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Error! Hyperlink reference not valid.Single cell RNA-Seq (scRNA-seq) and other profiling 24 

assays have opened new windows into understanding the properties, regulation, dynamics, 25 

and function of cells at unprecedented resolution and scale. However, these assays are 26 

inherently destructive, precluding us from tracking the temporal dynamics of live cells, in 27 

cell culture or whole organisms. Raman microscopy offers a unique opportunity to 28 

comprehensively report on the vibrational energy levels of molecules in a label-free and non-29 

destructive manner at a subcellular spatial resolution, but it lacks in genetic and molecular 30 

interpretability. Here, we developed Raman2RNA (R2R), an experimental and 31 

computational framework to infer single-cell expression profiles in live cells through label-32 

free hyperspectral Raman microscopy images and multi-modal data integration and domain 33 

translation. We used spatially resolved single-molecule RNA-FISH (smFISH) data as 34 

anchors to link scRNA-seq profiles to the paired spatial hyperspectral Raman images, and 35 

trained machine learning models to infer expression profiles from Raman spectra at the 36 

single-cell level. In reprogramming of mouse fibroblasts into induced pluripotent stem cells 37 

(iPSCs), R2R accurately (r>0.96) inferred from Raman images the expression profiles of 38 

various cell states and fates, including iPSCs, mesenchymal-epithelial transition (MET) cells, 39 

stromal cells, epithelial cells, and fibroblasts. R2R outperformed inference from brightfield 40 

images, showing the importance of spectroscopic content afforded by Raman microscopy. 41 

Raman2RNA lays a foundation for future investigations into exploring single-cell genome-42 

wide molecular dynamics through imaging data, in vitro and in vivo.  43 

Keywords:  Raman microscopy, single-cell transcriptomics, multi-domain translation 44 
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Main 46 

Cellular states and functions are determined by a dynamic balance between intrinsic and extrinsic 47 

programs. Dynamic processes such as cell growth, stress responses, differentiation, and 48 

reprogramming are not determined by a single gene, but by the orchestrated temporal expression 49 

and function of multiple genes organized in programs and their interactions with other cells and 50 

the surrounding environment1. To understand how cells change their states in physiological and 51 

pathological conditions it is essential to decipher the dynamics of the underlying gene programs. 52 

Despite major advances in single cell genomics and microscopy, we still cannot track live cells 53 

and tissues at the genomic level. On the one hand, single cell and spatial genomics have provided 54 

a view of gene programs and cell states at unprecedented scale and resolution1, but these 55 

measurement methods are destructive, and involve tissue fixation and freezing and/or cell lysis, 56 

precluding us from directly tracking the dynamics of full molecular profiles in live cells or 57 

organisms. While advanced computational methods, such as pseudo-time algorithms (e.g., 58 

Monocle2, Waddington-OT3) and velocity-based methods (e.g., velocyto4, scVelo5), can infer 59 

dynamics from snapshots of molecular profiles, they rely on assumptions that remain challenging 60 

to verify experimentally6. On the other hand, fluorescent reporters can be used to monitor the 61 

dynamics of individual genes and programs within live cells, but are limited in the number of 62 

targets they can report7, must be chosen ahead of the experiment and often involve genetically 63 

engineered cells. Moreover, the vast majority of dyes and reporters require fixation or can interfere 64 

with nascent biochemical processes and alter the natural state of the gene of interest7. Therefore, 65 

it remains technically challenging to dynamically monitor the activity of a large number of genes 66 

simultaneously.  67 
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Raman microscopy opens a unique opportunity for monitoring live cells and tissues, as it 68 

collectively reports on the vibrational energy levels of molecules in a label-free and non-69 

destructive manner at a subcellular spatial resolution, thus providing molecular fingerprints of 70 

cells8. Pioneering research has demonstrated that Raman microscopy can be used for 71 

characterizing cell types and cell states8, non-destructively diagnosing pathological specimens 72 

such as tumors9, characterizing the developmental states of embryos10, and identifying bacteria 73 

with antibiotic resistance11. However, the complex and high-dimensional nature of the spectra, the 74 

spectral overlaps of biomolecules such as proteins and nucleic acids, and the lack of unified 75 

computational frameworks have hindered the decomposition of the underlying molecular 76 

profiles7,8.  77 

To address this challenge and leverage the complementary strengths of Raman microscopy and 78 

scRNA-Seq, we developed Raman2RNA (R2R), an experimental and computational framework 79 

for inferring single-cell RNA expression profiles from label-free non-destructive Raman 80 

hyperspectral images (Fig. 1). R2R takes as input spatially resolved hyperspectral Raman images 81 

from live cells, smFISH data of selected markers from the same cells, and scRNA-seq from the 82 

same biological system. R2R then uses the smFISH data as an anchor to learn a model that links 83 

spatially resolved hyperspectral Raman images to scRNA-seq. Finally, from this model, R2R then 84 

computationally infers the anchor smFISH measurements from hyperspectral Raman images and 85 

then the single-cell expression profiles. The result is a label-free live-cell inference of single-cell 86 

expression profiles.  87 

To facilitate data acquisition, we developed a high-throughput multi-modal spontaneous Raman 88 

microscope that enables automated acquisition of Raman spectra, brightfield, and fluorescent 89 

images. In particular, we integrated Raman microscopy optics to a fluorescence microscope, where 90 
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high-speed galvo mirrors and motorized stages were combined to achieve a large field of view 91 

