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ABSTRACT 
There is a growing interest in continuous processing of the biopharmaceutical industry. However, the 

technology transfer from traditional batch-based processes is considered a challenge as protocol and tools 

still remain to be established for their usage at the manufacturing scale. Here, we present a model-based 

approach to design optimized perfusion cultures of CHO cells using only the knowledge captured during 

small-scale fed-batch experiments. The novelty of the proposed model lies in the simplicity of its structure. 

Thanks to the introduction of a new catch-all variable representing a bulk of by-products secreted by the 

cells during their cultivation, the model was able to successfully predict cellular behavior under different 

operating modes without changes in its formalism. To our knowledge, this is the first experimentally 

validated model capable, with a single set of parameters, to capture culture dynamic under different 

operating modes and at different scales. 

1 Introduction 
Currently, only one out of every 10,000 new drug candidates reaches the market. It takes on average 10 

years from the discovery of a drug compound until its approval by federal agencies. The probability of 

clinical success is less than 10% (from Phase 1 to launch)1,2. As a consequence, the cost of drug 

development is constantly increasing, with a current annual expenditure of more than 2 billion euros, 

while the actual revenues do not follow the same trend3,4. 

 

In this context, we observe that biopharmaceutical companies tend to outsource their early activities in 

order to reduce their costs and to be more agile and more flexible around potential market disruption5,6. 

Their main focus becoming then the go-to market activities (process development and product 

manufacturing).  This means that they have growing need to accelerate their operational tasks. The path 

to acceleration for biopharmaceutical industry relies mostly on digitalization of process information to 

fasten process development and intensification of operations to increase productivity and enable more 

flexibility in the production. 

 

Digital bioprocessing is expected to provide significant competitive advantage to industry adopters (e.g., 

rapid process prototyping, improved process performance and product quality, and de-risked transfer to 
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manufacturing)7. This digital transformation relies on the computerization of the information used and 

generated at each step of a product development process. Once all the information is digitized, it needs 

to be accessible, organized and contextualized (i.e., data management). This structured digital information 

can therefore be used to feed data analytics and associated modeling tools to generate valuable insights 

for further process optimization and control, thereby fasten process development8,9. 

 

Today, the industry standard for proteins production such as monoclonal antibodies is a fed-batch 

process. However, the productivity of such a process can be significantly improved by implementing a 

continuous culture strategy to intensify the volumetric productivity. Such approach can lead to an increase 

up to 10-fold of space-time yields, therefore leading to a reduction of production time by 30%10.  These 

improvements enable opportunity for much smaller facilities with similar or larger productivity outputs, 

limiting the capital investment (for facilities and raw material costs) and providing manufacturing 

flexibility and sustainability10,11. 

 

Such transition from traditional (fed)-batch to continuous manufacturing is facilitated by the emergence 

of various technological enablers12 and is encouraged by health authorities (i.e., US Food and Drug 

Administration). However, the adoption is relatively slow as many challenges remain. Indeed, scale-down 

models, decisional tools, equipment and procedures currently in place in most companies have been 

developed for fed-batch processes and cannot be transposed without significant changes. Therefore, this 

transition might be seeming a high cost and time demand investment to modify existing process 

development protocols10,11,13. In this context, advanced computational tools could be used to elucidate 

changes in process dynamics and assess the influence of varying operating scenarios. These in-silico tools 

provide testing platforms for early determination of process bottlenecks at minimum experimental costs 

and enable the design of advanced optimization strategies that will lead to optimal and stable 

operation12,13.  

 

While this burden for digital transition and technology transfer has been observed in the past (and 

successfully overcome) in other industry sector (e.g., petrochemical companies, aeronautics), biopharma 

faces the additional challenge that its operation relies on complex biological systems that cannot be easily 

described using known first principles rules. Numerous modelling studies successfully characterizing the 

influence of measurable process conditions on culture dynamic exist in literature. Unfortunately, they 

often rely on numerous measurements not often available at manufacturing scale and/or complex 

modeling and optimization procedures requiring important computational expertise. Therefore, these 

model-based intensification strategies are difficult to be transferred at industrial scale in spite of their 

most likely success13. Here, we focused on the development of a modeling structure enabling the 

description of upstream bioprocess dynamics and the transfer between operations (specifically, from fed-

batch to continuous culture) at different scales (from Ambr® 250 to 2L) with a single set of kinetic 

parameters. We have demonstrated that the growth model identified using fed-batch cell cultures can be 

used to design intensified culture conditions in a one-step strategy. To our knowledge, this is the first 

experimentally validated methodology providing simulation capabilities appropriate for optimization and 

system configuration decisions within biopharmaceutical process development and advanced control 

activities. 
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2 Materials and methods 

