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Hematopoietic Stem Cells (HSC) are the cells that give rise to7

all other blood cells and, as such, they are crucial in the healthy8

development of individuals. Wiskott-Aldrich Syndrome (WAS) is a9

severe disorder affecting the regulation of hematopoietic cells and is10

caused by mutations in the WASP gene. We consider data from a11

revolutionary gene therapy clinical trial, where HSC harvested from12

3 WAS patients’ bone marrow have been edited and corrected using13

viral vectors. Upon re-infusion into the patient, the HSC multiply14

and differentiate into other cell types. The aim is to unravel the cell15

multiplication and cell differentiation process, which has until now16

remained elusive.17

This paper models the replenishment of blood lineages resulting18

from corrected HSC via a multivariate, density-dependent Markov19

process and develops an inferential procedure to estimate the dy-20

namic parameters given a set of temporally sparsely observed tra-21

jectories. Starting from the master equation, we derive a system of22

non-linear differential equations for the evolution of the first- and23

second-order moments over time. We use these moment equations in24

a generalized method-of-moments framework to perform inference.25

The performance of our proposal has been evaluated by consider-26

ing different sampling scenarios and measurement errors of various27

strengths using a simulation study. We also compared it to another28

state-of-the-art approach and found that our method is statistically29

more efficient.30

By applying our method to the Wiskott-Aldrich Syndrome gene31

therapy data we found strong evidence for a myeloid-based develop-32

mental pathway of hematopoietic cells where fates of lymphoid and33

myeloid cells remain coupled even after the loss of erythroid poten-34

tial.35

All code used in this manuscript can be found in the online Sup-36

plement, and the latest version of the code is available at github.37

com/dp3ll1n/SLCDP_v1.0.38

1. Introduction. Although mammalian organisms have more than a39

hundred different cell types, many tissues are sustained by relatively few va-40

rieties of multipotent stem and progenitor cells (Weissman, 2000; Blanpain,41

Keywords and phrases: gene therapy, clonal tracking, Wiskott-Aldrich Syndrome, Mul-
tivariate Markov process, Master equation, generalized method-of-moments, non-linear
differential equations
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2 D. PELLIN ET AL.

Horsley and Fuchs, 2007; Snippert and Clevers, 2011). Given their impor-42

tance, a comprehensive understanding of stem cells is crucial for advancing43

the development of regenerative medicine. HSC represent a particular pool44

of cells that resides mainly in the bone marrow and has the unique capa-45

bility of self-renewal. Through a process of progressive specialization called46

hematopoiesis, HSC can give rise and replenish all blood lineages in a human47

being, lifelong. HSC are among the most clinically relevant cell population48

and are used to treat many hematological malignancies and bone marrow49

disorders. Despite being the focus of decades of research and clinical efforts,50

many questions about HSC biology are still open and debated. For example,51

it is well-established that a progressive loss of multi-lineage potential occurs52

when descending the hematopoietic cell differentiation hierarchy from HSC53

to committed cell types and then, finally, mature blood cells. However, it54

is still unclear at what stage of the differentiation process the separation55

between the three main cell lineage groups, lymphoid, myeloid, and ery-56

throid, happens. Other essential aspects about the metabolism of human57

blood cells, such as how duplication, death, and differentiation rates are or-58

chestrated along the blood phylogeny to maintain the hematopoietic system59

stable, are still unknown.60

Gene therapy consists of delivering DNA or RNA fragments into cells of61

patients as a drug to treat a disease. It has been mainly applied to inher-62

ited monogenetic disease where deleterious mutations occurring in a specific63

known gene lead to the synthesis of a dysfunctional protein causing the64

symptoms. Under this setting, gene therapy offers a real opportunity and65

can be used to provide cells with a correct copy of the gene, thereby produc-66

ing a functional version of the protein. The treatment effect is tied to the67

presence and activity of the therapeutic gene in specific cells or tissue, hence68

for the long-term treatment of hematological disorders, HSC represent the69

ideal target for gene therapy clinical trials (Naldini, 2011; Biffi et al., 2013;70

Aiuti et al., 2013).71

This paper will focus on a gene therapy clinical trial for Wiskott-Aldrich72

Syndrome (WAS), an inherited immunodeficiency caused by mutations in73

the gene encoding for WAS protein. The study was performed by the au-74

thors of this paper and described in clinical detail in Biasco et al. (2016).75

Briefly, HSC sorted from patient’s bone marrow samples according to their76

immunophenotyping characteristic — enrichment analysis for known pro-77

tein on a cell’s cellular membrane, such as CD34 molecules specifically for78

HSC isolation — are distinctly labeled through the random incorporation of79

the WASP gene into their genome, using a lentiviral vector. Importantly, all80

progeny deriving from a marked HSC, through both duplication and differ-81
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TRACKING HEMATOPOIETIC STEM CELL EVOLUTION 3

entiation, will carry the corrected copy of the gene and the identical unique82

markings defined by the original viral insertion site (IS). This procedure al-83

lows not only to obtain a long-term and widespread expression of the WAS84

protein among all blood lineages but also to perform in-vivo clonal tracking,85

the longitudinal observation of multiple clones’ evolution. It is crucial to86

highlight that for ethical reasons, gene therapy is one of the few settings in87

which scientists can collect information about human, in-vivo hematopoiesis88

at clone level.89

One of the first quantitative analysis of clonal tracking data was devel-90

oped in the context of a non-human primate rhesus macaque study by Wu91

et al. (2014). Using clustering methods on the multi-lineage clonal output of92

barcoded HSC, authors demonstrated how the correlation among lineages93

changes during reconstitution, with uni-lineage short-term progenitors being94

supplanted over time by multi-lineage long-term clones. (Biasco et al., 2016;95

Pellin et al., 2019) model clones dynamics using local linear approximations.96

Assuming linearity offers several advantages from a computational perspec-97

tive, but also implies that cell type counts must eventually either go to zero98

or infinity in the long term. This assumption is biologically unrealistic be-99

cause the hematopoietic system evolves in a constrained environment with100

limited resources and space available. At the same time, the replenishment101

of blood cells lasts for the entire life span of a human being. To extrap-102

olate insight from real data Biasco et al. (2016) and Pellin et al. (2019)103

relied on a first-order local linear approximation of the dynamics: this is104

efficient but not very accurate when the time between consecutive process105

measurements is large, as it is in the case of gene therapy clinical trials. Xu106

et al. (2019) re-analyzed the rhesus macaque data using a statistical frame-107

work that models hematopoiesis as a multi-type Markov branching process,108

similar to our set-up. In Xu et al. (2019), clone trajectories are considered109

realizations from a stochastic process defined using a set of fundamental110

cellular events with event-specific rates. The authors showed that it is pos-111

sible to derive exact analytical formulation for the evolution of the moments112

through a set of ordinary differential equations (ODEs), given the cell differ-113

entiation tree configuration and assuming event rates to be linear in the cell114

counts. The estimation of the cell differentiation dynamic is performed by115

matching model-based correlation functions to empirical lineage temporal116

correlations. An alternative approach, similar to ours, could a be Bayesian117

implementation (Wilkinson, 2006; Golightly and Wilkinson, 2008), which118

can deal with temporal sampling an observational noise in a natural fash-119

ion. We expect that implementation of those methods would yield similar120

results to ours.121
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4 D. PELLIN ET AL.

