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In these supplementary materials we discuss: (i) additional results that illustrate the potential of our21

method to estimate diffusion coefficient, molecular brightnesses and background photon emission22

rates. (ii) summary of point estimates results. (iii) details of the methods including descriptions of23

the motion model, point spread functions (PSFs), trajectory selection. (iv) a complete description of24

the inference framework developed that includes choices for the prior probability distributions. (v) a25

description of the computational implementation of the model. (vi) summary of notation and other26

conventions used throughout this study as well as detailed parameter choices for the simulations27

and analyses.28
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S1. Additional results58

FIG. S1. Accuracy and precision of the trajectory estimate. (a-c) The difference of the median of the posterior and
the ground truth as the accuracy (shown with green) and interquartile of the posterior as the precision (shown with maroon)
for all coordinates associated with the synthetic single photon arrival time traces used in Fig. 2.
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FIG. S2. Estimated posterior probability distributions of the diffusion coefficients, molecular brightnesses and
background photon emission rates. (a-c) Posterior probability distributions of the diffusion coefficients associated with the
synthetic single photon arrival time traces used in Fig. 2. (d-f) Posterior probability distributions of the molecular brightnesses
associated with those same synthetic fluorescent intensity traces. (g-i) Posterior probability distributions of the background
photon emission rates for those same traces. (j-l) Posterior probability distributions of the number of active molecules for
those same traces.
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FIG. S3. Accuracy and precision of the trajectory estimate. (a-c) The difference of the median of the posterior and
the ground truth as the accuracy (shown with green) and interquartile of the posterior as the precision (shown with maroon)
for all coordinates associated with the synthetic single photon arrival time traces used in Fig. 3.
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FIG. S4. Estimated posterior probability distributions of the diffusion coefficients, molecular brightnesses and
background photon emission rates. (a-c) Posterior probability distributions of the diffusion coefficients related to synthetic
fluorescent intensity trace used in Fig. 3. (d-f) Posterior probability distributions of the molecular brightnesses associated with
those same synthetic fluorescent intensity traces. (g-i) Posterior probability distributions of the background photon emission
rates for those same traces. (j-l) Posterior probability distributions of the number of active molecules for those same traces.



S7

FIG. S5. Accuracy and precision of the trajectory estimate. (a-c) The difference of the median of the posterior and
the ground truth as the accuracy (shown with green) and interquartile of the posterior as the precision (shown with maroon)
for all coordinates associated with the synthetic single photon arrival time traces used in Fig. 4.
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FIG. S6. Estimated posterior probability distributions of the diffusion coefficients, molecular brightnesses and
background photon emission rates. (a-c) Posterior probability distributions of the diffusion coefficients related to synthetic
fluorescent intensity trace used in Fig. 4. (d-f) Posterior probability distributions of the molecular brightnesses associated with
those same synthetic fluorescent intensity traces. (g-i) Posterior probability distributions of the background photon emission
rates for those same traces. (j-l) Posterior probability distributions of the number of active molecules for those same traces.
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FIG. S7. Accuracy and precision of the trajectory estimate. (a-c) The difference of the median of the posterior and
the ground truth as the accuracy (shown with green) and interquartile of the posterior as the precision (shown with maroon)
for all coordinates associated with the synthetic single photon arrival time traces used in Fig. 5.
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FIG. S8. Estimated posterior probability distributions of the diffusion coefficients, molecular brightnesses and
background photon emission rates. (a-c) Posterior probability distributions of the diffusion coefficients related to synthetic
fluorescent intensity trace used in Fig. 5. (d-f) Posterior probability distributions of the molecular brightnesses associated with
those same synthetic fluorescent intensity traces. (g-i) Posterior probability distributions of the background photon emission
rates for those same traces. (j-l) Posterior probability distributions of the number of active molecules for those same traces.
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S2. Summary of point estimates59

TABLE S1. Here, we list characteristic values (point estimates) of the posterior probability distributions of the diffusion
coefficients D, molecular brightnesses µmol

m and background photon emission rates µback
m of all examples shown in this study.

Mean and std refer to mean value and standard deviation of the posterior (i.e., the square root of variance). Since, in this
study we consider four confocal volumes m = 1, 2, 3, 4, there are four molecular brightnesses and background photon emission
rates for each figure.

D (µm2s−1) µmol
m (photons s−1) µback

m ( photons s−1)
mean std mean std mean std

Fig. 2(a) 0.13 0.07

 5.65
3.23
5.50
5.43

× 104

 2.03
1.84
2.29
2.40

× 104

 2.10
1.02
1.08
0.84

× 103

 24.1
0.75
3.43
0.99

× 102

Fig. 2(b) 0.96 0.13

 5.31
5.07
6.43
5.82

× 104

 1.51
1.81
3.06
2.52

× 104

 0.72
1.06
0.97
0.90

× 103

 3.99
0.63
0.78
0.81

× 102

Fig. 2(c) 9.37 2.12

 4.61
5.12
4.65
5.72

× 104

 1.24
2.52
0.90
0.68

× 104

 1.04
0.99
1.04
0.95

× 103

 0.37
0.25
0.27
0.24

× 102

Fig. 3(a) 1.07 0.08

 4.78
5.14
5.35
5.42

× 104

 0.62
1.04
3.05
3.08

× 104

 1.01
1.02
1.04
0.99

× 103

 0.33
0.28
0.29
0.33

× 102

Fig. 3(b) 0.94 0.11

 4.14
4.52
5.23
6.83

× 104

 0.43
0.28
1.30
1.43

× 104

 1.29
1.21
1.10
1.17

× 103

 0.24
0.45
0.15
0.57

× 103

Fig. 3(c) 1.03 0.28

 1.03
0.81
0.62
0.55

× 105

 4.46
3.58
0.80
1.04

× 104

 3.51
0.55
1.33
0.84

× 103

 2.42
0.40
1.01
0.47

× 103

Fig. 4(a) 1.06 0.16

 1.05
0.89
1.14
0.76

× 104

 1.26
1.55
1.76
2.17

× 103

 1.03
1.01
1.02
1.06

× 103

 0.42
0.30
0.64
0.31

× 102

Fig. 4(b) 0.92 1.12

 4.79
4.53
4.94
5.97

× 104

 5.87
6.77
3.22
10.2

× 103

 1.10
0.99
1.09
0.87

× 103

 1.18
1.08
1.14
0.82

× 102

Fig. 4(c) 1.03 0.14

 1.27
1.09
0.99
1.01

× 105

 4.09
2.23
0.67
1.12

× 104

 1.06
1.03
1.22
0.91

× 103

 1.41
7.97
2.60
1.42

× 102

Fig. 5(a) 1.92 0.77

 5.76
5.21
4.16
4.31

× 104

 5.10
6.93
4.13
3.54

× 103

 0.83
1.12
1.05
1.04

× 103

 1.85
0.95
1.19
0.94

× 102

Fig. 5(b) 0.96 0.14

 5.31
5.07
6.43
5.83

× 104

 1.51
1.81
3.06
2.52

× 104

 0.72
1.06
0.97
0.90

× 103

 3.99
0.63
0.78
0.81

× 102

Fig. 5(c) 3.03 6.45

 5.76
2.08
5.41
0.64

× 104

 1.09
1.72
0.87
0.72

× 104

 1.18
0.92
0.95
0.97

× 103

 12.8
0.45
1.16
0.47

× 102



S12

S3. Detailed methods description60

S3.1. Description of frame of reference61

The PSFs we consider in this study are created by the overlap of the detection profile with the excitation profile. It62

can be seen in Fig. S9(a-b) how PSFm, m = 1, . . . ,M can be considered as the result of the detection profile and the63

excitation profile. As with regular FCS, the dimension of each PSFm can be calibrated by considering a well known64

molecule with a known diffusion coefficient. [1–3] Also, as we illustrate in Fig. S9(c), to coordinate all PSFs, we define65

a global frame of reference where the point of origin is placed at (0,0,0) and each one of the PSFs are centered at66