2.1 Cell line, inoculum development, medium and analytical methods 

CHO DG44 cell line (Sartorius) expressing a monoclonal antibody (mAb, IgG1) was used. All experiments 

were carried out using the same chemically defined media (Sartorius) and Stock Culture Medium (SCM) 

for the seed train. The seed train cultures were performed in 5 steps. For the fed-batch processes, these 

pre culture steps were performed in (unbaffled) shake flasks. For the perfusion culture, the last pre-

culture step was performed in a 2L Univessel®. The first and second pre culture steps were performed in 

SCM with 15nM MTX while the others were without MTX. Cells were seeded at 0.2x106 cells/mL and split 

every 3 to 4 days. The incubators settings for the shake flasks were:  7.5% CO2, temperature at 36.8 °C, 

80% humidity, 120 rpm for agitation with an orbital diameter of 50mm. Fed-batch, intensified and 

perfusion cultures were performed with a production medium (PM - Sartorius) and with two feed media 

(FMA and FMB -Sartorius).  Cell growth (VCC and viability) were measured using a Cedex HiRes Cell 

Counter (Roche). 

 

2.2 Fed-batch and intensified cultures in Ambr® 250 

The fed-batch and intensified cultures were performed in Ambr® 250 bioreactor with a working volume 

of 200 mL and 210 mL respectively for fed-batch and intensified cultures. The cultures were inoculated at 

0.3x106 cells/mL. The feeding profiles were calculated off-line following the standard applications 

implemented in Sartorius. For the intensified cultures, the flow rate was adjusted daily from day 3. The 

culture conditions were controlled at 36.8 °C for the temperature, 855 rpm for the agitation (adjusted 

during culture according O2 demand), pH 7.1 with CO2, 60% of DO with O2 and air inlets. 30 µl of antifoam 

(Sigma antifoam C 2%) was automatically added every 12 hour and manually added if needed. A daily 

glucose bolus was performed starting on day 5 of culture if the measured glucose concentration was less 

than 5 g/L (stock glucose solution of 400 g/L). 

 

2.3 Perfusion cultures in 2L bioreactor 

Perfusion culture is a type of continuous operation where the cell concentration and the volume within 

the bioreactor are kept constant. Specifically, the cell culture is continuously fed with fresh medium while 

a cell free harvest is continuously removed to keep the culture volume constant. To this end, the harvest 

stream is firstly directed through a cell retention device that will separate the used media from the cells 

(lived and dead). The cells are then re-injected in the bioreactor while the cell-free stream is collected for 

further purification of the drug product.  A “bleed” outflow (stream presenting the same composition as 

the bioreactor) is further used to maintain the culture at steady-state (i.e., maintain the concentration of 

cells within the bioreactor constant)11,14 (Figure 1). 

 

Figure 1. Schematic of a perfusion bioreactor. Media is continuously fed into the bioreactor (𝐹𝐹) and a cell free 

harvest is continuously removed (𝐹ℎ). The cell retention filter is assumed to be ideal, where only the lysed cells and 

other cellular by-products pass through while viable and dead cells are fed back into the bioreactor. The bleed stream 

(𝐹𝑏), containing same content as the bioreactor, is used to keep a steady concentration the cells within the bioreactor 

by removing cells in excess.  
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The rate at which the media is exchanged in this operation can be defined either by the cell specific 

perfusion rate (𝐶𝑆𝑃𝑅 – media supply needed by cells by day) or by the perfusion rate (𝑃 - amount of 

bioreactor volume renewed by day). Specifically, the cell specific perfusion rate (𝐶𝑆𝑃𝑅) is defined as the 

ratio between the perfusion rate (𝑃) and the viable cell density (𝑋𝑉) while the perfusion rate (𝑃) is defined 

as ratio between the feeding rate 𝐹𝑓 and the volume of the bioreactor 𝑉): 

𝐶𝑆𝑃𝑅 =
𝑃

𝑋𝑉
                Eq. 1 

𝑃 =
𝐹𝑓

𝑉
                Eq. 2 

Note that contrarily of the perfusion rate, the CSPR is cell and media specific and therefore represents  

an important performance criterion11,14. 