In section 2 we describe the clonal tracking data obtained from a gene122

therapy clinical trial for Wiskott-Aldrich syndrome, for which the statistical123

methodology in this paper has been developed. The stochastic cell differen-124

tiation process and its characteristics are presented in section 3. In section 4125

a non-linear generalized least squares estimation procedure for the parame-126

ters in the stochastic process is developed, both from a methodological and127

computational point of view. section 5 is dedicated to simulation studies.128

In section 5.1 the performance of our proposal is compared for different129

sampling time intervals with a simpler polynomial generalized least squares130

estimation procedure. Section 5.2 and section 5.3 are focused respectively131

on the impact on inference performance of having (multiplicative) measure-132

ment errors on cell count observations and the effect of potential model133

misspecification. Section 5.4 compares our method to the correlation-based134

moment estimator by Xu et al. (2019). In section 6 we return to the WAS135

gene therapy clinical trial data and answer the main questions of this pa-136

per, namely, estimate the coefficients driving HSC differentiation and verify137

whether the WAS data support the classical dichotomy model or a recently138

proposed myeloid-based model of hematopoietic stem cell differentiation.139

2. Hematopoietic stem cell gene therapy in Wiskott-Aldrich140

Syndrome patients. WAS syndrome is an X-linked primary immunod-141

eficiency characterized by infections, micro-thrombocytopenia, eczema, au-142

toimmunity, and lymphoid malignancies. The disorder is caused by muta-143

tions in the WAS gene, which encodes for WASP, a protein that regulates144

cytoskeleton conformation and is involved in proliferation, migration, and145

immunological synapsis formation. For patients without a matched donor,146

gene therapy based on the infusion of autologous gene-corrected HSC rep-147

resent an alternative therapeutic strategy.148

Three children with WAS, who did not have compatible allogeneic donors,149

were enrolled in phase I/II clinical trial. Autologous BM-derived CD34+ cells150

were collected, transduced with a lentiviral vector coding for human WASP151

under the control of a 1.6-kb reconstituted WAS gene promoter (LV-w1.6W)152

using an optimized protocol, and re-infused intravenously into the patients153

three days after collection. Patients are given chemotherapy treatment before154

receiving the engineered cell infusion to deplete the existing HSC compart-155

ment and to facilitate the engraftment of corrected cells. This conditioning156

procedure requires a fast replenishment of all blood lineages by corrected157

HSC upon infusion until a homeostasis condition is met. All three WAS pa-158

tients showed robust and multi-lineage engraftment of gene-corrected cells159

in BM and PB up to the latest follow-up.160
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TRACKING HEMATOPOIETIC STEM CELL EVOLUTION 5

We collected IS from eight distinct Peripheral Blood (PB) and seven dis-161

tinct Bone Marrow (BM) lineages at multiple time-points up to 36 months162

after infusion of transduced HSCs using a combination of linear-amplification-163

mediated (LAM)-PCR and next-generation sequencing (NGS) technologies164

(Biasco et al., 2011).165

After initial clonal fluctuations, we observed stable and polyclonal recon-166

stitution in all hematopoietic lineages starting from 1 year after the infu-167

sion of gene-corrected HSC. Importantly, no adverse event associated with168

insertional mutagenesis was detected, allowing us to exploit IS to assess169

hierarchical relationships among engineered blood cell types in humans.170

A major distinction in three subgroups, named lymphoid, myeloid and171

erythroid branches, can be made within the hematopoietic cell types. The172

lymphoid branch, responsible for the adaptive immune system, can, in turn,173

be subdivided into T-cells (CD3 in BM and CD4, CD8, CD3 in PB), B-174

cell (CD19), and Natural Killer cells (NK-cells, CD56). Myeloid cell types175

are involved in such diverse roles as innate immunity, adaptive immunity,176

and blood clotting and are composed of monocytes (CD14), granulocytes177

(CD15), and megakaryocytes (CD61). Erythrocytes are the oxygen-carrying178

red blood cells (GLYCO).179

Two different models of hematopoiesis are currently debated, shown in180

Figure 1. The classical dichotomy model assumes that HSC first generate181

a common myeloid-erythroid progenitor (CMEP) and a common lymphoid182

progenitor (CLP). The CLP then produces only T-cells or B-cells. The al-183

ternative myeloid-based model postulates that HSC first diverge into the184

CMEP and a common myeloid-lymphoid progenitor (CMLP), which gener-185

ates T- and B-cell progenitors through a bipotential myeloid-T progenitor186

and a myeloid-B progenitor stage. The main difference is that according to187

the second, all erythroid, T- and B-lineage branches retain the potential to188

generate myeloid cells, even after the segregation of T- and B-cell lineages189

(Kawamoto, Wada and Katsura, 2010).190

This study aims to provide novel insights about human hematopoiesis191

and the HSC differentiation process in-vivo. This crucial biological question192

remained unresolved despite extensive efforts over the past years. Exploiting193

clonal tracking data from WAS gene therapy clinical trial, in section 6 we194

will investigate the hierarchical relationship among cell types and estimate195

lineage-specific cell duplication and death rates.196

3. Stochastic logistic cell differentiation process. We consider an197

N -dimensional, continuous time counting process Xt = (Xt1, . . . , XtN ),198

where t ∈ R and Xt ∈ NN0 . Each element of Xti, corresponds to the number199
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6 D. PELLIN ET AL.

(a) (b)

Fig 1. Two competing hemotopoiesis theories. Filled nodes correspond to lineages
analyzed in this manuscript. Black, dark gray and light gray nodes represent Hematopoi-
etic Stem Cell, Bone Marrow, and Peripheral Blood lineages. Empty nodes are latent,
unobserved cell types. The classical dichotomy model (a) assumes that HSC first gener-
ate a common myeloid-erythroid progenitor (CMEP) and a common lymphoid progenitor
(CLP), whereas the alternative myeloid-based model (b) postulates that HSC first diverge
into the CMEP and a common myelo-lymphoid progenitor (CMLP).

of cells of type Ci, (i = 1, . . . , N) present in the system at time t. X1 refers200

to the HSC count, the most primitive and multi-potent cell type.201

We assume that X evolves according to a continuous-time Markov pro-
cess. There are three event types in the process: cell duplication, cell death,
and, importantly, cell differentiation. Individual cells are assumed to evolve
independently from each other and cells belonging to the same cell type are
assumed to obey the same laws. Event rates are assumed constant over time.
The generic cell duplication rate αi ≥ 0 is assumed to be a linear growth
term, corresponding to the expected number of cell duplications per time
unit per cell of type Ci, i = 1, . . . , N ,

P (Xt+∂t,i = xt,i + 1, Xt+∂t,−i = xt,−i|Xt = xt) ≈ xiαi∂t.

Secondly, linear cell duplication is eventually overcome by quadratic cell
death. This assumption results in a cell type specific logistic growth curve,
represented by the following conditional transition probabilities for cell death
of type Ci (for some δi ≥ 0, i = 1, . . . , N),

P (Xt+∂t,i = xti − 1, Xt+∂t,−i = xt,−i|Xt = xt) ≈ x2
i δi∂t.
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TRACKING HEMATOPOIETIC STEM CELL EVOLUTION 7

Furthermore, it is assumed that cell differentiation from cell type i into cell
type j is a process with constant rate λij ≥ 0, i, j = 1, . . . , N, i 6= j,

P (Xt+∂t,i = xti−1, Xt+∂t,j = xtj +1, Xt+∂t,−ij = xt,−ij |Xt = xt) ≈ xiλij∂t.

It is convenient to write the Markov process in a vectorized form. Each202

cellular event k ∈ {1, . . . , r} can be associated with anN -dimensional integer203

vector vk, describing the net change in the state induced by event k. Given204

the hazard hk(x,θ) = (xiαi, x
2
i δi, xiλij) for θ = (α, δ,λ), we can write the205

process generally as P (Xt+∂t = xt + vk | Xt = xt) ≈ hk(xt; θ)∂t. The whole206

process can be recast in matrix notation involving the net effect matrix, V ,207

corresponding to an N × r integer matrix, in which the columns correspond208

to the vectors vk (k = 1, . . . , r). For simplicity we assume that the first209

N columns of V refer to cell duplications, the second N to cell deaths210

and the remaining columns to differentiation events. The hazard h(X,θ) =211

(h1, . . . , hr), is the r-dimensional vector of the r individual event hazards.212

