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Abstract

Accelerating the design of synthetic biological circuits requires1

expanding the currently available genetic toolkit. Although2

whole-cell biosensors have been successfully engineered and de-3

ployed, particularly in applications such as environmental and4

medical diagnostics, novel sensing applications necessitate the5

discovery and optimization of novel biosensors. Here, we ad-6

dress this issue of the limited repertoire of biosensors by de-7

veloping a data-driven, transcriptome-wide approach to discover8

perturbation-inducible genes from time-series RNA sequencing9

data, guiding the design of synthetic transcriptional reporters.10

By combining techniques from dynamical systems and control11

theory, we show that high-dimensional transcriptome dynamics12

can be efficiently represented and used to rank genes based on13

their ability to report the perturbation-specific cell state. We14

extract, construct, and validate 15 functional biosensors for the15

organophosphate malathion in the underutilized host organism16

Pseudomonas fluorescens SBW25, provide a computational ap-17

proach to aggregate individual biosensor responses to facilitate18

enhanced reporting, and exemplify their ability to be useful out-19

side the lab by detecting malathion in the environment. The20

library of living malathion sensors can be optimized for use in21

environmental diagnostics while the developed machine learning22

tool can be applied to discover perturbation-inducible gene ex-23

pression systems in the compendium of host organisms.24

Introduction25

The aim of synthetic biology is to design and construct living26

systems to possess desired functionality; this is done by devel-27

oping, characterizing, and assembling biological parts in cells,28

creating living devices [1]. Synthetic biological circuits were first29

engineered in the year 2000 when Gardner et al. [2] constructed30

a two-node genetic bistable switch and Elowitz and Leibler [3]31

constructed a three-node genetic oscillator (known as the re-32

pressilator), paving the way for fine-tuned control of gene ex-33

pression. Since, notable breakthroughs have emerged in post-34

transcriptional and translational control [4–6], optogenetic con-35

trol [7], eventually leading to control of metabolic pathways [8,9]36

and neural-like computing [10]. Although the aforementioned37
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genetic circuits exhibit distinct behavior, their design is imple- 38

mented with a shared set of biomolecular parts, limiting the range 39

of functionality that can be achieved. 40

As was the case for the genetic switch and repressilator, much 41

of the engineering workflow for optimizing the design of genetic 42

circuits has relied on iteratively replacing parts to minimize dis- 43

crepancies between actual and desired behavior [11–13]. By 44

parts, we are referring to DNA sequences which comprise the ele- 45

mentary building blocks of genetic circuits; for example, protein- 46

coding genes, promoters, terminators, and ribosome binding sites 47

to name only a few [12]. The initial pool of parts that were cu- 48

rated for use by synthetic biologists in bottom-up design were 49

largely derived from E. coli and since has expanded into a li- 50

brary containing parts from a diverse set of microorganisms, from 51

bacteriophage [14] to yeast [15]. 52

The expansion of the genetic toolkit for circuit design remains 53

an ongoing challenge as substantial effort is required to mine, de- 54

sign, characterize, and optimize biological parts [16–20]. While 55

a significant amount of attention has been placed on optimiz- 56

ing and characterizing existing biological parts for genetic cir- 57

cuit design, less attention has been placed on mining biological 58

parts. This has resulted in much needed insulation and biolog- 59

ical orthogonalization strategies [21] for mitigating inadvertent 60

intra-circuit and inter-circuit-host interactions. Moreover, pro- 61

grammatic tools have been developed to automate the design of 62

genetic circuits that implement logical operations using a set of 63

well-characterized parts in model organisms [22–25]. However, 64

since biological parts and circuits are characterized and opti- 65

mized within a single model organism and often not evaluated 66

in application relevant organisms, there is no guarantee that the 67

parts can be “taken off the shelf” for use in engineering novel 68

host organisms. An increased focus on mining biological parts 69

from novel host organisms will provide an expansion of the ex- 70

isting genetic toolkit from which synthetic biologists can browse 71

and select from. 72

Transcriptional genetic sensors are a class of biological compo- 73

nents that control the activity of promoters [26] and have been 74

used to construct whole-cell (living) biosensors [27–29]. A large 75

portion of transcriptional sensors rely on transcription factor- 76

promoter pairs [30] and have been used in whole-cell biosens- 77

ing for detection of heavy metals [31], pesticides and herbicides 78

[32–34], waterborne pathogens [35], disease biomarkers [36, 37], 79

and many more applications discussed in [38]. Since microbes are 80

found in virtually all terrestrial environments, one could imagine 81
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that there would be no shortage of transcriptional genetic sensors82

for novel sensing applications. However, given a novel sensing ap-83

plication for a target compound or perturbation, transcriptional84

genetic sensors are typically unknown a priori. Moreover, a com-85

plete methodology for discovering sensors for the target analyte86

in novel organisms does not yet exist.87

The transcriptional activity of an organism can be measured88

through RNA sequencing (RNA-seq) to produce a snapshot of89

the bulk cell state subject to intrinsic and extrinsic perturbations.90

The typical approach for identifying upregulated and downregu-91

lated genes across experimental conditions is to apply differential92

expression analysis [39, 40]. A major pitfall with differential ex-93

pression analysis is its lack of statistical power when faced with94

a sparse number of biological replicates. That is to say that the95

false-positive rate increases drastically when only a small number96

of biological replicates are available [41] as is often the case due97

to the costliness of RNA-seq. A related issue arises in that one98

must sacrifice time points for biological replicates, reducing the99

fidelity of the dynamical process being studied. As most biolog-100

ical processes are dynamic, time-series profiles are essential for101

accurate modeling of these processes. Furthermore, differential102

expression analysis provides no information beyond which genes103

are upregulated/downregulated [42]. An analysis of expression104

dynamics provides a potential route to design a sensing scheme105

for a target analyte for which no single sensor exists.106

A typical RNA-seq dataset contains hundreds to tens of thou-107

sands of genes; despite that, a subset of genes, which we call108

encoder genes, are typically sufficient for representing the under-109

lying biological variation in the dataset. This is explained by the110

fact that variations in many genes are not due to the biological111

process of interest [43] and that many genes have correlated ex-112

pression levels [44]. The task of identifying a subset of the state113

(genes) which recapitulate the entire state (transcriptome/cell114

state) and explain the variations of interest is well studied in the115

field of dynamics and controls in the form of optimal filtering and116

sensor placement [45, 46]. In the context of dynamic transcrip-117

tional networks, sensor placement is concerned with inferring the118

underlying cell state based on minimal measurements; this in-119

troduces the concept of observability of a dynamical system [47].120

The transcriptome is observable if it can be reconstructed from121

the subset of genes that have been measured. In other words,122

these genes encode the required information to predict the dy-123

namics of the entire transcriptome. Hence the name, encoder124

genes. To the best of our knowledge, measures of observabil-125

ity have not been applied to genetic networks to identify genetic126

sensors, biomarkers, or other key genes.127

Overall, a systematic approach for identifying genetic sensors128

from RNA-seq datasets is still an open and challenging issue. In129

this work, we develop a machine learning methodology to extract130

numerous endogenous biological sensors for analytes of interest131

from time-series gene expression data (Figure 1). Our approach132

consists of three key steps, each of which is depicted in the middle133

panel of Figure 1. Briefly, the first step adapts dynamic mode de-134

composition (DMD) [48–50] to learn the transcriptome dynamics135

from time-series RNA-seq data. Beyond the scope of sensor dis-136

covery, we show how the dynamic modes can be utilized to cluster137

genes by their temporal response. The second step involves as-138

signing sampling weights to each gene that quantify the contribu-139

tion to maximizing observability of the cell state [47,51,52]. The140

sampling weights provide a machine learned ranking of the genes141

based on their contribution to observability of the system, and142

using this ranking, encoder genes may be selected. To ensure the143

ranking is identifying genes which can recapitulate the cell state,144

the final step is to measure how well a chosen subset of genes can145

reconstruct the cell state. To validate our proposed methodology, 146

we use our method to generate a library of 15 synthetic genetic re- 147

porters for the pesticide malathion [53–55], an organophosphate 148

commonly used for insect control, in the bacterium Pseudomonas 149

fluorescens SBW25. The library is composed of encoder genes 150

identified by our proposed machine learning methodology. The 151

transcriptional sensors play distinct biological roles in their host 152

and exhibit unique malathion response curves. Our method uses 153

no prior knowledge of genes involved in malathion sensing or 154

metabolism. Moreover, we use no data source beyond RNA-seq, 155

thereby providing a cost and computationally efficient approach 156

for transcriptional sensor identification. 157

Results 158

Induction of malathion elicits fast host response. To start, 159

we will first introduce the time-series RNA-seq dataset that we 160

will use throughout this work. The transcriptional activation and 161

repression of the soil microbe Pseudomonas fluorescens SBW25 162

was induced by malathion at a molar concentration of 1.29 µM 163

(425 ng/µL) for the following two reasons: i) it is a moderate 164

amount that can typically be found in streams and ground water 165

after recent pesticide use based on studies done in the United 166

States, Malaysia, China, Japan, and India [56, 57], and ii) the 167

characteristic concentration of a metabolite in bacteria is on the 168

order of 0.1−10 µM [58]. Malathion is an organophosphorus syn- 169

thetic insecticide used mainly in agricultural settings [59] while 170

SBW25 is a strain of bacteria that colonizes soil, water, and plant 171

surface environments [60]. This makes the soil-dwelling strain a 172

prime candidate for identification of transcriptional genetic sen- 173

sors for the detection of malathion. 174

To enable rapid harvesting and instantaneous freezing of cell 175

cultures, we made use of a custom-built vacuum manifold, en- 176

abling fast arrest of transcriptional dynamics (Supplementary 177

Figure 6 and Methods). Following malathion induction, cells 178

were harvested at 10 minute intervals for 80 minutes, obtaining 179

a total of 9 time points across two biological replicates that were 180

sequenced. As the focus of our study is on identifying trends 181

and correlations across time, we heavily favored time points in 182

the trade-off between time points and biological replicates. To 183

identify candidate sensor genes for malathion induction and sub- 184

sequently build synthetic transcriptional reporters, we also col- 185

lected samples from a cell culture that was not induced with 186

malathion. See the Methods section for further details on cell 187

culturing and harvesting. 188

RNA sequencing (RNA-seq) provides a snapshot of the entire 189

transcriptome i.e. the presence and quantity of RNA in a sample 190

at a given moment in time. In this work, we examine the fold 191

change response given by first normalizing the raw counts to ob- 192

tain transcripts per million (TPM) [61] followed by calculating 193

the fold change of the malathion condition with respect to the 194

negative control. The implication is that the fold change is the 195

cell state, zk for some time point k, we are concerned with for dis- 196

covery of genetic sensors. Of the nearly 6000 known genes in the 197

SBW25 genome, a large fraction of them were not expressed at 198

significant levels. Specifically, only 10% of or 624 genes are kept 199

for modeling and analysis due to their relatively high abundance. 200

Given our goal of extracting salient biosensors from time-series 201

gene expression data, we first model the dynamical process that 202

is driven by the input of malathion on the SBW25 transcrip- 203

tome. We consider malathion as a step input to the cell culture 204

and as an impulse to the cells. This is motivated by the fact 205

that biomolecular systems often respond to the derivative of the 206

input and not the input itself (e.g. the absolute concentration 207
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Figure 1: Transcriptional genetic sensors underlying the response from environmental perturbations can be ex-
tracted using data-driven sensor placement. Bulk RNA sequencing (RNA-seq) measures transcript abundance over time
following transcriptome perturbations. Our method starts by applying dynamic mode decomposition (DMD) to the fold change
response to discover dynamic modes which govern the evolution of the cell state. The dynamic modes are used to design a state
observer (gene sampling weights) that maximize the observability of the transcriptome dynamics. Measurements from a subset of
genes (encoder genes) informed by the gene sampling weights are then used to reconstruct the cell state. Our method returns: 1)
a dynamics matrix (or equivalently, a set of dynamic modes) describing how expression of gene i at time t is impacted by gene j
and time t− 1. and 2) gene sampling weights. The outcome, demonstrated in this work, is a library of synthetic sensor promoters
(genetic reporters) that are used to detect an analyte of interest. Since each genetic reporter has a unique response to the same
perturbation, the library can be artificially fused to produce a purely virtual sensor for enhanced reporting.