distance (Cm,x,Cm,y,Cm,z) from the point of origin.67

S3.2. Definition of molecular brightness68

Here, we use the term “molecular brightness” for the random variables µmol
m . This random variable the is the same69

as in our previous work on a single-focus confocal volume. [4] Specifically70

µm (x, y, z) = µexc φd φm,qe φf σ EXC(x, y, z) CEF(x, y, z) (S1)71

where, µexc is the maximum excitation intensity which occurs at the center of the excitation profile, φm,d is the72

efficiency of the photon collection at the center of the detection profile of detector m, φqe is the quantum efficiency of73

the detector m, φf is the quantum efficiency of the fluorophore (i.e. quantum yield), σ is the absorption cross-section74

of the fluorophore, EXC (x, y, z) is the excitation profile and CEFm (x, y, z) is the detection profile of detector m,75

i.e., collection efficiency function, which equals the fraction of the photons collected by the detector m to the total76

photons emitted by a point source. [5]77

To obtain Eq. (3), we cast Eq. (S1) in the simplified form78

µm(x, y, z) = µmol
m PSFm (x, y, z) (S2)79

where µmol
m = µexc φm,d φm,qe φf σ, which we term molecular brightness at the center of the confocal volume m, [6]80

and PSFm (x, y, z) = EXC (x, y, z) CEFm (x, y, z), which we term the PSF.81

S3.3. Definition of point spread function models82

There are several PSF models one could consider. For example: the Airy function, [7–9] 3D-Gaussian (3DG), [10]83

2D-Gaussian-Lorentzian (2DGL) [11–14] and 2D-Gaussian-Cylindrical (2DGC). [10] Our work is general and can84

accommodate any of these points spread functions (PSFs) or combinations thereof.85

The definition of the 3DG PSF is86

PSFm,3DG(x, y, z) = exp

(
−2

((
x− Cm,x
ωm,x

)2

+

(
y − Cm,y
ωm,y

)2

+

(
z − Cm,z
ωm,z

)2
))

(S3)87

while that of the 2DGL PSF is88

PSFm,2DGL (x, y, z) =
1

1 +
(
z−Cm,z

ωm,z

)2 exp

−2


(
x−Cm,x

ωm,x

)2
+
(
y−Cm,y

ωm,y

)2
1 +

(
z−Cm,z

ωm,z

)2

 . (S4)89

Finally, that of the 2DGC PSF is

PSFm,2DGCZ (x, y, z) = exp

(
−2

((
x− Cm,x
ωm,x

)2

+

(
y − Cm,y
ωm,y

)2
))

(S5)

where (Cm,x,Cm,y,Cm,z) is the coordinate of the center of the PSFm from the point of origin and (ωm,x, ωm,y, ωm,z)90

are the semi-axes lateral and parallel to the optical axis of the confocal volume m. Here, the widths of the confocal91

volumes (ωm,x, ωm,y, ωm,z) can be directly estimated by calibration experiments with known diffusion coefficients;92

for example see Ref. [15].93
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FIG. S9. Illustration of a multi-focus confocal setup. (a) The excitation profile is represented by the inverted blue
Gaussian while the detection volumes (Det1 and Det2) are represented by the pink curves in 1D coordinate. (b) The overlap in
the detection volume and illumination volumes produce two PSFs in 1D coordinate that we term “confocal volume”. Each PSF
has its own mean and standard deviation denoted by C1,x and C2,x as mean values and

ω1,x

2
and

ω2,x

2
as standard deviations .

(c) The global frame of reference which shows the point of origin and position of PSFs in 3D.

S3.4. Description of the data simulation94

To generate single photon arrival time traces mimicking a realistic multi-focus confocal setup, we simulate molecules
moving [16, 17] through multi-illuminated 3D volumes. The number of diffusing molecules, N , is prescribed in each
simulation. To maintain a relatively stable concentration of molecules near the confocal volume, we impose periodic
rectangular boundaries. The boundaries are placed at ±Lx and ±Ly perpendicular to the focal plane and ±Lz
perpendicular to the optical axis. We typically choose L large enough such that it be larger than the width of the
combinations of PSFs

Lx ≫ |max
(
Cx
)
−min

(
Cx
)
|+max (ωx) (S6)

Ly ≫ |max
(
Cy
)
−min

(
Cy
)
|+max (ωy) (S7)

Lz ≫ |max
(
Cz
)
−min

(
Cz
)
|+max (ωz) (S8)

where
(
Cx, Cy, Cz

)
and (ωx, ωy, ωz) are the coordinate of the centers from point of origin and dimensions of confocal95

volumes. For simulation purposes, we assess the locations of the molecules (xn,k, yn,k, zn,k), where k = 1, . . . ,K96

label time levels and n = 1, . . . , N label molecules, at equidistant time intervals t1, t2, . . . , tK . The time interval δt,97

however, is smaller than the time interval between successive assessments ∆k = tk+1− tk and the total trace duration98

Ttotal = tK − t0.99

Molecule locations at the first assessment (xn,1, yn,1, zn,1) are sampled randomly from a uniform distribution with100

limits equal to the boundaries ±Lx, ±Ly and ±Lz of our pre-specified volume. Subsequent locations are sampled101

according to the diffusion model which we considered it as a Brownian motion, [4, 18, 19] under a prescribed diffusion102

coefficient D.103

Finally, we obtain individual photon inter-arrival times, ∆k, from any of the confocal volumes and the detector, sk
which can take value 1 to M , at which the kth photons is detected as follows

∆k ∼ Exp

(
M∑
m=1

µm,k

)
(S9)

sk ∼ Cat1,...,M

([
µ1,k∑M

m=1 µm,k
, . . . ,

µM,k∑M
m=1 µm,k

])
(S10)
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where the rate µm,k gathers single photon contributions from the background and the entire molecule population104

according to105

µm,k = µback
m + µmol

m

N∑
n=1

PSFm (xn,k, yn,k, zn,k) . (S11)106

Here, both background photon emission rate and molecular brightness, µback
m and µmol

m , are prescribed and PSFm107

stands for any of the PSFs introduced in Eqs. (S3)(S4)(S5). As an example, in Fig. S9, we illustrate two Gaussian108

shape PSFs overlapping with each others in 1D. Detailed parameter choices for all simulations performed are listed109

in Table S6.110

S3.5. Description of the time trace preparation111

In real experiments, we envision each of the M photon detectors to be simultaneously active. We label the time112

of arrival of photons at the mth detector as tm,k, where k
′ = 1, 2, . . . ,K ′

m. Our data, the starting point for our113

analysis, consists of the detector label at which each successive photon is detected, s = (s1, . . . , sK), and the photon114

inter-arrival times obtained by combining all traces, ∆ = (∆1, . . . ,∆K−1) where ∆k = tk+1 − tk, k = 1, . . . ,K − 1.115

FIG. S10. Illustration of time traces used in the analysis. (a-c) Single photon time traces recorded by confocal volume
one (m=1), two (m=2) and both (m=1,2), respectively. The inter-arrival times are denoted ∆ and s is a sequence of detector
labels (with labels 1 through M where M = 2 here for illustrative purposes) at which each photon was detected.
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S4. Detailed description of the inference framework116

S4.1. Description of prior probability distributions117

Model parameters in our framework requiring priors are: the diffusion coefficient D; the molecular brightness and118

background photon emission rates µmol
m and µback

m ; the initial molecule locations xn,1,yn,1,zn,1; and load bn. As we119

will see, the load plays the role of an indicator variable which is either zero or one whether the molecule is or is not120

contributing photons. Our choices are described below.121

S4.1.1. Prior on the diffusion coefficient122

To ensure that D sampled in our formulation attains only positive values, we place a inverse-Gamma prior123

D ∼ InvGamma (αD, βD) . (S12)124

Besides ensuring a positive D, this prior is conjugate to the motion model, captured by Eq. 4, which facilitates the125

computations (see below).126

S4.1.2. Priors on molecular brightness and background photon emission rates127

To ensure that µmol
m and µback

m sampled only attain positive values, we place Gamma priors on both128

µmol
m ∼ Gamma (αmol, βmol)

µback
m ∼ Gamma (αback, βback) .