We are here considering that cells can only divide symmetrically, gener-213

ating two daughters cells of the same nature as the mother cell. Assuming214

the alternative asymmetric division, such as in Xu et al. (2019), means that215

division is always coupled with a differentiation event, resulting in the for-216

mation of two cells with different properties and fate. Even though recent217

literature based on in-vitro experiments supports the possibility for HSC to218

undergo asymmetric division, little is known about the frequency of such219

events in-vivo and whether other lineages also have this capability.220

Logistic differential equation models are widely used in the study of221

hematopoietic dynamics. Yet, it has not been applied in the context of clonal222

tracking data. According to the transition probabilities specified in our cell223

differentiation process, a clone will generate new cells purely based on its224

current counts. When a given size is reached, scarcity of nutrients and space225

in the niche makes cells die at a faster rate, preventing clone size from grow-226

ing exponentially. Biologically, this is likely to be a too simplistic model of227

steady-state maintenance. In-vivo, cell duplication and death are regulated228

based on the current system needs using complex signaling mechanisms.229

However, our assumption has the remarkable advantage of allowing infer-230

ence on all parameters of the differentiation process, avoiding the necessity231

to resort to literature data to set some coefficients, as proposed in Xu et al.232

(2019), or to infer net rates (duplication minus death rates) as done in Pellin233

et al. (2019).234

3.1. Moment equations. For any stochastic process obeying the Markov
property, given some initial condition X0, it is possible to determine the
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evolution of the probability distribution function associated with the sys-
tem states over time, P (X; t), using the Chemical Master Equation (CME)
(Bailey, 1964; Kampen, 1981; Risken, 1984; Gardiner, 1985). The CME is
defined as a differential equation for the process transition probabilities and
can be written as

dP (x; t)

dt
=

r∑
k=1

[hk(x− vk,·;θ)P (x− vk,·; t)− hk(x;θ)P (x; t)](3.1)

A solution and complete characterization of P (x; t) from (3.1) is unfeasible
due to the large set of possible states configurations. However, important
insights about cell differentiation dynamics and its parameters can be deter-
mined based on the time evolution of a few low-order statistical moments.
Let mi(t) describe the time evolution of E[Xit] =

∑
x xPXi(x; t). Applying

the derivate operator to both sides, we obtain the dynamics of the mean of
X(t) can be summarized in the following ODE system,

dmi(t)

dt
=

r∑
k=1

vk,i E [hk(Xt;θ)] ; i = 1, . . . , N.(3.2)

Similarly, let m2
i,j(t) be the time evolution for the symmetric second-order

moments E[XtiXtj ] as

dm2
ij(t)

dt
=

r∑
k=1

vk,j E [Xtihk(Xt;θ)] +
r∑

k=1

vk,i E [Xtjhk(Xt;θ)] +
r∑

k=1

vk,ivk,j E [hk(Xt;θ)] .

(3.3)

A detailed derivation of (3.2) and (3.3) can be found in Supplement A.235

With death rates x2
i δi being polynomial of degree 2, the time evolution for236

the generic moment of order n depends on moments of order n+ 1, leading237

to an infinite system of equations that can not be solved directly. There238

are different approaches to address this issue that consists of approximation239

methods. The most popular are the Chemical Langevin Equation, a diffu-240

sion approximation of the CME (Wilkinson, 2006; Golightly and Wilkinson,241

2005), the system size expansion (Kampen, 1981; Elf and Ehrenberg, 2003),242

the Linear Noise Approximation (Gardiner, 1985), and the moments closure243

approximation (Grima, 2012). Hematopoietic differentiation is a stochastic244

process with an output consisting of a relatively small amount of cells, that245

starts from an individual HSC. These are not ideal conditions to apply the246

CLE approximation (Schnoerr, Sanguinetti and Grima, 2017). In its funda-247

mental formulation, LNA requires the assumption that fluctuation and, as a248
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TRACKING HEMATOPOIETIC STEM CELL EVOLUTION 9

consequence the clone cell counts, have a multivariate Normal distribution.249

This assumption, combined with the deterministic first-moment dynamics,250

poses challenges for approximating systems with multimodal steady-state251

behavior, as it is the cell differentiation process. We therefore approximate252

the moments evolution using moment closure.253

Several moment closure approaches have been proposed in the litera-254

ture: (i) assuming a specific probability distribution for P (X; t) (Whittle,255

1957; N̊asell, 2003a,b; Keeling, 2000) or (ii) a separable-derivative-matching256

schema proposed in Singh and Hespanha (2007). The choice of the most257

appropriate method depends on the application of interest and the nature258

of the data analyzed. In this manuscript, we follow the indication provided259

in Schnoerr, Sanguinetti and Grima (2017), where these methods have been260

thoroughly tested and compared. Based on numerical evaluations, authors261

conclude that moment closure based on a normal distribution assumption is262

in general favorable for stability and precision. However, it is important to263

notice that the approach presented here is in principle valid irrespectively264

of the moment closure strategy adopted.265

A Gaussian third-order moment approximation consists of setting the
skewness equal to 0, leading to third-order moment definitions as follows,

E[X3
ti] =3 E[Xti] E[X2

ti]− 2 E[Xti]
3

E[XtiX
2
tj ] =2 E[Xtj ] E[XtiXtj ] + E[Xti] E[X2

tj ]− 2 E[Xti] E[Xtj ]
2(3.4)

Substituting these third-order moments in (3.3) with the appropriate non-266

linear formulation in (3.4), we derive two coupled systems of ordinary differ-267

ential equations for the first and second order moments for the stochastic cell268

differentiation process. Based on this ODE system we will now propose an269

inferential procedure able to obtain parameter estimates and to reconstruct270

the cell differentiation structure.271

4. Inference. The cell differentiation process is typically observed across272

a discrete number of time points and some replicates. To simplify nota-273

tion, we assume we have S equally ∆t-spaced observations Xs, s = 1, . . . S274

from one realization of an N -dimensional stochastic cell differentiation pro-275

cess. It is computationally trivial to drop the equal spacing assumption. A276

likelihood-based approach would need to integrate all possible states and in-277

termediate time-points, effectively making closed-form inference impossible.278

Instead, we will derive a methods-of-moments type estimator for inferring279

the parameters of interest.280

As mentioned in section 2, in an experimental setting, clone sizes are281

estimated using NGS readouts. Despite several protocols, techniques and282
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estimators proposed in the literature (Berry et al., 2012; Calabria et al.,283

2014; Leonardelli et al., 2016), measurement error still plays an important284

role in the quantitative characterization of the progeny of an individual HSC.285

Therefore, we included in our model definition (4.1) a multiplicative noise286

term that can be adjusted using an intensity parameter to be set according287

to the protocol followed.288

4.1. Non-linear generalized method of moments. We reformulate the pro-
cess as a non-linear regression problem, i.e.,

(4.1) Xs = f(xs−1;θ) + εs

where f(xs−1,θ) = E[Xs|xs−1;θ] is a known non-linear function of the pro-289

cess state at time step s− 1 and εs is an N -dimensional mismatch variable290

with E[εs] = 0N ,Var(εs) = Ws+ϕNs.Ws = Cov[Xi(s), Xj(s)|xs−1;θ] is a291

N×N matrix for some known non-linear function g modeling the stochastic292

process intrinsic covariance structure. The diagonal matrix ϕNs describes a293

multiplicative-like noise term that allows to include a measurement uncer-294

taninty on cell counts recordings. In particular, ϕ is a user-defined dispersion295

parameter that can be set by using a control experiment, as described in sec-296

tion 6, andNs = Diag(xs−1) is a N×N diagonal matrix with the cell counts297

on the diagonal. To avoid the usage of unnecessarily complicated notation in298

the description of our inference framework, throughout this section we will299

consider observations to be noise-free (ϕ = 0). However, the implemented300

method on the data does consider the dispersion parameter (ϕ > 0).301

For each value of s the function f(xs−1,θ) = m(s) and matrix Ws =302

m2(s) −m(s)m(s)t are defined through the solutions of the coupled ODE303

system (3.2) and (3.3) setting xs−1 as initial conditions for m(s − 1) and304

xs−1,ixs−1,j for m2
ij(s − 1). This projects the state and covariance matrix305

from one observed time-point to the next.306

Applying this procedure to all observations available, we can perform pa-
rameter estimation by means of a generalized method of moments estimator
with objective function,

