImageNet (see below), which necessarily involves

binning S and V.



Deep nonlinear network experiments

To measure the sensitivity of pretrained networks, we first downloaded pretrained

ResNet18 and VGG16 (with batch normalization) networks from the Torchvision

python package (v0.11) distributed with Pytorch. For the vision transformer, we

used a distribution in Python available at https://github.com/lukemelas/PyTorch-

Pretrained-ViT. For each layer in these networks, we calculated sensitivity to

orientation and hue were calculated with the stimuli generators described above.

The ‘layers’ are defined differently for each network. For ResNet, layers are what in

this architecture are called residual blocks (each of which contain multiple linear-

nonlinear operations). For VGG, layers are the activations following each linear or

pooling layer. Layers within the vision transformer are what are called transformer

blocks.

We implemented a number of controls to determine the extent to which the

observed patterns of sensitivity related to image statistics. We first ran the sensitivity

analysis on untrained networks; we used the Pytorch default initialization. To ensure

that the architectures do not show inherent patterns only in a certain regime of

weight sizes, we calculated sensitivity on a copy of the networks in which the weights

were shuffled. We wanted to preserve weight sizes in a layer-specific manner, and so

shuffled the weights only within each tensor.

As further control on the effect of image statistics we retrained certain models on

a version of ImageNet in which all images were rotated by 45º, or as well in which

the hue of images were rotated by 90º. The transformer model was not retrained

due to its expense. Image modifications were performed with Torchvision’s in-built

rotation and hue adjusting image transformations.

We trained all networks using a standard training procedure: stochastic gradient

descent with an initial learning rate of 0.1, decaying by a factor of 10 every 30 epochs,

as well as a momentum value of 0.9, and a batch size of 256 images. The networks

were trained for 90 epochs. To match the original training setup, we augmented

the image dataset with random horizontal reflections and random crops of a size

reduction factor varying from 0.08 to 1. Note that the random horizontal reflections

change the statistics of orientations so as to be symmetric around the vertical axis.

After training the sensitivity was calculated as above.

ImageNet hue statistics

We wrote a custom script to extract the hue histogram of all pixels in all images

in the ImageNet training set. We binned hues with a resolution of 1º, and binned

hues over the S and V range [.5,1] to focus on strongly colored pixels. The exact

range is arbitrary, but importantly matches the range used when calculating network

sensitivity.

Linear network experiments

We first constructed a database of 32x32 images of natural scene image portions.

These image portions were extracted from ImageNet (Deng et al, 2009), made



greyscale, and cropped to size. Our constructed dataset contained over 100,000 exam-

ples of image portions. We then performed PCA on this dataset using the PCA

method in Scikit-Learn (Pedregosa et al, 2011), and displayed the singular values of

the top 1,000 components in Figure 5.

Our task consisted of reconstructing these image portions using a single- or mul-

tilayer fully-connected linear neural network. To ensure no architectural bottleneck

exists, the internal (hidden) dimension of the multilayer network remained at 322,

the same as the input and output. The initial parameter values of the networks

were scaled down by a factor of 100 from the default Pytorch initialization to ensure

rich-regime learning. Networks were trained to minimize the mean-squared error of

reconstruction using stochastic gradient descent, a learning rate of 1.0, and a batch

size of 16,384, the largest that would fit in memory. The large batch size minimizes

effects relating to batch stochasticity.

During learning, we calculated the sensitivity to spatial frequency as well as the

projection of the learned weight matrix upon the PCA basis vectors of the inputs.

The projection upon each PCA vector is given by uT
i Wui, where W is the product

matrix corresponding to the linear network and ui is the ith PCA component. The

sensitivity to spatial frequency was calculated by constructing a sinusoidal plane wave

test stimulus with parameterized frequency and phase and using Pytorch’s automatic

differentiation capability to obtain the derivative of network output with respect to

frequency. The sensitivity was calculated for 64 equally-spaced phase offsets and the

result averaged over phase.

Supervised label noise experiment (Fig. 6)

In this experiment we trained a 3-layer neural network with ReLU nonlinearities to

decode the orientation of 64x64 pixel image of a sinusoidal grating. The period of

the sinusoid was 12.8 pixels, and in each stimulus the sinusoid carried a random

phase offset. The random phase and orientation ensured that no image was repeated.