 

Typically, a perfusion culture is set in two phases: an intensification phase that enable the culture to 

growth exponentially until the target cell concentration is reached and maintained during the steady-state 

phase. During the intensification phase, the feeding rate (𝐹𝑓) is equal to the harvest rate (𝐹ℎ) while the 

bleed stream (𝐹𝑏) is set to zero. Using Eqs. 1 and 2, the optimal feeding rate for a given perfusion rate can 

be defined as follows: 

𝐹𝑓,𝑡𝑖
=  𝐶𝑆𝑃𝑅. 𝑋𝑉,𝑡𝑖

. 𝑉,𝑡𝑖
                  Eq. 3 

where 𝐹𝑓,𝑡𝑖
, 𝑋𝑉,𝑡𝑖

, 𝑉,𝑡𝑖
 are respectively the feeding rate, the viable cell concentration and the bioreactor 

volume at time 𝑖 . 

 

Once the target cell concentration (𝑋𝑉,𝑡𝑎𝑟𝑔𝑒𝑡 ) is reached, the definition of the feeding rate (Eq. 3) can be 

simplified into:  

𝐹𝑓,𝑡𝑖
=  𝑃. 𝑉,𝑡𝑖

           Eq. 4      
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This targeted cell concentration can be maintained at steady-state by introducing the bleed stream as 

control variable of the process. In the context of this study, we used a Proportional-Integral (PI) controller 

to define the bleed rate: 

𝜀𝑏𝑙𝑒𝑒𝑑,𝑡𝑖
= 𝑋𝑉,𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑋𝑉,𝑡𝑖

         Eq. 5      

𝛿𝑏𝑙𝑒𝑒𝑑,𝑡𝑖
= 𝐾𝑃 . 𝜀𝑏𝑙𝑒𝑒𝑑,𝑡𝑖

+
𝐾𝑃

𝑇𝐼
. (𝜀𝑏𝑙𝑒𝑒𝑑,𝑡𝑖

− 𝜀𝑏𝑙𝑒𝑒𝑑,𝑡𝑖−1)         Eq. 6      

𝐹𝑏,𝑡𝑖
=  𝑚𝑎𝑥 (0, 𝑚𝑖𝑛 (𝐹𝑓 , 𝐹𝑏,𝑡𝑖−1

+ 𝛿𝑏𝑙𝑒𝑒𝑑,𝑡𝑖
))           Eq. 7      

where 𝜀𝑏𝑙𝑒𝑒𝑑,𝑡𝑖
 is the deviation at time 𝑖 of the cell concentration (𝑋𝑉,𝑡𝑖

) from the target setpoint 

(𝑋𝑉,𝑡𝑎𝑟𝑔𝑒𝑡),  𝛿𝑏𝑙𝑒𝑒𝑑,𝑡𝑖
 is the controller output (with 𝐾𝑃 and 𝑇𝐼 as proportional and integral terms) that will 

be used to adjust the bleeding rate imposed at time 𝑖 − 1 (𝐹𝑏,𝑡𝑖−1
) such as to maintain the target setpoint 

(𝑋𝑉,𝑡𝑎𝑟𝑔𝑒𝑡). For this study, the PI control parameters have been hand tuned and set to 𝐾𝑃 = −0.2 and 

𝑇𝐼 = 0.5. 

 

Finally, the harvest rate can be determined based on the knowledge of the feed and bleed rates such as 

to maintain a constant volume: 

𝐹ℎ,𝑡𝑖
= 𝐹𝑓,𝑡𝑖

− 𝐹𝑏,𝑡𝑖
            Eq. 8      

 

The perfusion culture was performed in 2L Univessel® bioreactor with a working volume of 200 mL. The 

cultures were inoculated at 0.3x106 cells/mL. The perfusion medium was a mix of 91.2% of PM, 8% FMA, 

0.8% FMB and 6mM of L-glutamine. The cultures conditions were controlled at 36.8 °C for the 

temperature, 260 rpm for the agitation (adjusted to 300 rpm and 320 rpm during culture according O2 

demand), pH 6.95 ± 0.05 with CO2 and 1M NaCO3, 60% of DO with O2 and air inlets.  1 ml of antifoam 

(Sigma antifoam C 2%) was automatically added every day and manually added if needed.  

 

3 Theory/ Calculation / Modeling / Theoretical aspects 
 

3.1 Model development 

The model consists of a set of ordinary differential equations (ODEs) describing the dynamic of the 

population of cells as they move through three phases: live cells, dead cells, and lysed cells (Eq 9-11).  
𝑑𝑋𝑣

𝑑𝑡
= (𝜇𝑒𝑓𝑓 − 𝜇𝑑 −

𝐹𝑓

𝑉
+

𝐹ℎ

𝑉
) 𝑋𝑣            Eq. 9      

𝑑𝑋𝑑

𝑑𝑡
= 𝑢𝑑𝑋𝑣 − (𝑘𝑙 −

𝐹𝑓

𝑉
+

𝐹ℎ

𝑉
) 𝑋𝑑         Eq. 10   

𝑑𝑋𝑙

𝑑𝑡
= 𝑘𝑙𝑋𝑑 −

𝐹𝑓

𝑉
𝑋𝑙                            Eq. 11      

where 𝑋𝑣 is the viable cell density (VCD - concentration of viable cells), 𝑋𝑑 is the dead cell density 