(4.2) θ̂ = arg min
θ≥0r

[x1:S − f(x0:S−1;θ)]ᵀ(W1:S)−1[x1:S − f(x0:S−1;θ)]

where x1:S and f(x0:S−1;θ) are (N × S)-dimensional column vectors and307

W1:S is a NS × NS block diagonal matrix, in which blocks correspond to308

expected variance-covariance matrices W s within each time increment. In309

Supplement B all the elements introduced in this section are derived for a310

simple example involving 3 cell types.311
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To calculate the solution θ̂, we propose an iterative procedure in which312

moments estimation and parameter refinement alternate until a convergence313

criterion is met. The complete algorithm is described in section 4.2. It is314

worth noting that for the solution of (4.2), some initial values θ̂(0) for θ, must315

be provided as input in order to start the iterative optimization procedure.316

Given the amount the parameters involved in the model, especially if no317

or limited assumptions are made to limit possible cell differentiations (by318

setting λij = 0 for some i, j), it is important to start the minimization of319

(4.2) from accurate starting values within the convex region surrounding320

the true, unknown θ. Supplement E presents a local linear approximation321

approach that can be used to obtain a sensible starting value (Pellin et al.,322

2019).323

4.2. Algorithm. To find the solution to the minimization problem in
(4.2), a modified implementation of the Gauss-Newton algorithm is proposed
(Björck, 1996). Its pseudo-code is available in Algorithm 1. The procedure
receives as input the initial cell counts, observations during the follow-up
time, x0:S , and the system of ODEs for the first order, m(t), and second
order, m2(t). The algorithm starts with the initial estimate θ̂(0) that is then
refined using an iterative procedure with the updating formula

θ̂(k+1) = θ̂
(k)

+ ∆̂θ
(k)
,

where ∆̂θ
(k)

is the solution to the following constrained quadratic problem,324

∆̂θ
(k)

= arg min
∆θ

[r(θ̂(k))− J(θ̂(k))∆θ]ᵀ[W (θ̂(k))]−1[r(θ̂(k))− J(θ̂(k))∆θ]

such that ∆θ ≥ −θ̂(k)(4.3)

in which r(θ̂(k)) = x1:S − f(x0:S−1;θ(k)) is the residual NS-dimensional
column vector and

J(θ̂(k)) =

[
df(x0; θ̂(k))

dθ

df(x1; θ̂(k))

dθ
. . .

df(xS−1; θ̂(k))

dθ

]t

is the NS×r Jacobian matrix. Each
df(xs; θ̂

(k))

dθ
is a N×r matrix measuring

the change in predicted evolution for the mean of each component of the
process caused by a small displacement of parameter vector around θ̂(k).
Finally,

W (θ̂(k)) = Diag
[
W 1(θ̂(k)) W 2(θ̂(k)) . . . W S(θ̂(k))

]
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Data: x0:S : derive dx1:S and M0:S−1 according to (7.5) and (7.6)
Result: Get parameters estimates θ̂
begin

Initialization: tol = ε , k = 0;
θ̂(0) = arg min

θ
(dx1:S −M0:S−1θ)ᵀ(dx1:S −M0:S−1θ) s.t. θ ≥ 0;

while (‖∆̂θ
(k)
‖1) ≥ tol do

Calculate r(θ̂(k)),J(θ̂(k)),W0:S−1(θ̂(k));

∆̂θ
(k)

=
arg min

∆θ
[r(θ̂(k))− J(θ̂(k))∆θ]ᵀ[W0:S−1(θ̂(k))]−1[r(θ̂(k))− J(θ̂(k))∆θ]

s.t. ∆θ ≥ −θ̂(k);

θ̂(k+1) = θ̂(k) + ∆̂θ
(k)

k = k + 1;
end

θ̂=θ̂(k)

end

Algorithm 1: Iterative procedure for the non-linear generalized method
of moments based parameter estimation.

is the estimated NS×NS covariance matrix, setting the parameters vector325

to current value θ̂(k).326

For the local linear approximation method, some modifications to Algo-327

rithm 1 have to be made. At each iteration, parameter refinement is not328

performed by estimating increments vector ∆̂θ, but θ̂(k) directly by solving329

the generalized (constrained) least square problem in (7.7) with covariance330

matrix calculated using θ̂(k−1).331

5. Simulation study. In this section, we present four simulation stud-332

ies. In the first, we study the behavior of the non-linear inference procedure333

simulating the data under that very model. In particular, we compare the334

method to a linear alternative, known as the local linear approximation,335

for several sampling intervals. For short sampling intervals, it is expected336

that the local linear approximation will be a serious competitor, whereas for337

longer sampling intervals the non-linearity will start to favor our non-linear338

inference scheme. In the second simulation study we mimic an experimental339

setting scenario by perturbing clones trajectory with multiplicative errors340

before performing inference. Our goal here is to investigate how an addi-341

tional and extrinsic source of variation affect parameter estimation. The342

third simulation study focuses on how our model deals with model misspec-343

ification. Although our model is a detailed and generative model of the cell344

differentiation process, it is almost certain that this model is wrong — as all345

models are (Wit, Heuvel and Romeijn, 2012). We report the performance346
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(a) (b) (c)

Fig 2. Details on the cell differentiation process used in the simulation study.
A) Structure of the 5 cell types stochastic cell differentiation process. Cell types are repre-
sented by nodes. Self-connecting edges are duplication events. Death events are expressed
by edges pointing to ø. Edges connecting two nodes correspond to differentiation paths. B)
An example of cell differentiation process trajectory (clone evolution) generated by means
of Gillespie algorithm. C) Cell types multi-modal steady-state distribution calculated using
1000 trajectories.

of our model in recovering the differentiation process under an alternative347

generative model. The fourth simulation study compares our proposal to an348

alternative method-of-moments formulation proposed by Xu et al. (2019),349

based on matching model-based and empirical correlations among cell types350

dynamics.351

5.1. Improvement over local linear approximation approach.. The infer-352

ence procedure presented in this paper requires one to calculate as many353

solutions of the system of non-linear ODEs related to the first and second354

moments of the process, as available observations. In Figure 2a the network355

representation of the simulated system is shown. The precise parameter set-356

tings are given in supplementary materials Supplement D.357

The stochastic cell differentiation process implemented has been designed358

with a low number of cell differentiations (5 out of 20) to reflect the expected359

scenario of real biological systems. The simulation study aims to determine360

whether our procedure is capable of correctly estimating the process parame-361

ters (both positive and zeros) and to investigate its performance for different362

sampling intervals. Clone dynamics are simulated employing the Gillespie363

algorithm (Gillespie, 1977), known to generate statistically correct trajecto-364

ries of the stochastic equation described in (3.1). An illustrative trajectory365

is shown in Figure 2b, where it is possible to appreciate the logistic behavior366

generated by the model specification. Continuous-time trajectories are then367

sampled at three different equally spaced time intervals ∆t = (0.1, 0.5, 1)368
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Fig 3. Comparison between the non-linear generalized method of moments and
local linear approximation for different ∆t setting. Estimate distributions for the
non-linear generalized method of moments and the local linear approximation are displayed
using respectively white and gray boxplots. Dashed lines correspond to the true values. On
top-left the performance of the methods for the estimation of the duplication rate α4 (2.5)
is shown. On top-right, death rate δ2 (0.03) is reported. On the bottom the differentiation
rates λ1,3 (0.35, left) and λ1,5 (0, right) are represented.

until stopping time tend = 10 is reached. Parameter estimates obtained by369

using the proposed algorithm and the local linear approximation approach370

are compared for 100 experiments, each composed of n = 1000 clones start-371

ing from initial conditions vector x0 = (1, 0, 0, 0, 0). Having clone evolutions372

starting from a single cell makes steady-state behavior particularly sensi-373

tive to the initial (stochastic) sequence of cellular events. In Figure 2c the374

distribution at tend, calculated based on 1000 clone trajectories, highlight375

the presence of a multi-modal steady-state configuration. On average, our376

algorithm converges in 2.8, 4.2 and 5.9 iterations, respectively, for ∆t equal377
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to 0.1, 0.5 and 1. The local linear approximation approach converged on378

average in 3.2, 6.2 and 7.2 iterations.379

As shown in Figure 3, the local linear approximation based method suffers380

in terms of accuracy in all settings. Due to the limited amount of cells present381

in the system in the initial phases, the strong non-linearity component of the382

dynamics is poorly approximated by the linear approach. As a consequence,383

there is a considerable and fast decay of estimation precision as ∆t increases.384