(S13)129

Due to the specific dependencies of the likelihood (that we will discuss shortly) on the photon emission rates, conjugate130

priors cannot be achieved for µmol
m and µback

m . So, the above choice offers no computational advantage (see below) and131

could be readily replaced with other distributions.132

S4.1.3. Priors on initial molecule locations133

Since, molecules can be anywhere in space, we place priors on the initial locations. To facilitate the computations
(see below), we place independent symmetric normal distributions, on each Cartesian coordinate of the model molecule

xn,1 ∼ Normal
(
µx0

, σ2
x0

)
(S14)

yn,1 ∼ Normal
(
µy0 , σ

2
y0

)
(S15)

zn,1 ∼ Normal
(
µz0 , σ

2
z0

)
. (S16)

where (σx0
, σy0 , σz0) denote the standard deviations (set to large values as compared to the size of the confocal134

volumes), and (µx0
, µy0 , µz0) denotes the mean which we choose to be centered at the origin.135

S4.1.4. Priors and hyperpriors for molecule loads136

In previous work, we explored the Beta-Bernoulli process used to determine how many molecules are contributing137

photons. [4, 18, 19] Briefly, we define a large population of molecules N which include both active and inactive138

molecules. These molecules are collectively indexed by n = 1, 2, . . . , N . Estimating how many molecules are actually139

warranted by the data under analysis is equivalent to estimating how many of those N molecules are active, i.e., bn=1140

and emitting detected photons, while the remaining inactive ones, i.e., bn=0, have no impact whatsoever and are141

instantiated only for computational purposes.142
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To ensure that each load bn takes only values 0 or 1, we place a Bernoulli prior of weight qn on bn and a conjugate
Beta prior on qn

qn ∼ Beta

(
γb
N
,
N − 1

N

)
(S17)

bn|qn ∼ Bernoulli (qn) (S18)

where, n=1, . . . , N. Under these choices, and in the limit that N → ∞; that is, when the assumed molecule population143

is allowed to be large, this prior/hyperprior converge to the Beta-Bernoulli process, [20, 21] a novel mathematical tool144

that avoids having to pre-specify the number of active molecules by hand (as would be required within the traditional,145

parametric, Bayesian paradigm). Thanks to these new tools, even for N ≫ 1, the posterior sharpens at the correct146

value of active molecules irrespective of how large we make N initially. In other words, provided N is large enough,147

our choice of N is insignificant; while its precise value has only computational implications.148

FIG. S11. Graphical summary of the general framework developed for Beta-Bernoulli process. A population of
model molecules, labeled by n = 1, 2, . . . , load on each molecule is shown by bn and the weight on each load is by qn.

As a way of simplification, and to avoid learning the qn, we may marginalize over these as follows149

P (bn) =

∫ 1

0

P (bn)P (qn) dqn =

∫ 1

0

qbnn (1− qn)
1−bn Γ

(
γb
N + N−1

N

)
Γ
(
γb
N

)
Γ
(
N−1
N

)q γb
N −1
n (1− qn)

N−1
N −1

dqn

=
Γ
(
γb
N + N−1

N

)
Γ
(
γb
N

)
Γ
(
N−1
N

) ∫ 1

0

q
γb
N +bn−1
n (1− qn)

N−1
N −bn+1−1

dqn

=
Γ
(
γb
N + N−1

N

)
Γ
(
γb
N

)
Γ
(
N−1
N

) Γ (γbN + bn
)
Γ
(
N−1
N − bn + 1

)
Γ
(
γb
N + N−1

N + 1
) ∫ 1

0

Beta

(
qn;

γb
N

+ bn,
N − 1

N
− bn + 1

)
dqn︸ ︷︷ ︸

1

=
1

γb+(N−1)
N

Γ
(
γb
N + bn

)
Γ
(
N−1
N − bn + 1

)
Γ
(
γb
N

)
Γ
(
N−1
N

) .

(S19)150

As bn can only attain values of 0 or 1, we arrive at a renormalized Bernoulli probability distribution over bn151


P (bn = 0) = 1

1+
γb

N−1

P (bn = 1) = 1
1+N−1

γb

=⇒ bn ∼ Bernoulli

(
1

1 + N−1
γb

)
. (S20)152
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S4.2. Summary of our model153

For concreteness, below we summarize the entire set of equations used in our framework, including a complete list
of priors and hyperpriors

D ∼ InvGamma, (αD, βD) (S21)

µmol
m ∼ Gamma (αmol, βmol) (S22)

µback
m ∼ Gamma (αback, βback) (S23)

bn ∼ Bernoulli

(
1

1 + N−1
γb

)
(S24)

xn,1 ∼ Normal
(
x0, σ

2
x0

)
(S25)

yn,1 ∼ Normal
(
y0, σ

2
y0

)
(S26)

zn,1 ∼ Normal
(
z0, σ

2
z0

)
(S27)

xn,k+1|xn,k, D ∼ Normal (xn,k, 2D∆k) , k = 1, . . . ,K − 1 (S28)

yn,k+1|yn,k, D ∼ Normal (yn,k, 2D∆k) , k = 1, . . . ,K − 1 (S29)

zn,k+1|zn,k, D ∼ Normal (zn,k, 2D∆k) , k = 1, . . . ,K − 1 (S30)

∆k|{µmol
m , µback

m }m, {bn, xn,k, yn,k, zn,k}n ∼ Exp

(
M∑
m=1

µm,k

)
, k = 1, . . . ,K − 1 (S31)

sk|{µmol
m , µback

m }m, {bn, xn,k, yn,k, zn,k}n ∼ Cat1,...,M

(
µ1,k∑M

m=1 µm,k
, . . . ,

µM,k∑M
m=1 µm,k

)
, k = 1, . . . ,K (S32)

µm,k =

(
µback
m + µmol

m

∑
n

bn PSFm (xn,k, yn,k, zn,k)

)
. (S33)

S5. Description of the computational scheme154

The posterior over all unknowns that we wish to infer is P
(
D, {µmol

m , µback
m }m, {bn, xn, yn, zn}n|∆, s

)
, where molec-

ular trajectories and intensities (measurements) are gathered in

xn = (xn,1, xn,2, . . . , xn,K) (S34)

yn = (yn,1, yn,2, . . . , yn,K) (S35)

zn = (zn,1, zn,2, . . . , zn,K) (S36)

∆ = (∆1,∆2, . . . ,∆K−1) (S37)

s = (s1, s2, . . . , sK). (S38)

This posterior corresponds to the graphical model shown in Fig. 6. Due to the nonlinear dependency over molecular155

positions introduced in the PSF and the non-parametric prior on bn, analytic evaluation or direct sampling of this156

posterior is impossible. For this reason, we develop a specialized Markov chain Monte Carlo (MCMC) scheme that157

can be used to generate pseudo-random samples from this posterior. [22–26] This scheme is explained in detail below.158

The implementation of the proposed model as the source code and GUI, see Fig. S12, are available through the159

Supporting Materials.160
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FIG. S12. A working implementation of the framework described in this study is available through the Sup-
porting Materials. Along with this implementation, we provide a graphical user interface (GUI) that can be used to analyze
intensity traces from confocal microscopy.