of malathion) [62, 63]. In the next section, we apply dynamic208

mode decomposition (DMD) to approximate the fold change re-209

sponse with a sparse collection of dynamic modes. Specifically,210

we demonstrate how DMD can accurately describe gene expres-211

sion dynamics by decomposing the time-series gene expression212

into temporally relevant patterns.213

Dynamic mode decomposition uncovers modes of host214

cell response.215

Dynamic mode decomposition (DMD) is a time-series dimen-216

sionality reduction algorithm that was developed in the fluid dy-217

namics community to extract coherent structures and reconstruct218

dynamical systems from high-dimensional data [48]. Recently,219

several works have adapted and applied DMD to biological sys-220

tems in various contexts [64–68], choosing DMD for its ability221

to i) reproduce dynamic data over traditionally static methods222

such as principal component [69] or independent component anal-223

ysis [70] and ii) represent the dynamics of high-dimensional pro-224

cesses (e.g. gene interaction networks) using only a relatively225

small number of modes.226

To uncover the diverse modes of the host cell response to227

malathion induction, we performed (exact) DMD [50] on the228

transcriptomic dataset (see Methods for the details). Specifi-229

cally, we perform DMD on the standardized fold change, defined230

as z̄g = xmalathion
g /xcontrol

g , where xg is the expression (in TPM)231

of gene g and the overbar represents a variable which is trans-232

formed to have zero mean and unit variance. DMD allows the 233

learning of low-dimensional linear models from high-dimensional 234

time-series data. Briefly, this implies that quantitative features 235

of a nonlinear model are not captured in our model, e.g. multi- 236

ple equilibria, and chaos. If these nonlinear features are relevant 237

to the system being studied, one can extend DMD to capture 238

arbitrary nonlinearities, at the cost of needing a larger number 239

of samples [71]. In this section we will describe how modeling 240

the fold change response with DMD enables the identification 241

of biologically relevant temporal patterns that are driven by the 242

malathion perturbation. In the following sections we will show 243

that the modes of the fold-change response will allow us to iden- 244

tify genes which act as reporters for the malathion specific re- 245

sponse. 246

DMD captures transcriptome dynamics by decomposing a gene 247

expression matrix (genes × time points) into dynamic modes 248

— each mode characterizes damped, forced, and unforced sinu- 249

soidal behavior. Namely, each dynamic mode is associated with a 250

growth or decay rate and a fixed frequency of oscillation. The re- 251

construction of the impulse response of the fold change dynamics 252

is schematically represented in Figure 2a. The heatmap V rep- 253

resents the matrix of 10 learned dynamic modes, each of which 254

has rate of growth or decay and oscillation frequency given by 255

a single corresponding DMD eigenvalue in Λ, and mode ampli- 256

tude given in b. As they are complex-valued, the magnitude and 257
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Figure 2: Dynamic mode decomposition provides an interpretable and predictive model of gene expression dy-
namics. (a) DMD reconstruction of the fold change dynamics subject to an impulse input of malathion. Since the modes are
complex-valued, their magnitude and phase are separately visualized. The vector ẑk is the reconstruction of the fold change at time
k, given by the depicted spectral decomposition where V are the DMD modes, Λ are the DMD eigenvalues, and b are the mode
amplitudes (see Methods for detailed description of DMD). (b) The DMD spectrum reveals the growth, decay, and oscillation of
each of the 10 dynamic modes that comprise the transcriptomic dataset. Each marker is an eigenvalue, and its diameter is propor-
tional to the magnitude of the corresponding dynamic mode. Eigenvalues inside the unit circle correspond to decaying dynamics,
eigenvalues with nonzero imaginary part correspond to oscillatory dynamics, and eigenvalues outside the unit circle correspond to
growing dynamics. (c) The eigenvalue scaled amplitudes, λki bi, of modes 1, 2, and 6 are visualized (upper) along with the 10 genes
whose dynamics are most impacted by each of the modes (lower). The marker used for each mode indicates which eigenvalue it
corresponds with in (b). (d) The eight-step prediction is visualized for five randomly selected genes in the transcriptomic dataset.
The error bars represent the sample standard deviation across two biological replicates (blue solid curve) and across predictions
(orange dashed curve). Magenta squares overlapping each gene’s initial condition are indicating the data that is provided to make
predictions. The coefficient of determination, R2, for the eight-step prediction across all genes is computed to be 0.92.

phase of each DMD mode, eigenvalue, and amplitude is visual-258

ized separately. The magnitude of each DMD mode represents259

gene-wise coherent activation while the phase represents the rel-260

ative shift of this activation for the damped (or forced) modes.261

Here 10 modes are chosen as it is a minimal set of modes that can262

accurately capture the dynamics while also limiting the presence263

of instabilities in the model (Supplementary Figure 1). With264

fewer modes the instabilities disappear, however the model accu-265

racy decreases. With more modes, the accuracy asymptotically266

approaches 100%, however the number of instabilities increases.267

Our DMD analysis of RNA-seq data uncovers three distinct268

modal responses, namely stable, oscillatory, and unstable, and269

the response of each modes is characterized by the corresponding270

DMD eigenvalue, λ = a + bi (here i =
√
−1). The real part,271

a, and the imaginary part, b, are what determine the growth272

(unstable)/decay (stable) rate and the frequency of oscillation,273

respectively. We have plotted the 10 DMD eigenvalues relative to274

the unit circle in Figure 2b and labeled the eigenvalues according275

to their type. Note that in our model a single eigenvalue is either276

both stable and oscillatory, unstable and oscillatory, or only sta-277

ble. Also, since our data are real-valued, any complex eigenvalue278

must be associated with a complex conjugate pair, explaining the 279

symmetry across the real axis in Figure 2b. 280

The first type of mode that we recover is stable and are char- 281

acterized by eigenvalues which are inside the unit circle. The 282

magnitude of eigenvalues inside the unit circle are strictly less 283

than one and such a set of stable modes indicate relative decay, 284

that is to say that many genes have a temporal response which 285

only transiently deviate from a neutral fold change (fold change 286

equal to one for non-standardized trajectories and fold change 287

equal to zero for standardized trajectories). Stable modes that 288

have eigenvalues nearer to the unit circle are capturing majorly 289

uninhibited genes, while stable modes that are nearer to the ori- 290

gin are capturing genes which converge to neutral fold change 291

exponentially, i.e. they exhibit strong relative decay in their fold 292

change. 293

The second type of dynamic mode we uncover is oscillatory 294

and are characterized by by eigenvalues with nonzero imaginary 295

part. Since gene expression data is always real-valued, oscillatory 296

modes will always come in complex conjugate pairs. Each pair of 297

complex-valued modes then describes a fixed frequency of oscil- 298

lation, and each gene’s dynamics can be reconstructed from one 299
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or more of these frequencies. The work of Sirovich found that300

the oscillatory modes obtained from DMD represent the genes301

underlying the yeast cell cycle, and the frequencies of oscillation302

were shown to provide an estimate of the cell cycle period that303

agrees with the literature [66].304

The third and final type of mode we recover is an unstable305

response characterized by eigenvalues whose magnitude is larger306

than one. Driven by the impulse input of malathion, many genes307

show temporal response that were either upregulated or down-308

regulated. If the upregulation and downregulation is persistent309

throughout the gene’s temporal profile or occurs at later times,310

there must be at least a single mode with eigenvalue outside the311

unit circle to be able to capture the underlying unstable response.312

This is because DMD is essentially learning a linear state-space313

representation of the fold change response and a linear system314

can only exhibit three types of limiting behaviors, i) convergence315

to the origin (stable), ii) periodic orbits, and iii) divergence to316

infinity (unstable). Therefore, for the reconstruction accuracy317

to be maximized, DMD eigenvalues with magnitude larger than318

one may be necessary. Such eigenvalues are marked with rela-319

tive growth in Figure 2b. Though the eigenvalues are outside the320

unit circle, they are only marginally so, implying that unstable321

trajectories make up only a small portion of the transcriptomic322

response to malathion.323

Despite the fact that most genes require a superposition of324

all of the dynamic modes for accurate reconstruction, we show325

that the modes can successfully group genes into interpretable326

clusters. Figure 2c (upper) shows the evolution of three dynamic327

modes representative of the transcriptomic dataset: modes 1, 2,328

and 6, corresponding to stable (modes 1 and 6) and unstable329

(mode 2) directions in gene space. The genes which are most330

influenced by each of these modes are obtained from the columns331

of the DMD modes V and are plotted in the lower part of Figure332

2c.333

The genes which are most influenced by mode 1 are those which334

diverge, in a stable manner, from a neutral fold change while the335

genes most influenced by mode 2 are those which diverge away336

from neutral fold change, capturing unstable trajectories. This337

is consistent with the eigenvalues of mode 1 and mode 6, which338

are stable and unstable, respectively. Finally, the genes most339

influenced by mode 6 are those with no clear trend present in340

their dynamics. In the next section, we will characterize those341

genes which contribute to cell state reconstruction and act as342

reporters for the malathion specific response. Relatedly, of the343

20 genes that are most impacted by mode 1, seven of these genes344

contribute highly to cell state reconstruction (they are within the345

top 20 genes that contribute to the observability of the system).346

The model of the gene expression response to malathion that347

we have learned using DMD has been shown to be interpretable,348

clustering genes with distinct temporal responses. To instill con-349

fidence in the model, we measure the accuracy of reconstruction350

using the coefficient of determination, R2, as the metric. The351

R2 is computed by feeding an initial condition (the gene expres-352

sion at time t = 0) to the model and then predicting all subse-353

quent time points; for the nine time points in the dataset, this354

amounts to two eight-step predictions across the biological repli-355

cates. Specifically, the reconstruction is computed precisely as356

depicted in Fig 2a where V, Λ, and b are held constant and357

only the time k is updated to obtain the DMD estimate of the358

bulk cell state at time k. We emphasize that this is distinct from359

measuring model accuracy by computing a one-step prediction360

for each time point, which gives very little information about361

the dynamic process that has been captured. We obtain an R2
362

of 0.92, showcasing that the low-dimensional model learned via363

DMD has accurately captured the dynamics of the fold change 364

response. To provide a foundation for understanding when linear 365

models can accurately represent fold change dynamics, we have 366

shown, in the Supplementary Information, that the fold change 367

response of two linear systems, under stated assumptions, can be 368

represented as the solution of a linear system. 369

The results of this section demonstrate that the set of 10 re- 370

covered DMD modes, eigenvalues, and amplitudes are indeed bi- 371

ologically relevant to the dynamics of the malathion response 372

in the window of time that we have sampled the transcriptome. 373

The DMD model predictions for five randomly selected genes in 374

the SBW25 transcriptome are depicted in Figure 2d. These five 375

genes each exhibit a distinct response, and each are well cap- 376

tured by our DMD model. Though only five genes are presented, 377

the result is representative of the whole transcriptome prediction. 378

A key point then is that gene expression dynamics sampled at 379

the resolution of minutes can be well approximated by a linear 380

dynamical system, i.e. by a set of exponentially shrinking and 381

growing modes. In what follows, we develop a sensor placement 382

framework, relying on the learned linear dynamical system, to 383

generate a ranked list of encoder genes, i.e. subsets of genes 384

which show variation to malathion induction and that can reca- 385

pitulate the cell state. 386

Sensor placement for cell state inference and extrac- 387

tion of genetic sensors. Gene interaction networks are com- 388

plex systems that induce systematic interdependencies between 389

genes. That is to say that the expression of most genes, if not 390

all, depends on the expression of at least one more genes in the 391

network. These interdependencies make it possible to measure 392

only a subset of genes to infer the behavior of all other genes [72]. 393

In this section, we will show that time-series measurements of a 394

subset of genes, called encoder genes, are sufficient to capture 395

the entire cell state, making the system observable. The system 396

we are referring to is the transcriptome or fold change dynamics 397

that we now have a DMD representation for and it is observable 398

when the complete initial cell state, z̄0, can be uniquely inferred 399

from output measurements yk, for times k = 1, 2, ..., T , where 400

the measurements are linear combinations of the expression of 401

all genes (see Methods). 402

The approach taken in this work for evaluating whether a gene 403

is an encoder of complete cell state information is to quantify how 404

much each gene contributes to observability. To do this, we op- 405

timize a scalar measure of the observability gramian, a matrix 406

which determines the amount of information that a set of sen- 407

sors can encode about a system. In the context of transcriptome 408

dynamics, given the DMD representation of the dynamics and 409

a chosen gene sensor placement, the gramian quantitatively de- 410

scribes i) to what degree cell states are observable and ii) which 411

cell states cannot be observed at all. Increasing i) while decreas- 412

ing ii) is the aim of many sensor placement techniques; further- 413

more, many scalar measures of the gramian have been proposed 414

to determine the sensor placement which maximizes the observ- 415

ability of the underlying dynamical system [73–75]. 416

To provide a method which is capable of handling high- 417

dimensional networks, we optimize the signal energy,
∑T
i=0 y>i yi, 418

of the underlying system as it does not require explicit compu- 419

tation of the observability gramian. Computing gramians from 420

unstable and/or high-dimensional systems is computationally ex- 421

pensive and hence we choose to use the measure which can scale 422

for a wide array of biological datasets collected from diverse host 423

organisms. To further emphasize this point, we note that we are 424

implicitly optimizing over 5.5× 1029 sensor placement combina- 425

tions, if we choose to select 15 genes from the full set of 624 (624 426

choose 15). The strategy we employ is to assign gene sampling 427
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a b

c d

Figure 3: Gene sampling weights which maximize observability provide a machine learned ranking for extraction
of genetic sensing elements. (a) The gene sampling weights w are sorted by value and plotted in the left panel. The weights
are grouped into three categories: i) the third of genes with highest magnitude of sampling weights (plotted in green), ii) the third
of genes with second highest magnitude of sampling weights (plotted in orange), and ii) and the lower third that remains (plotted in
blue). The right panel depicts the reconstruction accuracy (R2) between the true initial condition and the estimated initial condition
when sampling 50 genes at random from each of the aforementioned groups for (top) T = 2 time points and (bottom) T = 8 time
points. The reconstruction accuracy was measured for a total of 100 runs each with a distinct set of 50 genes from each group. (b)
Reconstruction accuracy between the estimated initial condition ẑ0 and the actual z̄0 is plotted for number of sampled time points
T = 1 to T = 10. Each data point is obtained by sampling genes by rank (the amount sampled is given on the x-axis), generating
outputs for T time points, and then estimating the initial condition. (c) The fold change response of the 20 genes which contribute
most (top) and least (bottom) to the observability of the initial cell state are plotted. The error bars represent the sample standard
deviation across two biological replicates. (d) The background subtracted TPM (malathion (TPM) − negative control (TPM)) of
the 15 encoder genes selected from the proposed ranking – by contribution to observability. The label on each x-axis indicates the
percentage rank (out of 624 genes) of the gene, with respect to the gene sampling weights, and zero here being the highest rank.
The error bars indicate the sample standard deviation across two biological replicates. Malathion was introduced to the cultures
after collecting the sample at 0 minutes, hence this sample is not used for modeling and cell state inference and this time window
is shaded in gray.