(FOV) scanning, and where dedicated electronics automate measurements across multiple 92 

modalities (Extended Data Fig. 1-2, Methods).  93 

We first demonstrated that R2R can infer profiles of two distinct cell types: mouse induced 94 

pluripotent stem cells (iPSCs) expressing an endogenous Oct4-GFP reporter and mouse 95 

fibroblasts12. To this end, we mixed the cells in equal proportions, plated them in a gelatin-coated 96 

quartz glass-bottom Petri dish, and performed live-cell Raman imaging, along with fluorescent 97 

imaging of live-cell nucleus staining dye (Hoechst 33342) for cell segmentation and image 98 

registration, and an iPSC marker gene, Oct4-GFP (Fig. 2a). The excitation wavelength for our 99 

Raman microscope (785 nm) was distant enough from the GFP Stokes shift emission, such that 100 

there was no interference with the cellular Raman spectra (Extended Data Fig. 3). Furthermore, 101 

there was no notable photo-toxicity induced in the cells. After Raman and fluorescence imaging, 102 

we fixed and permeabilized the cells and performed smFISH (with hybridization chain reaction 103 

(HCR13), Methods) of marker genes for mouse iPSCs (Nanog) and fibroblasts (Col1a1). We 104 

registered the nuclei stains, GFP images, HCR images, and Raman images through either 105 

polystyrene control bead images or reference points marked under the glass bottom dishes 106 

(Extended Data Fig. 4, Methods).  107 

The Raman spectra distinguished the two cell populations in a manner congruent with the 108 

expression of their respective reporter (measured live or by smFISH in the same cells), as reflected 109 

by a low-dimensional embedding of hyperspectral Raman data (Fig. 2b). Specifically, we focused 110 

on the fingerprint region of Raman spectra (600-1800 cm-1, 930 of the 1,340 features in a Raman 111 

spectrum), where most of the signatures from various key biomolecules, such as proteins, nucleic 112 

acids, and metabolites, lie8. After basic preprocessing, including cosmic-ray and background 113 
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removal and normalization, we aggregated Raman spectra that are confined to the nuclei, obtaining 114 

a 930-dimensional Raman spectroscopic representation for each cell’s nucleus. We then visualized 115 

these Raman profiles in an embedding in two dimensions using Uniform Manifold Approximation 116 

and Projection (UMAP)14 and labeled cells with the gene expression levels that were concurrently 117 

measured by either an Oct4-GFP reporter or smFISH (Fig. 2b). The cells separated clearly in their 118 

Raman profiles in a manner consistent with their gene expression characteristics, forming two 119 

main subsets in the embedding, one with cells with high Oct4 and Nanog expression (iPSCs 120 

markers) and another with cells with relatively high Col1a1 expression (fibroblasts marker), 121 

indicating that Raman spectra reflect cell-intrinsic expression differences (Fig. 2b).  122 

We further successfully trained a classifier to classify the ‘on’ or ‘off’ expression states of Oct4, 123 

Nanog and Col1a1 in each cell based on its Raman profile (Methods). We trained a logistic 124 

regression classifier with 50% of the data and held out 50% for testing. We predicted Oct4 and 125 

Nanog expression states with high accuracy on the held-out test data (area under the receiver 126 

operating characteristic curve (AUROC) = 0.98 and 0.95, respectively; Fig. 2c), indicating that 127 

expression of iPSC markers can be predicted confidently from Raman spectra of live, label-free 128 

cells. We also successfully classified the expression state of the fibroblast marker Col1a1 129 

(AUROC = 0.87; Fig. 2c), albeit with lower confidence, which is consistent with the lower contrast 130 

in Col1a1 expression (Fig. 2b) between iPSC (Oct4+ or Nanog+ cells) vs. non-iPSCs, compared 131 

to Oct4 or Nanog. Most misclassifications occurred when the ground truth expression levels were 132 

near the threshold of the classifier, showing that misclassifications were likely due to the 133 

uncertainty in the ground truth expression level (Extended Data Fig. 5).  134 

Next, we asked if the Raman images could predict entire expression profiles non-destructively at 135 

single-cell resolution. To this end, we aimed to reconstruct scRNA-seq profiles from Raman 136 
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images by multi-modal data integration and translation, using multiplex smFISH data to anchor 137 

between the Raman images and scRNA-seq profiles (Fig. 3a). As a test case, we focused on the 138 

mouse iPSC reprogramming model system, where we have previously generated ~250,000 139 

scRNA-seq profiles at ½ day intervals throughout an 18 day, 36 time point time course of 140 

reprogramming3 (Methods). We used Waddington-OT3 (WOT) to select from the scRNA-seq 141 

profiles nine anchor genes that represent diverse cell types that emerge during reprogramming 142 

(iPSCs: Nanog, Utf1 and Epcam; MET and neural: Nnat and Fabp7; epithelial: Krt7 and Peg10; 143 

stromal: Bgn and Col1a1; Methods). We performed live-cell Raman imaging from day 8 of 144 

reprogramming, in which distinct cell types begin to emerge3, up to day 14.5, at half-day intervals, 145 

totaling 14 time points (Methods). We imaged ~500 cells per plate at 1µm spatial resolution. 146 

Finally, we fixed cells immediately after each Raman imaging time point followed by smFISH on 147 

the 9 anchor genes (Methods).  148 

Strikingly, a low dimensional representation of the Raman profiles showed that they encoded 149 

similar temporal dynamics to those observed with scRNA-seq during reprogramming (Fig. 3b,c, 150 

