bioRxiv preprint doi: https://doi.org/10.1101/2022.05.30.494052; this version posted May 31, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Submitted to the Annals of Applied Statistics
arXiv: arXiv:0000.0000

1 TRACKING HEMATOPOIETIC STEM CELL EVOLUTION

2 IN A WISKOTT-ALDRICH CLINICAL TRIAL

3 By DANILO PELLIN*, Luca Biasco!, SERENA Scaraf | CLELIA D1
. SERIOF AND ERNST C. WITS

s Harvard Medical School*, UCL GOS Institute of Child Health, Vita-Salute
6 San Raffaele Universityt and Universita della Svizzera italiana®
7 Hematopoietic Stem Cells (HSC) are the cells that give rise to

8 all other blood cells and, as such, they are crucial in the healthy

9 development of individuals. Wiskott-Aldrich Syndrome (WAS) is a

10 severe disorder affecting the regulation of hematopoietic cells and is

11 caused by mutations in the WASP gene. We consider data from a

12 revolutionary gene therapy clinical trial, where HSC harvested from

13 3 WAS patients’ bone marrow have been edited and corrected using

14 viral vectors. Upon re-infusion into the patient, the HSC multiply

15 and differentiate into other cell types. The aim is to unravel the cell

16 multiplication and cell differentiation process, which has until now

17 remained elusive.

18 This paper models the replenishment of blood lineages resulting

19 from corrected HSC via a multivariate, density-dependent Markov

20 process and develops an inferential procedure to estimate the dy-

21 namic parameters given a set of temporally sparsely observed tra-

22 jectories. Starting from the master equation, we derive a system of

23 non-linear differential equations for the evolution of the first- and

24 second-order moments over time. We use these moment equations in

25 a generalized method-of-moments framework to perform inference.

26 The performance of our proposal has been evaluated by consider-

27 ing different sampling scenarios and measurement errors of various

28 strengths using a simulation study. We also compared it to another

29 state-of-the-art approach and found that our method is statistically

30 more efficient.

31 By applying our method to the Wiskott-Aldrich Syndrome gene

32 therapy data we found strong evidence for a myeloid-based develop-

33 mental pathway of hematopoietic cells where fates of lymphoid and

34 myeloid cells remain coupled even after the loss of erythroid poten-

35 tial.

36 All code used in this manuscript can be found in the online Sup-

37 plement, and the latest version of the code is available at github.

38 com/dp3111n/SLCDP_v1.0.

39 1. Introduction. Although mammalian organisms have more than a

a0 hundred different cell types, many tissues are sustained by relatively few va-
a1 rieties of multipotent stem and progenitor cells (Weissman, 2000; Blanpain,
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22 Horsley and Fuchs, 2007; Snippert and Clevers, 2011). Given their impor-
43 tance, a comprehensive understanding of stem cells is crucial for advancing
s the development of regenerative medicine. HSC represent a particular pool
a5 of cells that resides mainly in the bone marrow and has the unique capa-
a6 bility of self-renewal. Through a process of progressive specialization called
47 hematopoiesis, HSC can give rise and replenish all blood lineages in a human
a8 being, lifelong. HSC are among the most clinically relevant cell population
20 and are used to treat many hematological malignancies and bone marrow
so disorders. Despite being the focus of decades of research and clinical efforts,
51 many questions about HSC biology are still open and debated. For example,
52 it is well-established that a progressive loss of multi-lineage potential occurs
53 when descending the hematopoietic cell differentiation hierarchy from HSC
s« to committed cell types and then, finally, mature blood cells. However, it
55 is still unclear at what stage of the differentiation process the separation
s6 between the three main cell lineage groups, lymphoid, myeloid, and ery-
57 throid, happens. Other essential aspects about the metabolism of human
ss  blood cells, such as how duplication, death, and differentiation rates are or-
5o chestrated along the blood phylogeny to maintain the hematopoietic system
60 stable, are still unknown.