weights, wg, to each gene g through optimizing sensor placement,428

i.e. maximizing the signal energy. The significance of the magni-429

tude of each weight is to rank each gene by their contribution to430

observability, i.e. higher magnitude denotes higher contribution.431

The Methods section provides quantitative details on the rela-432

tionship between observability, the observability gramian, and433

signal energy for sensor placement.434

By examining the learned gene sampling weights, we found435

that nearly all 624 modeled genes contribute, some insignificantly,436

to the observability of the system. Displayed in Figure3a (left)437

are the magnitude of gene sampling weights, w, whose elements438

have been scaled to be in the range 0 to 1, that maximize the ob-439

servability of the cell state. We note that the relative magnitude440

of the weights are what is important, therefore any linear scaling 441

will preserve the information that are contained in the weights. 442

Weights that are negative-valued (not shown here) correspond to 443

downregulated genes and weights that are positive-valued corre- 444

spond to genes that are upregulated. The higher the magnitude 445

of the gene sampling weight, the more important the gene is 446

likely to be for cell state reconstruction. To test this notion, the 447

sampling weights are artificially grouped into three categories, 448

distinguishing genes which correspond to the top (green), mid- 449

dle (orange), and lower (blue) third for magnitude of sampling 450

weights. Each category contains 208 genes, and next we show the 451

gain in information that can be achieved when sampling from one 452

category over another. 453
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To examine the contribution to observability provided by genes454

in each of the categories, we perform Monte Carlo simulations to455

estimate the expected predictability of the initial cell state. From456

output measurements, yi (i = 1, 2, ...T ), that are generated by457

randomly sampling 50 genes from a specified category (low, mid,458

high), the cell state, z̄0, is estimated and the coefficient of de-459

termination (R2) between the actual and estimated cell state is460

computed as a measure of reconstruction accuracy. The simula-461

tion is repeated 1000 times for each category and the resulting462

distributions over the random gene sets are plotted in Figure 3a463

(right). In the top panel, we can see that when T = 2 (2 time464

points are used for reconstruction), predictability of the cell state465

is low in all cases, and it is highest for the genes in the high cat-466

egory. Specifically, the reconstruction accuracy is three and two467

times larger in the high category than in the low and mid cate-468

gories, respectively. Similarly, when the number of time points,469

T , is increased to eight, exhausting the time points we are mod-470

eling before extrapolation, the genes in the high category best471

reconstruct the cell state. We found that the low and mid cat-472

egory genes are also capable of significant reconstruction of the473

cell state, exemplifying that there is a rich amount of information474

encoded in the dynamics. This further highlights the importance475

of carefully designing experiments that are sufficiently rich in476

conditions and time points.477

Measuring fewer genes for many time points leads to higher478

cell state reconstruction accuracy than if many genes are mea-479

sured for fewer time points. This result is demonstrated in Fig-480

ure 3b which shows how the cell state reconstruction accuracy481

is affected by two parameters, the number of sampled genes and482

the number of time points, T , that the genes are measured for.483

The reconstruction accuracy is again the coefficient of determi-484

nation, R2, between the reconstructed initial condition, ẑ0, and485

the actual initial condition z̄0. For each T , the first data point486

is generated by sampling only the five genes with the highest487

sampling weights for T time points. The complete cell-state is488

then inferred from these measurements alone and the coefficient489

of determination between the estimated and actual cell state can490

be computed (see Methods for a detailed description of the cell491

state inference algorithm). To compute subsequent data points,492

the next five genes with maximum sampling weights are simul-493

taneously measured along with previously measured genes, and494

the cell state is reconstructed again. For the response of SBW25495

to malathion, we find that even if only the top five genes are496

measured but for T = 10 time points, the cell state reconstruc-497

tion is still more accurate than if all genes with nonzero sampling498

weights are measured with T ≤ 8 time points. This signifies that499

the ability to study the dynamics of a few genes with fine tem-500

poral resolution can greatly increase the knowledge of the entire501

system.502

Failure to reconstruct the initial cell state is a result of two503

mechanisms. The first is that we only have access to the DMD504

representation of the dynamics, not the true dynamics. There-505

fore, any output measurements generated using the DMD model506

will certainly incur an error with respect to the actual dynam-507

ics. As error accumulates each time-step, it is possible for the508

reconstruction accuracy to decrease with increasing time points.509

In addition to this, if a gene is added to the set of sensors, yet510

its dynamics are poorly predicted by the model, then it can drag511

down the cell state reconstruction accuracy. This can be ob-512

served in two curves in Figure 3b, namely for T = 10 and T = 9.513

The second hindrance for full cell state reconstruction is when514

many genes contain redundant information. If two genes have515

nearly identical gene expression profiles, adding the second gene516

to the set of measurements provides no useful information for the517

cell state inference. This may explain the asymptotic behavior 518

of the curves in Figure 3b. There are only relatively few distinct 519

dynamic profiles present in the transcriptomic dataset, and once 520

all distinct profiles have been sampled, no further improvement 521

in reconstruction can occur. This explanation is consistent with 522

the fact that many genes co-express [44] and this fact has even 523

been used to reconstruct dynamic gene regulatory networks [76]. 524

The gene sampling weights, w, provide a machine learned 525

ranking for discovering genetic sensors. Recall that the fold 526

change was taken to be the state of the system when perform- 527

ing DMD. In so doing, we show that the encoder gene ranking 528

can also predict genes that respond to malathion in a condition 529

specific manner. Specifically, genes which contribute highly to 530

the observability of the system are genes which show prolonged 531

dysregulation in the presence of malathion. This is visualized in 532

Figure 3c where in the top panel the 20 genes which have the 533

largest sampling weights are plotted. Each of the 20 genes show 534

dysregulation from the neutral fold change (0) that is persistent 535

over the course of the time-series. Conversely, the 20 genes with 536

lowest sampling weights show no clear trend or signal of dysreg- 537

ulation. 538

To show that encoder genes can act as genetic reporters for 539

malathion, we selected a set of 15 genes with which to construct 540

transcriptional reporters from. The 15 time-series profiles gener- 541

ated via RNA-seq (malathion TPM - control TPM) are visualized 542

in Figure 3d. To select this set of 15, the genes were first ranked 543

(out of 624 genes) based on their gene sampling weights with 0 544

being the highest. Then a randomly chosen subset of 15 genes 545

from the top half of the ranking were used to reconstruct the cell 546

state. The subset of 15 which produced the highest cell state 547

reconstruction accuracy, i.e. which maximize the observability 548

of the cell state, were chosen as the encoder genes with which 549

to design genetic reporters from. Specifically, the observability 550

maximizing set of 15 genes shown in Figure 3d achieve a cell state 551

reconstruction accuracy of 76% when outputs are generated using 552

T = 8 time points. Of the 15 selected encoder genes, 12 appear 553

to be activated by induction of malathion while the remaining 3 554

appear to be repressed. 555

The selected encoder genes are involved in disparate biological 556

processes. Table 1 lists the molecular functions of each of the 557

selected genes based on their Gene Ontology (GO) annotations 558

[77]. Where gene names are not available, we have used protein 559

annotations to denote those genes. It is shown that the set of 560

molecular functions are diverse, indicating that malathion drives 561

the activation and repression the disparate biological processes. 562

This is precisely the goal of our sensor placement framework, 563

to select genes which not only show variation to the biological 564

process of interest and recapitulate the cell state, but also to 565

select genes which are involved in distinct dynamical processes. 566

When synthesized into genetic reporters, as we will show next, 567

these encoder genes exhibit distinct dynamic range, sensitivity, 568

and time-scales in response to malathion. 569

Design and characterization of fluorescent malathion 570

sensors. 571

To validate the transcriptome-wide analysis for identification 572

of biosensors, the putative promoters of the candidate sensor 573

genes were cloned into a reporter plasmid containing a reporter 574

gene encoding sfGFP (superfolder green fluorescent protein) and 575

transformed into the host SBW25 (Figure 4a). The reporter 576

strains are cloned in an unpooled format, allowing for malathion 577

response curves to be generated at the reporter level as opposed 578

to a pooled study which would incur additional sequencing costs 579

for individual strain isolation. 580

Malathion reporters are characterized in the laboratory in an 581
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Figure 4: Our machine learning approach successfully extracted 15 sensors, each with distinct malathion response
curves. (a) A map of the plasmid, pBHVK, used to construct the library. The plasmid contains a kanamycin resistance gene
as well as a fast-folding sfGFP gene. (b) Hierarchical clustering performed on correlations between each pair of reporter strain
response at 1.87 µM malathion. (c) Average per cell sfGFP signal at 0.37 µM (left) and 1.83 µM (right) malathion normalized
by signal at 0.0 µM malathion is shown for all 15 engineered strains. (d) Transfer curves (or response curves) for each strain is
depicted with markers and their fit to Hill equation kinetics are given by solid lines. The Hill equation parameters are given in
Table 1 The promoter sequences corresponding to each reporter and time points for each transfer curve are given in Supplementary
Tables 2 and 4, respectively. The error bars represent the standard deviation from the mean across three biological replicates.

environmentally relevant way by sourcing malathion from the582

commonly used commercial insecticide called Spectracide (con-583

taining 50% malathion). First, it was verified that the response584

of the reporters to analytical standard malathion was consistent585

with the response when induced with Spectracide. That is to586

say that if the reporter was upregulated (downregulated) in re- 587

sponse to malathion, it was also upregulated (downregulated) in 588

response to Spectracide. Furthermore, the culture media con- 589

taining nutrients and Spectracide that the reporter strains were 590

cultured in was analyzed with mass spectrometry and compared 591
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to the mass spectrum of analytical standard malathion. Compar-592