In each image the orientation was sampled in the interval [0, π] from a specified

probability distribution (either a uniform distribution or 2−cos(2x)
2π

). The objective

was the categorization of images into 60 bins of orientations, with success quantified

via a cross-entropy loss function.

The addition of noise to the output labels was calibrated such that, on average

over a dataset, any orientation θ is as informative as any other despite a potentially

nonuniform orientation distribution p(θ). Since the total information in a dataset

about a (potentially noised) label yθ scales linearly with how often it appears, all else

held equal, the variation in per-example information must exactly balance the change

in frequency. That is, for any two orientations θi and θj and their corresponding

(noised) labels yθi and yθj , it must be that p(θi)I[yθi | θi] = p(θj)I[yθj | θj ]. Here

I[·] represents the information gained about a label having observed an input, i.e.

the change in entropy over yθ from the uniform distribution. This proportionality is

satisfied if I[yθj | θj ] = a
p(θ)

for some constant a.

Our approach thus requires applying label noise of a known entropy that varies

with orientation. Because we optimize a cross-entropy objective, rather than e.g. a

mean-squared-error objective, there are no interactions between neighboring bins.



We applied noise by treating the nonzero element of the each label vector, which are

indicator (1-hot) vectors, as a Bernoulli variable with rate σ(θ). σ = 1 corresponds

to the zero-noise condition, and with rate 1 − σ(θ), a label is dropped out. For this

noise, the information about each label is I[yθ | xθ] = 1 − Hb(σ(θ)), where Hb(σ)

is the binary entropy function. Together, the rate of Bernoulli noise is given by

σ(θ) = H−1
b (1− a

p(θ)
). We approximated the inverse binary entropy function with a

table lookup and assuming σ ≥ 0.5.

Sensitivity analysis of linear networks

In this section we will analyze the sensitivity of a linear multilayer neural network in

which the weights of layer i are parameterized by Wi. The output of such a network

with N layers is:

Y = WNWN−1 . . .W2W1X (2)

The product matrix is simply W , such that Y = WX.

Throughout this analysis we will make heavy use of the singular value decomposi-

tion of the weight matrix, which defines matrices U , S, and V such that W = USV T .

The matrix S is diagonal, and the diagonal elements are called the singular values

σi. The U and V matrices are orthonormal.

Our analysis describes how learning dynamics in this system acts to link output

sensitivity to input statistics. Note that the derivation here is for arbitrary objectives;

the instance of a reconstruction loss discussed in the main text is a special case. The

analysis is organized in three stages: 1) how the sensitivity depends on the singular

values σi of W , 2) how σi change with learning, and 3) how σi correspond to the

image statistics.

Sensitivity depends on the singular values of W

We wish to derive the sensitivity of a linear network to arbitrary input features. We

will first examine the case of determining the sensitivity of the network the following

feature: how much the data aligns with each jth singular vector of W . This is a

weight-dependent feature. Specifically, let the feature θj be the dot product of the

data with the jth right singular vector of the weight product matrix, θj = V T
j x. This

feature is important as it can be used to analyze the sensitivity to arbitrary features.

For this feature, we find the sensitivity of the network is D(Y ; θj) = σ2
j . This

result is intuitive, as σ2
j describes how much data lying along the vector vj is amplified

when multiplied with W . A derivation can be found in the Appendix. Thus, when

θj = V T
j x, the sensitivity D(Y ; θj) is constant and is the square of the associated

singular value.

The sensitivity to more general θ can be understood using this result. This is

because the key derivative can be decomposed into the derivatives with respect to

right singular vectors:
∂yµ
∂θ

=
∂yµ

∂V T x

T ∂V T x
∂θ

. In this case, we find that D(y; θ) =∑
j σ

2
j

∂V T
j x

∂θ

2

(see Appendix for derivation). Thus, for arbitrary θ, the sensitivity

depends on how V T
j x depends on θ times the size of the associated singular value,

summed over components j.



The behavior of the singular values

Previous literature describes how the weight matrix changes due to gradient descent

(Arora et al, 2019; Saxe et al, 2013). More information about these results can be

found in the Appendix.