61 Gene therapy consists of delivering DNA or RNA fragments into cells of
62 patients as a drug to treat a disease. It has been mainly applied to inher-
63 ited monogenetic disease where deleterious mutations occurring in a specific
64 known gene lead to the synthesis of a dysfunctional protein causing the
es symptoms. Under this setting, gene therapy offers a real opportunity and
66 can be used to provide cells with a correct copy of the gene, thereby produc-
¢7 ing a functional version of the protein. The treatment effect is tied to the
68 presence and activity of the therapeutic gene in specific cells or tissue, hence
60 for the long-term treatment of hematological disorders, HSC represent the
70 ideal target for gene therapy clinical trials (Naldini, 2011; Biffi et al., 2013;
71 Aiuti et al., 2013).

7 This paper will focus on a gene therapy clinical trial for Wiskott-Aldrich
73 Syndrome (WAS), an inherited immunodeficiency caused by mutations in
74 the gene encoding for WAS protein. The study was performed by the au-
75 thors of this paper and described in clinical detail in Biasco et al. (2016).
76 Briefly, HSC sorted from patient’s bone marrow samples according to their
77 immunophenotyping characteristic — enrichment analysis for known pro-
75 tein on a cell’s cellular membrane, such as CD34 molecules specifically for
79 HSC isolation — are distinctly labeled through the random incorporation of
g0 the WASP gene into their genome, using a lentiviral vector. Importantly, all
g1 progeny deriving from a marked HSC, through both duplication and differ-
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82 entiation, will carry the corrected copy of the gene and the identical unique
s  markings defined by the original viral insertion site (IS). This procedure al-
s lows not only to obtain a long-term and widespread expression of the WAS
85 protein among all blood lineages but also to perform in-vivo clonal tracking,
s the longitudinal observation of multiple clones’ evolution. It is crucial to
sz highlight that for ethical reasons, gene therapy is one of the few settings in
ss which scientists can collect information about human, in-vivo hematopoiesis
s at clone level.

90 One of the first quantitative analysis of clonal tracking data was devel-
o1 oped in the context of a non-human primate rhesus macaque study by Wu
o2 et al. (2014). Using clustering methods on the multi-lineage clonal output of
93 barcoded HSC, authors demonstrated how the correlation among lineages
94 changes during reconstitution, with uni-lineage short-term progenitors being
os supplanted over time by multi-lineage long-term clones. (Biasco et al., 2016;
o6 Pellin et al., 2019) model clones dynamics using local linear approximations.
o7 Assuming linearity offers several advantages from a computational perspec-
98 tive, but also implies that cell type counts must eventually either go to zero
99 or infinity in the long term. This assumption is biologically unrealistic be-
100 cause the hematopoietic system evolves in a constrained environment with
101 limited resources and space available. At the same time, the replenishment
102 of blood cells lasts for the entire life span of a human being. To extrap-
103 olate insight from real data Biasco et al. (2016) and Pellin et al. (2019)
104 relied on a first-order local linear approximation of the dynamics: this is
105 efficient but not very accurate when the time between consecutive process
106 measurements is large, as it is in the case of gene therapy clinical trials. Xu
w7 et al. (2019) re-analyzed the rhesus macaque data using a statistical frame-
108 work that models hematopoiesis as a multi-type Markov branching process,
100 similar to our set-up. In Xu et al. (2019), clone trajectories are considered
1o realizations from a stochastic process defined using a set of fundamental
1 cellular events with event-specific rates. The authors showed that it is pos-
12 sible to derive exact analytical formulation for the evolution of the moments
us through a set of ordinary differential equations (ODEs), given the cell differ-
14 entiation tree configuration and assuming event rates to be linear in the cell
s counts. The estimation of the cell differentiation dynamic is performed by
16 matching model-based correlation functions to empirical lineage temporal
u7 correlations. An alternative approach, similar to ours, could a be Bayesian
us implementation (Wilkinson, 2006; Golightly and Wilkinson, 2008), which
1o can deal with temporal sampling an observational noise in a natural fash-
120 ion. We expect that implementation of those methods would yield similar
11 results to ours.
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122 In section 2 we describe the clonal tracking data obtained from a gene
123 therapy clinical trial for Wiskott-Aldrich syndrome, for which the statistical
124 methodology in this paper has been developed. The stochastic cell differen-
125 tiation process and its characteristics are presented in section 3. In section 4
126 a non-linear generalized least squares estimation procedure for the parame-
127 ters in the stochastic process is developed, both from a methodological and
18 computational point of view. section 5 is dedicated to simulation studies.
120 In section 5.1 the performance of our proposal is compared for different
130 sampling time intervals with a simpler polynomial generalized least squares
131 estimation procedure. Section 5.2 and section 5.3 are focused respectively
132 on the impact on inference performance of having (multiplicative) measure-
133 ment errors on cell count observations and the effect of potential model
13 misspecification. Section 5.4 compares our method to the correlation-based
135 moment estimator by Xu et al. (2019). In section 6 we return to the WAS
136 gene therapy clinical trial data and answer the main questions of this pa-
137 per, namely, estimate the coefficients driving HSC differentiation and verify
133 whether the WAS data support the classical dichotomy model or a recently
130 proposed myeloid-based model of hematopoietic stem cell differentiation.