For ∆t = 0.1, the local linear approximation approach seems to be able to385

recognize the underlying structure of the system, since almost all absent386

differentiation paths are correctly estimated as very closed to zero. This387

is not true for larger time gaps ∆t, e.g., 0.5 or 1, where, in addition to a388

considerable bias for all estimates, some of the absent links – for example,389

λ1,5 is shown in Figure 3 (bottom-right) – are systematically estimated as390

greater than 0. The non-linear inference procedure, instead, shows unbiased391

estimates for all ∆t considered for all parameters.392

5.2. Performance introducing measurement errors. To investigate how
measurement errors affect the performance of our proposal for inference, we
apply our algorithm to perturbed clone trajectories, x̃s. These trajectories
are generated by adding noise to the exact one, Xs, as follows

(5.1) X̃si =

{
Xsi + ε̃si if Xsi + ε̃si > 0

0 if Xsi + ε̃si ≤ 0
and ε̃si ∼ N (0, ϕxs−1,i)

We considered the same system configuration and experiment setup as de-393

scribed in section 5.1, using ∆t = 1 and inspecting the impact of noise of394

different strength by testing ϕ = (0, 0.1, 0.5, 1).395

In Figure 4 the performance in estimating a duplication rate (α4), death396

rate (δ2), differentiation rate (λ2,4) and an absent differentiation path (λ1,5)397

is shown. For all parameters, we observed an increase in the standard errors398

as the value of ϕ increases. A shift in the parameter distribution is observed399

for death and differentiation rates for the larger values of ϕ, but not for400

the duplication coefficient. Most likely for large values of ϕ, as the states401

are artificially truncated at 0, probably a bias is introduced. The higher402

λ1,5 average estimates we observed for ϕ values (0.5,1) is presumably due403

to the increase of the estimator standard error. The vast majority of λ1,5404

estimates fall in the (0,6e-4) range, suggesting that the correct identification405

of missing differentiation paths is robust to higher levels of observational406

errors. To recover the underlying network structure and eliminate potential407

spurious, low-intensity connections among lineages, in section 6 we propose408
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16 D. PELLIN ET AL.

Fig 4. Impact of measurement errors on inference. On top-left the performance of
methods for duplication rate α4 (2.5) estimation. On top-right the performance of meth-
ods for death rate δ2 (0.03) estimation. On bottom-left the performance of methods for
differentiation rate λ2,4 (0.75) estimation. On bottom-right the performance of methods
for absent differentiation path λ1,5 (0) estimation.

a model selection strategy based on backward stepwise selection and cross-409

validation.410

5.3. Performance under model misspecification. There are various dif-411

ficulties associated with modeling biological processes, in particular when412

dealing with questions related to the in-vivo, in human, investigation of413

complex phenomena such as hematopoiesis. Many reasons limit sample size414

and the type of experiments that can be performed, forcing the researcher in415

making important assumptions about biological mechanisms based on evi-416

dence gathered from in-vitro or animal studies, not always representative of417

human dynamics. For these motivations, it is important to check how new418

statistical procedures behave in case of model misspecification. In order to419
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test our proposal described in section 4 under this condition, we generated420

clone trajectories using a corrupted version of the Gillespie algorithm. Differ-421

entiation process structure has been kept as shown in Figure 2a. Parameters422

have been set to the same values as reported in section 5.1, except for death423

rates set to δ̃ = (0.0, 0.3, 0.6, 2.0, 2.5). Individual clone evolution has been424

simulated as described in the following steps:425

1. Set initial state at x0 = (1, 0, 0, 0, 0).426

2. Generate time-to-next event, ts+1, sampling from a Uniform distribu-427

tion with parameters Unif[0,( 2∑N
i=1 xs,i

)].428

3. Select a cell type, Cs+1,i sampling with probability proportional to cell429

count among those cell type with Cs,i ≥ 1.430

4. Sample a cell event (duplication, death or differentiation) among those431

available for the specific cell type Cs+1,i with probability proportional432

to event rates.433

5. If total event time is less than 10, return to step 2.434

It is worth noting that these modifications affect multiple aspects of the data435

generating process, as visible from Figure 5a. Events frequency is much lower436

throughout the simulation period and cell counts do not stabilize around a437

cell type-specific value, as was the case for the original model shown in Fig-438

ure 2b, but they rather exhibit exponential growth dynamics. In the correct439

version of the Gillespie algorithm, the time-to-next-event is distributed as440

an exponential with parameter exp(
∑r

k=1 hk(Xt;θ)) and the same vector of441

events hazard hk(Xt;θ) is rescaled to the unit sum in order to define events442

sampling probabilities. Under the misspecification setting, the event times443

are distributed uniformly, and the event probabilities are not directly linked444

to the hazards.445

Three different sample sizes have been tested: 30, 50, and 100 clones per446

experiment. We evaluate our inference method for its capability to correctly447

reconstruct the underlying differentiation structure, rather than for the pre-448

cision in parameters estimation. Based on the data generated from a single449

experiment, we test the null hypothesis H0 : λij = 0, i, j = 1, . . . , N, i 6= j450

as described in Supplement C.451

Each ROC curve in Figure 5b shows the average of 100 ROC curves ob-452

tained from independent replicates of the simulation experiments by varying453

the significance threshold on differentiation rates. Our generalized method454

of moments approach shows surprising accuracy in learning the true net-455

work configuration for 30, 50, and 100 clone trajectories for a wide range of456

significance threshold values.457
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(a) (b)

Fig 5. Misspecified cell differentiation process. A) Cell differentiation process tra-
jectory generated by means of the misspecified generative model. B) Average ROC curves
obtained from 100 experiments replicates each containing 30 (black), 50 (dark gray) and
100 (light gray) clones.

5.4. Comparison with correlation-based M-estimator by Xu et al. (2019).458

Although the general model specification of the clonal expansion dynamics459

by means of stochastic differential equations is similar to that described in460

Xu et al. (2019), there are several differences between the data-handling and461

estimation approaches. Wu et al. (2014) only have clone size measurements in462

5 mature blood lineages and no information on the progenitors. To estimate463

the hidden relationships among stem and progenitors cells, Xu et al. (2019)464

resort to comparing known tree-like differentiation configurations by means465

of cross-validation. Furthermore, in order to obtain an analytical solution for466

the moments evolutions, they assume event hazards to be linear in process467

states. This is probably the only sensible workable assumption, but it does468

imply either exponential extinction and growth dynamics of the clones. On469

the other hand, the gene therapy study motivating our method consists of 15470

cell types from both BM and PB, providing a much more detailed description471

of the complete hematopoietic process. Given this motivation, we designed472

a modeling approach that assumes all lineages of interest to be observed.473

In order to compare the two methods, we modified our methodology to474

consider, as in Xu et al. (2019), asymmetric division (differentiation is cou-475

pled to cell division) rather than symmetric division, whereby cell duplica-476

tion is followed by a differentiation event. Furthermore, to match the two477

stochastic processes we assumed that the dynamics does not involve satu-478

ration by assuming linear ODEs. To make a reasonable comparison among479

the two methods under the fully observed scenario, we extended the calcu-480
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lation of correlation-based M-estimator proposed by Xu et al. (2019) to all481

correlations among lineages, including stem cells, progenitors and mature482

cell types.483

We set up a simulation study resembling the one described in Figure 2c484

in Xu et al. (2019) (reproduced here in Figure 6a) both in terms of the485

differentiation tree structure and the rate parameters. The process consists486

of 8 cell types, starting from a HSC that duplicates wit rate λ = 0.285 and487

differentiates in progenitor cells, Prog A and Prog B, with rates νa = 0.14 and488