We first define a (potentially data-dependent) cost function:

ℓ(WNWN−1 . . .W2W1) (3)

As described by Arora et al (2019), under certain conditions on the weight initial-

ization the direction of the unit vectors u and v rotate with learning in a specific

way. Note that they remain unit length during learning. This result, quoted in the

Mathematical Appendix as Theorem 2, states that the vectors are static when they

align with the singular vectors of the gradient of the loss, ∇ℓ(W ). More specifically,

if the singular vectors are static then UT∇ℓ(W )V is diagonal. This will become an

important condition for tying the input statistics to the singular values of W .

Another important result from previous literature describes how singular values

of the product matrix W evolve as a function of time t:

σ̇i(t) = −Nσi(t)
2(N−1)

N
〈
∇W ℓ(W (t)), ui(t)v

T
i (t)

〉
(4)

= −Nσi(t)
2(N−1)

N uT
i (t)∇W ℓ(W (t))vi(t) (5)

Thus, each singular value evolves as a product of a function its current size and

the network depth (Nσi(t)
2(N−1)

N ) multiplied by how much the gradient correlates

with the corresponding singular vectors. This formalism assumes continuous learning

dynamics; see (Gidel et al, 2019) for a treatment of finite step sizes.

Relation of frequency to sensitivity

In this section we wish to show how the input statistics affect the singular vectors and

values of W . Our approach is to show that frequency p(θ) reflects in the covariance

of θ. The covariance affects the rate of learning of the singular values of the weight

matrix W .

Frequency vs. variance

In our analysis of how the statistics of data affect sensitivity, we focus on the vari-

ance of features. Since previous literature in psychophysics focus on frequency as

defined by the vector p(θ) with a scalar value for each orientation p(θ = θj) (e.g. Wei

and Stocker (2015)), it is appropriate to discuss their relation. Our analysis focuses

on variance in part because attributes like orientation measured can occur with a

real-valued strength in each image patch when measured by e.g. Gabor filters or

Fourier decomposition. Thus a description of p(θ) in natural images might be more

completely characterized with a two-dimensional matrix with dimensions for angle

and intensity. Variance summarizes the intensity axis and characterizes how unpre-

dictable each orientation is within each image patch. The second reason we work

with variance is that it cleanly relates to the speed of learning.



When features are binary and either present or not, variance and frequency are

closely related. Modeling presence as a Bernoulli variable, the frequency is the prob-

ability p(θj) and the variance is σ(θj) = p(θj)(1 − p(θj)). Note that at very small

values of p(θj), σ(θj) ∼ p(θj). However, features that are nearly always present (p(θj)

near 1) have a very low variance. It is interesting to note that this behavior aligns

with the expectation that efficient sensory systems should dedicate more resources

to features whose presence is uncertain (p(θj) = .5) than to those whose presence

is guaranteed (p(θj) = 1). Variance is thus very similar to absolute frequency for

rare Bernoulli variables and in general may be a more intuitive measure of feature

importance in regards to what determines efficient patterns of sensitivity.

What W learns: autoencoding objective

Further describing the growth of singular values requires a choice of objective. The

base case of our study is the autoencoding objective defined for a set of inputs X:

ℓ(W ) =
1

N

N∑
i

(xi −Wxi)
T (xi −Wxi) (6)

Our goal is to determine how W evolves for this cost function. We will examine

both the singular vectors and the singular values.

During learning, the singular vectors rotate (recall they are unit length and

orthogonal) until they reach a fixed point. For this cost function, it is easy to verify

that a fixed point of dynamics is when the singular vectors are equal to the principal

components of the inputs (see Appendix for proof). That is, the vectors are static

when Σxx = V ΛV T and W = V SV T for the same V but potentially different Λ

and S. This alignment is especially relevant given the expression for network sensi-

tivity derived above. With the vectors aligned, the sensitivity to each corresponding

principal component of the inputs is given by σ2
i , the squared singular value of W.

The evolution of sensitivity is thus governed by the evolution of singular values.

The rate of change of σi is complicated to calculate because the singular vectors can

potentially rotate. However, for the sake of analysis one can examine the case when

the singular vectors are initialized at the fixed point mentioned above, as in previous

literature (Saxe et al, 2013). In this set of initial conditions, the time-evolution of

each singular value of W is given by (Saxe et al, 2013; Arora et al, 2019):

σ̇i(t) = Nλiσi(t)
2(N−1)

N (1− σi(t)) (7)

Note that the rate of learning is controlled by λi, the standard deviation of the

ith principal component of the inputs. The term on the right causes σi(t) to converge

to 1 asymptotically, as is expected as the solution of the full-rank reconstruction

problem is W = I. For deeper networks (N ≥ 2), the growth is sigmoidal and

approaches a step function as N → ∞ (see Gidel et al (2019)). Thus, in this axis-

aligned initialization, the singular values σi(t) are learned in order of the variance of

the associated principal components of the inputs.