140 2. Hematopoietic stem cell gene therapy in Wiskott-Aldrich
11 Syndrome patients. WAS syndrome is an X-linked primary immunod-
12 eficiency characterized by infections, micro-thrombocytopenia, eczema, au-
13 toimmunity, and lymphoid malignancies. The disorder is caused by muta-
14a tions in the WAS gene, which encodes for WASP, a protein that regulates
us  cytoskeleton conformation and is involved in proliferation, migration, and
146 immunological synapsis formation. For patients without a matched donor,
17 gene therapy based on the infusion of autologous gene-corrected HSC rep-
s resent an alternative therapeutic strategy.

149 Three children with WAS, who did not have compatible allogeneic donors,
10 were enrolled in phase I/II clinical trial. Autologous BM-derived CD34+4- cells
151 were collected, transduced with a lentiviral vector coding for human WASP
122 under the control of a 1.6-kb reconstituted WAS gene promoter (LV-w1.6W)
153 using an optimized protocol, and re-infused intravenously into the patients
154 three days after collection. Patients are given chemotherapy treatment before
155 receiving the engineered cell infusion to deplete the existing HSC compart-
15 ment and to facilitate the engraftment of corrected cells. This conditioning
157 procedure requires a fast replenishment of all blood lineages by corrected
1583 HSC upon infusion until a homeostasis condition is met. All three WAS pa-
150 tients showed robust and multi-lineage engraftment of gene-corrected cells
160 in BM and PB up to the latest follow-up.
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161 We collected IS from eight distinct Peripheral Blood (PB) and seven dis-
162 tinct Bone Marrow (BM) lineages at multiple time-points up to 36 months
163 after infusion of transduced HSCs using a combination of linear-amplification
164 mediated (LAM)-PCR and next-generation sequencing (NGS) technologies
165 (Biasco et al., 2011).

166 After initial clonal fluctuations, we observed stable and polyclonal recon-
167 stitution in all hematopoietic lineages starting from 1 year after the infu-
168 sion of gene-corrected HSC. Importantly, no adverse event associated with
160 insertional mutagenesis was detected, allowing us to exploit IS to assess
170 hierarchical relationships among engineered blood cell types in humans.

171 A major distinction in three subgroups, named lymphoid, myeloid and
172 erythroid branches, can be made within the hematopoietic cell types. The
173 lymphoid branch, responsible for the adaptive immune system, can, in turn,
174 be subdivided into T-cells (CD3 in BM and CD4, CD8, CD3 in PB), B-
s cell (CD19), and Natural Killer cells (NK-cells, CD56). Myeloid cell types
176 are involved in such diverse roles as innate immunity, adaptive immunity,
177 and blood clotting and are composed of monocytes (CD14), granulocytes
1s (CD15), and megakaryocytes (CD61). Erythrocytes are the oxygen-carrying
179 red blood cells (GLYCO).

180 Two different models of hematopoiesis are currently debated, shown in
11 Figure 1. The classical dichotomy model assumes that HSC first generate
1.2 a common myeloid-erythroid progenitor (CMEP) and a common lymphoid
183 progenitor (CLP). The CLP then produces only T-cells or B-cells. The al-
18« ternative myeloid-based model postulates that HSC first diverge into the
155 CMEP and a common myeloid-lymphoid progenitor (CMLP), which gener-
186 ates T- and B-cell progenitors through a bipotential myeloid-T progenitor
157 and a myeloid-B progenitor stage. The main difference is that according to
188 the second, all erythroid, T- and B-lineage branches retain the potential to
180 generate myeloid cells, even after the segregation of T- and B-cell lineages
wo (Kawamoto, Wada and Katsura, 2010).