S5.1. Overview of the sampling updates161

The MCMC we used exploits a Gibbs sampling scheme [22–24] by sampling each one of the random variables sequen-162

tially from their conditional probabilities on other random variables and the measurements ∆ and s. Conceptually,163

the steps involved in the generation of each posterior sample
(
D, {µmol

m , µback
m }m, {bn, xn, yn, zn}n

)
are:164

(1) For each n of the active molecules165

(i) Update trajectory xn of active molecule n166

(ii) Update trajectory yn of active molecule n167

(iii) Update trajectory zn of active molecule n168

(2) Update jointly the trajectories xn, yn, zn for all n of the inactive molecules169

(3) Update the diffusion coefficient D170

(4) Update jointly the loads bn for all model molecules171

(5) Update jointly the molecular brightness and background photon emission rates µmol
m and µback

m , respectively172

These steps are described in detail below.173

S5.2. Sampling of active molecule trajectories174

We sample the trajectory of active molecules xn from the corresponding conditional probability distribution175

P
(
xn|D, {µmol

m , µback
m }m, {bn′ , yn′ , zn′}n′ , {xn′}n′ ̸=n,∆, s

)
. We, directly sample the trajectories using Hamiltonian176

Monte Carlo (HMC) [23, 27, 28] which we expand below.177

As far as we know, this strategy has rarely been used in the Natural Sciences and yet is critical in avoiding178

approximations in sampling the molecular trajectories. In our previous work [4, 18, 19] we used Kalman filters for179
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FIG. S13. A cartoon representation of HMC. (a) Samples from the posterior for molecular location are often more likely
drawn near the posterior’s mode. As a result, in (b), samples are drawn more often near the minimum or minima of the
negative logarithm of the posterior. (c) In HMC, we ascribe an interpretation of the negative logarithm of the posterior. We
think of it as a potential and think of HMC as a means of locating potential minima. Each equiprobable region of the posterior
is thought of as an isoenergetic surface of our potential.

this task due to its computational efficiency, and to do this, we needed to approximate the likelihood which results180

in new point statistics that appear as a transformation of the data. To do this approximation, we imposed some181

assumptions and as the result, the posterior sampled was an approximate posterior. Now, by applying HMC, we can182

directly target any posterior, without concern as to the complex dependency of the likelihood on the parameters we183

wish to infer.184

In HMC, we have three main steps:185

(1) Posterior transformation to a Hamiltonian186

(2) Perform Strang-splitting [29, 30] to solve the Hamiltonian equations and propose locations of molecules187

(3) Perform a Metropolis-Hastings to accept or reject the proposed sample.188

The benefits of posterior transformation to a Hamiltonian is that, we can estimate the random variables which in189

this case are the positions of the molecule by solving the Hamiltonian equations.190

S5.2.1. Posterior transformation to a Hamiltonian191

The idea underlying HMC is summarized in Fig. S13. Without approximation, we re-write the posterior probability192

distribution as P
(
xn|∆, s, . . .

)
∝ exp (−U (xn)) with the potential energy defined as U (xn) = − logP

(
xn|∆, s, . . .

)
.193

The target probability distribution to sample from is194

P
(
xn|D, {µmol

m , µback
m }m,{bn′ , yn′ , zn′}n′ , {xn′}n′ ̸=n,∆, s

)
∝

P
(
s|xn, D, {µmol

m , µback
m }m, {bn′ , yn′ , zn′}n′ , {xn′}n′ ̸=n

)
× P

(
∆|xn, D, {µmol

m , µback
m }m, {bn′ , yn′ , zn′}n′ , {xn′}n′ ̸=n

)
× P

(
xn|D,∆

) (S39)195

where the positions of the active molecule xn are the variables and both ∆ and s are observations. In HMC, the196

logarithm of the above conditional coincides with what is termed the “HMC potential”197

U(xn) = − logP(xn|∆, s, . . . )
= − logP(s|xn, . . . )− logP(∆|xn, . . . )− logP(xn|∆, D) + Constant

= V (xn) + L(xn) + Constant.

(S40)198

For computational reasons, we have split the potential into two where V (xn) = − log
(
P
(
∆|xn, . . .

)
P (s|xn, . . . )

)
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contains the likelihood portion of the posterior and L (xn) = − logP
(
xn|D,∆,

)
contains the prior.

V (xn) = − log

([
K−1∏
k=1

P (∆k|xn,k, . . . )P (sk|xn,k, . . . )

]
P (sK |xn,K , . . . )

)
(S41)

= − log

([
K−1∏
k=1

EXP

(
∆k;

M∑
m=1

µm,k

)
µsk,k∑M
m=1 µm,k

]
µsK ,K∑M
m=1 µm,K

)
(S42)

= − log

([
K−1∏
k=1

µsk,k exp

(
−∆k

M∑
m=1

µm,k

)]
µsK ,K∑M
m=1 µm,K

)
(S43)

=

[
K−1∑
k=1

− log (µsk,k) +∆k

M∑
m=1

µm,k

]
− log (µsK ,K) + log

(
M∑
m=1

µm,K

)
. (S44)

Also, as the result of expanding the partial potential L (xn) = − logP
(
xn|∆, D

)
in Eq. (S39) we have199

P(xn|D,∆) = P(xn,1)P(xn,2|xn,1,∆1, D) · · ·P(xn,K |xn,K−1,∆K−1, D). (S45)200

Since P(xn,1) above is given by Eq. (S14) and the subsequent conditional probabilities are dictated by the motion201

model, Eq. (S28), we arrive at202

P(xn|∆, D) = Normal
(
xn,1;x0, σ

2
x0

)
Normal (xn,2;xn,1, 2D∆1) · · ·Normal (xn,K ;xn,K−1, 2D∆K−1) (S46)203

where x0, σ
2
x0

are the mean value and the variance of the initial position’s prior in Eqs. (S25), (S26), (S27). The204

negative logarithm of the above yields205

L(xn) =− log P(xn)
=− log Normal

(
xn,1;µx0

, σ2
x0

)
− log Normal (xn,2;xn,1, 2D∆1)− log Normal (xn,3;xn,2, 2D∆2)

...

− log Normal (xn,K−1;xn,K−2, 2D∆K−2)− log Normal (xn,K ;xn,K−1, 2D∆K−1)

= +
1

2σ2
x

(xn,1 − µ)2

+
1

4D∆1
(xn,2 − xn,1)

2 +
1

4D∆2
(xn,3 − xn,2)

2

...

+
1

4D∆K−2
(xn,K−1 − xn,K−2)

2 +
1

4D∆K−1
(xn,K − xn,K−1)

2 +Constant.

(S47)206

Now that we have the potential U(xn) = V (xn) + L(xn), we define a kinetic energy required for the HMC sampler.207

To do this, we introduce a new set of auxiliary random variables, pn, as well as a mass matrix M. As usual, the208

kinetic energy is given by209

T (pn) =
pTnM

−1pn
2

. (S48)210

The mass matrix M has to be positive definite (i.e. has exclusively positive real eigenvalues). Since, any choice that211

satisfies this requirement works, we choose the simplest choice which is the diagonal matrix [27]212

M =


m1 0 . . . 0
0 m2 . . . 0
...

...
. . .

...
0 0 . . . mK

 . (S49)213

The resulting full Hamiltonian (ignoring the constant term), the key quantity of HMC, is separable and of the form214

H(xn, pn) = T (pn) + U(xn)

= T (pn) + V (xn) + L(xn).
(S50)215
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S5.2.2. Perform the Strang-splitting algorithm to solve Hamilton’s equations216

In order to find xn and pn, we need solve the Hamiltonian’s equations [27, 28]

dxn
dt

= +Hpn(xn, pn) (S51)

dpn
dt

= −Hxn
(xn, pn). (S52)

where Hpn and Hxn are gradients of the Hamiltonian with respect to the subscripted quantity. If we could solve217

Eqs. (S51), (S52) without approximation, we could directly sample the whole trajectory of the molecule n, xn.218

However, in our case, there is no analytic solution and we need to use some numerical method to solve them.219

To solve the Hamilton’s equations Eqs. (S51), (S52), we use Strang-splitting [29, 30] which is a symplectic integrator220

preserving the energy of the mechanical system (and thus the target probability distribution from which we want221

to sample) and preserving the phase volume. Since, Strang-splitting, is a numerical method to solve differential222

equations, we might have some error in the final answer. So, to correct such error, at the end we evaluate the answer223

by a Metropolis-Hastings algorithm to avoid any error caused by the Strang-splitting.224

To use the Strang-splitting, we split the Hamiltonian in Eq. (S53) into two Hamiltonians:225