Extended Data Fig. 6), indicating that they may qualitatively mirror scRNA-seq.  151 

Integrating Raman and scRNA-seq profiles (Methods), R2R then learned a model that can infer 152 

an scRNA-seq profile for each Raman imaged cell, by first predicting smFISH anchors from the 153 

Raman profiles using Catboost15 (Methods) and then using our Tangram16 method to map from 154 

the anchors to full scRNA-seq profiles (Fig. 1, Fig. 3d-f). In the first step, we averaged the smFISH 155 

signal within a nucleus to represent a single nucleus’s expression level. As we conducted smFISH 156 

of 9 genes, the result was a 9-dimensional smFISH profile for each single nucleus. Then, Raman 157 

profiles were translated to these 9-dimensional profiles with Catboost15, a non-linear regression 158 

model, using 50% of the Raman and smFISH profiles as training data.  159 
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In the second step, we mapped these anchor smFISH profiles to full scRNA-seq profiles using 160 

Tangram, yielding well-predicted single cell RNA profiles, as supported by several lines of 161 

evidence. First, we performed leave-one-out cross-validation (LOOCV) analysis, in which we used 162 

eight out of the nine anchor genes to integrate Raman with scRNA-seq, and compared the predicted 163 

expression of the remaining genes to its smFISH measurements. The predicted left-out genes based 164 

on scRNA-seq showed a significant correlation with the measured smFISH expression for any left-165 

out gene (Pearson r~0.7, p-value<10-100, Fig. 3d). Notably, when we analogously applied a 166 

modified U-net17 to infer smFISH profiles from brightfield (Extended Data Fig. 15, Methods), 167 

we observed a poor, near-random prediction of expression profiles for all 9 genes in leave-one-out 168 

cross-validation (r<0.15), indicating that, unlike Raman spectra, brightfield z-stack images either 169 

do not have the necessary information to infer expression profiles, or require more data. Second, 170 

we compared the real (scRNA-seq measured) and R2R predicted expression profiles averaged 171 

across cells of the same cell type (“pseudobulk” for each of iPSCs, epithelial cells, stromal cells, 172 

and MET). Here, we obtained the “ground truth” cell types of the R2R profiles by transferring 173 

scRNA-seq annotations to the matching smFISH profiles using Tangram’s label transfer function. 174 

Then, based on the labels, we averaged R2R’s predicted profiles across the cells of a single cell 175 

type. The two profiles (R2R-inferred and scRNA-seq pseudo-bulk per cell type) showed high 176 

correlations (Pearson’s r>0.96) (Fig. 3e,f, Extended Data Fig. 7), demonstrating the accuracy of 177 

R2R at the cell type level. Furthermore, projecting the R2R predicted profiles of each cell onto an 178 

embedding learned from the real scRNA-seq shows that the predicted profiles span the key cell 179 

types as captured in real profiles (Fig. 3g-j, Extended Data Fig. 8-12). We note that the predicted 180 

profiles had lower variance compared to real scRNA-seq. As this is observed even when co-181 

embedding only smFISH and scRNA-seq measurements (with no Raman data or projection, 182 
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Extended Data Fig. 13), we believe it mostly reflects the limited number and domain 183 

maladaptation of the smFISH anchor genes used for integration. Given the similarity of the 184 

separate embeddings of Raman and scRNA-seq profiles, future studies without anchors could 185 

address this.  186 

Lastly, we calculated feature importance scores in R2R predictions (Methods) and identified 187 

Raman spectral features correlated with expression levels (Fig. 3k, Extended Data Fig. 14). For 188 

example, Raman bands at approximately 752cm-1 (C-C, Try, cytochrome), 1004 cm-1 (CC, Phe, 189 

Tyr), and 1445 cm-1 (CH2, lipids) contributed to predicting iPSCs-related expression profiles, 190 

which is consistent with previous research that employed single cell Raman spectra to identify 191 

mouse embryonic stem cells (ESCs)18 (Fig. 3k). The contributions of these bands were either 192 

suppressed or increased for other cell types, such as stromal or epithelial cells (Extended Data 193 

Fig. 14).  194 

In conclusion, we reported R2R, a label-free non-destructive framework for inferring expression 195 

profiles at single-cell resolution from Raman spectra of live cells, by integrating Raman 196 

hyperspectral images with scRNA-seq data through paired smFISH measurements and multi-197 

modal data integration and translation. We inferred single-cell expression profiles with high 198 

accuracy, based on both averages within cell types and co-embeddings of individual profiles. We 199 

further showed that predictions using brightfield z-stacks had poor performance, indicating the 200 

importance of Raman microscopy for predicting expression profiles.  201 

R2R can be further developed in several ways. First, the throughput of single-cell Raman 202 

microscopy is still limited. In this pilot study, we profiled ~6,000 cells in total. By using emerging 203 

vibrational spectroscopy techniques, such as Stimulated Raman Scattering microscopy19 or photo-204 
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thermal microscopy20,21, we envision increasing throughput by several orders of magnitude, to 205 

match the throughput of massively parallel single cell genomics. Second, because molecular 206 

circuits and gene regulation are structured, with strong co-variation in gene expression profiles 207 

across cells, we can leverage the advances in computational microscopy to infer high-resolution 208 

data from low-resolution data, such as by using compressed sensing, to further increase 209 

throughput22. Third, increasing the number of anchor genes (e.g., by seqFISH23, merFISH24, 210 