101 This study aims to provide novel insights about human hematopoiesis
102 and the HSC differentiation process in-vivo. This crucial biological question
103 remained unresolved despite extensive efforts over the past years. Exploiting
104 clonal tracking data from WAS gene therapy clinical trial, in section 6 we
105 will investigate the hierarchical relationship among cell types and estimate
196 lineage-specific cell duplication and death rates.

197 3. Stochastic logistic cell differentiation process. We consider an
s N-dimensional, continuous time counting process X; = (Xu,...,X¢n),
199 wheret € R and X; € Név . Each element of X};, corresponds to the number
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Fic 1. Two competing hemotopoiesis theories. Filled nodes correspond to lineages
analyzed in this manuscript. Black, dark gray and light gray nodes represent Hematopoi-
etic Stem Cell, Bone Marrow, and Peripheral Blood lineages. Empty nodes are latent,
unobserved cell types. The classical dichotomy model (a) assumes that HSC first gener-
ate a common myeloid-erythroid progenitor (CMEP) and a common lymphoid progenitor
(CLP), whereas the alternative myeloid-based model (b) postulates that HSC' first diverge
into the CMEP and a common myelo-lymphoid progenitor (CMLP).

200 of cells of type Cy, (i = 1,..., N) present in the system at time ¢. Xy refers
201 to the HSC count, the most primitive and multi-potent cell type.

We assume that X evolves according to a continuous-time Markov pro-
cess. There are three event types in the process: cell duplication, cell death,
and, importantly, cell differentiation. Individual cells are assumed to evolve
independently from each other and cells belonging to the same cell type are
assumed to obey the same laws. Event rates are assumed constant over time.
The generic cell duplication rate o; > 0 is assumed to be a linear growth
term, corresponding to the expected number of cell duplications per time
unit per cell of type C,i =1,..., N,

P(Xitoti = xei+ 1, Xyvor—i = x| X = o) = 23040t

Secondly, linear cell duplication is eventually overcome by quadratic cell
death. This assumption results in a cell type specific logistic growth curve,
represented by the following conditional transition probabilities for cell death
of type C; (for some §; > 0,i=1,...,N),

P(Xiioti =i — 1, Xoyor—i = v —i| X¢ = 2¢) = 276;0L.
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Furthermore, it is assumed that cell differentiation from cell type ¢ into cell
type j is a process with constant rate A\;; > 0,¢,5 =1,..., N, 7 # j,

P(Xitoti = xti — 1, Xyyorj = v+ 1, Xeyor,—ij = ,—ij| Xe = o) = 23050t

202 It is convenient to write the Markov process in a vectorized form. Each
203 cellular event k € {1,...,r} can be associated with an N-dimensional integer
204 vector vy, describing the net change in the state induced by event k. Given
205 the hazard hy(z,0) = (w04, 236, 2;\ij) for @ = (a, 8, X), we can write the
206 process generally as P(Xyyo: = 1 + vy | Xy = x¢) & hy(ay;0)0t. The whole
207 process can be recast in matrix notation involving the net effect matrix, V,
208 corresponding to an N X r integer matrix, in which the columns correspond
200 to the vectors vy (k = 1,...,7). For simplicity we assume that the first
210 IN columns of V refer to cell duplications, the second N to cell deaths
a1 and the remaining columns to differentiation events. The hazard h(X, 0) =
212 (hi,...,hy), is the r-dimensional vector of the r individual event hazards.
213 We are here considering that cells can only divide symmetrically, gener-
214 ating two daughters cells of the same nature as the mother cell. Assuming
215 the alternative asymmetric division, such as in Xu et al. (2019), means that
216 division is always coupled with a differentiation event, resulting in the for-
217 mation of two cells with different properties and fate. Even though recent
218 literature based on in-vitro experiments supports the possibility for HSC to
210 undergo asymmetric division, little is known about the frequency of such
20 events in-vivo and whether other lineages also have this capability.