H(xn, pn) = H1(xn, pn) +H2(xn, pn) (S53)226

where

H1(xn, pn) = V (xn) (S54)

H2(xn, pn) = T (p) + L(xn). (S55)

To integrate the dynamics, in Strang-splitting, instead of considering the full step, we consider many small steps with227

a step size of h and integrate each of the partial Hamiltonians H1(xn, pn) and H
2(xn, pn) successively. As the result,228

Strang-splitting is based on single steps with the following fractional steps of229

230

(1) Advance half-step using H1(xn, pn)231

(2) Advance whole-step using H2(xn, pn)232

(3) Advance half-step using H1(xn, pn).233

234

235

Taken together, these three steps are equal to a full step for each Hamiltonian. Below, we describe each of these236

steps in detail.237

238

(1) Advance half-step using H1(xn, pn)239

In this step we have a half-update using the H1(xn, pn) = V (xn) and integrate the dynamics as follows

dxn
dt

= +H1
pn
(xn, pn) (S56)

dpn
dt

= −H1
xn
(xn, pn) (S57)

which simplifies to

dxn
dt

= 0 (S58)

dpn
dt

= −Vxn
(xn). (S59)

To solve Eqs. (S58), (S59), we use Stormer-Verlet, [31] which is second order and symplectic

pmid
n − poldn
h/4

= −H1
xn
(pmid
n , xoldn ) (S60)

xnewn − xoldn
h/4

= −H1
pn
(pmid
n , xoldn ) +H1

pn
(pmidn , xnewn ) (S61)

pnewn − pmidn

h/4
= −H1

xn
(pmid
n , xnewn ) (S62)
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which immediately simplifies to

pmid
n − poldn
h/4

= −Vxn
(xoldn ) (S63)

xnewn − xoldn
h/4

= 0 (S64)

pnewn − pmid
n

h/4
= −Vxn(x

new
n ) (S65)

such that

xnewn = xoldn (S66)

pnewn = poldn − h

2
Vxn

(
xoldn

)
. (S67)

The gradient of the partial potential V (xn) can be written as

Vxn
(xn) =

∂Vxn
(xn)

∂xn
=

∂

∂xn

([
K−1∑
k=1

− log (µsk,k) +∆k

M∑
m=1

µm,k

]
− log (µsK ,K) + log

(
M∑
m=1

µm,K

))
(S68)

=



−
∂µs1,1
∂xn,1

µs1,1
+∆1

∑M
m=1

∂µm,1

∂xn,1

−
∂µs2,2
∂xn,2

µs2,2
+∆2

∑M
m=1

∂µm,2

∂xn,2

−
∂µs3,3
∂xn,3

µs3,3
+∆3

∑M
m=1

∂µm,3

∂xn,3

...

−
∂µsK−1,K−1

∂xn,K−1

µsK−1,K−1
+∆K−1

∑M
m=1

∂µm,K−1

∂xn,K−1

−
∂µsK,K

∂xn,K

µsK,K
+

∑M
m=1

∂µm,K
∂xn,K∑M

m=1 µm,K



. (S69)

(2) Advance whole-step using H2(xn, pn)240

In this step we have a whole-update using the H2(xn, pn) = T (pn) + L(xn) and integrate the dynamics as follows

dxn
dt

= +H2
pn
(xn, pn) (S70)

dpn
dt

= −H2
xn
(xn, pn) (S71)

which simplifies to

dxn
dt

=M−1pn (S72)

dpn
dt

= −Lxn
(xn). (S73)
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The gradient of the partial potential L(xn) is241

Lxn(xn) =



Lxn,1
(xn)

Lxn,2
(xn)

Lxn,3
(xn)

...

Lxn,K−1
(xn)

Lxn,K
(xn)


=



(xn,1 − µx0
)

σ2
x0

+
(xn,1 − xn,2)

2D (t2 − t1)

(xn,2 − xn,1)

2D (t2 − t1)
+

(xn,2 − xn,3)

2D (t3 − t2)

(xn,3 − xn,2)

2D (t3 − t2)
+

(xn,3 − xn,4)

2D (t4 − t3)

...

(xn,K−1 − xn,K−2)

2D (tK−1 − tK−2)
+

(xn,K−1 − xn,K)

2D (tK − tK−1)

(xn,K − xn,K−1)

2D (tK − tK−1)



=



(xn,1 − µx0)

σ2
x0

+
(xn,1 − xn,2)

2D∆1

(xn,2 − xn,1)

2D∆1
+

(xn,2 − xn,3)

2D∆2

(xn,3 − xn,2)

2D∆2
+

(xn,3 − xn,4)

2D∆3

...

(xn,K−1 − xn,K−2)

2D∆K−2
+

(xn,K−1 − xn,K)

2D∆K−1

(xn,K − xn,K − 1)

2D∆K−1



= − 1

2D



−( 2D
σ2
x0

+ 1
∆1

) 1
∆1

0 . . . 0 0
1
∆1

−( 1
∆1

+ 1
∆2

) 1
∆2

. . . 0 0

0 1
∆2

−( 1
∆2

+ 1
∆3

) . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . −( 1

∆K−2
+ 1

∆K−1
) 1

∆K−1

0 0 0 . . . 1
∆K−1

− 1
∆K−1





xn,1
xn,2
xn,3
...

xn,K−1

xn,K

− 1

σ2
x0



x0
0
0
...
0
0


= − 1

2D
Axn − 1

σ2
x0

ν.

(S74)242

Now, inserting the gradient, shown in Eq. (S74), into Eqs. (S72) and (S73), we have243

dxn
dt

= M−1pn

dpn
dt

=
1

2D
Axn +

1

σ2
x0

ν.
(S75)244

To be able to solve the above equations efficiently, we apply the implicit midpoint method, [31] which is second order245

and symplectic. By applying the implicit midpoint, we recover246

xnewn − xoldn
h

= M−1 p
old
n + pnewn

2

pnewn − poldn
h

=
1

2D
A
xoldn + xnewn

2
+

1

σ2
x0

ν.

(S76)247

Next, we first solve pnewn from the first equation and plug it into the second equation(
2M

h
− h

4D
A

)
xnewn =

(
2M

h
+

h

4D
A

)
xoldn +

h

σ2
x0

ν + 2poldn (S77)

pnewn =
2M

h

(
xnewn − xoldn

)
− poldn . (S78)

In order to simplify Eqns. (S77), (S78), we now introduce these metrices

G =
2

h
M (S79)

F1 = G− h

4D
A (S80)

F2 = G+
h

4D
A (S81)
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and recast Eqns. (S77), (S78) in the form

F1x
new
n = F2x

old
n +

h

σ2
x

ν + 2poldn (S82)

pnewn = G
(
xnewn − xoldn

)
− poldn . (S83)

Next, our goal is to solve Eqs. (S82), (S83) to find the xnewn and the pnewn . To solve these equations, we use tri-diagonal248

solver also known as Thomas algorithm [32] (this is due to the tri-diagonality of L(xn) which leads to tri-diagonal F1249

and F2). Re-writing Eq. (S82) we have250

F1x
new
n = d (S84)251

where d = F2x
old
n + h

σ2
x0

ν + 2poldn . With all matrices made explicit, we have252 

ϕ1 ψ1 0 0 . . . 0 0 0
ψ1 ϕ2 ψ2 0 . . . 0 0 0
0 ψ2 ϕ3 ψ3 . . . 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 . . . ψK−2 ϕK−1 ψK−1

0 0 0 0 . . . 0 ψK−1 ϕK





xnewn,1

xnewn,2

xnewn,3
...

xnewn,K−1

xnewn,K


=



d1
d2
d3
...

dK−1

dK

 (S85)253

where, ψ and ϕ are254

ψk = − h

4D∆k
, k = 1, . . . ,K

ϕk =



2mk

h + h
4D

(
2D
σ2
x0

+ 1
∆k

)
, k = 1

2mk

h + h
4D

(
1

∆k
+ 1

∆k−1

)
, k = 2, . . . ,K − 1

2mk

h + h
4D

1
∆k−1

, k = K.