STARmap25, or ExSeq26) can increase our prediction accuracy and capture more single-cell 211 

variance. Additionally, with single-cell multi-omics, we can project other modalities, such as 212 

scATAC-seq from Raman spectra. Finally, given the similarity in the overall independent 213 

embedding of Raman and scRNA-seq profiles, we expect computational methods such as multi-214 

domain translation27 to allow mapping between Raman spectra and molecular profiles without 215 

measuring any anchors in situ. Overall, with further advances in single-cell genomics, imaging, 216 

and machine learning, Raman2RNA could allow us to non-destructively infer omics profiles at 217 

scale in vitro, and possibly in vivo in living organisms.  218 

  219 
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Materials and Methods 220 

Mouse fibroblast reprogramming 221 

OKSM secondary mouse embryonic fibroblasts (MEFs) were derived from E13.5 female embryos 222 

with a mixed B6;129 background. The cell line used in this study was homozygous for ROSA26-223 

M2rtTA, homozygous for a polycistronic cassette carrying Oct4, Klf4, Sox2, and Myc at the 224 

Col1a1 3’ end, and homozygous for an EGFP reporter under the control of the Oct4 promoter. 225 

Briefly, MEFs were isolated from E13.5 embryos from timed-matings by removing the head, 226 

limbs, and internal organs under a dissecting microscope. The remaining tissue was finely minced 227 

using scalpels and dissociated by incubation at 37°C for 10 minutes in trypsin-EDTA 228 

(ThermoFisher Scientific). Dissociated cells were then plated in MEF medium containing DMEM 229 

(ThermoFisher Scientific), supplemented with 10% fetal bovine serum (GE Healthcare Life 230 

Sciences), non-essential amino acids (ThermoFisher Scientific), and GlutaMAX (ThermoFisher 231 

Scientific). MEFs were cultured at 37°C and 4% CO2 and passaged until confluent. All procedures, 232 

including maintenance of animals, were performed according to a mouse protocol (2006N000104) 233 

approved by the MGH Subcommittee on Research Animal Care3.  234 

For the reprogramming assay, 50,000 low passage MEFs (no greater than 3-4 passages from 235 

isolation) were seeded in 14 3.5cm quartz glass-bottom Petri dishes (Waken B Tech) coated with 236 

gelatin. These cells were cultured at 37°C and 5% CO2 in reprogramming medium containing 237 

KnockOut DMEM (GIBCO), 10% knockout serum replacement (KSR, GIBCO), 10% fetal bovine 238 

serum (FBS, GIBCO), 1% GlutaMAX (Invitrogen), 1% nonessential amino acids (NEAA, 239 

Invitrogen), 0.055 mM 2-mercaptoethanol (Sigma), 1% penicillin-streptomycin (Invitrogen) and 240 

1,000 U/ml leukemia inhibitory factor (LIF, Millipore). Day 0 medium was supplemented with 2 241 
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mg/mL doxycycline Phase-1 (Dox) to induce the polycistronic OKSM expression cassette. The 242 

medium was refreshed every other day. On day 8, doxycycline was withdrawn. Fresh medium was 243 

added every other day until the final time point on day 14. One plate was taken every 0.5 days 244 

after day 8 (D8-D14.5) for Raman imaging and fixed with 4% formaldehyde immediately after for 245 

HCR. 246 

High-throughput multi-modal Raman microscope 247 

Due to the lack of commercial systems, we developed an automated high-throughput multi-modal 248 

microscope capable of multi-position and multi-timepoint fluorescence imaging and point 249 

scanning Raman microscopy (Extended Data Fig. 1). A 749 nm short-pass filter was placed to 250 

separate brightfield and fluorescence from Raman scattering signal, and the fluorescence and 251 

Raman imaging modes were switched by swapping dichroic filters with auto-turrets. To realize a 252 

high-throughput Raman measurement, galvo mirror-based point scanning and stage scanning was 253 

combined to acquire each FOV and multiple different FOVs, respectively.  254 

To realize this in an automated fashion, a MATLAB (2020b) script that communicates with Micro-255 

manager28, a digital acquisition (DAQ) board, and Raman scattering detector (Princeton 256 

Instruments, PIXIS 100BR eXcelon) was written (Extended Data Fig. 2). A 2D point scan Raman 257 

imaging sequence was regarded as a dummy image acquisition in Micro-manager, during which 258 

the script communicated via the DAQ board with 1. the detector to read out a spectrum, 2. the 259 

mirror to update the mirror angles, and 3. shutters to control laser exposure. All communications 260 

were realized using transistor-transistor logic (TTL) signaling. Updating of the galvo mirror angles 261 

was conducted during the readout of the detector. While the script ran in the background, Micro-262 
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manager initiated a multi-dimensional acquisition consisting of brightfield, DAPI, GFP, and 263 

dummy Raman channel at multiple positions and z-stacks.  264 

An Olympus IX83 fluorescence microscope body was integrated with a 785 nm Raman excitation 265 

laser coupled to the backport, where the short-pass filter deflected the excitation to the sample 266 

through an Olympus UPLSAPO 60X NA 1.2 water immersion objective. The backscattered light 267 

was collimated through the same objective and collected with a 50 µm core multi-mode fiber, 268 

which was then sent to the spectrograph (Holospec f/1.8i 785 nm model) and detector. The 269 

fluorescence and brightfield channels were imaged by the Orca Flash 4.0 v2 sCMOS camera from 270 