21 Logistic differential equation models are widely used in the study of
22 hematopoietic dynamics. Yet, it has not been applied in the context of clonal
23 tracking data. According to the transition probabilities specified in our cell
24 differentiation process, a clone will generate new cells purely based on its
25 current counts. When a given size is reached, scarcity of nutrients and space
26 in the niche makes cells die at a faster rate, preventing clone size from grow-
27 ing exponentially. Biologically, this is likely to be a too simplistic model of
28 steady-state maintenance. In-vivo, cell duplication and death are regulated
20 based on the current system needs using complex signaling mechanisms.
230 However, our assumption has the remarkable advantage of allowing infer-
231 ence on all parameters of the differentiation process, avoiding the necessity
232 to resort to literature data to set some coeflicients, as proposed in Xu et al.
253 (2019), or to infer net rates (duplication minus death rates) as done in Pellin
24 et al. (2019).

3.1. Moment equations. For any stochastic process obeying the Markov
property, given some initial condition Xy, it is possible to determine the
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evolution of the probability distribution function associated with the sys-
tem states over time, P(X;t), using the Chemical Master Equation (CME)
(Bailey, 1964; Kampen, 1981; Risken, 1984; Gardiner, 1985). The CME is
defined as a differential equation for the process transition probabilities and
can be written as

T

(3.1) ‘W =) [h(x — vk, 0)P (x — vk, t) — hy(a;0) P (a;1)]
k=1

A solution and complete characterization of P(x;t) from (3.1) is unfeasible
due to the large set of possible states configurations. However, important
insights about cell differentiation dynamics and its parameters can be deter-
mined based on the time evolution of a few low-order statistical moments.
Let m;(t) describe the time evolution of E[ X ] = " xPx,(x;t). Applying
the derivate operator to both sides, we obtain the dynamics of the mean of
X (t) can be summarized in the following ODE system,

d i
(3.2) mi Zv,” [hi(X4;0)]; i=1,...,N.

Similarly, let m; ]( ) be the time evolution for the symmetric second-order
moments E[X; X;;] as

(3 3)

kag [Xiihy (Xy; 6 +va [Xijhu(Xe; 0 +kawkg [hi (Xt 6)] .
k=1

235 A detailed derivation of (3.2) and (3.3) can be found in Supplement A.
26 With death rates :U?éi being polynomial of degree 2, the time evolution for
237 the generic moment of order n depends on moments of order n + 1, leading
238 to an infinite system of equations that can not be solved directly. There
230 are different approaches to address this issue that consists of approximation
20 methods. The most popular are the Chemical Langevin Equation, a diffu-
2s1 sion approximation of the CME (Wilkinson, 2006; Golightly and Wilkinson,
22 2005), the system size expansion (Kampen, 1981; Elf and Ehrenberg, 2003),
23 the Linear Noise Approximation (Gardiner, 1985), and the moments closure
2s4  approximation (Grima, 2012). Hematopoietic differentiation is a stochastic
25 process with an output consisting of a relatively small amount of cells, that
s starts from an individual HSC. These are not ideal conditions to apply the
27 CLE approximation (Schnoerr, Sanguinetti and Grima, 2017). In its funda-
2 mental formulation, LNA requires the assumption that fluctuation and, as a
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29 consequence the clone cell counts, have a multivariate Normal distribution.
250 This assumption, combined with the deterministic first-moment dynamics,
251 poses challenges for approximating systems with multimodal steady-state
252 behavior, as it is the cell differentiation process. We therefore approximate
253 the moments evolution using moment closure.
254 Several moment closure approaches have been proposed in the litera-
255 ture: (i) assuming a specific probability distribution for P(X;t) (Whittle,
56 1957; Nasell, 2003a,b; Keeling, 2000) or (ii) a separable-derivative-matching
257 schema proposed in Singh and Hespanha (2007). The choice of the most
28 appropriate method depends on the application of interest and the nature
20 of the data analyzed. In this manuscript, we follow the indication provided
%0 in Schnoerr, Sanguinetti and Grima (2017), where these methods have been
261 thoroughly tested and compared. Based on numerical evaluations, authors
262 conclude that moment closure based on a normal distribution assumption is
263 in general favorable for stability and precision. However, it is important to
264 notice that the approach presented here is in principle valid irrespectively
265 of the moment closure strategy adopted.

A Gaussian third-order moment approximation consists of setting the

skewness equal to 0, leading to third-order moment definitions as follows,

E[X;] =3E[Xy| E[X}] — 2E[Xy]°
(3.4)  E[XuX[] =2E[X,] E[X: Xy;] + E[Xu] E[X] — 2E[Xy] E[X,;]?