(concentration of dead cells), and 𝑋𝑙  is the lysed cell density (concentration of lysed cells). 𝐹𝑏 is the bleed 

rate, 𝐹ℎ is the harvest rate, and 𝑉 is the reactor volume.  𝜇𝑒𝑓𝑓, 𝜇𝑑, and 𝑘𝑙 are the effective growth, 

effective death, and lysing rates respectively. 

 

The model also includes a catch-all “biomaterial” variable (∅𝑏) representing a bulk set of metabolic 

byproducts secreted by the cells: 
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𝑑∅𝑏

𝑑𝑡
= 𝑋𝑣 −

𝐹𝑓

𝑉
∅𝑏                                       Eq. 12      

 

These mass balance equations are developed under the assumption that the bleed stream (𝐹𝑏) has the 

same content as the bioreactor and the harvest stream (𝐹ℎ) is cell free, assuming an ideal separation filter 

where the lysed cells and biomaterial pass through, and only viable and dead cells are retained into the 

bioreactor (Figure 1).  

 

The cell growth rate (𝜇𝑒𝑓𝑓) is represented as the product of the maximal growth rate (𝜇𝑚𝑎𝑥) and a 

nonlinear factor that describes the inhibition of growth due to the accumulation of byproducts 

(represented by the biomaterial variable ∅𝑏). The resulting effective growth rate is captured in the 

following equation: 

𝜇𝑒𝑓𝑓 = 𝜇𝑚𝑎𝑥
1

(
∅𝑏

𝐾𝐼,∅𝑏

)

3

+1

           Eq. 13      

where 𝐾𝐼,∅𝑏
 is a parameter that represents the concentration of biomaterial ∅𝑏 above which inhibition 

occurs (Supp Figure 1).  

 

The effective death rate, 𝜇𝑑, is dependent on a base death rate and a toxicity factor related to the 

accumulation of lysed cells (𝑋𝑙). Functionally: 

𝜇𝑑 = 𝑘𝑑 + 𝑘𝑡𝑋𝑙            Eq. 14    

where 𝑘𝑑 is the primary death rate and 𝑘𝑡 represents the toxicity rate associated to the accumulation of 

lysed cells in the bioreactor. 

 

Finally, the lysing process is governed by 𝑘𝑙 through a first-order rate law. Lysed cell material can exit the 

reactor by either the harvest stream or the bleed stream. Tracking the material balance of viable and dead 

cells gives an indication of total cells generated, and by extension the number of cells that have lysed and 

are no longer detectable. 

 

Dead cells amount is evaluated indirectly through cell viability measurement which captures the ratio 

between viable cells and total cells: 

𝑉𝑖𝑎𝑏 =
𝑋𝑣

𝑋𝑣+𝑋𝑑
            Eq. 15 

 

3.2 Parameter identification 

Dynamic equations were solved by MATLAB’s ordinary differential equation solver function ode15s. The 

parameter identification was performed by using the Nelder–Mead simplex optimization algorithm 

(function fminsearch) in order to minimize a least-squares criterion (sum of squared differences between 

model predictions and experimental measurements). 

𝐽(𝜃) = ∑ ∑ (𝑦𝑖𝑗(𝜃) − 𝑦𝑚𝑒𝑠_𝑖𝑗)2𝑁
𝑖=1

𝑛
𝑗=1        Eq. 16 

where 𝜃 is the vector of the parameters to be identified (dim 𝜃 = 5), 𝜃𝑇 = [𝜇𝑚𝑎𝑥 𝐾𝐼,∅𝑏
 𝑘𝑑 𝑘𝑡 𝑘𝑙], 𝑦𝑖𝑗

𝑇 (𝜃 )= 

[𝑋𝑣_𝑖𝑗 𝑉𝑖𝑎𝑏𝑖𝑗] is the vector of the simulated variables (using model of mass balance equations 9-12) at the 
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ith time  instant in the jth experiment, 𝑦𝑚𝑒𝑠,𝑖𝑗
𝑇 =[𝑋𝑣,𝑚𝑒𝑠_𝑖𝑗 𝑉𝑖𝑎𝑏𝑚𝑒𝑠_𝑖𝑗 j]  is the vector of the corresponding 

measurements.  