(S86)255

To implement the Thomas algorithm to solve Eq. (S85), we must first “march forward” as follows

C ′
k =


ψk

ϕk
, k = 1

ψk

ϕk−ψk−1C′
k−1

, k = 2, . . . ,K − 1

(S87)

d′k =


dk
ϕk

, k = 1

dk−ψk−1d
′
k−1

ϕk−ψk−1C′
k−1

, k = 2, . . . ,K

(S88)

and by marching backward we have256

xnewn,K = d′K

xnewn,k = d′k − C ′
kx

new
n,k+1 , k = K − 1, . . . , 1.

(S89)257

S5.2.3. Perform a Metropolis-Hastings test to accept or reject the proposed sample258

Solutions of the Hamiltonian equations are deterministic. However, due to the error caused using of Strang-splitting259

to solve these equations, we now need to evaluate the proposed trajectory by comparing posteriors over the positions260

determined with the old posteriors in the Metropolis-algorithm and accept or reject positions xnewn . Since, we already,261

calculated the logarithm of the posterior, we compare the logarithm of the posterior ratio which is equal to the262

difference of Hamiltonians defined by Eq. (S50).263
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S5.3. Sampling of inactive molecule trajectories264

After updating the trajectories of the active molecules, we update the trajectories of the inactive ones. For this,265

we sample from the corresponding conditionals P({xn, yn, zn}n:bn=0|D, {µmol
m , µback

m }m, {bn}n,∆, s). Since the lo-266

cations of inactive molecules are not associated with the observations in ∆ and s, these conditionals simplify to267

P({xn, yn, zn}n:bn=0|D, {bn}n,∆) which can be readily simulated jointly in the same manner as standard 3D Brown-268

ian motion.269

So, the conditional probability distribution P({xn, yn, zn}n:bn=0|D, {bn}n,∆) can be written as270

P({xn, yn, zn}n:bn=0|D, {bn}n,∆) = P
(
xn,bn=0|D, {bn}n,∆

)
P
(
yn,bn=0|D, {bn}n,∆

)
P
(
zn,bn=0|D, {bn}n,∆

)
= P (xn,1)

K−1∏
k=1

P (xn,k+1|xn,k, D,∆k)

× P (yn,1)

K−1∏
k=1

P (yn,k+1|yn,k, D,∆k)

× P (zn,1)

K−1∏
k=1

P (zn,k+1|zn,k, D,∆k) .

(S90)271

Since coordinates of (x, y, z) are independent from each others, we can sample them separately. For the first positions272

of inactive molecules, we sample them form the prior.273

xn,1,bn=0 ∼ Normal
(
x0, σ

2
x0

)
yn,1,bn=0 ∼ Normal

(
y0, σ

2
y0

)
zn,1,bn=0 ∼ Normal

(
z0, σ

2
z0

) (S91)274

and for the rest of the trajectory, we march forward and sample them form275

xn,k+1,bn=0 ∼ Normal (xn,k,bn=0, D,∆k)

yn,k+1,bn=0 ∼ Normal (yn,k,bn=0, D,∆k) , k = 1, . . . ,K − 1

zn,k+1,bn=0 ∼ Normal (zn,k,bn=0, D,∆k) .

(S92)276

S5.4. Sampling the diffusion coefficient277

By having the updated locations of molecules, we sample the diffusion coefficient D from the corresponding condi-278

tional probability distribution of P
(
D|{µmol

m , µback
m }m, {bn, xn, yn, zn}n,∆, s

)
, which due to independence of the dif-279

fusion coefficient from the emission rates and the labels on the confocal volume, simplifies to P
(
D|{xn, yn, zn}n,∆

)
;280

such variable dependencies are also shown graphically in Fig. 6. Now, using the prior, Eq. (S12), and motion model,281

Eqs. (S28), in 1D, we arrive at the marginal posterior282

P
(
D|{xn}n,∆

)
∝

N∏
n=1

K−1∏
k=1

Normal (xn,k+1;xn,k, 2D∆k) InvGamma (D;αD, βD)

=
βαD

D

Γ (αD) (4π)
N(k−1)

2

D−(αD+
N(k−1)

2 )−1 exp

−
βD + 1

4

∑N
n=1

∑K−1
k=1

(xn,k+1−xn,k)
2

∆k

D


∝ InvGamma (D;α′

D, β
′
D)

(S93)283

where α′
D and β′

D are given by284

α′
D = αD +

N(K − 1)

2
, β′

D = βD +
1

4

N∑
n=1

K−1∑
k=1

(xn,k+1 − xn,k)
2

∆k
. (S94)285
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In 3D, Eq. (S93) can be re-written by using Eqs. (S28), (S29) and (S29) and the parameters of α′
D and β′

D have new286

form of287

α′
D = αD +

3N(K − 1)

2
, β′

D = βD +
1

4

N∑
n=1

K−1∑
k=1

(
(xn,k+1 − xn,k)

2
+ (yn,k+1 − yn,k)

2
+ (zn,k+1 − zn,k)

2

∆k

)
. (S95)288

S5.5. Sampling the molecule loads289

In the next step, where we sample the loads of molecules {bn}n, we sample from290

P({bn}n|D, {µmol
m , µback

m }m, {xn, yn, zn}n,∆, s) which simplifies to P
(
{bn}n|{µmol

m , µback
m }m, {xn, yn, zn}n,∆, s

)
;291

variable dependencies are also shown graphically in Fig. 6. Based on these dependencies, the marginal posterior can292

be written as follows293

P
(
{bn}n|{µmol

m , µback
m }m, {xn, yn, zn}n,∆, s

)
∝ P

(
∆|{µmol

m , µback
m }m, {bn, xn, yn, zn}n

)
× P

(
s|{µmol

m , µback
m }m, {bn, xn, yn, zn}n

)
× P ({bn}n) .

(S96)294

We could, in principle, sample each load successively, that is from295

P
(
bn′ |{µmol

m , µback
m }m, {xn, yn, zn}n, {bn}n ̸=n′ ,∆, s

)
∝ P

(
∆|{µmol

m , µback
m }m, {bn, xn, yn, zn}n

)
× P

(
s|{µmol

m , µback
m }m, {bn, xn, yn, zn}n

)
× P (bn′) .

(S97)296

In practice, we have found that this gives rise to poor mixing of our MCMC chain.297

The best mixing would be achieved if we could sample all loads simultaneously. This can be done by calculating298

the posteriors of all configurations of loads299

B1 = [0, 0, . . . , 0] , P1 = P
(
B1|{µmol

m , µback
m }m, . . .

)
B2 = [1, 0, . . . , 0] , P2 = P

(
B2|{µmol

m , µback
m }m, . . .

)
B3 = [0, 1, . . . , 0] , P3 = P

(
B3|{µmol

m , µback
m }m, . . .

)
...

B2N = [1, 1, . . . , 1] , P2N = P
(
B2N |{µmol

m , µback
m }m, . . .

)
.