νb = 0.07, respectively. Progenitor cell-types A die with rate µa = 0.14 and489

differentiate into three mature cell types with rates ν1 = 36, ν2 = 18 and490

ν3 = 10, respectively. Progenitor cell-types B have two connected mature491

lineages into which it differentiates with rates ν4 = 20 and ν5 = 12. As done492

in Xu et al. (2019), we considered mature cells death rates known and equals493

to µ1 = 0.26, µ2 = 0.13, µ3 = 0.11, µ4 = 0.16 and µ5 = 0.09. All trajectories494

start with a single HSC at time tstart = 0. Each simulation experiment is495

composed of 1000 clones, observed at intervals ∆t = 1 unit apart, from496

tstart = 0 up to the final time-point set at tend = 10. The results of the497

simulation study and the distributions of the coefficient estimates across498

100 simulations are shown in Figure 6b.499

Our proposal outperformed the method of Xu et al. (2019) in several as-500

pects. The precision of our estimates is an order of magnitude better, and501

the bias of our method is negligible, whereas their estimation of µa, µb, νa502

and νb clearly suffers from bias. Furthermore, our computational algorithm503

converged in 4.3 iterations on average, whereas the correlation-matching al-504

gorithm converges on average in 60.6 iterations. The reason why our method505

outperforms the method proposed by Xu et al. (2019) is that latter based506

on second moment matching, whereas our method is based on first moment507

matching, which is more stable, unbiased and computationally more efficient.508

On the other hand, the main advantage of the method proposed by Xu et al.509

(2019) is that their method can deal efficiently with missing progenitor and510

HSC data. In certain experimental settings this can be crucial.511

6. Gene therapy study for Wiskott-Aldrich Syndrome. In this512

section, we return to the previously described clinical trial treating patients513

suffering from Wiskott-Aldrich Syndrome with their stem cells, genetically514

modified ex vivo, and then reinfused to the patient. We traced N = 15 cell515

types over time in the three patients up to 36 months after GT. In Figure 7a516

the differentiation trajectories observed for two clones are shown. The 15517

distinct cell types can be organized in a three levels hierarchy, corresponding518

to the original HSC level, i.e., CD34 stem cells, the bone marrow (BM)519
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(a) (b)

Fig 6. Comparison with Xu et al. (2019) correlation-based M-estimator. Consid-
ering the cell differentiation process shown (a), the boxplots in (b) show that our method is
unbiased and more efficient than the M-estimator proposed in Xu et al. (2019). Boxplots
show the distribution of estimates obtained using the method proposed in this manuscript
(white) and the extended version of the correlation-based estimator (dark gray) for the 10
unknown rates, whose true value is indicated by the horizontal red dashed line.

level, corresponding to CD3, CD14, CD15, CD19, CD56, CD61 and GLYCO520

precursor cells and finally the peripheral blood (PB) level, i.e., CD3, CD4,521

CD8, CD14, CD15, CD19 and CD56 mature cells. Based on the available522

biological knowledge, the following assumptions are made,523

� the HSC type can differentiate in any cell type in the BM level;524

� cell types at the BM level can differentiate in any cell type in the PB525

level;526

� cell types at the PB level can not differentiate.527

These assumptions are graphically summarized in Figure 7b and incorpo-528

rated in the stochastic cell differentiation model and inferential algorithm529

by setting the corresponding λij to zero.530

From a practical perspective, the re-infusion of corrected HSC cells in a531

patient’s body is considered as starting time t = 0. Initial conditions vector532

X0 consists of a 15-dimensional vector, with the count corresponding to533
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(a) (b)

Fig 7. Observed clones dynamics and schematic representation of hierarchical
assumptions. A) Reads counts trajectory over the 3 years follow-up for 2 clones. By as-
sumption, all clones start with a count of 1 in CD34 HSC cell type at time 0. Cell count
and are represented by circle of size proportional to their abundance. B) Schema reporting
the biologically inspired three levels hierarchy used as a backbone for differentiation struc-
ture reconstruction. Arrows show directionality for potential differentiation paths.

CD34, the HSC, equal to 1 and the rest to zero. During the follow-up pe-534

riod, S = 3 samples from patient’s HSC, BM, and PB cells are taken after 1,535

2, and 3 years. After exluding all clones detected only once throughout the536

study period, in total we obtain 17,195 unique chromosomal positions: 5,299537

from period 1, 5,300 from period 2, and 6,596 from period 3. The amount of538

cells, within each lineage, generated by individual labeled, re-infused HSC, is539

counted through an insertion site analysis technique described in Aiuti et al.540

(2013). For estimating the measurement error scaling coefficient associated541

with the protocol used in the processing of patients’ samples, we took ad-542

vantage of the three independent experiments in which a pool of HSC cells543

have been sequenced 1-day after transduction. Given the low proliferative544

rate of HSC in culture conditions, all clones are expected to have a size of 1545

at time of sequencing. Based on these data we estimated ϕ̂ = 0.08.546

6.1. Cell differentiation reconstruction. Clonal tracking studies typically
score and compare alternative but fixed models of hematopoiesis using ex-
perimental data. In this work, we opted for data-driven learning of the differ-
entiation process structure. To recover the actual underlying data generating
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process and eliminate differentiation paths caused by sampling issues and
observational errors, we proceed as following described. We estimated the
full model, m0, by solving the optimization problem 4.2 using the WAS data
and ϕ̂. We then iteratively eliminate the differentiation connection (λij) with
the least impact on the following Mahalanobis distance:
(6.1)
DM = [x1:S − f(x0:S−1; θ̂k)]ᵀ(W1:S + ϕ̂N1:S)−1[x1:S − f(x0:S−1; θ̂k)]

This method leads to a sequence of models, mk, k = 1 . . . 56 with decreasing547

complexity. To select the optimal model m̃ among the set mk, we used a548

5-fold cross-validation strategy. We split the input dataset into five subsets549

of equal size and used four subsets to estimate the process parameters and550

the remaining as a validation subset on which the Mahalanobis distance551

(6.1) has been calculated. The procedure has been repeated five times for552

each model configuration, considering each subset for validation once. The553

results are reported in Figure 8. We selected model m35 as optimal based554

on its mimimum median Mahalanobis distance across folds.555

We then imposed the differentiation structure encoded in model m35 and556

estimates the cell differntiation process parameters using all WAS data avail-557

able. A graphical representation of the differentiation network is shown in558

Figure 9a. Duplication and death have been omitted in the plot for clarity,559

but all final parameters are available in supplementary materials Supple-560

ment F. In Figure 9b a trajectory of the HSC differentiation process esti-561

mated using WAS gene therapy data is shown, generated using the Gillespie562

algorithm.563

Initialization with the local linear approximation aims at starting the564

optimization procedure in the proximity of the objective function global565

optima and reducing the number of iterations (m35 converges in 5 iterations)566

required to meet the convergence criteria. We verified that the parameters567

estimate in Appendix Supplement G are stable to random initialization by568

sampling candidate values for θ̂(0) from a Normal distribution N (0.1, 0.1)569

for duplication and differentiation rates and N (0.01, 0.01) for death rates.570

We performed 100 random restarts showing that our estimates are robust.571

6.2. Relevance of the results. CD34 HSC resulted in being the lineage572

with the highest duplication rate. According to our estimate, a CD34 HSC573

cell is expected to duplicate approximately every 6.51 weeks (αCD34 HSC =574

8.006e + 00), a significantly higher rate than the 40 weeks (range, 25-50575

weeks) previously reported (Catlin et al., 2011). The difference is attributable576

to the following considerations. First, the patients enrolled in a GT clini-577

cal trial receive a conditioning regimen before treatment. Upon reinfusion,578
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Fig 8. Cross-validation and Mahalanobis distance based selection of the optimal
model. Models mk are ordered from the most complex, m1 (one differentiation path re-
moved from the full model m0) to the least complex, m56 (no connection among lineages).
The additional differentiation path that is removed at each iteration is reported alongside
model number. The distributions of the Mahalanobis distances calculated on the 5 valida-
tion subsets are represented with boxplots for each model configuration, mk. Solid black
line connects the median distances across models. The minimum median is osberved for
m35 that is therefore selected as the optimal model, m̃.