26 Substituting these third-order moments in (3.3) with the appropriate non-
27 linear formulation in (3.4), we derive two coupled systems of ordinary differ-
268 ential equations for the first and second order moments for the stochastic cell
260 differentiation process. Based on this ODE system we will now propose an
270 inferential procedure able to obtain parameter estimates and to reconstruct
a1 the cell differentiation structure.

272 4. Inference. The cell differentiation process is typically observed across
273 a discrete number of time points and some replicates. To simplify nota-
74 tion, we assume we have S equally At-spaced observations Xz, s =1,...5
275 from one realization of an N-dimensional stochastic cell differentiation pro-
a6 cess. It is computationally trivial to drop the equal spacing assumption. A
277 likelihood-based approach would need to integrate all possible states and in-
a7s termediate time-points, effectively making closed-form inference impossible.
279 Instead, we will derive a methods-of-moments type estimator for inferring
280 the parameters of interest.

281 As mentioned in section 2, in an experimental setting, clone sizes are
282 estimated using NGS readouts. Despite several protocols, techniques and
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283 estimators proposed in the literature (Berry et al., 2012; Calabria et al.,
2ss 2014; Leonardelli et al., 2016), measurement error still plays an important
285 role in the quantitative characterization of the progeny of an individual HSC.
26 Therefore, we included in our model definition (4.1) a multiplicative noise
287 term that can be adjusted using an intensity parameter to be set according
288 to the protocol followed.

4.1. Non-linear generalized method of moments. We reformulate the pro-
cess as a non-linear regression problem, i.e.,

(4.1) XS :f(x3_1;0)+ss

230 where f(xs_1,0) = E[Xg|xs_1;0]is a known non-linear function of the pro-
200 cess state at time step s — 1 and €5 is an N-dimensional mismatch variable
21 with E[eg] = O, Var(es) = Ws+9Ng. Wy = Cov[X;(s), X;(s)|xs—1;0]is a
220 N x N matrix for some known non-linear function g modeling the stochastic
203 process intrinsic covariance structure. The diagonal matrix ¢ INg describes a
204 multiplicative-like noise term that allows to include a measurement uncer-
205 taninty on cell counts recordings. In particular, ¢ is a user-defined dispersion
206 parameter that can be set by using a control experiment, as described in sec-
207 tion 6, and Ng = Diag(xs—1) is a N x N diagonal matrix with the cell counts
208 on the diagonal. To avoid the usage of unnecessarily complicated notation in
200 the description of our inference framework, throughout this section we will
s00 consider observations to be noise-free (¢ = 0). However, the implemented
s method on the data does consider the dispersion parameter (¢ > 0).
302 For each value of s the function f(xs—1,0) = m(s) and matrix Wy =
303 m2(s) — m(s)m(s)? are defined through the solutions of the coupled ODE
s system (3.2) and (3.3) setting xs—1 as initial conditions for m(s — 1) and
305 Ts_1,;Ts—1,j for m?j(s — 1). This projects the state and covariance matrix
306 from one observed time-point to the next.
Applying this procedure to all observations available, we can perform pa-
rameter estimation by means of a generalized method of moments estimator
with objective function,

(42) 6= argg;;lin [®1.5 — f(T0:5-1;0)]T(W1.5) [T1:5 — f(T0:5-1;6)]

s where ®1.5 and f(xo.s—1;0) are (N x S)-dimensional column vectors and
;8 Wi.g is a NS x NS block diagonal matrix, in which blocks correspond to
300 expected variance-covariance matrices Wy within each time increment. In
s.0 Supplement B all the elements introduced in this section are derived for a
s simple example involving 3 cell types.
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312 To calculate the solution é, we propose an iterative procedure in which
313 moments estimation and parameter refinement alternate until a convergence
314 criterion is met. The complete algorithm is described in section 4.2. It is
15 worth noting that for the solution of (4.2), some initial values #(°) for @, must
s16  be provided as input in order to start the iterative optimization procedure.
317 Given the amount the parameters involved in the model, especially if no
sis or limited assumptions are made to limit possible cell differentiations (by
s setting A;; = 0 for some i, j), it is important to start the minimization of
320 (4.2) from accurate starting values within the convex region surrounding
321 the true, unknown 6. Supplement E presents a local linear approximation
322 approach that can be used to obtain a sensible starting value (Pellin et al.,
323 2019).