 

3.3 Parameter sensitivity analysis and predicted model output uncertainty 

The analysis of the sensitivity of the model outputs with respect to the parameters was performed as in 

Richelle et al.15. To this end, the four state variables (𝑋𝑣, 𝑋𝑑, 𝑋𝑙 and ∅𝑏) were defined as the system 

outputs 𝑦𝑗  with i = 1 : 4. The parameters were denoted 𝜃𝑗 with j = 1 : 5. The time evolution of the 4 × 5 

sensitivity functions (
𝜕𝑦𝑖

𝜕𝜃𝑗
) was then computed as follows: 

𝑑

𝑑𝑡
(

𝜕𝑦𝑖

𝜕𝜃𝑗
) =

𝜕

𝜕𝜃𝑗
(

𝑑𝑦𝑖

𝑑𝑡
) =

𝜕𝑓𝑖

𝜕𝜃𝑗
+ ∑

𝜕𝑓𝑖

𝜕𝑦𝑘
 ×

𝜕𝑦𝑘

𝜕𝜃𝑗

𝑚
𝑘=1           Eq. 17 

for i = 1 to 4, j = 1 to 4 and m = dim(y) = 4 with dyi /dt = fi (y, qj, t) represented by model equations 9 - 12.  

 

These sensitivity functions were used for computing a lower bound of the variance (Cramer-Rao bound) 

of the parameter estimation errors (𝜎𝜃𝑖

2  , i =1:5) on the basis of the Fischer information matrix: 

𝐹 = ∑ ∑ (
𝜕𝑦𝑖𝑗

𝜕𝜃
)

𝑇
𝑁
𝑖=1 𝑄𝑖𝑗

−1 (
𝜕𝑦𝑖𝑗

𝜕𝜃
)𝑛

𝑗=1               Eq. 18 

𝜎𝜃𝑖

2 = 𝑆𝑖𝑗 with 𝑆 = 𝐹−1        

where 𝑦𝑖𝑗   = [𝑋𝑣,𝑖𝑗  𝑋𝑑,𝑖𝑗  𝑋𝑙,𝑖𝑗 ∅𝑏,𝑖𝑗] at the ith time instant in the jth experiment and  𝜃𝑇  = [𝜇𝑚𝑎𝑥 𝐾𝐼,∅𝑏
 𝑘𝑑 

𝑘𝑡 𝑘𝑙]. 

 

The covariance matrix S could also be used to measure the correlation between the parameters (linear 

dependencies): 

𝐶𝑂𝑅(𝜃𝑖, 𝜃𝑗) =
𝑆𝑖𝑗

√𝑆𝑖𝑖√𝑆𝑗𝑗
           Eq. 29 

where 𝑆𝑖𝑗 is the covariance of the errors on parameter estimates 𝜃𝑖 and 𝜃𝑗; 𝑆𝑖𝑖 and 𝑆𝑗𝑗 are respectively 

the variance of the errors on parameter estimates 𝜃𝑖 and 𝜃𝑗. 

 

For analysing the uncertainty on the model outputs with respect to the parameter estimation errors, a 

global approach based on Monte Carlo sampling method was used.  Contrarily to local approach based on 

first-order Taylor series approximation, this approach does not assume that the model responds linearly 

to a perturbation evaluated at a specific point of the parameter space. Instead, this sampling-based 

method uses a repeated random sampling of parameter values in a defined parameter space. In doing so, 

the overall model is used to generate the associated predicted model outputs by an iterative process of 

model simulations.  

4 Results 

4.1 Model identification using fed-batch cultures 

We developed a growth model that tracks density and viability of a cell culture population (live, dead and 

lysed). The parameters of this model were identified based on 4 replicate fed-batch experiments 

performed in Ambr® 250 (see Methods for details). To circumvent local minima and convergence 
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problems with the optimization algorithm, a multi-start strategy was considered for the initialization of 

the parameter values. 100 uniformly distributed pseudo-random values over a given range (Table 1) were 

used for the initialization of the algorithm. For analysing the uncertainty on the model outputs with 

respect to the parameter estimation errors, a global approach with a Monte Carlo simulation was used, 

based on 1000 normally distributed pseudo-random sets of parameter values (Figure 2). In order to ensure 

the covering of the parameter space, the range (variability) for each parameter was determined by the 

confidence intervals presented in Table 1. 

 

The identified parameter values (based on the 4 experiments) are presented in Table 1 and the correlation 

matrix (absolute values of the correlation coefficients between parameters) in Table 2. Results obtained 

for the parameter identification of each experiment separately are also presented in Supplementary 

Tables 1-6. The model simulations and associated confidence intervals are presented in Figure 2 and 

Supplementary Figure 2 along with the experimental data used to identify the model. 