ing the two mass spectra, we found that they are nearly identical593

(Supplementary Figs. 7-19). See the Methods section for more594

details about the use of Spectracide as a source for malathion595

and Supplementary Figure 4 for the effect of Spectracide on the596

growth of the reporter strains.597

To examine the transcriptional activity of sfGFP, controlled by598

the encoder gene promoters, cells are grown in in rich medium599

and fluorescence output was measured every three minutes over600

24 hours of growth. This resulted in 400 time points per reporter601

strain, a nearly 45 fold increase over the number of time points602

obtained via RNA-seq. Prior to starting the experiment and col-603

lecting fluorescence measurements, reporter strains were induced604

with Spectracide to drive the reporter response. Since sfGFP is a605

stable protein with a long half-life and fast maturation time [78],606

the result is that each strain serves as a reporter for the rate607

of transcription initiation. This is distinctly different from the608

transcript abundance that is measured via RNA-seq due to the609

instability of mRNA molecules.610

Inducing the reporter strains with malathion results in corre-611

lated transcriptional activity. To correlate the reporter strains’612

activity, first the sfGFP fluorescence is normalized by the OD to613

give average per cell fluorescence. The Pearson correlation be-614

tween the average per cell fluorescence of all pairs of reporters615

is given in Figure 4b. From the heatmap, three distinct posi-616

tively correlated clusters are apparent. The strains cspA2, atpB,617

fabA, acrA, and petA form the first cluster. The second positively618

correlated cluster contains uncharacterized protein II, capB, and619

putative ABC transport system. Lastly, gltA, putative outer mem-620

brane porin A, and lpxC form the third cluster. Moreover, we621

see that the first cluster negatively correlates with the second and622

that the second cluster negatively correlates with the third. The623

present correlations thus suggest that the genes within a cluster624

may have functional dependency in the presence of malathion625

or they share a transcriptional regulator. This also highlights626

the role of redundancy in gene expression and has been studied627

widely in the form of gene co-expression networks or regulons [44].628

Examining the transcription initiation driven by malathion at629

distinct concentrations reveals detailed gene expression dynam-630

ics, dependencies of expression on malathion concentration, as631

well as the correlations. Firstly, the fold change (with respect632

to 0.0 µM malathion and referred to as the background) re-633

veals oscillatory signals in several strains; the reporters atpB,634

petA, cspA2, and acrA each contain oscillations that are near in635

phase at 0.38 µM malathion (Figure 4c). As the concentration of636

malathion is increased, only atpB and petA appear to remain in637

phase while the signals of the other strains strongly increase. We638

also see that anti-sigma 28 factor and rpoA oscillate with lower639

frequency and that anti-sigma 28 factor hits a peak around 10640

hours after induction while rpoA hits an anti-peak around 10641

hours after induction. For the lower malathion concentration,642

sucC has a large lag time until transcriptional activation occurs,643

however there is a sharp decrease in the lag time at the higher644

concentration. The strains acrA, gltA, putative outer membrane645

porin A, putative ABC transport system, and lpxC consistently646

respond within minutes of malathion induction with lpxC being647

the reporter with highest signal over background and acrA the648

reporter with highest overall signal energy (area under the curve)649

in early times. Though cspA2 was shown by the RNA-seq data650

to be repressed by malathion, we find that cspA2 strain is consis-651

tently activated in the presence of malathion. Of the remaining652

repressed promoters, uncharacterized protein II is far more re-653

pressed in the presence of malathion across all concentrations654

tested.655

The response curves of the reporter strains to malathion 656

strongly resemble Michaelis-Menten enzyme-substrate kinetics. 657

Such kinetics are characterized by exactly two parameters and 658

mathematically described by Hill functions [63] (Methods). The 659

first parameter is the Hill coefficient or cooperativity, n, which is 660

a measure of how steep the response curve is. This is also denoted 661

as a measure of ultrasensitivity. The second parameter, KM , is 662

the Michaelis constant and it is equal to the malathion concen- 663

tration at which the response is half of its minimum value sub- 664

tracted from its maximum value. Figure 4d shows the malathion 665

response curves of each reporter strain at the time point with 666

maximum fold change with respect to the 0 µM malathion con- 667

dition. The solid line depicts the fit of a Hill function to the 668

experimentally generated response curves and the parameters of 669

each Hill function are given in Table 1. The response shown is the 670

average fluorescence per cell obtained by normalizing the sfGFP 671

signal by the optical density. See Supplementary Table 4 for the 672

precise time points used here for each strain and see Methods for 673

further details on parameter fitting. 674

We find that there is significant variation across the Hill co- 675

efficient, dynamic range, and Michaelis constant in the library 676

of reporters. The Hill coefficient ranges from 1.1 to 21.6, and 677

recalling that this parameter is a measure of sensitivity, the ex- 678

tremes depicted by a small slope in strain fabA and large slope in 679

strain sucC, respectively. The dynamic range, measured as the 680

difference between the maximum signal and the minimum signal, 681

ranges from 80 to 1401 and is obtained by sucC and the repressed 682

uncharacterized protein II, respectively. The Michaelis constant 683

ranges from 0.2 to 1.5, depicted by the shift in malathion con- 684

centration at which half of the maximum signal is achieved from 685

fabA and cspA2. 686

Overall, we find that each synthetic reporter, selected via our 687

data-driven sensor placement framework, is capable of detecting 688

malathion with distinct dynamic ranges and sensitivity. More- 689

over, we note that two of the selected reporters, ABC transporter 690

and acrA, are membrane transporters and are not expected to be 691

specific to malathion. The above two points motivate combining 692

features from individual reporters to generate a single (virtual) 693

reporter that enhances sensing capabilities. In what follows we 694

demonstrate one approach to achieve such a task. 695

Superimposing the response of multiple sensors cre- 696

ates an enhanced virtual sensor. 697

The genetic reporters characterized in the previous section re- 698

spond to malathion with distinct timescales, amplitudes, and 699

frequencies, each acting as a unique report of the environmen- 700

tal context. However, as explained previously, not every reporter 701

is expected to uniquely respond to malathion. Therefore, when 702

testing for malathion in an environmental scenario, the conclu- 703

sion given by individual reporters are expected to have a higher 704

false positive rate than if the measurements were aggregated to 705

form a single, combined sensor. 706

Recognizing the need to construct a multi-component sensor 707

from the reporters in our synthetic promoter library, in this sub- 708

section we explore an approach for incorporating each unique 709

temporal response to produce a desired output that provides 710

more information than a single reporter alone. This application 711

of the library views the synthetic reporters as genetic basis func- 712

tions with fixed expressivity, comprising a single-input-single- 713

output genetic network. Here the single input is malathion and 714

the single output is a virtual sensor. As opposed to a biological 715

sensor, a virtual sensor solely processes data originally gathered 716

by the distinct biological sensors [79]. In our case, the 15 genetic 717

reporters described in the previous section comprise the biolog- 718

ical sensors and we aggregate the response measurements from 719
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Figure 5: The superposition of transcriptional genetic
sensors creates a virtual, single-input, single-output ge-
netic network. (a) The schematic depicts the concept of virtual
sensing, which combines the output of synthetic genetic sensors to
produce a purely software-based output for enhanced malathion
reporting. (b) The response of three reporters (left) are su-
perimposed with weights {βacrA = 0.6, βanti−sigma 28 factor =
0.31, βcspA2 = 0.26} to output a virtual sensor which recapit-
ulates the second-order response reference trajectory. The dot-
ted blue line represents a step input of malathion, the solid or-
ange curve depicts the desired reference response, and the dashed
green curve is the weighted sum of the response to a step input of
the three synthetic genetic sensors depicted on the left. (c) Nine
reporters are superimposed with weights {βlpxC = 0.5, βacrA =
0.36, βfabA = 0.11, βuncharacterized protein II = 0.58, βrpoA =
0.1, βanti−sigma 28 factor = 0.13, βABC transport system =
1.29, βcspA2 = 0.74, βsucC = 0.32} to recapitulate the sequence
of radial basis function responses. See the caption of (b) for a
description of the legend.

each to produce a purely virtual sensor that has a desired out-720

put (Figure 5a). Even though two of the malathion reporters,721

the membrane transporters, are expected to respond to an ar-722

ray of small molecules, virtual sensing can aggregate information723

from all sensors, increasing the confidence in the conclusion of 724

the event that the sensors have been exposed to. 725

The usefulness of a virtual sensor in the setting of detection 726

of a novel small compound is two-fold, i) aggregating contrasting 727

responses can only reduce the false-positive rate of a detection 728

event and ii) combining individual sensors in a software-based 729

manner reduces the need for implementation of complex synthetic 730

genetic networks and reduces metabolic burden on the host or- 731

ganism. Taking advantage of the benefits of virtual sensing, we 732

develop an approach for enhancing malathion reporting by aggre- 733

gating the response of the reporters in our library. Specifically, 734

the weighted superposition of malathion responses are used to 735

produce a desired output signal. 736

We show that transcriptional virtual sensing is capable of de- 737

tecting environmentally relevant events. Consider a scenario 738

where malathion is discarded in a prohibited site such as a body 739

of water or soil. Such an event might trigger a reference (desired) 740

response that resembles the response of a linear, second-order sys- 741

tem to a step input [47]. Specifically, the reference response is 742

characterized by a rapid response to malathion followed by lower 743

magnitude, sustained response (Figure 5b). Treating the reporter 744

library as genetic basis functions, we learn the sparse set of coef- 745

ficients that approximate the reference trajectory (see Methods 746

for details). We find that with only three sensors, the desired 747

response is accurately captured. The strains acrA, anti-sigma 748

28 factor, and cspA2 each possess peaks shortly after malathion 749

induction, capturing the peak in the reference. At later times, 750

the superposition of the three strains are able to recapitulate the 751

sustained response. 752

We now consider a second scenario where we aim to detect 753

malathion from a more subtle source where in pulses of malathion 754

are introduced to the system periodically. Figure 5c depicts the 755

pulse inputs and reference trajectory which is comprised of a 756

linear combination of radial basis functions. We find that for 757

this more complex scenario, superposition of the response of nine 758

reporters is required to approximate the reference trajectory. 759

In both scenarios, a single genetic reporter would not be suffi- 760

cient to inform of the type of event that occurred. Furthermore, 761

we have shown how virtual sensing can prove useful for aggrega- 762

tion of measurements from individual sensors without having to 763

clone synthetic multi-component reporters, a difficult task due to 764

the tremendously large size of the design space and the emergent 765

effects seen when composing genetic parts. 766

Detecting malathion in environmental samples. 767

In the previous section, we discussed how we can virtually en- 768

hance the sensing ability of the malathion reporter library in en- 769

vironmentally relevant scenarios. However, the library has only 770

been examined in an ideal laboratory scenario with either pure 771

or processed malathion that has been analyzed with mass spec- 772

trometry; it is not yet known if the reporters will be able to 773

sense malathion when induced with actual environmental water 774

samples that have been treated with the insecticide. Confound- 775

ing factors may be present in the environmental sample such as 776

other small compounds that may make it difficult to deconvolve 777

malathion response from the response due to the confounder. 778

Therefore, in this section we describe an experiment to assess 779

whether or not the malathion concentration can be deduced from 780

our reporters treated with environmental insecticide samples. 781

In order to test if the genetic reporters can sense malathion 782

from environmental samples, irrigation water was collected from 783

three crops after being sprayed with a mixture of Spectracide 784

(50% malathion) and water (Figure 6a). The concentration of 785

the mixture sprayed was either 0, 1, or 8 times the maximum rec- 786

ommended working concentration of Spectracide – 1 fluid ounce 787
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Figure 6: Irrigation water containing malathion from an agricultural setting activates transcriptional reporters
and allows for inference of environmental malathion concentration. (a) Three cabbage plants are sprayed with a solution
of 0, 1, and 8 times the working concentration of Spectracide, respectively. The flow-through is first captured and filtered and then
used to induce transcriptional activity in the malathion reporter strains. Using previously characterized response curves for each
reporter, an inference for the malathion concentration can be made. (b) The average per cell fluorescence (arbitrary units) of 9 out
of the 15 malathon reporters, after 24 hours of induction, showed activation due to the soil runoff solution containing malathion.
The working concentration of Spectracide is instructed as 1oz of Spectracide to 1 gallon of water. The error bars represent the
sample standard deviation from the mean across three biological replicates. (c) The concentration of malathion present in the
irrigation water is inferred using the signal from (b) and the fitted response curves from Figure 4d.

per gallon of water. To rid the solution of unwanted microbes788

and particles, the irrigation water was strained and filtered prior789

to to the induction of the genetic reporters (see Methods). The790

growth and induction protocols all remain the same as for the791

samples treated with Spectracide in Figure 4c,d.792

We found that a total 9 out of the 15 of the reporters were acti-793

vated by induction of the irrigation water containing malathion.794

Fig 6a shows the average per cell fluorescence 24 hours after795

induction of the nine strains subjected to 0, 1, or 8 times the796

working concentration of Spectracide. The reporters atpB, petA,797

sucC, rpoA, fabA, and gltA all show a response to malathion at 1x798

working concentration, while the remaining three did not show799

significant differences from the negative control in this range.800

Among the strains in Figure 6b, the strain sucC was activated801

the most, showing an 80% increase from the 0x to 8x condition802

after the 24 hour time period. This shows that many of the se-803

lected genetic reporters, 60%, are able to detect malathion in804

environmentally relevant scenarios, and, furthermore, we can use805

this data to infer the concentration of malathion present in the806

samples collected from the environment.807

The response curves characterized previously in Figure 4d for808

each of the genetic reporters can be used to make an inference809

about the amount of malathion present in each environmental810

sample. Note that we are making the assumption that the re-811

sponse curves characterized for each of the nine reporters can be812

applied to this new setting of treatment with irrigation water.813

With this assumption we can then use the fitted Hill equations814

from Figure 4d and numerically estimate the malathion concen-815

tration that reproduces the signal at 1 or 8 times the working816

concentration of Spectracide. The results obtained are shown in817

Figure 6b for each of the nine strains. Through this approach, the818

reporters provide a range of inferred malathion concentrations;819

at the working concentration of Spectracide, we can infer that820

the concentration of malathion is in the range 0.48 − 0.97 µM821

and at 8 times the working concentration of Spectracide, we can822

infer the concentration of malathion to be in the range 0.82 − 2823

µM. It is important to note that for most, if not all, of the char-824

acterized reporter strains, 2 µM was the maximum discernable825

concentration before the signal saturates. Therefore, it is possi-826

ble the concentration of malathion is higher than 2 µM, however 827

that range cannot be detected by our reporter library. 828

Discussion 829

It is often the case that biologists seek to identify key genes which 830

show variation for the biological process of interest. Many tools 831

have been developed or adapted to meet this need e.g. differen- 832

tial expression and principal component analysis to name only a 833

few. However, when using the current tools, there is potential to 834

measure system variables that are redundant which can lead to 835

wasted time and resources. Therefore, we developed an efficient 836

method that identifies the variables that allow for the inference of 837

the complete system. The method combines dynamic mode de- 838

composition (DMD) and observability of dynamical systems to 839

provide a systematic approach for the discovery of perturbation- 840

inducible genes. To extract optimal biosensors from our model, 841

we showed that if the fold change was taken as the state of the 842

system, the encoder genes inform the design of transcriptional 843

reporters that showcase condition specific sensing. 844

We introduced DMD as a novel tool for analysis of transcrip- 845

tome dynamics. In this case, we studied bulk transcriptome 846

dynamics at the minutes resolution and showed that the low- 847

dimensional DMD representation accurately predicts the dynam- 848

ics and clusters genes based on temporal behavior. Our results 849

suggest that DMD is a capable tool for analysis of transcriptomic 850

data and warrants further exploration in single-cell RNA-seq and 851

other ’omics technologies that aim to infer cell trajectories, pseu- 852

dotime, and single-cell regulatory networks. 853

The identification of transcriptional genetic sensors was posed 854

as a design challenge, where a subset of genes are selected to 855

maximize the observability of the cell state. It was shown that a 856

large fraction of genes contribute insignificantly to the cell state 857

observability when only few time points are measured, further 858

validating the common knowledge that genetic networks possess 859

redundancies and are noisy. We also showed that it is signifi- 860

cantly more beneficial to measure a sparse set of genes for more 861

time points than to measure more genes for fewer time points. 862
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Our results suggest future joint experimental and computational863