the transduced cells are subjected to high proliferative stress because they579

must replenish the depleted hematopoietic system. The estimate reported in580

Catlin et al. (2011) instead is referred to a healthy, native, steady-state con-581

dition and does not consider potential selective advantages that engineered582

cells might have in disease settings. Second, the CD34 marker used in the583

WAS study to isolate HSC from patients’ BM samples is known to select584

for a broader cell population that includes hematopoietic progenitors cells585

in addition to stem cells, which are characterized by a higher proliferative586

output and shorter half-lives compared to pure hematopoietic stem cells.587

BM lymphoid lineages CD3 and CD19 show higher duplication coefficients588

than myeloid cell types (CD14 and CD15). This result supports the idea of589

the presence of long-lived lymphoid progenitors and the dependence of the590
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(a) (b)

Fig 9. HSC differentiation process. (a) Network representation. Black, dark gray and
light gray nodes represent CD34 HSC, BM, and PB cell types repsectively. Edge thick-
ness is proportional to the corresponding λ̂ij. Edges estimated are those included in the
optimal model m̃. (b) HSC differentiation process trajectory simulated using the Gillespie
algorithm, assuming model m̃ and coefficient estimated using WAS data.

myeloid compartment from the continuous support of cells coming from the591

upstream CD34 HSC population (see supplementary matierals Supplement592

G). CD61 BM cells are estimated to have a significant duplication rate. The593

distinct behavior of the megakaryocyte (CD61 BM) population is not sur-594

prising since megakaryo/erythrocyte-restricted progenitor, responsible for595

the production of platelets and red blood cells (erythrocytes), have been596

reported and validated in several studies, mostly based on gene expression597

data. Steady-state cell counts for individual lineages are not deterministic598

but depend on the specific evolution of each clone (see Figure 2c). However,599

in Figure 9b it is possible to appreciate how the combination of duplication600

and death rates estimate leads to a biologically meaningful differentiation601

process in which PB lineages are the most abundant, followed by BM and602

CD34 HSC.603

In the optimal model configuration determined by our model selection604

strategy (Figure 9a), all BM lineages result directly connected to the HSC605

compartment. Surprisingly, HSC to B-Cell precursor (λCD34 HSC→CD19 BM =606

1.453) differentiation rate is higher than HSC to myeloid cells (CD15 BM,607

CD14 BM), which are among the cell type with the fastest turnover in hu-608

mans (Sender and Milo, 2021). This finding agrees with the conclusion of609

Meyer-Bahlburg et al. (2008) who, using mouse models of WAS, highlighted610
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that upon transplantation, corrected B cells exhibit a marked selective ad-611

vantage at both the precursor and mature stage.612

The biology behind the maturation and migration of BM cells in the PB613

stream is much better understood, and commitment paths are well charac-614

terized. The consistency of our inferred structure at the BM and PB interface615

with the biological expectation is remarkable, even though a limited set of616

constraints to the network configurations has been provided. The separation617

between lymphoid and myeloid branches is clear, with significant differen-618

tiation parameters connecting CD3 at BM level to CD3-CD4-CD8 (T-cell)619

and CD56 (NK) in the PB. Among the myeloid subpopulations, CD15 BM620

is linked to CD15 PB as expected, but the differentiation from CD14 BM621

to CD14 PB is missing. The isolation of CD14 PB from all BM lineages is622

most likely a sampling issue since monocyte (CD14) account, on average,623

for only 5% of the cells in a PB sample.624

Our results support the myeloid-based model over the classical dichotomy625

model. Mature NK cells (CD56 PB) are sustained by a cellular influx from626

NK cells residing in the BM (CD56 BM), as expected, but also from CD14627

BM (myeloid), CD19 BM, and CD3 BM (lymphoid lineages). Although it628

is biologically challenging to conclude that all these cell populations can629

directly give rise to CD56 PB cells, this pattern is compatible with the630

presence of a common, unobserved progenitor cell type capable of generating631

both myeloid and lymphoid mature cells.632

Due to the poor approximation provided by the local linear method, as633

also shown in our simulation study, Biasco et al. (2016) identified many634

more low-intensity, most likely spurious, differentiation rates. For this rea-635

son, the authors preferred to limit the inferential goal to calculate and com-636

pare the likelihoods of only two known and competing tree configurations637

using information-based criteria. Instead, the method presented in this pa-638

per allows us to perform network and coefficients estimation simultaneously.639

It requires only limited prior knowledge and is essentially data-driven. Nev-640

ertheless, it also offers the flexibility to trade exploratory power for biological641

interpretability by changing the settings of the differentiation rates fixed at642

zero according to the scientific question.643

Finally, to resolve the conundrum regarding in-vivo stem cell evolution644

and hematopoietic differentiation structure, a more refined sorting strategy645

for HSC (CD34 BM) is needed. Through additional known surface markers,646

indicators of stem/progenitor cells priming towards specific lineages would647

be possible to disentangle the complexity observed at the BM level.648
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7. Conclusion. To improve our knowledge about the cell differentia-649

tion process, which in many contexts such as gene therapy might be fun-650

damental for providing biological and therapeutic new insights, we have651

devised and implemented a flexible statistical framework for the analysis of652

clonal tracking data. The underlying stochastic process is assumed to be653

a multidimensional Markov process and this allows a representation of the654

moment dynamics by means of a system of non-linear ODEs. The partic-655

ular definition of the transition probabilities induces a logistic behavior of656

sub-population growth curves. The model and the proposed iterative infer-657

ential procedure exhibit stability in terms of parameter estimation, structure658

recognition, and convergence rate. The model can easily be extended to in-659

corporate time-dependent individual cell rates, different feedback regulation660

mechanisms, or random effects on specific parameters.661

Applying the modeling and inference framework to a Wiskott-Aldrich662

Syndrome gene therapy study, we have obtained insight into the underlying663

stem cell differentiation dynamics. We found a high degree of agreement664

between our results and the recently proposed myeloid-based model for hu-665

man hematopoiesis over the predominant classical dichotomy model of cell666

evolution.667
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SUPPLEMENTARY MATERIAL

“Tracking hematopoietic stem cell evolution in a Wiskott-Aldrich778

clinical trial”779

780

781

Supplement A: Derivation of moments equations
(http://www.e-publications.org/ims/support/dowload/imsart-ims.zip). By means
of the summation operator,

∑
x∈x̃, over the whole set of possible states for

the process X(t), x̃ = NN0 , it is possible to derived a functional connection
between the evolution for the expected population size of each process com-
ponent and the dynamics of the process probability distribution P (X; t),

dmi(t)

dt
=
d
∑
x∈x̃ xiP (X = x; t)

dt

=
∑
x∈x̃

xi
dP (X = x; t)

dt

The evolution of P (X; t) can be expressed by means of the master equation
introduced in (3.1),

dmi(t)

dt
=
∑
x∈x̃

xi

r∑
k=1

[hk(x− Vk,·;θ)P (X = x− Vk,·; t)− hk(x;θ)P (X = x; t)]

Due to the fact that the summation operator
∑
x∈x̃ spans over all possible

state configurations, the order of summation operators in the RHS can be
inverted,

dmi(t)

dt
=

r∑
k=1

∑
x∈x̃

xi [hk(x− Vk,·;θ)P (X = x− Vk,·; t)− hk(x;θ)P (X = x; t)]

=
r∑

k=1

[∑
x∈x̃

xihk(x− Vk,·;θ)P (X = x− Vk,·; t)−
∑
x∈x̃

hk(x;θ)P (X = x; t)

]

Now, the summation variable in the first term of the right-end-side can be
modified, without affecting the sum domain, since it cover all possible state
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configurations,

dmi(t)

dt
=

r∑
k=1

{∑
x∈x̃

(xi + vk,i)hk(x;θ)P (X = x; t)−
∑
x∈x̃

xihk(x;θ)P (X = x; t)
}

=
r∑

k=1

{∑
x∈x̃

xihk(x;θ)P (X = x; t) + vk,ihk(x;θ)P (X = x; t)−∑
x∈x̃

xihk(x;θ)P (X = x; t)
}

=
r∑

k=1

∑
x∈x̃

vk,ihk(x;θ)P (X = x; t)

Given the known property for expected value of function f(x) of a r.v. x
with probability distribution P (x), E[f(x)] =