 

The model captures well the dynamic of cell growth and the decrease over time of cell viability 

measurements for the 4 experiments. The parameters were identified with good confidence, this was also 

reflected in the simulation of the model output uncertainty (Table 1 and Figure 2). The largest uncertainty 

was associated to the lysed cells with the parameter 𝑘𝑙. This is explained by the fact that lysed cells state 

variable is a degree of freedom for the model as no measurement are available. The highest parameter 

correlation is observed between 𝜇𝑚𝑎𝑥  and  𝐾𝐼,∅𝑏
 followed by 𝑘𝑡 and 𝑘𝑙 as expected due to their respective 

formulation of the effective growth and death rates (Eqs 13 and 14). 

 

Table 1 – Parameters values identified for each experiment separately and whole set of experiments 1 to 4 
 

Initialization 
range 

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 1-2-3-4 𝜎𝜃
* CV** 

𝜇𝑚𝑎𝑥  [0.01, 1] 0.8409 0.8560 0.8145 0.8439 0.8384 0.0005 0.06 

𝑘𝑑  [0.01, 1] 0.0210 0.0275 0.0273 0.0136 0.0209 0.0002 0.87 

𝑘𝑡 [0.01, 1] 0.0286 0.0261 0.0232 0.0376 0.0290 0.0002 0.62 

𝐾𝐼,∅𝑏
 [1, 100] 24.1117 24.4954 25.9156 23.7059 24.3905 0.0226 0.09 

𝑘𝑙 [0.01, 1] 0.8723 0.7209 0.8765 0.6352 0.7743 0.0702 9.06 

*Standard deviation of parameter values identified using the whole set of experiments 

** Coefficient of variation (CV) of parameter values ( 𝜎𝜃/𝜃 - expressed in %) identified on the whole set of experiments 1 to 4   

 
Table 2 – Correlation matrix (absolute value) of the parameters identified on the whole set of experiment 

  𝜇𝑚𝑎𝑥  𝑘𝑑  𝑘𝑡 𝐾𝐼,∅𝑏
 𝑘𝑙 

𝜇𝑚𝑎𝑥  1 0.1669     0.0626     0.6263     0.0415 

𝑘𝑑  0.1669     1 0.7480     0.0731     0.1358 

𝑘𝑡 0.0626     0.7480     1 0.0884     0.4355 
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𝐾𝐼,∅𝑏
 0.6263     0.0731     0.0884     1 0.0619 

𝑘𝑙 0.0415 0.1358 0.4355 0.0619 1 

 

 
Figure 2 - Comparison between measurements of Ambr® 250 fed-batch experiments 1- 4 (red dots) and the model 

simulation (blue curve) performed using the parameters value identified on the whole set of experiments. The 
dashed blue lines represent the uncertainty in the model predictions – calculated using Monte Carlo simulations 
(1000 samples) of normally distributed pseudo random parameters values (parameter space defined by 𝜃 ± 2𝜎𝜃) 

 
 

4.2 Model-based prediction of intensified operations performance 

The model was further cross-validated using data from intensified cultures also performed in Ambr® 250 

(Experiments 5, 6 and 7 – see Methods for details). The model simulation successfully predicted the 

culture dynamic when transferred in intensified operations with media exchange. For these intensified 

cultures, the culture media was harvested at the same rate as the medium feeding; keeping the lived and 

dead cells into the bioreactor while lysed cells and secreted biomaterials were removed thanks to the 

presence of a cell retention device (Figure 1). Doing so, the growth was no longer inhibited by the 

accumulation of by-products (represented with the biomaterial variable) and the death rate was less 

favored by the accumulation of the lysed cells in the media. Specifically, the biomaterial concentration of 

lysed cells and biomaterials after 10 days of culture in intensified conditions were respectively 10- and 4-

fold lower than for fed-batch operations (Figure 3).  

 

The proposed model has a rather simple structure compared to the ones presented in literature. The 

overall formalism to describe the different states of cells is conserved across existing models: cell growth 
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and mortality occurs in parallel while dead cells are lysed over time. The main difference in our proposed 

structure lies in the description of the growth and dead rates. Indeed, it is well known that mammalian 

cell metabolism can be limited by the depletion of nutrients or by the accumulation of inhibitory 

metabolites16. Therefore, the death and growth rate are typically described as extended Monod’s law 

(more than one compound influence the reaction rate) accounting for diverse activating and inhibiting 

compounds.  