Hamamatsu Photonics. The exposure time for each point in the Raman measurement was 20 msec, 271 

and laser power at the sample plane was 212 mW. Each FOV was 100x100 pixels, with each pixel 272 

corresponding to about 1 µm. The laser source was a 785 nm Ti-Sapphire laser cavity coupled to 273 

a 532 nm pump laser operating at 4.7W.  274 

The time to acquire Raman hyperspectral images was roughly 8 minutes per FOV. With 8 minutes, 275 

it is unrealistic to image an entire glass-bottom plate. Therefore, we visually chose representative 276 

FOVs that cover all representative cell types including iPSC-like, epithelial-like, stromal-like and 277 

MET cells. 20 FOVs were chosen for each plate, where roughly 15 FOVs were from the boundaries 278 

of colonies, five from non-colonies, and one from non-cells to use for background correction. 279 

Due to the extended Raman imaging time, evaporation of the immersion water was no longer 280 

negligible. Therefore, we developed an automated water immersion feeder using syringe pumps 281 

and syringe needles glued to the tip of the objective lens. Here, water was supplied at a flow rate 282 

of 1 µL/min.  283 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 23, 2022. ; https://doi.org/10.1101/2021.11.30.470655doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.30.470655
http://creativecommons.org/licenses/by-nc-nd/4.0/


  14 

iPSC and MEF mixture experiment 284 

Low passage iPSCs were first cultured in N2B27 2i media containing 3 mM CHIR99021, 1 mM 285 

PD0325901, and LIF. On the day of the experiment, 750,000 iPSCs and 750,000 MEFs were plated 286 

on the same gelatin-coated 3.5cm quartz glass-bottom Petri dish. Cells were plated in the same 287 

reprogramming medium as previously described (with Dox) with the exception of utilizing DMEM 288 

without phenol red (Gibco) instead of KnockOut DMEM. 6 hours after plating, the quartz dishes 289 

were taken for Raman imaging and fixed with 4% formaldehyde immediately after for HCR.  290 

Anchor gene selection by Waddington-OT 291 

To select anchor genes for connecting spatial information to the full transcriptome data, 292 

Waddington-OT (WOT)3, a probabilistic time-lapse algorithm that can reconstruct developmental 293 

trajectories, was used. We applied WOT to mouse fibroblast reprogramming scRNA-seq data 294 

collected at matching time-points and culture condition (day 8-14.5 at ½ day intervals)3. For each 295 

cell fate, we calculated the transition probabilities of each cell and selected the top 10 percentile 296 

cells per time point (Extended Data Fig. 6). Based on this, we ran the FindMarker function in 297 

Seurat29 to find genes differentially expressed in these cell subsets per time point. Through this 298 

approach, we chose two genes per cell type that are both found by Seurat and commonly used for 299 

these cell types (iPSCs: Nanog, Utf1; epithelial: Krt7, Peg10; stromal: Bgn, Col1a1; MET and 300 

neural: Fabp7, Nnat), along with one gene that is an early marker of iPSCs, Epcam.  301 

smRNA-FISH by hybridization chain reaction (HCR) 302 

Fixed samples were prepared for imaging using the HCR v3.0 protocol for mammalian cells on a 303 

chambered slide, incubating at the amplification step for 45 minutes in the dark at room 304 
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temperature. Three probes with amplifiers conjugated to fluorophores Alexa Fluor 488, Alexa 305 

Fluor 546, and Alexa Fluor 647 were used. Samples were stained with DAPI prior to imaging. 306 

After imaging, probes were stripped from samples by washing samples once for 5 minutes in 80% 307 

formamide at room temperature and then incubating three times for 30 minutes in 80% formamide 308 

at 37ºC. Samples were washed once more with 80% formamide, then once with PBS, and reprobed 309 

with another panel of probes for subsequent imaging. 310 

Image registration of Raman hyperspectral images and fluorescence/smFISH images 311 

Brightfield and fluorescence channels including DAPI and GFP, along with corresponding Raman 312 

images, were registered by using 5 µm polystyrene beads deposited on quartz glass-bottom Petri 313 

dishes (SF-S-D12, Waken B Tech) for calibration. The brightfield and fluorescence images of the 314 

beads were then registered by the scale-invariant template matching algorithm of the OpenCV 315 

(https://github.com/opencv/opencv) matchTemplate function followed by manual correction.  316 

For the registration of smFISH and Raman images, four marks inscribed under the glass-bottom 317 

Petri dishes were used as reference points (Extended Data Fig. 4). As the Petri dishes are 318 

temporarily removed from the Raman microscope after imaging to do smFISH measurements, the 319 

dishes cannot be placed back at the same exact location on the microscope. Therefore, the 320 

coordinates of these reference points were measured along with the different FOVs. When the 321 

dishes were placed again after smFISH measurements, the reference mark coordinates were 322 

measured, and an affine mapping was constructed to calculate the new FOV coordinates. Lastly, 323 

as smFISH consisted of 3 rounds of hybridization and imaging, the following steps were performed 324 

to register images across different rounds with a custom MATLAB script: 325 

1. Maximum intensity projection of nuclei stain and RNA images 326 
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2. Automatic registration of round 1 images to rounds 2 and 3 based on nuclei stain images 327 

and MATLAB function imregtform. First, initial registration transformation functions were 328 

obtained with a similarity transformation model passing the ‘multimodal’ configuration. 329 