Together, these results mean that the sensitivity of a linear network’s output to

the principal components of the inputs evolve in order of variance when trained on

input reconstruction. This is exactly the case for the axis-aligned initialization and

approximately true for small initializations. For the single-matrix network displayed

in the figure in the main text, the sensitivity to the jth PC thus evolves over time t

as:

Ḋ(Y ; PCj)(t) = 2λj

√
D(Y ; PCj)(t)

(
1−

√
D(Y ; PCj)(t)

)
(8)

What W learns: supervised learning

We can also determine how input statistics affect the sensitivity for the more general

class of objective functions when Wx is trained to match some target y by minimizing

the mean-squared error:

ℓ(W ) =
∑
j

(yj −Wxj)
2 (9)

As before, we can gain intuition about W by beginning from an initialization that

is axis-aligned with the final solution. For the supervised case, these initializations

share the singular vectors of the data/labels, but can differ in the singular values.

Given Σxx = V ΛV T and Σxy = UTV T , we set W (0) = USV T for the same U and

V . See the Appendix for proof that this is a fixed point of singular vector dynamics.

This initialization allows us to understand how the singular values of the weight

matrix change. As derived in the Appendix, the time evolution of σi is given by:

σ̇i(t) = −Nσi(t)
2(N−1)

N (σi(t)λi − ti) (10)

= λiNσi(t)
2N−1

N (
ti
λi

− σi(t)) (11)

As in the case for input reconstruction, the ith singular value approaches a target.

Instead of 1, this value is ti
λi
, the ratio of the importance of this component (the

input/output singular value ti) and the standard deviation of that component in the

inputs λi. The growth rate is controlled by the distance from this asymptote (right

term) and as well as on the input statistics λi. Thus, even for the case of supervised

learning the input statistics affect what is learned first via gradient descent directly

through Σxx via λi, and not just through the input/label covariance Σxy.

Code availability

All code used to create the figures is available at

https://github.com/KordingLab/ANN_psychophysics.
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Supplemental figures

SI Fig 1: Controls for orientation sensitivity analyses. a) The sensitivity to the

orientation of Gabor stimuli (see Methods for stimuli parameters) at initialization,

left column, and after shuffling the parameters within each layer, right column. b) We

retrained the Resnet18 and VGG16 architectures on a version of ImageNet in which

all images were rotated by 45º. Left: The orientation statistics can be observed as

the magnitude of the Fourier spatial decomposition around a circle centered at the

origin in frequency space. This method of analysis will show artifacts of spikes at the

cardinals due to the edge effects of rectangular images, but it is a useful control that

image statistics do change with rotation. Top is for standard ImageNet, and bottom

is for rotated ImageNet. Middle column: The sensitivity of ResNet18 and VGG16

after retraining on rotated images. Though changed, it does not appear as a simple

shift of the patterns seen for standard ImageNet (Fig. 2). Right: The difference of this

sensitivity pattern from the sensitivity pattern observed after training on standard

ImageNet shows that changes do correspond to the change in image statistics, at least

in part. c) One source of training-independent sensitivity to the cardinal orientations

is overlapping pooling, where it is used. (None of the three above networks employ

overlapping pooling.) Left: In AlexNet, which does, the network shows a strong non-

uniformity of sensitivity at initialization. Right: The use of non-overlapping pooling

greatly diminishes the non-uniformity, as does the complete removal of pooling layers

(and accompanying change in the convolutional filter downsampling).



SI Fig. 2: Learning dynamics of 2 and 3 layer linear networks. Top: As the depth

of networks increases, the principal components are learned in sharper transitions.

Bottom: The “threshold” of spatial frequency detection, defined as the inverse square

root of the sensitivity to frequency, shows similar patterns regardless of network

depth.