 

For example, Shirahata et al.17 modelled the growth rate in continuous operation with an inhibition by the 

accumulation of ammonia. Lourenço da Silva et al.16 developed a kinetic model that describes the growth 

of hybridoma cells in fed-batch culture with decreasing and death enhancing effects of glucose, amino-

acids, serum and oxygen depletion, on the one hand, and of ammonia and lactate accumulation on the 

other. Craven et al.18 accounted in their growth model for the activation by substrates (glucose and 

glutamine) and inhibition by by-products (lactate and ammonia). Papathanasiou et al.13 used five 

metabolites (glucose, glutamine, arginine, aspartate, asparagine) to describe their activation and 

inhibition influence the respective growth and death process.  

 

The evaluation of the respective influence of these potential limiting factors is a difficult task as several of 

these factors are often simultaneously limiting, leading to observed diversity in the model formalism for 

growth and death rates. Furthermore, the description of such activation and inhibition effects by multiple 

metabolites quickly complicates the model structure. Indeed, with this formalism, these compounds are 

introduced as state variables in the model and their associated kinetics need to be described. The main 

novelty of the proposed model is the introduction of a catch-all “biomaterial” variable.  This variable 

captures the inhibition of growth by a bulk of secreted by-products without detailing the identity and 

contribution of each potential inhibitor. Therefore, it simplifies the model structure (and reduced the 

number of model parameters) as there is no need to describe the dynamic associated to these 

compounds.  

 

Figure 3 – Comparison of intensified (media exchange) and fed-batch experiments. A. Comparison of viable cell 

density measurement of intensified cultures 5-7 (black cross, star and open circle) with the model simulation of the 

intensified culture (solid black line) and the fed-batch culture (solid red-line) performed using the parameters value 

identified on the whole set of fed-batch experiments 1-4.  B, C and D present, respectively, a comparison of the lysed 

cells density, biomaterial concentration and growth rate simulated for the intensified culture (solid black line) and 

the fed-batch culture (solid red-line) using the parameters value identified on the whole set of fed-batch experiments 

1-4 
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4.3 Design and analysis of perfusion process conditions  

The expected growth profile in a perfusion operation mode was simulated using the following 

assumptions: 

- The simulation was performed for a 2L bioreactor Univessel® 

- Initial seeding density and viability was set to the same from as the Ambr® 250 fed-batch 

experiments 

- The lysed cells and inhibitory biomaterial were initialized at 0 

- There were no considerations for adjustment in growth changes during the simulation  

- It was assumed that the media composition and perfusion rate is sufficient for supplying nutrients 

 

Different events for process operation changes were introduced to test the capabilities of the model and 

the cell’s response to switch in operations (Table 3): 

- The culture began with an intensification phase to reach the cell density target (𝑋𝑉,𝑡𝑎𝑟𝑔𝑒𝑡= 50. 106 

cells/mL). The feed and harvest rate were equal (𝐹𝑓=𝐹ℎ) and defined as presented in Methods for 

a perfusion rate (𝑃 ) of 2.25 vol/day. The bleed rate (𝐹ℎ) was equal to zero 

- Once the cell density reached 95% of the desired target 𝑋𝑉,𝑡𝑎𝑟𝑔𝑒𝑡, a PI controller was used for 

adjusting the bleed rate and maintaining a desired setpoint (details of the PI control setup 

presented in Methods) 

- An increase in the perfusion rate (𝑃 ) was introduced for more than a day to test the PI control (in 

between 12,9 and 14.1 days) before being set back to its original defined value of 2.25 vol/day 
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- A decrease of the perfusion rate (𝑃 ) was imposed at 21.1 days to assess the response of the cells 

to an increase of biomaterial accumulation 

- Finally, an increase of the cell density target (to 𝑋𝑉,𝑡𝑎𝑟𝑔𝑒𝑡= 70. 106 cells/mL) was introduced to 

evaluate the capacity of the cells to cope with strong switch in operations  

 

The simulation of this perfusion experiment was presented in Figure 4 and Supplementary Figure 4 along 

with the experimental data collected during a 2L perfusion bioreactor run performed under the same 

operations listed in Table 3. The model prediction accurately captured the dynamic of the cell culture in 

perfusion based on parameter values identified using Ambr® 250 fed-batch experiments. The model also 

accurately identified the decrease of cell viability initiated once the perfusion rate was decreased (𝑃 =1.75 

vol/day) due to the accumulation of biomaterials and the maximum stable target cell density at the last 

process operations switch (𝑋𝑉,𝑡𝑎𝑟𝑔𝑒𝑡= 70. 106 cells/mL). The PI controller adequately adjusted the bleed 

rate to hold a stable cell density (simulations were in agreement with stream rates implemented by the 

online PI controller – Supplementary Figure 3). 