Then, those transformations were used as the initial conditions for an affine model-based 330 

registration with the imregtform function. Finally, this affine mapping transformation was 331 

applied to all the smFISH (RNA) images. 332 

3. Use the protocol in (2) to register nuclei stain images obtained from the multimodal Raman 333 

microscope and the 1st round of images used for smFISH. Then, apply the transformation 334 

to the remaining 2nd and 3rd rounds. 335 

4. Manually remove registration outliers in (3). 336 

Fibroblast cells were mobile during the 2-class mixture experiment so that by the time Raman 337 

imaging finished, cells had moved far enough from their original position that the above semi-338 

automated strategy could not be applied. Thus, we manually identified cells present in both nuclei 339 

stain images before and after the Raman imaging.  340 

Hyperspectral Raman image processing 341 

Each raw Raman spectrum has 1,340 channels. Of those channels, we extracted the fingerprint 342 

region (600-1800 cm-1), which resulted in a total of 930 channels per spectrum. Thus, each FOV 343 

is a 100x100x930 hyperspectral image. The hyperspectral images were then preprocessed by a 344 

python script as follows: 345 
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1. Cosmic ray removal. Cosmic rays were detected by subtracting the median filtered spectra 346 

from the raw spectra, and any feature above 5 was classified as an outlier and replaced with 347 

the median value. The kernel window size for the median filter was 7. 348 

2. Autofluorescence removal. The baseline function in rampy 349 

(https://github.com/charlesll/rampy), a python package for Raman spectral preprocessing, 350 

was used with the alternating least squares algorithm ‘als’.  351 

3. Savitzky-Golay smoothing. The scipy.signal.savgol_filter function was used with window 352 

size 5 and polynomial order 3. 353 

4. Averaging spectra at the single-cell level. Nuclei stain images were segmented using 354 

NucleAIzer (https://github.com/spreka/biomagdsb) and averaged pixel-level spectra that 355 

fall within each nucleus. 356 

5. Spectra standardization. Spectra were standardized to a mean of 0 and a standard deviation 357 

of 1. 358 

Inferring anchor smFISH from Raman spectra or brightfield z-stacks 359 

For the two-class mixture and reprogramming experiment, we trained a decision tree-based non-360 

linear regression, Catboost15, to predict the ‘on’ or ‘off’ expression states for each anchor gene 361 

from Raman spectra. We used 80% of the data as training and the remaining 20% as test data. The 362 

early stopping parameter was set to 5.  363 

For the brightfield z-stack to smFISH inference, we applied deep learning to the whole image level. 364 

We trained a modified U-net with skip connections and residual blocks to estimate the 365 

corresponding smFISH image17. Due to the small size of the available training dataset, we 366 

augmented the data by rotation and flipping. Furthermore, a subsample of each brightfield image 367 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 23, 2022. ; https://doi.org/10.1101/2021.11.30.470655doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.30.470655
http://creativecommons.org/licenses/by-nc-nd/4.0/


  18 

was taken due to memory constraints (50x50 pixel region). Training was carried out on an NVIDIA 368 

Tesla P100 GPU, the number of epochs was 100, the learning rate was 0.01, and the batch size 369 

was 400. For each smFISH prediction, we chose the epoch that gave the best validation score. 370 

Inferring expression profiles from Raman images 371 

To infer expression profiles from Raman images, we used Tangram16. Tangram enables the 372 

alignment of spatial measurements of a small number of genes to scRNA-seq measurements. After 373 

using Catboost to infer anchor expression levels from Raman profiles, we aligned the inferred 374 

expression levels to scRNA-seq profiles using the map_cells_to_space function 375 

(learning_rate=0.1, num_epochs=1000) on an Nvidia Tesla P100 GPU, followed by the  376 

project_genes function in Tangram.  377 

When comparing different pseudo-bulk transcriptome predictions with the real scRNA-seq data, 378 

we first transferred labels of annotated scRNA-seq profiles to the ground truth smFISH profiles 379 

using Tangram’s label transfer function project_cell_annotations. Then, the average expression 380 

profiles across cells of a cell type were calculated by referring to the transferred labels and 381 

compared with those from the real scRNA-seq data3.  382 

Dimensionality reduction, embedding and projection 383 

For dimension reduction and visualization of Raman and scRNA-seq profiles, we performed 384 

forced layout embedding (FLE) using the Pegasus pipeline (https://github.com/klarman-cell-385 

observatory/pegasus). First, we performed principal component analysis on both Raman and 386 

scRNA-seq profiles independently, calculated diffusion maps on the top 100 principal 387 

components, and performed an approximated FLE graph using Deep Learning by pegasus.net_fle 388 

with default parameters.  389 
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To project Raman profiles to a scRNA-seq embedding, we calculated a k-nearest neighbor graph 390 

(k-NN, k=15) on the scRNA-seq top 50 principal components with the cosine metric, and UMAP 391 

with the scanpy.tl.umap function in Scanpy30 version 1.7.2 with default parameters. Then, the 392 

Raman predicted expression profiles were projected on to the scRNA-seq UMAP embedding by 393 

scanpy.tl.ingest using k-NN as the labeling method and default parameters.  394 

Feature importance analysis 395 

To evaluate the contributions of Raman spectral features to expression profile prediction, we used 396 

the get_feature_importance function in Catboost with default parameters. As the dimensions of 397 

Raman spectra were reduced by PCA prior to Catboost, feature importance scores were calculated 398 

for each principal component, and the weighted linear combination of the Raman PCA eigen 399 

vectors with feature scores as the weight were calculated to obtain the full spectrum.  400 
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 489 
Fig. 1 
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Fig. 1 | Raman2RNA. Live cells are cultured on gelatin-coated quartz glass-bottom plates (top) and 490 