approaches which limit the amount of resources required to get864

a full description of the system dynamics. A natural extension865

of our work is to determine how well measurements from a small866

library of reporters recapitulate the bulk cell state under unseen867

conditions. Such studies will inform how RNA-seq data should868

be collected in the future in order to maximize the reconstruction869

accuracy and minimize labor and experimental costs.870

The machine learning driven selection of genetic reporters was871

shown to produce 15 functional biosensors with a variety of872

malathion response curves. We demonstrated how to aggregate873

information from each reporter to create a virtual sensor that874

can be used to infer events of interest. Moreover, we showed875

that the genetic reporters can be used to detect malathion in876

environmental settings. More generally, our results and method-877

ology offer an innovative approach that can be used to to identify878

perturbation-inducible gene expression systems. We emphasize879

that our approach takes advantage of the largely untapped re-880

sources present in native host genomes and we anticipate that881

techniques like the one developed here will produce a plethora of882

parts for synthetic biologists to build useful devices from.883

Lastly, our developed approach makes no assumptions on the884

nature of the underlying system. In that sense, the framework885

we have developed is general and can be applied to data gener-886

ated from other ’omics techniques and from any organism. In the887

case that a linear response model is insufficient for capturing the888

transcriptome dynamics, it can be extended to a variety of non-889

linear models to capture nonlinear modes of response [71]. An890

interesting extension of observability to transcriptome dynamics891

would be to construct state-estimators (also known as observers)892

of the dynamics for real-time monitoring of gene interaction net-893

works [80]. Such approaches could find potential use in designing894

and implementing better diagnostic tools for synthetic biologists.895

Finally, further refinement of the list of encoder genes could be896

obtained by fusing ChIP-seq (chromatin immunoprecipation fol-897

lowed by sequencing) with RNA-seq measurements to discover898

transcription factors, however such an experimental assay can899

be prohibitively expensive. The DNA binding sites measured900

by ChIP-seq alone are not sufficient to infer regulation of tran-901

scription. However, together with RNA-seq, the set of encoder902

genes which causally drive the condition specific response can be903

uncovered.904

Methods

Rapid culture sampling. For each biological replicate, Pseu-905

domonas fluorescens SBW25 glycerol stock was scraped and inocu-906

lated in 5 mL of fresh LB broth (Teknova Catalog no. L8022) and907

was incubated and shaken at 30◦C and 200 r.p.m. for 15 hours. The908

OD600 of the 5 mL culture was measured and the entire culture was909

transferred to 50 mL of fresh LB broth, which was then proceeded by910

incubation and shaking. Once the OD600 of the 50 mL culture reached911

0.5, the culture was again passaged into 300 mL of fresh LB broth. The912

300 mL culture was grown until OD600 of 0.5. Then the culture was913

split into two 150 mL cultures (one for malathion induction and one for914

the negative control). The two cultures were sampled at evenly spaced915

intervals in time (see Supplementary Table 1 for sampling volumes916

and times) and after the 0 minute sample, malathion (Millipore Sigma917

Catalog no. 36143) was introduced to the positive condition at 1.83918

mM. To separate the media from the cells, a vacuum manifold with919

3D printed filter holders was constructed and utilized (Supplementary920

Figure 6). 0.45 µm PVDF membrane filters (Durapore Catalog no.921

HVLP04700) were placed on the filter holders, a vacuum pump was922

turned on, and the culture sample was dispensed onto the center of923

the filter, quickly separating the media from the cells. The filter with924

the cells was then placed into a 50 mL conical centrifuge tube (Fisher925

Scientific 1495949A) using sterile tweezers. The tube with the filter 926

was then submerged into a liquid nitrogen bath for 10 seconds to flash 927

freeze the sample. The sample were then stored -80 ◦C. 928

RNA extraction. To extract the RNA, first the filter-harvested cells 929

were resuspended in 2 mL RNAprotect Bacterial Reagent (Qiagen Cat- 930

alog no. 76506), then pelleted in a centrifuge. To lyse the cells, the pel- 931

let was then resuspended in 200 µL of TE Buffer containing 1 mg/mL 932

lysozyme. The RNA was then extracted from the lysed cells using 933

Qiagen RNeasy Mini Kit (Catalog no. 74104), and the samples were 934

DNase treated and concentrated using Zymo RNA Clean and Concen- 935

trator (Catalog no. R1019). 936

RNA library preparation and sequencing. Bacterial rRNA was 937

depleted using NEBNext Bacterial rRNA Depletion Kit (Catalog no. 938

E7850X). The indexed cDNA library was generated using NEBNext 939

Ultra II Directional RNA Library Prep (Catalog no. E7765L) and 940

NEBNext Multiplex Oligos for Illumina (Catalog no. E6609S). In to- 941

tal, 40 samples (two biological replicates, 10 time points, two condi- 942

tions) were prepped and sequenced. The library was sequenced at the 943

Genetics Core in the Biological Nanostructures Laboratory at the Uni- 944

versity of California, Santa Barbara on an Illumina NextSeq with High 945

Output, 150 Cycle, paired end settings. 946

Pre-processing of sequencing data. The raw reads were trimmed 947

for adapters and quality using Trimmomatic [81]. The reads were then 948

pseudoaligned with Kallisto [82] to the Pseudomonas fluorescens 949

SBW25 transcriptome generated using GFFRead [83] and GenBank 950

genome AM181176.4. The normalized gene expression of transcripts 951

per million (TPM), which takes into account sequencing depth and 952

gene length, are used for modeling and analysis. Genes with an aver- 953

age TPM less than 100 in all experimental conditions were discarded 954

from our analysis. 955

Malathion reporter library cloning. For the reporter plasmid 956

cassette design, first, the closest intergenic region to the gene target 957

larger than 100 base pairs (bp) was identified based on the open reading 958

frame of the sequenced genome of Pseudomonas fluorescens SBW25 959

(GenBank genome AM181176.4). Primers were designed to include the 960

entire intergenic region in order to capture any transcription-regulator 961

binding sites surrounding the promoter (Figure 4a). The identified 962

intergenic regions were amplified using the primers and this is what 963

we refer to as ’promoter regions’ following the terminology of [84]. 964

The promoter regions were cloned into a cassette on the plasmid back- 965

bone pBHVK (Supplementary Figure 3) containing a bicistronic ribo- 966

some binding site and super folder GFP (sfGFP) as the reporter gene. 967

Lastly, a cloning site was placed in the cassette so that the cloned 968

promoter controls transcriptional activity of sfGFP. 969

The promoters were assembled onto the plasmid backbone pBHVK 970

(see Supplementary Fig. 3) via Golden Gate Assembly [85] using 971

NEB Golden Gate Assembly Kit (Catalog no. E1601S). Because of 972

the potential of arcing during electrotransformation of Pseudomonas 973

fluorescens SBW25 with Golden Gate reaction buffers, the plasmids 974

are first subcloned into E. coli Mach1 (Thermo Fisher Scientific Cat- 975

alog no. C862003) following the manufacturer’s protocol for chemi- 976

cal transformation. Between three and six colonies are selected for 977

each strain and the reporter cassette was sent for sequencing at Eu- 978

rofins Genomics. Then the plasmid DNA was prepared from cultures 979

of transformed Mach1 cells using Qiagen Spin Miniprep Kit (Catalog 980

no. 27106) followed by chemical transformation into SBW25. SBW25 981

was made chemically competent by washing a culture at OD600 of 982

0.3 with a solution of 10% glycerol two times, then resuspending in 983

500 µL of 10% glycerol. The plasmid DNA is added to 80 µL of the 984

cell suspension and kept at 4◦C for 30 minutes, then the cells were 985

electroporated with 1600 V, 200 Ω, and 25 µF. The cells were immedi- 986

ately resuspended in 300 µL of SOC Broth (Fischer Scientific Catalog 987

No. MT46003CR), recovered for 2 hours at 30◦C in a shaking incu- 988

bator, and plated onto 1.5% LB Agar plates with 50 µg
mL

Kanamycin. 989

Again, three to six colonies of each strain have their reporter cassette 990

sequenced at Eurofins Genomics and simultaneously glycerol stocks of 991

each colony is prepared for long term storage. 992

Photobleaching of Spectracide. Spectracide malathion insect 993

spray concentrate (Spectracide Catalog no. 071121309006) was uti- 994

lized as the environmentally relevant source of malathion for the re- 995

porter library testing and contains 50% malathion. Spectracide is an 996

opaque liquid. We found that we can remove the opaque substances 997

by photobleaching a 5% Spectracide solution (in LB) in a Synergy H1 998
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plate reader (Biotek), at 30◦C and 800 r.p.m. OD600 and fluorescence999

(excitation 485nm, emission 528nm) were measured every 3 minutes for1000

8 hours. To ensure malathion remained in solution after photobleach-1001

ing, the mass spectrum was analyzed at the University of California,1002

Santa Barbara Mass Spectroscopy Facility. From this we determined1003

that malathion is stable for the course of the photobleaching (Supple-1004

mentary Figures 7 to 19).1005

Plate reader assays to measure response curves and doubling1006

times. Scrapes of culture from glycerol stocks of each strain were used1007

to inoculate 3 mL of LB (Kanamycin 50 µg
mL

) in 10 mL 24 deep-well1008

plate sealed with a breathable film (Spectrum Chemical Catalog no.1009

630-11763) and grown at 30◦C overnight in a shaker incubator. The1010

overnight cultures were diluted to an OD600 of 0.1 in 2 mL of LB and1011

the cultures were grown for an additional 2 hours. 250 µL of this cul-1012

ture was then transferred to a 96 well optically-transparent microtiter1013

plate. Photobleached spectracide (50% malathion) is then introduced1014

(if relevant) to the cultures in the wells to give the desired concentra-1015

tion of malathion, and grown in a Synergy H1 plate reader (Biotek), at1016

30◦C and 800 r.p.m. OD600 and sfGFP (excitation 485nm, emission1017

528nm) was measured every 3 minutes for 48 hours. Each data point1018

in a response curve was generated by normalizing the sfGFP signal1019

(arbitrary fluorescence units) by the OD600 to give the average per1020

cell fluorescence, and only the data points before cell death (due to1021

nutrient depletion or media evaporation) are used. The strain growth1022

rates were calculated as ln(initial OD600/final OD600)/(tfinal−tinitial),1023

where the initial OD600 is the first measurement within the exponential1024

phase and final OD600 is the last measurement within the exponential1025

phase. Then the strain doubling times were calculated as ln(2) divided1026

by the growth rate.1027

Collection and cleanup of irrigation water treated with Spec-1028

tracide. Three cabbage plants were each potted in 5 gallon buckets1029

with fresh soil (Harvest supreme) and a water catchment tray was1030

placed under the plants to catch flow through. The first plant was1031

sprayed with water containing no malathion and the flow through was1032

collected in a 1 L pyrex bottle. The second plant was sprayed with1033

a Spectracide (50% malathion) solution at a concentration of 1 fluid1034

ounce per of gallon water – the maximum working concentration of1035

Spectracide as recommended by the manufacturer. Lastly, the third1036

plant was sprayed with the solution at 8 fluid ounces per gallon of1037

water. Each plant was sprayed for one minute and the collected flow1038

through from each plant were first strained using a 40 µm cell strainer1039

(VWR 76327-098) to remove large microorganisms and large parti-1040

cles. The strained samples were then centrifuged to separate dense,1041

soil particles from the Spectracide solution. Finally, the supernatant1042

was vacuum filtered through a 0.22 µm membrane before induction1043

of the reporters. The protocol for induction of the reporters with the1044

irrigation water is the same as above.1045

Computing the dynamic mode decomposition. We now discuss1046

the details of applying dynamic mode decomposition (DMD) to time-1047

series data obtained from sequencing. As mentioned previously, many1048

algorithms have been developed to compute the DMD modes, eigen-1049

values, and amplitudes, and a key requirement of almost all of the1050

techniques is that the time points are spaced uniformly in time. In our1051

work we begin by collecting the data for a single experimental condi-1052

tion into a time-ordered matrix, X, which contains a total of m × r1053

data snapshots for a data set with m time points and r replicates. For1054

response to malathion, each x
(j)
i corresponds to the gene expression1055

vector at time i in replicate j and is in the ((i+m)× j)th column of1056

the data matrix X where i ∈ {0, 1, . . . ,m − 1} and j ∈ {1, 2, . . . , r}.1057

For gene expression data obtained from RNA-seq, each data snapshot1058

typically contains thousands of rows denoted by n. The n × rm data1059

matrix for the response to malathion is then given by1060

Xmalathion =

x
(1)
0 x

(1)
1 . . . x

(1)
m−1 x

(2)
0 . . . x

(2)
m−1 . . .