Appendix

Relation of sensitivity to the Fisher information

In the main manuscript, we define the sensitivity of a data point y to a feature θ as:

D(y; θ) =
∑
i

∂yi
∂θ

2

(12)

Throughout this Appendix, lower-case variables represent vectors and capital letters

refer to matrices. We denote the sensitivity an ensemble of data points as D(Y ; θ).

The Fisher Information

In this section we show that the above definition of sensitivity can be interpreted as

the Fisher Information of y given θ for the case of Gaussian internal noise of unit

variance.

Suppose after obtaining y, we observe noisy observations of it ỹ. Then, the Fisher

information of ỹ about some input feature θ is

F (ỹ; θ) = −Ep(ỹ|θ)

[
∂2

∂θ2
log p(ỹ | θ)

]
(13)

When y is a representation of some inputs x, the Fisher information is that

implicitly reflects the stimulus ensemble X, through the connection x → θ → y. It is

often the case that we wish to measure the average Fisher information over such an

input ensemble. For example, the Fisher Information of orientation on natural images,

or on test stimuli. We denote such an average by with capital letters, suggesting a

matrix of examples: F (Ỹ ; θ).

Fisher information for internal noise sources:

We are concerned with the Fisher information F (Ỹ ; θ) when only a single input x

corresponds to each θ. For example, one could be interested in the Fisher informa-

tion about orientation as characterized by a set of rotating sinusoidal gratings with

identical contrast, phase, and frequency.

Since we observe Y noisily, we still observe a distribution p(ỹ | x = f(θ)) for

each θ. Here we have written x = f(θ) for some real function f : R → R since x is

deterministic given θ. In this case the Fisher information is

F (Ỹ | θ) = −Ep(ỹ|x=f(θ))

[
∂2

∂θ2
log p(ỹ | x = f(θ))

]
(14)

This is the expression we focus on in this paper. It is simple to calculate using

derivatives (as detailed below) and a valid point of comparison to human data

characterized with a stimulus ensemble with only one θ per x.



The addition of external noise sources:

As an aside, if one wants to determine the Fisher information about orientation on

natural images, the desired quantity changes. In naturalistic datasets there are many

inputs x that could correspond to each value of θ. Thus, there are two sources of

noise: external noise producing the distribution p(x | θ), and internal noise producing

p(ỹ | y) or alternatively p(ỹ | x). In this case the Fisher information is not easily

obtained from derivatives of model representations. This is because this quantity

requires marginalizing over x inside of the Fisher expression:

F (Ỹ | θ) = −Ep(ỹ|x)

[
∂2

∂θ2
logEp(x|θ)p(ỹ | x)

]
(15)

The expectation inside of the log makes this analytically intractable. Approxima-

tions may be useful for rather simple p(x | θ), but this is prohibitive for naturalistic

data. Thus our expression for sensitivity is not comparable to the Fisher information

about data with external noise.

Gaussian internal noise

The notion of network sensitivity in our paper can be equated with Fisher Infor-

mation in the case that one observes a noised ỹ containing an additive injection of

zero-mean Gaussian noise. Thus with noise ζ ∼ N (0, 1),

ỹ = y + ζ

In this case F (ỹ; θ | X) simplifies. Since the noise is independent over outputs yi
and furthermore Gaussian over each output unit,

log p(ỹ | x) =
∑
i

log p(ỹi | x) (16)

log p(ỹ | x) = −
∑
i

(ỹi − y)2 − 1

2
log 2π (17)

Taking the derivative and expectation over ζ, we obtain the well-known result for

the Fisher of Gaussians:

−Ep(ỹ|x)
∂2

∂θ2
log p(ỹ | x) = Eζ [

∑
i

∂2

∂θ2
(ỹ − y)2i ] (18)

= −Eζ [
∑
i

∂

∂θ
((ỹi − y)

∂y

∂θ
)i] (19)

= Eζ [
∑
i

(
∂y

∂θ
)2i − ζ(

∂2y

∂θ2
])i] (20)

=
∑
i

(
∂y

∂θ
)2i (21)



Sensitivity analysis of a linear network

Imagine that we have a linear multilayer neural network in which the weights of layer

i are parameterized by Wi. The output of such a network with N layers is:

Y = WNWN−1 . . .W2W1X (22)

The product matrix is simply W , and Y = WX.

The total sensitivity can be broken up into terms that depend on the decompo-

sition of W . This will be the bridge to a theory of learning.