Raman spectra are then measured at each pixel (at spatial sub-cellular resolution) within an image frame 491 

(1), followed by smFISH imaging in the same area (3). From parallel plates, cells are dissociated into a 492 

single cell suspension and profiled by scRNA-seq (2). scRNA-seq profiles are used to select 9 marker 493 

genes for 5 major cell clusters, and those are measured with spatial smFISH (3). Lastly, a regression 494 

model is trained (4) to predict anchor smFISH profiles from Raman spectra, followed by integration via 495 

Tangram16 to predict whole single-cell transcriptome profiles from smFISH profiles.  496 
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 497 

Fig. 2 | Raman2RNA accurately distinguishes cell types and predicts binary expression of marker 498 

genes in a mixture of mouse fibroblasts and iPSCs. a. Overview. Top: Experimental procedures. 499 

Mouse fibroblasts and iPSCs were mixed 1:1 and plated on glass-bottom plates, followed by Raman 500 

imaging of live cells, nuclei staining and measurement of endogenous Oct4-GFP (iPSC marker) reporter) 501 

by fluorescence imaging, and cell fixation and processing for smFISH with DAPI and probes for Nanog 502 

Fig. 2 
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(iPSCs, magenta) and Col1a1 (fibroblasts). Bottom: Preprocessing and analysis. From left: Image 503 

registration with control points (Methods), was followed by semantic cell segmentation, outlier 504 

removal/normalization and dimensionality reduction. b. Raman2RNA distinguishes cell states from 505 

Raman spectra. 2D UMAP embedding of single-cell Raman spectra (dots) colored by Louvain clustering 506 

labels (top left) or smFISH measured expression of Oct4 (top right), Nanog (bottom left) and Col1a1 507 

(bottom right). c. Raman2RNA accurately predicts binary (on/off) expression of marker genes. Receiver 508 

operating characteristic (ROC) plots and area under the curve (AUC) obtained by classifying the ‘on’ and 509 

‘off’ states of Oct4 (blue), Nanog (orange) and Col1a1 (green).   510 
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 511 

Fig. 3 | Raman2RNA predicts single-cell RNA profiles across cell types during reprogramming of 512 

mouse fibroblasts to iPSCs. a. Approach overview. From left: Mouse fibroblasts were reprogrammed 513 

Fig. 3 
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into induced pluripotent stem cells (iPSCs) over the course of 14.5 days (‘D’), and, at half-day intervals 514 

from days 8 to 14.5, spatial Raman spectra, smFISH for nine anchor genes, and nuclei stain by 515 

fluorescence imaging were measured for each plate. Machine learning and multi-modal data integration 516 

methods (Catboost and Tangram) were used to predict single-cell RNA-seq profiles from Raman spectra 517 

using smFISH as anchor. b,c. Low dimensionality embedding of single-cell Raman spectra captures 518 

progress in reprogramming. Force-directed layout embedding (FLE) of Raman spectra (b, dots) or 519 

scRNA-seq (c, dots) colored by days of measurement (colorbar). d. Correct prediction of smFISH anchors 520 

from Raman spectra. Pearson correlation coefficient (y axis) between measured (smFISH) and Raman-521 

predicted levels for each smFISH anchor (x axis) in leave-one-out cross-validation where 8 out of 9 522 

smFISH anchor genes were used for training, and the left-out gene was predicted. e.f. Raman2RNA 523 

accurately predicts pseudo-bulk expression profiles of major cell types. e. scRNA-seq measured (y axis) 524 

and R2R-predicted (x axis) for each gene (dot) in pseudo-bulk RNA profiles averaged across iPSCs. f. 525 

Pair-wise correlation (color bar) between Raman-predicted and scRNA-seq measured pseudo-bulk 526 

profiles in each cell types (rows, columns). g-j. Co-embedding highlights agreement between real and 527 

R2R inferred single cell profiles. UMAP co-embedding of Raman predicted RNA profiles and measured 528 

scRNA-seq profiles (dots) colored by data source (g, Raman predicted in orange; measured scRNA-seq in 529 

blue), cell type annotations (h) or by iPSC gene signature scores (calculated by averaging expression of 530 

genes Nanog and Utf1, and subtracting the average of a randomly selected set of reference genes; 531 

Methods) of Raman-predicted profiles (i) or of real scRNA-seq (j). k. Feature importance scores of 532 

Raman spectra in predicting expression profiles. Feature scores for iPSC related marker genes (y axis) 533 

along the Raman spectrum (x axis). Known Raman peaks18 were annotated. 534 
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 552 

 553 

Extended Data Fig. 1 | A multi-modal Raman microscope capable of fluorescence imaging and 554 

Raman microscopy. Schematic of a Raman microscope integrated with a wide-field fluorescence 555 

microscope for simultaneous detection of nuclei staining, bright field, fluorescence channels, and Raman 556 

images. 557 
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 559 

 560 

 561 

 562 

Extended Data Fig. 2 | Overview of high-throughput Raman imaging software used in the study. A 563 

general-purpose microscope control software Micro-manager and a custom MATLAB script were 564 

combined to enable automated multi-modal measurements. Under Micro-manager, a Raman channel was 565 

registered as a ‘dummy’ channel along with brightfield and fluorescence channels. Micro-manager was 566 

responsible for changing the field of view (FOV) and imaging modality. During the Raman sequence, 567 