(1)

where each xi ∈ Rn represents the gene expression given in transcripts1061

per million (TPM) from the malathion condition. Similarly, the data1062

matrix for the control condition is constructed. The fold change data1063

matrix, Z, is subsequently computed as Z = Xmalathion � Xcontrol,1064

where � denotes the Hadamard (element-wise) division of two matri-1065

ces. Next we compute the mean-subtracted and standard deviation-1066

normalized data matrix Z̄ 1067

Z̄ =

[
z0 − µ0:m−1

σ2
0:m−1

z1 − µ0:m−1

σ2
0:m−1

. . .
zm−1 − µ0:m−1

σ2
0:m−1

]
(2)

where µ0:m−1 is the vector of time-averages of each gene and σ2
0:m−1 1068

is the vector of time-standard deviations of each gene. The divisions 1069

in Eq. (2) are performed element-wise. We see that Ẑ is obtained by 1070

removing the time-averages from each gene and standardizing the time- 1071

variances of each gene. The mean subtraction operation is motivated 1072

by the fact that the mean of the data corresponds to the eigenvalue 1073

λ = 1, which is always an eigenvalue of the Koopman operator, the 1074

operator that DMD ultimately aims to approximate [86], and not one 1075

we are particularly interested in. The normalization by the standard 1076

deviation is performed so that the magnitude of the fold change has 1077

no implication on the connectivity of the learned dynamical system. 1078

The algorithm we make use of to compute the dynamic mode decom-
position (and the approximation of the Koopman operator) is exact
DMD [50], which aims to identify the best-fit linear relationship be-
tween the following time-shifted data matrices

Z̄p =
[
z̄0 z̄1 . . . z̄m−2

]
, Z̄f =

[
z̄1 z̄2 . . . z̄m−1

]
such that 1079

Z̄f = KZ̄p + r (3)

where r is the residual due to K only providing an approximation of 1080

the actual dynamics. Note that there are n2 unknown parameters in 1081

K and n × m equations in Eq. (3). The residual is then minimized 1082

by Exact DMD (in the least squares sense) by first considering the 1083

reduced singular value decomposition (SVD) of Ẑp = UΣW> where 1084

Σ ∈ Rk×k. As the number of time points, m, obtained from sequencing 1085

is typically much less than the number of genes, n, we keep k ≤ m 1086

singular values. Recognizing that minimizing the residual requires it 1087

to be orthogonal to the left singular vectors, we can pre-multiply (3) 1088

with U> to obtain 1089

U>Z̄f = KUΣW>. (4)

Rearranging the above equation, it is shown that K is related to K̂ 1090

through a similarity transformation as shown in Eq. (5) 1091

K̂ = U>Z̄fWΣ−1 = U>KU (5)

meaning that the eigenvalues of K̂, λ, are equivalent to the k leading 1092

eigenvalues of K while the eigenvectors of K̂, s, are related to the k 1093

leading eigenvectors of K, v, by v = Us. This eigendecomposition 1094

then allows the fold change response to be written as the following 1095

spectral decomposition 1096

ẑi =
k∑
j=1

vjλ
i
jbj = VΛib (6)

where V is a matrix whose columns are the eigenvectors (DMD modes) 1097

vj , and b is a vector of amplitudes corresponding to the gene expression 1098

at the initial time point as b = V†ẑ0. Here † represents the Moore- 1099

Penrose pseudoinverse of a matrix. 1100

Using the above spectral decomposition, the modes can then be evolved 1101

in time for m − 1 time steps to reconstruct the data from knowledge 1102

of the initial condition. Evolving past the mth time point allows for 1103

forecasting of the fold change response. To measure the accuracy of 1104

reconstruction we use the coefficient of determination 1105

R2 = 1−
∑m
i=0(ẑi − z̃i)∑m
i=0(ẑi − z̄)

(7)

where z̄ is the vector of each gene’s mean expression, formally z̄(j) = 1106∑m
k=0 ẑ

(j)
k , and z̃k = Kkẑ0 is the prediction of ẑk given by the model 1107

starting from the initial condition. 1108

Computing the gene sampling weights. Here we describe our 1109

methodology for ranking genes based on their contribution to the ob- 1110

servability of the dynamical system learned via dynamic mode decom- 1111

position. We start by introducing the energy of a signal in discrete-time 1112

as 1113

Ey =

∞∑
i=0

y>i yi (8)

which is closely related to the idea of energy in the physical sense 1114

and where y = Wz̄ are measurements of the system state and W ∈ 1115
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Rp×n. Rewriting the signal energy (8) using the recursion for y given1116

as yt = WKtz̄0, we can reveal the connection between energy and1117

observability1118

Ey =

∞∑
i=0

z̄>0 Ki>W>WKiz̄0

= z̄>0 (

∞∑
i=0

Ki>W>WKi)z̄0

= z̄>0 Xoz̄0

(9)

where Xo is the infinite-horizon observability gramian, a symmetric1119

matrix that is unique if the eigenvalues of K all have magnitude less1120

than 1. The observability gramian describes how much gain will be1121

attained by a system’s output, y, given an initial condition z̄0. It1122

simultaneously gives a measure of how well the initial condition z̄0 can1123

be estimated given only measurements of the system state y [75].1124

We use the observability gramian along with the measure of energy it1125

provides to optimize for the gene sampling weights in the rows of W1126

that maximize the signal energy Ey . Formally, the objective function1127

is given as1128

max
W∈Rp×n

z̄>0 Xoz̄0

subject to WW> = Ip×p.
(10)

where we seek the matrix W that maximizes the observability of the1129

cell state z̄0. The constraint above enforces the following three points,1130

i) the length of each row vector in W is not important, we are only1131

concerned with the direction and the constraint sets the length of each1132

row vector to be equal to 1, ii) the maximization problem is well-posed,1133

i.e. the objective cannot blow up to infinity with the length constraint,1134

and iii) the rows of W form p vectors of an orthonormal basis for Rp,1135

i.e. WW> = Ip×p. Each row vector in W can then be viewed as a set1136

of weights, each orthogonal to one another, that rank genes based on1137

their contribution to the observability of the system. The optimization1138

problem (10) represents a quadratic program with linear constraints,1139

and the rows of W which maximize the objective are the p eigenvectors1140

corresponding to the p eigenvalues with highest magnitude of the Gram1141

matrix1142

G =
∞∑
i=0

Kiz̄0z̄>0 Ki> . (11)

Since G ∈ Rn×n is a sum of quadratic forms, the result is that G1143

has non-negative, real-valued eigenvalues. If the eigendecomposition is1144

G = QDQ−1, then the solution to the optimization problem Eq. (10)1145

is1146

W =


q>1
...

q>p

 (12)

where q1 through qp are the top eigenvectors of the Gram matrix G.1147

The proof of the solution to the optimization problem is provided in the1148

Supplementary Information. The single set of gene sampling weights1149

that maximize the observability are precisely q1 and from here on out1150

we call these weights w.1151

Since transcriptomic data sets typically have few initial conditions, i.e.1152

biological and technical replicates, before solving for w we enrich our1153

data set with N synthetic initial conditions that are randomly sampled1154

as Uniform(min(z̄
(j)
0 ),max(z̄

(j)
0 )) where j in {1, 2, ..., r} and r is the1155

number of replicates. The motivation for the artificial data generation1156

is given in [87], where it is shown that artificially generated data points1157

improved the estimate of the DMD model when the data set is affected1158

by noise. N is chosen to be equal to the number of genes to ensure1159

the matrix of initial conditions has full rank. Another issue that we1160

have addressed are the instabilities present in the DMD eigenvalues.1161

Consequently, the observability gramian is not unique and the sum in1162

Eq. (11) diverges to infinity. To mend this issue, we compute the1163

finite-horizon Gram matrix, where the sum in Eq. (9) and Eq. (11)1164

is from 0 to m. This allows for the computation of the finite-horizon1165

signal energy from Eq. (9) where the bounds on the sum are now from1166

i = 0 to i = m.1167

Once w is obtained by solving Eq. (10), then measurements yt, for t1168

in {0, 1, ..., T}, are generated from yt = w>Ktz̄0 while keeping only1169

the q elements of w with largest magnitude as nonzero. All other 1170

elements of w are set to zero to simulate the sampling of only selected 1171

genes. To reconstruct z̄0 using only the measurements, we form the 1172

following observability matrix from the known sampling weights, w 1173

and the dynamics matrix K 1174
y0

y1

y2

...
yT

 =


w>

w>K
w>K2

...
w>KT

 z̄0 = OT z̄0 (13)

and using the Moore-Penrose pseudoinverse we can obtain an estimate 1175

of the initial condition as follows 1176

O†T


y0

y1

y2

...
yT

 = ẑ0 ≈ z̄0. (14)

Increasing q while keeping T constant results in increasing reconstruc- 1177

tion accuracy until a critical value of q such that the reconstruction 1178

accuracy plateaus; a similar scenario holds for keeping q constant and 1179

increasing T . When both T and q surpass the critical values, perfect 1180

reconstruction may be achieved. 1181

When the computation of the Gram matrix, G, is not computationally 1182

feasible, as can be the case when the dimensionality of the data are rel- 1183

atively high compared to that of bacterial transcription networks that 1184

we are dealing with here, the reduced order dynamics given by DMD 1185

can be used to compute an approximation to the leading eigenvalues 1186

and eigenvectors. The reduced order G is then given by 1187

G̃ =
∞∑
i=0

K̂iU>z̄0z̄>0 UK̂i> (15)

where K̂ and U are given in Eq. (5). Supplementary Figure 2 shows 1188

the approximation of the leading eigenvalues and eigenvectors of G by 1189

G̃. 1190

Fitting the response curves to Hill kinetics. The malathion 1191

response curves for each sensor were fit to Hill functions of the form 1192

y = ymin + (ymax − ymin)
un

KM + un
= Hact(u) (16)

for activated sensors and 1193

y = ymax − (ymax − ymin)
un

KM + un
= Hrep(u) (17)

for repressed sensors. The parameter n is a measure of ultrasensi- 1194

tivity [88] or how steep the response curve is and is known as the Hill 1195

coefficient. The Michaelis constant, KM , is equivalent to the malathion 1196

concentration at which the sensor response, y (measured in OD nor- 1197

malized arbitrary fluorescence units), is half of (ymax − ymin). The 1198

input u represents the malathion concentration in millimolar. 1199

The objective function used to determine the parameters of the Hill 1200

equations is shown below 1201

min
c,KM

nc∑
(i=1)

(yi −H(ui))
2 (18)

where H is the Hill function of the activator or repressor and nc is the 1202

number of data points and is equivalent to the number of malathion 1203

concentrations times the number of replicates. The Levenberg- 1204

Marquadt algorithm is used to solve a nonlinear least squares problem 1205

to obtain a solution to optimization problem (18). 1206

Approximating reference curves with genetic basis functions. 1207

Here we describe the treatment of the transcriptional sensors as genetic 1208

basis functions and how to use them to approximate reference curves. 1209

For this task, we work with the mean fold change of malathion re- 1210

sponse at 2.24 mM with respect to the zero malathion condition. The 1211

mean is taken across biological replicates for each of the ns reporters: 1212

OD normalized arbitrary fluorescence units (which can alternatively 1213

be viewed as average per cell fluorescence). We start by collecting the 1214
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mean fold change response of each sensor at a particular instant in1215

time, ȳi, into a ns ×M data matrix, Y1216

Y =

ȳ0 ȳ1 . . . ȳM−1

 (19)

where M denotes the number of time points. Then a desired response1217

vector, s, is generated corresponding to the desired reference trajectory.1218

For example, the first reference trajectory (Figure 5) used in this work1219

is generated by1220

s1(t) = 1.5 + 2.43e−0.44t sin 0.33t (20)

which corresponds to a second-order underdamped system subject to1221

a step input of 1.5 (arbitrary units). The second reference trajectory1222

is generated by the superposition of radial basis functions1223

s2(t) = e−
(t−1)
0.5

2

+ 0.2(e−
(t−9)
1.5

2

+ e−
(t−15)

1.5

2

+ e−
(t−21)

1.5

2

) + 1. (21)

The two functions were sampled at the time points corresponding to1224

the sensor response measurements to obtain the vector s.1225

Attending to realistic constraints surrounding genetic circuit design,1226

data acquisition, and cost, we seek to identify the fewest combination1227

of transcriptional sensors that can be used to recapitulate the desired1228

response s. This can be described mathematically using the following1229

cost function1230

min
β∈Rns

≥0

||s− β>Y||22 + γ||β||1 (22)

where ||•||2 is the Euclidean norm, quantifying the distance of a vector1231

from the origin. The term ||β||1 is the 1-norm and adding this quantity1232

to the cost function has been shown to promote sparsity in the mini-1233

mizer [89]. As γ increases, the number of sensors to recapitulate the1234

desired response decreases. However if γ is too large, the sparse set of1235

coefficients may be unable to accurately describe s. This optimization1236

problem represents a linear program with linear constraints and the1237

minimizer is obtained using the splitting conic solver [90].1238

Data availability1239

The data generated from RNA sequencing1240

are available at GEO Accession GSE200822:1241

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE200822. The1242

DNA sequencing data for the reporter strains and the kinetic1243

data generated from the spectrophotometer are available at:1244

https://github.com/AqibHasnain/transcriptome-dynamics-dmd-1245

observability.1246

Code availability1247

All codes used in this study are available at:1248
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observability or available from the author’s upon request.1250
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Malathion reporter Locus tag Molecular function Act./Rep. ymin ymax KM n

atpB PFLU 6124
• proton-transporting ATP synthase

activity, rotational mechanism
Activated 1467 1783 0.6 4.5

petA PFLU 0841

• 2 iron, 2 sulfur cluster binding,

• metal ion binding

• ubiquinol-cytochrome-c reductase

activity

Activated 853 1125 1.4 2.4

sucC PFLU 1823

• ATP binding

• magnesium ion binding

• succinate-CoA ligase activity

Activated 257 337 0.4 21.6

rpoA PFLU 5502

• DNA binding

• protein dimerization activity

• DNA-directed 5’-3’ RNA

polymerase activity

Activated 1256 1542 0.9 3.0

fabA PFLU 1836
• dehydratase activity

• isomerase activity
Activated 292 373 0.2 1.1

anti-sigma 28 factor PFLU 4736
• Negative regulator of

flagellin synthesis
Activated 339 535 0.7 1.5

Uncharacterized protein I PFLU 3761 Activated 2465 3110 0.5 2.7

cspA2 PFLU 4150 • major cold shock protein Activated 706 1186 1.5 5.3

Putative ABC transport

protein
PFLU 0376 • ligand-gated ion channel activity Activated 584 1083 1.0 2.0

gltA PFLU 1815 • citrate (Si)-synthase activity Activated 238 458 0.9 1.9

lpxC PFLU 0953
• metal ion binding

• deacetylase activity
Activated 1017 2418 0.4 8.7

Uncharacterized protein II PFLU 1358 Repressed 1073 3387 0.3 1.9

capB PFLU 1302A • cold shock protein Repressed 9616 10543 1.0 8.6

Putative outer membrane

porin A protein
PFLU 4612 • porin activity Activated 642 1172 0.6 1.5

acrA PFLU 1380 • transmembrane transporter activity Activated 354 682 0.9 2.9

Table 1: Encoder library metadata and transfer curve parameters for the fitted Hill equations in Fig. 4d.
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Learning transcriptome dynamics for discovery of optimal genetic reporters

of novel compounds

Aqib Hasnain et al.