(S98)300

and construct the categorical distribution and sample the configuration of loads301

{bn}n|{µmol
m , µback

m }m, {xn, yn, zn}n,∆, s ∼ Cat[B1,B2,B3,...,B2N ] (P1, P2, P3, . . . , P2N ) . (S99)302

The problem is that this categorical distribution has 2N arguments, i.e., each load can be 0 or 1. The computational303

cost associated to calculating these probabilities is prohibitively high.304

For this reason, we compromise. We pick a fixed number of loads at random (from a uniform discrete distribution305

with N outcomes). We update these simultaneously and repeat for the remainder of the loads until all loads have306

been updated.307

Concretely, we define a random sets of loads {bn′}n′ where n′ = 1 . . . , N ′ and apply direct sam-308

pling to these. The posterior over this smaller set of loads that we update simultaneously is309

P
(
{bn′}n′ |{µmol

m , µback
m }m, {xn, yn, zn, bn,n̸=n′}n,∆, s

)
. So, the conditional probability distribution can be written310
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as311

P
(
{bn′}n′ |{µmol

m , µback
m }m, {xn, yn, zn, bn,n̸=n′}n,∆, s

)
∝ P

(
∆|{µmol

m , µback
m }m, {bn,n̸=n′ , xn, yn, zn}n, {bn′}n′

)
× P

(
s|{µmol

m , µback
m }m, {bn,n̸=n′ , xn, yn, zn}n, {bn′}n′

)
× P ({bn′}n′)

=

[
K−1∏
k=1

Exp

(
∆k;

M∑
m=1

µm,k

)][
K∏
k=1

Cat

(
sk;

µ1,k∑M
m=1 µm,k

, . . . ,
µM,k∑M
m=1 µm,k

)] N ′∏
n′=1

Bernoulli

(
bn′ ;

1

1 + N−1
γb

)
=

(
µsK ,K∑M
m=1 µm,K

)[
K−1∏
k=1

µsk,k exp

(
−∆k

M∑
m=1

µm,k

)] N ′∏
n′=1

Bernoulli

(
bn′ ;

1

1 + N−1
γb

)
(S100)312

where, µm,k = µback
m + µmol

m

∑N
n=1 bn PSFm (xn,k, yn,k, zn,k).313

Again, to simplify the computational calculations, we calculate the logarithmic of this conditional probability314

distribution as315

logP
(
{bn′}n′ |{µmol

m , µback
m }m, {xn, yn, zn, bn,n̸=n′}n,∆, s

)
= log

(
µsK ,K∑M
m=1 µm,K

)
+

[
K−1∑
k=1

log (µsk,k)−∆k

M∑
m=1

µm,k

]

+N ′ log

(
1− 1

1 + N−1
γb

)
−

 N ′∑
n′=1

bn′

 log

(
N − 1

γb

)
+Constant.

(S101)316

S5.6. Joint sampling of molecular brightness and background photon emission rates317

Finally, after we update locations of molecules as well as loads, we update the molecular brightnesses and background318

photon emission rates related to all of confocal volumes {µmol
m }m and {µback

m }m by sampling from the corresponding319

conditional P
(
{µmol

m , µback
m }m|D, {bn, xn, yn, zn}n,∆, s

)
, which simplifies to P

(
{µmol

m , µback
m }m|{bn, xn, yn, zn}n,∆, s

)
320

and m = 1, . . . ,M where the M is the total number confocal volumes.321

P
(
{µmol

m , µback
m }m|{bn, xn, yn, zn}n,∆, s

)
∝ P

(
∆|{µmol

m , µback}m, {bn, xn, yn, zn}n
)

× P
(
s|{µmol

m , µback}m, {bn, xn, yn, zn}n
)

× P
(
{µmol

m }m
)
P
(
{µback

m }m
)

, m = 1, . . . ,M.

(S102)322

We carry over this sampling using a Metropolis-Hastings update where proposals for µmol
m and µback

m are computed323

according to324

(
µmol
m

)prop ∼ Gamma

(
αprop
mol ,

(
µmol
m

)old
αprop
mol

)
, m = 1, . . . ,M

(
µback
m

)prop ∼ Gamma

(
αprop
back,

(
µback
m

)old
αprop
back

)
, m = 1, . . . ,M

(S103)325

where
(
µmol
m

)old
and

(
µback
m

)old
denote the existing samples. So, by defining the proposal probability distributions we326

can calculate the ratio327
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r =
P
(
∆|{

(
µmol
m

)prop
,
(
µback
m

)prop}m, {bn, xn, yn, zn}n)P (s|{(µmol
m

)prop
,
(
µback
m

)prop}m, {bn, xn, yn, zn}n)
P
(
∆|{(µmol

m )
old
, (µback

m )
old}m, {bn, xn, yn, zn}n

)
P
(
s|{(µmol

m )
old
, (µback

m )
old}m, {bn, xn, yn, zn}n

)
×

M∏
m=1

P
((
µmol
m

)prop)
P
(
(µmol
m )

old
) P

((
µmol
m

)old | (µmol
m

)prop)
P
(
(µmol
m )

prop | (µmol
m )

old
) P

((
µback
m

)prop)
P
(
(µback
m )

old
) P

((
µback
m

)old | (µback
m

)prop)
P
(
(µback
m )

prop | (µback
m )

old
)

=

K−1∏
k=1

[
exp

(
∆k

[
M∑
m=1

((
µback
m

)old −
(
µback
m

)prop)
+
((
µmol
m

)old −
(
µmol
m

)prop) N∑
n=1

bnPSFm (xn,k, yn,k, zn,k)

])

×
(
µback
sk

)prop
+
(
µmol
sk

)prop∑N
n=1 bnPSFsk (xn,k, yn,k, zn,k)(

µback
sk

)old
+
(
µmol
sk

)old∑N
n=1 bnPSFsk (xn,k, yn,k, zn,k)

×
M∏
m=1

[( (
µmol
m

)old
(µmol
m )

prop

)2αprop
mol −αmol

exp

(
αprop
mol

((
µmol
m

)prop
(µmol
m )

old
−
(
µmol
m

)old
(µmol
m )

prop

)
+

(
µmol
m

)old −
(
µmol
m

)prop
βmol

)

×

( (
µback
m

)old
(µback
m )

prop

)2αprop
back−αback

exp

(
αprop
back

((
µback
m

)prop
(µback
m )

old
−
(
µback
m

)old
(µback
m )

prop

)
+

(
µback
m

)old −
(
µback
m

)prop
βback

)]
.

(S104)328

As it is convenient in computation, we compute the log of above ratio which reads329

log r =

K−1∑
k=1

[
∆k

(
M∑
m=1

((
µback
m

)old −
(
µback
m

)prop)
+
((
µmol
m

)old −
(
µmol
m

)prop) N∑
n=1

bnPSFm (xn,k, yn,k, zn,k)

)

+ log

((
µback
sk

)prop
+
(
µmol
sk

)prop∑N
n=1 bnPSFsk (xn,k, yn,k, zn,k)(

µback
sk

)old
+
(
µmol
sk

)old∑N
n=1 bnPSFsk (xn,k, yn,k, zn,k)

)]

+

M∑
m=1

[
(2αprop

mol − αmol) log

( (
µmol
m

)old
(µmol
m )

prop

)
+ αprop

mol

((
µmol
m

)prop
(µmol
m )

old
−
(
µmol
m

)old
(µmol
m )

prop

)
+

(
µmol
m

)old −
(
µmol
m

)prop
βmol

+ (2αprop
back − αback) log

( (
µback
m

)old
(µback
m )

prop

)
+ αprop

back

((
µback
m

)prop
(µback
m )

old
−
(
µback
m

)old
(µback
m )

prop

)
+

(
µback
m

)old −
(
µback
m

)prop
βback

]
.

(S105)330

S5.7. Track the loads and the trajectories of molecules331

After sampling all of the random variables in one iteration of the Gibbs sampling scheme, we need to find a way to332

sort the sampled values for our random variables. The most important variables in this study are the trajectories of333

the active molecules and the loads which represent the active molecules {xn, yn, zn}n,bn=1 . As we show in Fig. S14(a),334

due to the exchangeability of the sampler, the values of variables (molecular trajectories and the loads) will swap335

and yield identical posteriors. This is a generic characteristic of Bayesian nonparametric approaches. [33–35] For this336

reason, we need to find a way to relate the sampled trajectories and loads of each molecule at any iteration of the337

Gibbs sampler (iterations are shown with index i).338

To be able to distinguish the trajectories and loads, we calculate the distances of each trajectory from the others.339

At the same time, we need to consider the effect of the PSFs, molecular brightnesses and the loads. To do this, we340

consider the molecular emission rate of each individual model molecule at any given time ηn,k,341

ηn,k = bn

M∑
m=1

µmol
m PSFm (xn,k, yn,k, zn,k) , k = 1, . . . ,K − 1. (S106)342

For each molecule, ηn = (ηn,1, . . . , ηn,K) represents the total emission rate of that molecule detected over all confocal343

volumes any time we detect a photon at time tk.344
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FIG. S14. Hungarian algorithm. (a) A simple example of the Hungarian algorithm when we have only two molecular
trajectories sampled at iteration i and i+1 of the Gibbs sampler. At each iteration of the Gibbs sampler, we sample all of the
random variables but here we only illustrate the molecular trajectories. In the first iteration, the first trajectory can be assigned
to molecule 1 and the second to molecule 2 and vice versa for the second iteration. We emphasize this problem is fundamental
(and not a limitation of our approach) as the posterior is invariant with respect to label swapping. (b) We compare trajectories
to re-assign molecular identity labels. This can be achieved by minimizing the area between the trajectories. The area here
serves as a post-processing cost-function. (c) The Hungarian algorithm results in re-assigned labels for trajectories.