As a minimal example, let us first examine the case of determining the sensitivity

as a function of how much the data aligns with each singular vector of W . That is,

our feature θj is the dot product of the data with the jth right singular vector of the

weight product matrix. As discussed later, for autoencoding cost functions this will

align with the principal components of the data after a bit of training, and so this

might also be said to be the sensitivity about the jth principal component.

Defining the SVD and feature of interest as,

W = USV T (23)

θj = V T
j x (24)

For this feature, the expected sensitivity for an input ensemble p(x) is:

D(Y ; θj) = Ep(x)

∑
i

(∂USV Tx

∂V T
j x

)2
i

(25)

= Ep(x)

(
US

∂V Tx

∂V T
j x

)T (
US

∂V Tx

∂V T
j x

)
(26)

Since ∂V T x
∂V T

j x
is a one-hot vector that is 1 in the jth row and zero everywhere else,

it acts to “pick out” the jth column of US. Note that the expectation over p(x)

disappears as well.

D(Y ; θj) = (US)T:,j(US):,j (27)

= σjU
T
:,jU:,jσj (28)

= σ2
j (29)

Here UT
:,jU:,j = 1 because columns of U are orthonormal. Thus, for when θj = V T

j x,

the sensitivity D(Y ; θ)j is constant and is the square of the associated singular value.

More general θ

More general θ can be understood using the result of the last section. The approach

is to decompose an arbitrary derivative into the derivatives with respect to right

singular vectors, as such:
∂yµ
∂θ

=
∂yµ

∂V T x

T ∂V T x
∂θ

. In this case,



D(y; θ) =
∂Wx

∂θ

T ∂Wx

∂θ
(30)

= (
∂USV Tx

∂V Tx

T
∂V Tx

∂θ
)T (

∂USV Tx

∂V Tx

T
∂V Tx

∂θ
) (31)

=
∂V Tx

∂θ

T

SUTUS
∂V Tx

∂θ
(32)

=
∂V Tx

∂θ

T

S2 ∂V
Tx

∂θ
(33)

=
∑
j

σ2
j

∂V T
j x

∂θ

2

(34)

Thus, for arbitrary θ, the sensitivity depends on the derivative of the jth right

singular vector with respect to θ times the size of its associated singular value.

The behavior of the singular values

Let us now establish a cost function upon the product matrix.

ℓ(WNWN−1 . . .W2W1) (35)

Results of previous literature

Though many papers have adopted this framework, as cited in the main text, here

we quote the result of Arora et al (2019).

Summary:

During gradient descent, under certain restrictive conditions on the initial values of

Wi, the singular values of the product matrix evolve qualitatively differently for

N = 1 vs. N > 1. For N > 1 they grow larger sigmoidally (roughly one-at-a-time)

and in order of their contribution to the cost ℓ(W ).

The results to follow examine what happens when we train Wi via gradient

descent to minimize ℓ(W ). Each Wi now becomes a function of time, Wi(t), and

Ẇi(t) = − ∂

∂Wi
ℓ(WNWN−1 . . .W2W1) (36)

In addition we assume that the matrices are initialized in a balanced manner, meaning

that for all j < N ,

WT
j+1(0)Wj+1(0) = Wj(0)W

T
j (0) (37)

This holds approximately when the weights are initialized very close to zero.

Lemma (Arora et al. 2019)

The product matrix W(t) can be expressed as:

W (t) = U(t)S(t)V T (t) (38)



where U(t) and V (t) have orthonormal columns and S(t) is diagonal

Our theory hinges on the behavior of the diagonal elements of S(t), which we will

denote as σi(t).

Theorem 1 (Arora et al. 2019)

The singular values of the product matrix W (t) evolve by:

σ̇i(t) = −Nσi(t)
2(N−1)

N
〈
∇W ℓ(W (t)), ui(t)v

T
i (t)

〉
(39)

= −Nσi(t)
2(N−1)

N uT
i (t)∇W ℓ(W (t))vi(t) (40)

Thus, each singular value evolves as a product of a function its current size and the

network depth (Nσi(t)
2(N−1)

N ) multiplied by how much the gradient correlates with

the rank-1 matrix implied by the singular vectors. Note that if N = 1 there is no

dependence on the current size of σi(t).

Another important result concerns the rotation of the unit vectors u(t) and v(t).