Micro-manager communicated with a digital acquisition (DAQ) board, through which a transistor-to-568 

transistor logic (TTL) signal was generated to initiate the scanning sequence. Upon detection of the TTL 569 

signal, the MATLAB script controlled the Raman detector, laser shutter, and updated the galvo mirror 570 

angles through the DAQ board.  571 

 572 

 573 

 574 
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 592 

Extended Data Fig. 3 | GFP does not interfere in Raman spectra measurement. Raman spectra of 593 

culture media with (blue) and without (orange) GFP at physiological concentration. 594 
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 611 

 612 

Extended Data Fig. 4 | Image registration between the Raman and smFISH microscope using 613 

control points. Control points were inscribed under petri dishes with permanent markers and the 614 

coordinates were measured prior to any data acquisition. After Raman measurement and smFISH 615 

processing, samples were placed back to the microscope and control point coordinates were remeasured. 616 

Then, affine mapping was used to update the FOV coordinates to locate the exact same cells. 617 
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 625 

 626 

Extended Data Fig. 5 | Misclassification of genes in the cell mixture classification experiment occurs 627 

when the ground truth smFISH is near the expression threshold. Distribution of measured smFISH 628 

expression level (y axis) for cells correctly (blue) or incorrectly (orange) classified by their Raman spectra 629 

for the expression of that gene. Horizontal line: an example threshold used for the logistic regression 630 

classifier.   631 
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 634 

 635 

 636 

 637 

 638 

Extended Data Fig. 6 | Cell transition probabilities inferred by Waddington-OT from scRNA-seq 639 

during reprogramming. Force-directed layout embedding (FLE) of scRNA-seq profiles (dots) from 640 

days 8 to 14.5 of reprogramming (dots) colored by the transition probability of each cell as inferred by 641 

Waddington-OT to be an ancestor of iPSCs (left), epithelial cells (middle) or stromal cells (right) at day 642 

14.5. 643 

 644 
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 664 

 665 

 666 

Extended Data Fig. 7 | Raman-predicted and scRNA-seq measured pseudo-bulk profiles are well 667 

correlated across cell types. ScRNA-seq measured (y axis) and R2R-predicted (x axis) expression for 668 

each gene (dot) in pseudo-bulk RNA profiles averaged across cells labeled as iPSC (top left), epithelial 669 

(top right), stromal (bottom left) and MET (bottom right). Pearson’s r is denoted at the top left corner.  670 
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 672 

 673 

 674 

Extended Data Fig. 8 | Measured and Raman-predicted single cell profiles co-embed well as 675 

reflected by gene scores for each cell type. UMAP co-embedding of Raman predicted RNA profiles and 676 

measured scRNA-seq profiles (dots) colored by scores of marker gene for different cell types (rows) 677 

Supp. Fig. 8 
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determined by smFISH measurements (left, for cells with Raman-predicted profiles) or real scRNA-seq 678 

measurements (right, for cells with scRNA-seq profiles).  679 
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 681 

 682 

Extended Data Fig. 9 | Measured and Raman-predicted single cell profiles co-embed well as 683 

reflected by smFISH measurement of Raman cells. UMAP co-embedding of Raman predicted RNA 684 

profiles and measured scRNA-seq profiles (dots) where the Raman cells are colored by smFISH 685 

measurement of each of nine anchor genes. 686 
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 688 

Extended Data Fig. 10 | Measured and Raman-predicted single cell profiles co-embed well as 689 

reflected by scRNA-seq based expression of nine anchor genes. UMAP co-embedding of Raman 690 

predicted RNA profiles and measured scRNA-Seq profiles (dots) where the scRNA-seq profiled cells are 691 

colored by scRNA-seq measured expression of each of nine anchor genes. 692 

Supp. Fig. 10 
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Extended Data Fig. 11 | Distributions of expression of marker genes based on R2R-predicted 693 

profiles. Distributions (density plots) of the predicted expression in Raman2RNA inferred profiles for 694 

each marker gene (panel) in its expected corresponding cell type (blue, based on the predicted expression 695 

profiles) and all other cells (orange).  696 

Supp. Fig. 11 
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 697 

Extended Data Fig. 12 | Distributions of expression of marker genes based on real smFISH profiles. 698 

Distributions (density plots) of the real smFISH profiles for each marker gene (panel) in its expected 699 

corresponding cell type (blue, based on the R2R predicted expression profiles) and all other cells 700 

(orange). 701 

Supp. Fig. 12 
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 702 

 703 

 704 

Extended Data Fig. 13 | RNA profiles predicted directly from 9 anchor smFISH measurements lead 705 

to reduced variance compared to scRNA-seq. UMAP co-embedding of cells from scRNA-seq (blue) 706 

and Raman (orange) experiments, with the latter based on either the Raman-predicted RNA profiles (left) 707 

or only smFISH-predicted RNA profiles (right). 708 
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 710 

 711 

 712 

Extended Data Fig. 14 | Raman spectral feature importance scores for each smFISH anchor gene 713 

and its average across all genes for a cell type. Feature importance scores (y axis) for marker genes of 714 

each cell type (top two rows), and for all cell types (bottom row), along the Raman spectrum (x axis). 715 

Known signals18 are annotated in the top left panel (identical to Fig. 3k).  716 

Supp. Fig. 14 
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 717 

 718 

 719 

Extended Data Fig. 15 | Neural network-based prediction of smFISH using brightfield z-stacks. 720 
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