Using ηn, we now construct the cost matrix (the matrix of distances between trajectories incorporating information345

on molecular emission rate) demanded of the Hungarian algorithm [36]346

Cost matrix =


d1,1 d1,2 . . . d1,N
d1,1 d1,2 . . . d1,N
...

...
. . .

...
dN,1 dN,2 . . . dN,N

 (S107)347

where each element of this matrix is equal to348

dn,n′ =

K−1∑
k=1

|ηn,k − ηn′,k| . (S108)349

The goal is then to associate elements of the cost matrix in Eq. (S107) (each row corresponds to a trajectory and its350

load of the fixed values (pivot) and each column corresponds to a trajectory and its load at iteration i) that the sum351

of them is minimized using the Hungarian algorithm [36].352

We are flexible to choose any pivot. Here, we choose the trajectories and loads of the MAP computed sample as353

our pivot.354
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S5.8. Maximum posteriori (MAP) sample355

For each iteration of our MCMC chain, we have one sample from the posterior probability distribution. We can356

process these samples to find the MAP sample which is used as the pivot in the Sec. S.5.7. To compute the MAP357

sample, we calculate the joint posterior over all random variables358

P
(
D, {µmol

m , µback
m }m, {bn, xn, yn, zn}n|∆, s

)
∝

[
K−1∏
k=1

P
(
∆k|{bn, xn,k, yn,k, zn,k}n, {µmol

m , µback
m }m

)
P
(
sk|{bn, xn,k, yn,k, zn,k}n, {µmol

m , µback
m }m

)]

×

[
N∏
n=1

[
K−1∏
k=1

P (xn,k+1|xn,k, D,∆k)P (yn,k+1|yn,k, D,∆k)P (zn,k+1|zn,k, D,∆k)

]
P (xn,1)P (yn,1)P (zn,1)P ({bn}n)

]

× P (D)

M∏
m=1

P
(
µmol
m

)
P
(
µback
m

)
=

K−1∏
k=1

(
µback
sk

+ µmol
sk

N∑
n=1

bnPSFsk (xn,k, yn,k, zn,k)

)
exp

(
−∆k

[
M∑
m=1

µback
m + µmol

m

N∑
n=1

bnPSFm (xn,k, yn,k, zn,k)

])

×

[
N∏
n=1

[
K−1∏
k=1

1

(4πD∆k)
3
2

exp

(
− (xn,k+1 − xn,k)

2
+ (yn,k+1 − yn,k)

2
+ (zn,k+1 − zn,k)

2

4D∆k

)]

× 1√
8π3σ2

x0
σ2
y0σ

2
z0

exp

(
− (xn,1 − x0)

2

2σ2
x0

+
(yn,1 − y0)

2

2σ2
0

+
(zn,1 − z0)

2

2σ2
z0

)(
1

1 + N−1
γb

)bn (
1− 1

1 + N−1
γb

)1−bn ]

× InvGamma(D;αD, βD)

M∏
m=1

Gamma(µmol
m ;αmol, βmol)Gamma(µback

m ;αback, βback)

(S109)359

where µm,k = µback
m +µmol

m

∑
n bnPSFm(xn,k, yn,k, zn,k). Of course, to avoid numerical underflow, we compute directly360

the logarithm logP
(
D, {µmol

m , µback
m }m, {bn, xn, yn, zn}n|∆, s

)
.361
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TABLE S2. Summary of notation.

Description Variable Units
Diffusion coefficient D µm2s−1

α parameter of the diffusion coefficient prior αD -
β parameter of the diffusion coefficient prior βD µm2s−1

Total time trace duration Ttotal s
Molecular brightness at the center of the confocal volume m µmol

m photons s−1

α parameter of the molecular brightness’s prior αmol -
β parameter of the molecular brightness’s prior βmol photons s−1

Proposal parameter of the molecule photon emission rate αprop
mol -

Combined photon emission rates of all molecules at time tk of the confocal volume m µm,k photons s−1

Background photon emission rate of confocal volume m µback
m photons s−1

α parameter of the background photon emission rate’s prior αback -
β parameter of the background photon emission rate’s prior βback photons s−1

Proposal parameter of the background photon emission rate αprop
back -

Minor and major semi-axes of confocal PSF (x axis) of confocal volume m ωm,x, ωm,y, ωm,z µm
Location of molecule n at time tk in x, y and z coordinates xn,k, yn,k, zn,k µm
Recorded photon inter-arrival by all of the detector ∆k s
Label on the detected photon at time tk sk -
Load variable for molecule n bn -
Prior weight for bn qn -
Parameter of hyperprior qn γb -
Upper bound for the number of model molecules N -
Number of confocal volumes M -
Mean values of initial molecule position’s prior in the x, y and z axes x0, y0, z0 µm
Variances of the initial molecule position’s prior in the x, y and z axes σ2

x0
, σ2

y0 , σ
2
z0 µm

Periodic boundaries in the x, y and z axes (focal plane) Lx, Ly, Lz µm

TABLE S3. List of abbreviations.

Phrase Abbreviation
Fluorescence confocal microscopy FCM
Fluorescence correlation spectroscopy FCS
Region of interest ROI
Hamiltonian Monte Carlo HMC
Point spread function PSF
Three dimensional Gaussian 3DG
Two dimensional Gaussian-Lorentzian 2DGL
Two dimensional Gaussian-Cylindrical 2DGC
Markov chain Monte Carlo MCMC
Graphical user interface GUI
Excitation profile EXC
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TABLE S4. Probability distributions used and their densities. Here, the corresponding random variables are denoted by x.

Distribution Notation Probability density function Mean value Variance/Covariance

Normal Normal(µ, σ2) 1√
2πσ2

e
− (x−µ)2

2σ2 µ σ2

Exponential Exp(µ) µe−µx µ−1 µ−2

Gamma Gamma(α, β) 1
Γ(α)βα xα−1e

− x
β αβ αβ2

Inverse Gamma InvGamma(α, β) βα

Γ(α)
x−α−1e−

β
x

β
α−1

β2

(α−1)2(α−2)

Beta Beta(α, β) Γ(α+β)
Γ(α)Γ(β)

xα−1(1− x)β−1 α
α+β

αβ
(α+β)2(α+β+1)

Bernoulli Bernoulli(q) (q − 1)δ0(x) + qδ1(x) q q(1− q)
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S6. Summary of notation, abbreviations, parameters and other362

quantities363

TABLE S5. Parameter values used in the generation of synthetic traces. Choices are listed according to figures. Since we
consider four confocal volumes m = 1, 2, 3, 4, we have four PSFs, molecular brightnesses and background photon emission rates
for any of the respective figures. Additional values are listed in Table. S6

Lxy Lz PSFm [Cm,x ,Cm,y ,Cm,z] [ωm,x , ωm,y , ωm,z] N D µmol
m µback

m Ttotal

Units µm µm - µm µm - µm2s−1 pht s−1 pht s−1 s
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TABLE S6. Parameter values used in the analyses of the traces. Choices are listed according to figures. Since, in this study
we consider four confocal volumes m = 1, 2, 3, 4, we have four PSFs, molecular brightnesses and background photon emission
rates for any of the respective figures. Additional values are listed in Table. S6
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