It states that the vectors are static when they align with the singular vectors of

∇ℓW (t).

Theorem 2 (Arora et al. 2019)

Assume that at initialization, the singular values of the product matrix W (t) are

distinct from zero, and that the matrix factorization is non-degenerate, i.e. has depth

N ≥ 2. Then, for any time t such that the singular vectors of the product matrix W

(t) are stationary, i.e. U̇(t) = 0 and V̇ (t) = 0, then UT (t)∇ℓ(W (t))V (t) is diagonal.

Relation of input statistics to sensitivity

Our approach is to show that frequency p(θ) reflects in the covariance of θ. This in

turn affects the rate of learning of the singular values of the weight matrix W , at

least for certain objectives. This connects the sensitivity, or Fisher Information of Ỹ ,

back to the frequency.

The data covariance affects the learning of σi(t):
autoencoding objective

The base case of our study is the autoencoding objective defined for a set of inputs

X:

ℓ(W ) =
1

N

N∑
i

(xi −Wxi)
T (xi −Wxi) (41)

Our goal is to determine the evolution of σi(t) that results from this cost function.

First, see that

∇W ℓ(W (t)) = − 1

N

N∑
i

(xi −Wxi)x
T
i (42)



= − 1

N

N∑
i

xix
T
i +W

1

N

N∑
i

xix
T
i (43)

= WΣ− Σ (44)

Here Σ is the data covariance, assuming X is centered.

In general, the time evolution of each singular value σi(t) is complicated to calcu-

late because the singular vectors can potentially rotate, i.e. (̇U)(t) ̸= 0. However, for

the sake of analysis we can examine a limited case when the direction of the singular

vectors is static. This will allow us to obtain an analytic expression for the evolution

of the singular values in terms of the data covariance. In particular we will examine

the case when the weight matrix is initialized to share right singular vectors (but not

singular values) with the data covariance.

By plugging the expression for ∇W ℓ(W (t)) into Theorem 2, it can be seen that

if Σ = V ΛV T and W = V SV T for the same V , then

UT (t)∇ℓW (t)V (t) = UT (t)∇W (t)Σ− ΣV (t) (45)

= UT (t)U(t)S(t)V T (t)V (t)ΛV T (t)− V (t)ΛV T (t)V (t) (46)

= S(t)Λ− Λ (47)

This is diagonal, and thus by Theorem 2 V̇ (t) = 0 during gradient descent on the

autoencoding objective.

By Theorem 1, this initialization results in:

σ̇i(t) = −Nσi(t)
2(N−1)

N (σi(t)λi − λi) (48)

= Nλiσi(t)
2(N−1)

N (1− σi(t)) (49)

Extension to supervised learning

A more general class of objective functions is when Wx is trained to match some

target y. The input statistics are again relevant here. If we again take the mean-

squared error as the objective,

ℓ(W ) =
∑
j

(yj −Wxj)
2 (50)

The evolution of the singular values is determined by the gradient,

∇W ℓ(W ) =
∑
j

(y −Wx)xT (51)

= W
∑
j

xjx
T
j −

∑
j

yjx
T
j (52)

= WΣxx − Σxy (53)



By Theorem 1, then, we have that,

σi(t) = −Nσi(t)
2(N−1)

N uT
i (t)(W (t)Σxx − Σxy)vi(t) (54)

= −Nσi(t)
2(N−1)

N uT
i (t)W (t)Σxxvi(t) +Nσi(t)

2(N−1)
N uT

i (t)Σxyvi(t) (55)

Thus, the evolution of the singular values depends on two additive terms. One of

these (left) has no dependence on the labels y, only on the statistics of the data.

As before, we can gain intuition about this evolution by beginning from an ini-

tialization that is axis-aligned with the final solution. For the supervised case, these

initializations share the singular vectors of the data/labels, but can differ in the sin-

gular values. Given Σxx = V ΛV T and Σxy = UTV T , we set W (0) = USV T for the

same U and V . This means that,

UT (t)∇ℓW (t)V (t) = S(t)Λ− T (56)

This is a diagonal matrix, and thus a fixed point of learning.

For this initialization, then,

σ̇i(t) = −Nσi(t)
2(N−1)

N (σi(t)λi − ti) (57)

= λiNσi(t)
2N−1

N (
ti
λi

− σi(t)) (58)
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