1 Supplementary Text 1

1.1 Observability maximization for transcriptome dynamics 2

Here we derive the solution to the observability maximization problem briefly outlined in the Methods section. Recall 3

that we have a state-space representation of the transcriptome dynamics as 4

xt+1 = Kxt

y = Wxt
(1)

where x ∈ Rn is the (hidden) cell state, K is the state transition matrix, W are the unknown gene sampling weights, and 5

y ∈ Rp are the p measurements. The objective, J , is formulated by the signal energy (or output energy) of the system 6

J =
m∑
i=1

y>i yi =
m∑
i=0

x>0 K
i>W>WKix0, (2)

and we seek the gene sampling weights W which maximize the objective 7

max
W∈Rp×n

J

subject to WW> = Ip×p.
(3)

The constraint enforces that the rows of W are orthogonal to each other and that the length of each row be equal to 1. 8

This further avoids the issue of the objective blowing up to infinity. The solution to the above optimization problem is 9

obtained by forming the Lagrangian dual problem and finding the maxima of the the dual objective in terms of the dual 10

variable (a p× p matrix), D, i.e. 11

max
W∈Rp×n

J + L

where L = −tr
(

(WW> − Ip×p)D
) (4)

and tr() denotes the trace operator. Differentiating the dual objective with respect to W> and equating to 0, we have 12

∂(J + L)

∂W> =
∂

∂W>

(
m∑
i=0

x>0 K
i>W>WKix0 − tr

(
(WW> − Ip×p)D

))

=
∂

∂W>

(
m∑
i=0

tr(x>0 K
i>W>WKix0)− tr

(
(WW> − Ip×p)D

))

=
∂

∂W>

(
m∑
i=0

tr(WKix0x
>
0 K

i>W>)− tr
(

(WW> − Ip×p)D
))

=
∂

∂W>

(
m∑
i=0

tr(WG(i)W>)− tr
(

(WW> − Ip×p)D
))

=
∂

∂W>

(
tr(W

m∑
i=0

G(i)W>)− tr
(

(WW> − Ip×p)D
))

=
∂

∂W>

(
tr(WGW>)− tr

(
(WW> − Ip×p)D

))
= 2GW> − 2W>D = 0

(5)

1
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where the second equality comes from the fact that J is a sum of m scalars and so applying the trace operator has no13

effect on the sum, the third equality uses the cyclic property of the trace of products, and the fifth equality uses the14

fact that tr(A) + tr(B) = tr(A + B). Finally, the Gram matrix, G, is defined to be G =
∑
iG

(i) =
∑
iK

ix0x
>
0 K

i> , a15

sum of quadratic forms, which is itself a quadratic form and therefore a symmetric matrix with non-negative, real-valued16

eigenvalues. From the final equality in Eq. (5) we have17

GW> = W>D (6)

which says columns of the eigenvectors of G are the rows of gene sampling weights W. Moreover, the eigenvector of G18

corresponding to the eigenvalue with largest magnitude in D is the maximizer when p = 1.19

1.2 Fold change dynamics of two linear systems20

We have reasoned in the main text that the gene expression dynamics of each experimental condition are well approximated21

by a linear state-space representation. We then define the dynamics as22

dxon

dt
= axon + bu

dxoff

dt
= axoff

(7)

where here xon and xoff are scalar variables for ease of analysis. The variables represent the dynamics in the case where23

the input is present (on) and when the input is absent (off ), respectively. The input u represents the scalar input of a24

small molecule, e.g. malathion, that drives the expression of genes in the on condition through a step input, i.e. u(t) = 125

for all t > 0. The solution of the linear ordinary differential equations above are given by26

xon(t) = eatx0 +

∫ t

0

ea(t−τ)bu(τ)dτ

xoff(t) = eatx0

(8)

where x(0) = x0 for both xon and xoff . We want to show that the fold change response is given by the solution of a linear27

dynamical system. Taking the fold change of xon to xoff we have28

xfc(t) =
xon

xoff
(t) = 1 +

∫ t

0

e−aτ
b

x0
dτ

= 1 +
b

ax0
− b

ax0
eat

= 1 + α− αeat.

(9)

To show that there exists a linear ordinary differential equation (ODE) that gives rise to the above solution xfc(t), we apply29

the steps to solve linear ODEs using integrating factors but in reverse order. We know in advance that the integrating30

factor should take the form eat and we start by dividing both sides of (9) by this integrating factor31

e−atxfc = e−at(1 + α)− α. (10)

We next differentiate both sides and integrate both sides with respect to t32 ∫
d

dt

(
e−atxfc

)
dt =

∫
ae−atdt−

∫
αae−atdt, (11)

then once again differentiating both sides gives33

d

dt

(
e−atxfc

)
= ae−at − αae−at. (12)

Applying the product rule to the left hand side, we have34

e−at
dxfc

dt
− ae−atxfc = ae−at − αae−at

= e−at(a− αa).
(13)

2
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Finally, multiplying through by the integrating factor, eat, and solving for dxfc

dt , we obtain 35

dxfc

dt
= axfc + a− αa (14)

which is a linear first order ODE, i.e. a linear dynamical system with a step input and α = b
ax0

. The importance of this 36

result is to to be able to say that if the dynamics of the transcriptome in each experimental condition are well represented 37

by a linear system, than the fold change dynamics, under the stated assumptions, can also be well represented by a linear 38

system. 39

We briefly remark on the extension to the multivariate case. Under the assumption that the system dynamics, A, is 40

diagonalizable, the above analysis holds. One such transformation which diagonalizes the the dynamics is given by the 41

set of eigenvectors of A. Formally, if we now have system dynamics with state, x ∈ Rn, such that 42

dxon

dt
= Axon +Bu

dxoff

dt
= Axoff ,

(15)

applying the transformation x̃ = T−1x, where T ∈ Rn×n is the matrix of eigenvectors of A, results in the transformed 43

systems 44

dx̃on

dt
= Dx̃on + B̃u

dx̃off

dt
= Dx̃off ,

(16)

where B̃ = T−1B. To solve for the fold change dynamics in the multivariate case, we cast the state coordinates into a 45

diagonal matrix, i.e. diag(x̃), and compute diag(x̃on)(diag(x̃off))−1. Since the solution in each coordinate is uncoupled 46

from other coordinates, we then have n solutions, each as in Eq. (9). 47

The case where the above derivation does not hold when the eigenvalues of A have zero real part, i.e. they are exactly 48

zero or have purely sinusoidal response (corresponding to periodic orbits). In this case, the fold change in the coordinate 49

corresponding to zero eigenvalues will approach infinity or it will not be possible to represent the fold change dynamics 50

as a sum of weighted exponentials, e.g. tan(x). However, such a case would be improbable in a data-driven application 51

for gene regulatory networks. Moreover, any eigenvalue with magnitude zero does not contribute to the dynamics of the 52

system and should be removed from the model. 53

2 Supplementary Figures 54

3
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Figure 1: The eigenvalues of the DMD operator plotted in the complex plane for varying number of modes.
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Figure 2: (Left) Approximation of the eigenvalues of the Gram matrix by the reduced order model given by DMD. The full
Gram matrix eigenvalues are given in blue circles and the reduced Gram matrix eigenvalues are given in orange squares.
(Right) Approximation of the leading eigenvector of the Gram matrix by the reduced order model given by DMD. This
eigenvector corresponds to the gene sampling weights in the main text.
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pBHVK with reporter cassette 
5,157 bp

T14 terminator

BCD1 

pJ23150

Figure 3: The full plasmid map of pBHVK with the reporter cassette. The two BsaI cut sites on either side of the promoter,
pJ23150, are used in Golden Gate Assembly to replace the promoter sequence with a promoter used for malathion sensing.
A bicistronic design is used for the ribosome binding site, BCD1. A terminator from the set of Voigt lab terminators is
used, T14. For fluorescent reporting, super folder GFP (sfGFP) is used. See Table 3 for sequences of the terminator,
ribosome binding site, and sfGFP. See 2 for sequences of the promoters used in the sensor library.
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Figure 4: Growth curves of each malathion reporter subject to malathion induction by means of Spectracide.
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1.14e4339.1387
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413.2707
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Figure 7: Mass spectrum of malathion (Millipore Sigma Catalog no. 36143) given by time-of-flight mass spectrometry.
The theoretical mass spectrum is shown in the upper spectrum and the measured mass spectrum is shown in the lower
spectrum.

8

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2022. ; https://doi.org/10.1101/2022.05.27.493781doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.27.493781
http://creativecommons.org/licenses/by-nc/4.0/


Spec1

m/z
200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

%

0

100

%

0

100

20210616-YEU-02  (0.017) Is (1.00,0.01) C10H19O6PS2 Na TOF MS ES+ 
7.95e12353.0

354.0

356.0

20210616-YEU-02 24 (0.410) Cm (15:37) TOF MS ES+ 
9.72e4353.0

339.1

353.2

683.1354.0

355.0

511.1 684.1

[M+Na]+

Theoretical

[M+Na]+

Figure 8: Mass spectrum of Spectracide (replicate 1) (Spectracide Catalog no. 071121309006) given by time-of-flight
mass spectrometry. The theoretical mass spectrum of malathion is shown in the upper spectrum and the measured mass
spectrum of Spectracide is shown in the lower spectrum.
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Figure 9: Mass spectrum of Spectracide (replicate 2) (Spectracide Catalog no. 071121309006) given by time-of-flight
mass spectrometry. The theoretical mass spectrum of malathion is shown in the upper spectrum and the measured mass
spectrum of Spectracide is shown in the lower spectrum.
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Figure 10: Mass spectrum of Spectracide (replicate 3) (Spectracide Catalog no. 071121309006) given by time-of-flight
mass spectrometry. The theoretical mass spectrum of malathion is shown in the upper spectrum and the measured mass
spectrum of Spectracide is shown in the lower spectrum.
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Spec4
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Figure 11: Mass spectrum of Spectracide (replicate 4) (Spectracide Catalog no. 071121309006) given by time-of-flight
mass spectrometry. The theoretical mass spectrum of malathion is shown in the upper spectrum and the measured mass
spectrum of Spectracide is shown in the lower spectrum.
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LB Spec1
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Figure 12: Mass spectrum of a 5% Spectracide in LB broth (replicate 1) given by time-of-flight mass spectrometry. The
theoretical mass spectrum of malathion is shown in the upper spectrum and the measured mass spectrum of the solution
is shown in the lower spectrum.
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LB Spec2
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Figure 13: Mass spectrum of a 5% Spectracide in LB broth (replicate 2) given by time-of-flight mass spectrometry. The
theoretical mass spectrum of malathion is shown in the upper spectrum and the measured mass spectrum of the solution
is shown in the lower spectrum.