4.2. Algorithm. To find the solution to the minimization problem in
(4.2), a modified implementation of the Gauss-Newton algorithm is proposed
(Bjorck, 1996). Its pseudo-code is available in Algorithm 1. The procedure
receives as input the initial cell counts, observations during the follow-up
time, xg.s, and the system of ODEs for the first order, m(t), and second
order, m2(t). The algorithm starts with the initial estimate () that is then
refined using an iterative procedure with the updating formula

Hk+1) _ é(k) n @(k)’

324  where A\O(k) is the solution to the following constrained quadratic problem,
0™ — argmin [r(6®) — 7(6®) A0 [W (6®)] L (6®) — 7(6®)Ag]

A6
(4.3) such that Ag > —9*)

in which r(é(k)) = x1.5 — f(T0:5-1; 0(’“)) is the residual NS-dimensional
column vector and

N ~ A t
JO®) = [#@e:0®) df(@i6®)  df(@s_1:0%)
do de de

df(wSQ é(k))

is the NS xr Jacobian matrix. Each is a N Xr matrix measuring

the change in predicted evolution for the mean of each component of the
process caused by a small displacement of parameter vector around %)
Finally,

W (O®)) = Diag [W1(0®)) W, (0®) ... Wg(6®)]
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Data: xo.s: derive de1.s and Mo.s—1 according to (7.5) and (7.6)
Result: Get parameters estimates 0

begin

Initialization: tol = ¢ , k = 0;

6 = argmin (da1.s — Mo:s—10)T(d@1.s — Mo.s—10) s.t. 6 > 0;

2]
while (|28 ||1) > tol do
Calculate r(§*)), J(6®)), Wo.s—1(6™®));
Z\O(k) _ ) A
arg min [r(6®) — J(6®) A0 [Wo.s—1(0%)] "} [r(6®) — J(6®) A0
A6
st. AG > —0P);

O+ — gl 4 @(k)
k=k+1;

end
b=

end
Algorithm 1: Iterative procedure for the non-linear generalized method
of moments based parameter estimation.

325 is the estimated NS x N.S covariance matrix, setting the parameters vector
26 to current value ).

327 For the local linear approximation method, some modifications to Algo-
38 rithm 1 have to be made. At each iteration, parameter refinement is not
29 performed by estimating increments vector A8, but %) directly by solving
330 the generalized (constrained) least square problem in (7.7) with covariance
331 matrix calculated using ok—1)

332 5. Simulation study. In this section, we present four simulation stud-
333 ies. In the first, we study the behavior of the non-linear inference procedure
3¢ simulating the data under that very model. In particular, we compare the
333 method to a linear alternative, known as the local linear approximation,
336 for several sampling intervals. For short sampling intervals, it is expected
337 that the local linear approximation will be a serious competitor, whereas for
338 longer sampling intervals the non-linearity will start to favor our non-linear
330  inference scheme. In the second simulation study we mimic an experimental
340 setting scenario by perturbing clones trajectory with multiplicative errors
s before performing inference. Our goal here is to investigate how an addi-
32 tional and extrinsic source of variation affect parameter estimation. The
343 third simulation study focuses on how our model deals with model misspec-
a4 ification. Although our model is a detailed and generative model of the cell
35 differentiation process, it is almost certain that this model is wrong — as all
us  models are (Wit, Heuvel and Romeijn, 2012). We report the performance
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FiGc 2. Details on the cell differentiation process used in the simulation study.
A) Structure of the 5 cell types stochastic cell differentiation process. Cell types are repre-
sented by nodes. Self-connecting edges are duplication events. Death events are expressed
by edges pointing to g. Edges connecting two nodes correspond to differentiation paths. B)
An example of cell differentiation process trajectory (clone evolution) generated by means
of Gillespie algorithm. C) Cell types multi-modal steady-state distribution calculated using
1000 trajectories.

37 of our model in recovering the differentiation process under an alternative
a8 generative model. The fourth simulation study compares our proposal to an
s0  alternative method-of-moments formulation proposed by Xu et al. (2019),
350 based on matching model-based and empirical correlations among cell types
351 dynamics.

352 5.1. Improvement over local linear approximation approach.. The infer-
353 ence procedure presented in this paper requires one to calculate as many
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