 

To our knowledge this is the first design of a perfusion culture using a model identified based on fed-batch 

experiments. Typically, models are developed for one type of culture (batch, fed-batch or continuous) and 

cannot be transferred to other process operation without changes in the model structure and/or 

parameter values. Shirahata et al.17 modified the formalism of the growth rate function depending on the 

operation mode. Specifically, in batch mode, they simulated the viable cell dynamic using an activation by 

glucose and the onset of massive cell death when a glucose depletion occurs. In perfusion mode, the 

growth rate was no longer modelled in function of substrate consumption but rather with an inhibition 

due to ammonia accumulation in the culture medium.  Lourenço da Silva et al.16 successfully validated a 

kinetic model for hybridoma fed-batch culture and mentioned that they were capable to simulate 

experimental results obtained during batch and continuous processes with minor changes of few kinetic 

parameters. Unfortunately, the data were not shown. Finally, Craven et al.18 developed a unique model 

structure for CHO cell culture operated under 3 different modes (batch, bolus fed-batch and continuous 

fed-batch) and grown under 2 scales (3 and 15 L) but the model parameters identified changed with scale 

and mode of operation.  

 

The presented model-based approach represents a reliable alternative to existing experimental procedure 

such as the ones presented in Janoschek et al.19 and Wolf et al.20. These protocols rely on the evaluation 

and optimization of different feed, harvest and bleed strategies similar to a Design of Experiments (DoE) 

approach. While these methods have been proven to be successful, they are experimentally intensive and 

do not allow the user to test the system response to joint variation of multiple control variables and 

setpoints. 

 

Table 3 – Details of switch in process operations for perfusion simulation and experimental run. 

Event time [days] 𝑃 [vol/day] 𝑋𝑉,𝑡𝑎𝑟𝑔𝑒𝑡 [106 cells/mL] 

0 2.25 50 

12.9 3 50 

14.1 2.25 50 
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21.1 1.75 50 

24 1.75 70 

 

Figure 4 - Comparison between measurements of 2L perfusion experiment 8 (red dots) and the model simulation 

(blue curve) performed using the parameters value identified on the whole set of fed-batch experiments 1-4. 

 

5 Conclusions 
The era of digital transformation has reached biopharma, and the companies that will find success in the 

next phase will be those who adopt innovative approach to accelerate product development and 

production. In this context, in-silico computational tools to help optimize upstream bioprocesses will be 

essential21. 

 

The goal of this study was to propose a model-based strategy to improve upstream cell culture 

development within biopharmaceutical manufacturing thanks to its process transfer capabilities. Often 

referred to as in-silico experimentation, subject matter experts (SME) can use the proposed framework 

to digitally test various hypothetical operating policies. Ideas can be honed and proposed before verifying 

in the lab. The hypothesized model was built from limited data with a focus on core growth kinetics and 

sensitivity to biomaterials. It can be used to investigate growth trajectories and evaluate media exchange 

operating modes (intensified growth and perfusion). To demonstrate these capabilities, the model was 

calibrated with Ambr® 250 fed-batch experiments and successfully used to forecast growth profiles under 

various operating modes including the cell line’s response to media exchange. 

 

As more experiments are run and data is collected, this generic model structure can continuously be 

extended to include additional metabolic information from shifts in pH, temperature, media composition 
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and other important process conditions. Such model would therefore also be used to optimize media 

composition and recipe decisions to maximize productivity while maintaining Critical Quality Attributes 

(CQAs) within specification. 

 

However, models describing the influence of spent media composition on productivity and product quality 

are far more complex and, currently, not as mature as those for growth description. This relates to growth 

and death kinetics being driven strongly by the extracellular environment, while productivity and CQAs 

(e.g., glycan profile) are influenced through more subtle shifts in the intracellular metabolism. For the 

moment, intracellular measurements are expensive and not practical for typical product development 

workflows or high throughput experimental designs. Therefore, analytical tool such as machine learning 

and other data driven methods would most likely be used to relate extracellular process measurements 

to the CQAs.  

 

To conclude, using simulation is common practice in many process industries but a relatively new tool for 

biopharmaceutical manufacturing. Being able to test operating strategies digitally reduces wet lab 

experimental needs, speeding up the product development process. The big picture then – and the 

takeaway for biopharma companies – is to move toward an enhanced, optimized approach to upstream 

process development that makes use of existing information to bring transformation, optimization and 

ultimately, profitability. The key dynamic behind all of it is an integration of advanced data analytics, 

process knowledge and digital tools that transcend the traditional method of process monitoring and 

move toward digital twins powered by a systems approach of bio-simulation.  
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