14

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2022. ; https://doi.org/10.1101/2022.05.27.493781doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.27.493781
http://creativecommons.org/licenses/by-nc/4.0/


LB Spec3
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Figure 14: Mass spectrum of a 5% Spectracide in LB broth (replicate 3) given by time-of-flight mass spectrometry. The
theoretical mass spectrum of malathion is shown in the upper spectrum and the measured mass spectrum of the solution
is shown in the lower spectrum.
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LBSpec 4
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Figure 15: Mass spectrum of a 5% Spectracide in LB broth (replicate 4) given by time-of-flight mass spectrometry. The
theoretical mass spectrum of malathion is shown in the upper spectrum and the measured mass spectrum of the solution
is shown in the lower spectrum.
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LBSpec PB1
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Figure 16: Mass spectrum of a 5% Spectracide in LB broth after photobleaching (replicate 1) given by time-of-flight
mass spectrometry. The theoretical mass spectrum of malathion is shown in the upper spectrum and the measured mass
spectrum of the photobleached solution is shown in the lower spectrum.
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LBSpec PB2
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Figure 17: Mass spectrum of a 5% Spectracide in LB broth after photobleaching (replicate 2) given by time-of-flight
mass spectrometry. The theoretical mass spectrum of malathion is shown in the upper spectrum and the measured mass
spectrum of the photobleached solution is shown in the lower spectrum.
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LBSpec PB3
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Figure 18: Mass spectrum of a 5% Spectracide in LB broth after photobleaching (replicate 3) given by time-of-flight
mass spectrometry. The theoretical mass spectrum of malathion is shown in the upper spectrum and the measured mass
spectrum of the photobleached solution is shown in the lower spectrum.
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Figure 19: Mass spectrum of a 5% Spectracide in LB broth after photobleaching (replicate 4) given by time-of-flight
mass spectrometry. The theoretical mass spectrum of malathion is shown in the upper spectrum and the measured mass
spectrum of the photobleached solution is shown in the lower spectrum.
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3 Supplementary Tables 55

Time point (minutes) OD600 Volume harvested (mL) Malathion induction

0 0.5 10

10 – 10 X

20 – 10

30 – 10

40 – 10

50 – 10

60 1.0 10

70 – 10

80 – 10

90 – 10

Table 1: Metadata for the time-series RNAseq experiment.

Sensor Strand Loci Promoter sequence

PFLU 6124 Antisense 6709164 - 6709017 AACATTTGCTTATGTAGCGCGTGATCGGAAATCACTAC
CCGGCAGTTGAATAGGGGCAGAACCGCCCCTATACTCT
GCGCGCATTTTGTCGGCACAAATTATGCCAAGTTATTG
ATTTCCGGCAGCCGACCATTGAGGAGCAAGAGTG

PFLU 0841 Sense 950865 - 951131 TTCGCTTTACGTTCCACAAAAACGCCCAGCCTCCTCAC
GGAGCTGGGCGTTTTTTATTGCCTGCGATTTATACACA
AATTTCGCCGTGACAACTTGCCACATCCGTAGACCCCC
TATACTACAAGGCCTGGAGGCTGAGCCCAGGGCAATTC
CCTTGTCATACGTGGGGCTTTTCATTACCATTCGGCAA
AATTTTTATAAGTAAAGATTCAACACTTAGTAGACGCC
TGATTTAACAGGCCAAAAAAGCTGATGGGAGAGGACT
GA

PFLU 4736 Sense 5213048 - 5213188 AGTGCTGGCAGAGGACGCTGGGTTTTTCTACACTGTGC
ACGAGATATTCCGTGCGCAGATTTATTGTCATTCGCGC
CTAAAGTTCGTCCGGGTATTGCCGAAAACATGGCAAGC
GTCCAAATACCCAGAGGTTTTTTGATC

PFLU 1823 Sense 1989934 - 1990137 GCGAGATAATAAGAAACCACGGCGGAGTTGCCCGTCG
TGAGCCTTGCGCGCAAGACTCACCGCGGAATATCCGCT
GGACGCAGTCTTGCGCAGCTTTACGGGCCTTGAGCCCC
GCAAGCTGCGCAAGCAGCAGTCACAGGTGGCGCGGCA
CTCATAATGAGCGCAGCGCCGAATGCGCAGTACCTAAC
GAAGACGGTAAAAAGC

PFLU 3761 Antisense 4158693 - 4158135 CTGTGACACGTCGCCAAGGCAGGCGCGGCGGATAGTT
TCAGTTCGGCGTCATACAAGTGCACTGCACCCCACTTC
ATCGTGGCCGTTTGCGAAAGCGATTGTCCGCTTGCGAC
GCGGCACAATCAGGGTATGTGCGCAGCTTGGCTTCCCA
GTAATTGCCCCATTAAATTTGTGGCTTTTCTGACGAGC
TTTTACTCGTCATCTCTTTGTTTTTTTACTATTATCGT
TCACCTGCGCACTCAAGGAAGAGAGGCTGAGCGCCTTG
AGGCTGGTAGAAAATTCATACTCGATCACTGAACGAGT
TATTGCTTTTACCCAGAACCTAACGACTCAGCCAACCA
TAAATACCTCTTGGTGAAACCGATGGATAAAATGTGTG
GCATCGTTGTAGTGGTAGGAC

PFLU 5502 Antisense 6038217-6038089 GTGTGATCCGCTTGAAGCCCGGCAGCTAGTGCGCTGCC
GGGTTGATTATTTGTTATTACAGCGATATTATCTCGCG
CCCTATTTCTTGGCTTCCGGGGCGTAGGTAGCTGTCAA
TTGGAGTCCCACTGA
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PFLU 1836 Antisense 2003829 - 2003581 CGCCGCGCCATCAGCCAACTCCGACTGGCGTGAAAGAC
GAAAGTGCGGCAGTCTTAGGCACCCGAACGGGCCCAT
AAACAGGCCCGGTTTAAAATTTCAGTGAACAAGTGTA
CATTCAGTACCTTGCCGCTGTGACTTTCACTACAACGC
AATAGTCTATGTGTAGGCTGCCGACATGAGGCATGAAC
GCTTCATTCGGTTCGGGAAGATTTGCCCTACCCTGCCG
CATGGGATTATTGAGGAGCTCGC

PFLU 0376 Sense 417961 - 418174 AAGTCATAACTGCTTACACATCAACCGGTTGCCGGTAC
TCCTCTGCGTAAGTGTCTGCCCCTGAGCTTTGCCGCAC
CGATGTGGGGCTTTTCCGACATATGCCGATAACAAATA
GCCGTGAAACCTTTGTGACGAGCAACGAGTGGGTTAG
GATCGCACCCCGAAATGGTGCAGCCCTTTTGCGCGCCG
ACCTTACAAAAATCGTTCAGGGGAC

PFLU 1815 Antisense 1980804 - 1980440 GGCTTTTTTTCACACTGAAGAGCCCCTAACAATCAGGG
CAAAGTTGTTGGGGAGTGCGACTGGTCAGGTAAGCAC
CACCCAGGGAGTGCGACCCCCAATGAAAGCAAGCCCA
AAAGCCCTTGGCGGTCGGTGGCCGAGTATAGACAGTT
AGGTTACTAATGACAACGCGCACTCCTCACCCTAATAG
CTGATTGCGCTGGCGGGATAAAAGGCGTAAATGGCGC
TCAATTTCGAGGAAAAAGTACGGTTAAAGCCTTCTGGG
GCAAGACTTTAGGCAAATTGACATCTGAATTTATCTCA
CTATAGTGGTGCGGGCCCTGCGTGGGGGGTCTGTCTG
ATGATTTGAAGCATAAATAGGAGGCCAC

PFLU 0953 Sense 1058342 - 1058453 TGGAATGTATCAGGGCTATGAAGGTGATTGGTGTTCA
GCAAAGGTCTGGTCTGCTATTATCGCCAGCCTTTGTTG
ATACCAGTTCGCAATTTGCGCTGAAGCGGTCCAAGCC

PFLU 1380 Antisense 1527252 - 1526967 GGCAGTAAAACCTCAATCAGGACACTGGGGGCTATCG
TTAACGCAACGTTAATAGACGTAAACGATCATCCGAAT
ATTTGTGGGACGACACCGTCATGGGTGCCGAACGTAAT
GGAATCGAGGCTTCGGGCGTTGCTTTGTCAACACTCCG
CGAAGCCTGTCAAGAGTTTACAAACAACCATGAACGTA
AGTATATTGCGTAGCAAGCTACTTATCCACTCACAGCT
TGTTTTTTACCCTTCCACACTTCTTGTGCGCACCCTGC
GCGCCTGACCCGAGGATCTTC

PFLU 4612 Antisense 5088655 - 5088549 TGCGTGGCAAATATCTCTTACGTGTAGGCAAGTTCTGT
TAGACTTGTCGCCGAGTTGTCCCCCGGTTTGTGGGACT
GCTTTACAATCACCAGATGGGGATTTAACGG

PFLU 4150 Sense 4592631 - 4592843 GATTTGCCGCTGATCTCACGGCTTTTTTGGCGGTAAAA
CAGGCTTAAAACTGCCGCTTCTCACAAATTACGCAGCT
TTTACGGCTTTTTTTACCAGTTGATATTTCGAGCCAAA
GCCCCGTAAATCGGGGCTTTCAGCCGGATCAGGCACTA
AACGCAACGCTATTGATTAGCAAACAATGCCTTGGGGG
GGCTCCCAAGCCGAACATTTCGACTATGATAGCCCGGT
GTGCCCAGTTGGCCTGAGCAGCACAGCACTACTGAAAA
TATATGTTTCTTGGAGATACACC

PFLU 1302A Antisense 1440968 - 1440759 GGCGGGTGTCCTGAATAGCGAGGTGGAAAAATACTGT
GGGGCATCTTACCGGGGCCGGCGTTGGGGTTCAAAGG
TCACAGGGCTTTTCTTGATGAATGCGCCGGCGGCTATA
AGCCGCAGCCAGCGGGGCCGGGGTTAATATTGCCGCG
CAGGGCGACCGTGGATACCACCGTCAGTCACGAATTTA
GAGAAACCTTCGGAAATACCATTGGCACGTTCCGGAAA
AAGGGTTAAGGTGGCGCCACTGTGCTGCTTGTGTCACT
GAGAATCTCTACACGATATGTTGAATTTCGATCCAACC
ATCTCCAAGAATTTTTCCTGCTCTTTGCACTCAGTCTC
GGCCAGGGCTTTTCCTGAGTCGCAGTTAACTTTGTCCA
AGGAGATACACC

22

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2022. ; https://doi.org/10.1101/2022.05.27.493781doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.27.493781
http://creativecommons.org/licenses/by-nc/4.0/


PFLU 1358 Sense 1498195 - 1498311 AACAGCCTGCATCCATTGATGCAGGTCAGTTATTGCCC
TTCTTTACGCTCCGTCGTGGGCGACATTGATCCCCGTC
AATTTTCCAATCCGCCTTCTGCATTAACTTAGCCCTAT
CGCAACAGGGCAAGTGCAGGAGGCCGGTC

Part Sequence

BCD1 GGGCCCAAGTTCACTTAAAAAGGAGATCAACAATGAAAGCAATTTTCGTACTGAAACATCT
TAATCATGCACAGGAGACTTTCT

T14 AACGCATGAGAAAGCCCCCGGAAGATCACCTTCCGGGGGCTTTTTTATTGCGC

sfGFP ATGCGTAAAGGCGAAGAGCTGTTCACTGGTGTCGTCCCTATTCTGGTGGAACTGGATGGT
GATGTCAACGGTCATAAGTTTTCCGTGCGTGGCGAGGGTGAAGGTGACGCAACTAATGGT
AAACTGACGCTGAAGTTCATCTGTACTACTGGTAAACTGCCGGTACCTTGGCCGACTCTGG
TAACGACGCTGACTTATGGTGTTCAGTGCTTTGCTCGTTATCCGGACCATATGAAGCAGCA
TGACTTCTTCAAGTCCGCCATGCCGGAAGGCTATGTGCAGGAACGCACGATTTCCTTTAAG
GATGACGGCACGTACAAAACGCGTGCGGAAGTGAAATTTGAAGGCGATACCCTGGTAAAC
CGCATTGAGCTGAAAGGCATTGACTTTAAAGAAGACGGCAATATCCTGGGCCATAAGCTG
GAATACAATTTTAACAGCCACAATGTTTACATCACCGCCGATAAACAAAAAAATGGCATTA
AAGCGAATTTTAAAATTCGCCACAACGTGGAGGATGGCAGCGTGCAGCTGGCTGATCACT
ACCAGCAAAACACTCCAATCGGTGATGGTCCTGTTCTGCTGCCAGACAATCACTATCTGAG
CACGCAAAGCGTTCTGTCTAAAGATCCGAACGAGAAACGCGATCATATGGTTCTGCTGGA
GTTCGTAACCGCAGCGGGCATCACGCATGGTATGGATGAACTGTACAAATGATGA

5’ overhang GAACGGTCTCAGCAT

3’ overhang GTCGTGAGACCTTACG

Table 3: Sequences for the parts used in the reporter cassette.
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Malathion reporter Locus tag Time point (hours)

atpB PFLU 6124 1.0

petA PFLU 0841 2.0

anti-sigma 28 factor PFLU 4736 3.2

sucC PFLU 1823 8.1

Uncharacterized protein I PFLU 3761 12.9

rpoA PFLU 5502 15.0

fabA PFLU 1836 14.0

Putative ABC transport protein PFLU 0376 0.9

gltA PFLU 1815 3.2

lpxC PFLU 0953 0.7

acrA PFLU 1380 3.1

Putative outer membrane porin A protein PFLU 4612 2.0

cspA2 PFLU 4150 2.4

capB PFLU 1302A 8.5

Uncharacterized protein II PFLU 1358 5.6

Table 4: The time points at which the Hill functions are fit to each reporters’ response.
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