∑
x f(x)P (x),

dmi(t)

dt
=

r∑
k=1

E [vk,ihk(Xt;θ)]

Finally, by linearity of expectation,

dmi(t)

dt
=

r∑
k=1

vk,i E [hk(Xt;θ)]

A similar approach can be extended to define a system of ODEs for the time782

evolution for second order moments of X(t),783

dm2
i,j

dt
=

∑
x∈x̃

xixj
dP (X = x; t)

dt

=
∑
x∈x̃

xixj

r∑
k=1

{hk(x− Vk,·;θ)P (X = x− Vk,·; t)− hk(x;θ)P (X = x; t)}

=
r∑

k=1

{∑
x∈x̃

vk,jxihk(x;θ)P (X = x; t) +
∑
x∈x̃

vk,ixjhk(x;θ)P (X = x; t)

+
∑
x∈x̃

vk,ivk,jhk(x;θ)P (X = x; t)
}

=
r∑

k=1

vk,j E [Xtihk(Xt;θ)] +
r∑

k=1

vk,i E [Xtjhk(Xt;θ)] +
r∑

k=1

vk,ivk,j E [hk(Xt;θ)]

784
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Supplement B: Example with N=3 cell types785

(http://www.e-publications.org/ims/support/dowload/imsart-ims.zip). In this786

section the most relevant elements defined in section 3 and section 4 are de-787

rived, to allow parameters inference for an illustrative hypothetical N = 3788

stochastic cell differentiation model. We define the parameters governing789

stochastic cell differentiation process as790

- Individual cell duplication rates vector

α = (α1, α2, α3);

- Individual cell death rates vector:

δ = (δ1, δ2, δ3);

- Individual cell differentiation rates:

λ =

 0 λ12 λ13

λ21 0 λ23

λ31 λ32 0

 .
According to the ordering rule described in section 3, the r = 12 distinct
cellular events are associated with a vector of events rates, h(X,θ),

h(X,θ) = (α1X1, α2X2, α3X3, δ1X
2
1 , δ2X

2
2 , δ3X

2
3 ,

λ21X2, λ31X3, λ12X1, λ3,2X3, λ13X1, λ23X2);

and a net effect matrix V ,

V =

1 0 0 −1 0 0 1 1 −1 0 − 1 0
0 1 0 0 −1 0 −1 0 1 1 0 − 1
0 0 1 0 0 −1 0 −1 0 −1 1 1

 .
Within the local linear approximation framework described in section Sup-
plement E, the diagonal matrix D(X) corresponds to

D(X) = Diag(X1, X2, X3, X
2
1 , X

2
2 , X

2
3 , X2, X3, X1, X3, X1, X2)

The ODEs systems for time evolutions of process first-order moments is
given by

dm1(t)

dt
= α1m1(t)− δ1m2

11(t) + λ21m2(t) + λ31m3(t)− λ12m1(t)− λ13m1(t);

dm2(t)

dt
= α2m2(t)− δ2m2

22(t)− λ21m2(t) + λ12m1(t) + λ3,2m3(t)− λ23m2(t);

dm3(t)

dt
= α3m3(t)− δ3m2

33(t)− λ31m3(t)− λ3,2m3(t) + λ13m1(t) + λ23m2(t);
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and for second-order moments

dm2
11(t)

dt
= (α1m1(t) + δ1m

2
11(t) + λ21m2(t) + λ31m3(t) + λ12m1(t)+

λ13m1(t)) + 2(α1m
2
11(t)− δ1 E[X3

1 ] + λ21m
2
12(t)+

λ31m
2
13(t)− λ12m2

11(t)− λ13m2
11(t));

dm2
12(t)

dt
= (−λ21m2(t)− λ12m1(t)) + (α1m

2
12(t)− δ1 E[X2

1X2]+

λ21m
2
22(t) + λ31m

2
23(t)− λ12m2

12(t)− λ13m2
12(t))+

(α2m
2
12(t)− δ2 E[X1X

2
2 ]− λ21m2

12(t) + λ12m
2
11(t)+

λ3,2m
2
13(t)− λ23m2

12(t));

dm2
13(t)

dt
= (−λ31m3(t)− λ13m1(t)) + (α1m

2
13(t)− δ1 E[X2

1X3]+

λ21m
2
23(t) + λ31m

2
33(t)− λ12m2

13(t)− λ13m2
13(t))+

(α3m
2
13(t)− δ3 E[X1X

2
3 ]− λ31m2

13(t)− λ3,2m2
13(t)+

λ13m
2
11(t) + λ23m

2
12(t));

dm2
22(t)

dt
= (α2m2(t) + δ2m

2
22(t) + λ21m2(t) + λ12m1(t) + λ3,2m3(t)+

λ23m2(t)) + 2(α2m
2
22(t)− δ2 E[X3

2 ]− λ21m2
22(t)+

λ12m
2
12(t) + λ3,2m

2
23(t)− λ23m2

22(t));

dm2
23(t)

dt
= (−λ3,2m3(t)− λ23m2(t)) + (α2m

2
23(t)− δ2 E[X2

2X3]−
λ21m

2
23(t) + λ12m

2
13(t) + λ3,2m

2
33(t)− λ23m2

23(t))+

(α3m
2
23(t)− δ3 E[X2X

2
3 ]− λ31m2

23(t)− λ3,2m2
23(t)+

λ13m
2
12(t) + λ23m

2
22(t));

dm2
33(t)

dt
= (α3m3(t) + δ3m

2
33(t) + λ31m3(t) + λ3,2m3(t) + λ13m1(t)+

λ23m2(t)) + 2(α3m
2
33(t)− δ3 E[X3

3 ]− λ31m2
33(t)−

λ3,2m
2
33(t) + λ13m

2
13(t) + λ23m

2
23(t));

To remove the dependence of second-order moments on higher-order mo-791

ments, is possible to apply the moment closure schema introduced in sec-792

tion 3.1 and formulated in (3.4).793

Supplement C: Reconstructing cell differentiation network
(http://www.e-publications.org/ims/support/dowload/imsart-ims.zip). In or-
der to investigate the structure of the differentiation tree, differentiation pa-
rameters λ are tested by means of the following asymptotic approximation
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derived from the generalized method of moments theory (?),

(7.1) θ̂ ∼ Nr(θ,Σ)

where θ̂ is the final vector estimates returned by Algorithm 1 and the asymp-
totic covariance matrix Σ is a r × r matrix, estimated by means of

(7.2) Σ̂ = [J(θ̂)
ᵀ
W (θ̂)−1J(θ̂)]−1.

These distributional consideration are used to define Wald-type tests for the794

differentiation parameters,795

H0 : λij = 0(7.3)

H1 : λij 6= 0.(7.4)

In general, we reject H0 and conclude that cell type i can differentiate into796

cell type j, if λ̂ij/
√

Σ̂λ̂ij
≥ zα. To take into account the positivity constraint,797

we consider a truncated normal distribution under H0 as asymptotic distri-798

bution, with mean zero and variance equal to the corresponding diagonal799

element of Σ̂ and domain restricted to [0,+∞).800

Supplement D: Simulation study with 5 cell types.801

(http://www.e-publications.org/ims/support/dowload/imsart-ims.zip). In this802

supplement, we describe the parameter setting used in the simulation study803

of section 5.1 and shown in Figure 2a. We consider a cell differentiation net-804

work with 5 cell types, and therefore 5 cell duplication parameters α, 5 cell805

death parameters δ, as well as 5 cell differentiation parameters λ:806

α = (1.0, 1.5, 1.8, 2.5, 2.8)

δ = (0.033, 0.03, 0.045, 0.0312, 0.043)

λ =


0 0.2 0.35 0 0
0 0 0 0.75 0
0 0 0 0.25 0.5
0 0 0 0 0
0 0 0 0 0


The Gillespie algorithm is implemented in C++ (Stroustrup, 1997) with the807

support of Eigen library (Guennebaud et al., 2010). Our inferential proce-808

dure, described in Algorithm 1, is implemented in R (R Core Team, 2015) by809

means of custom scripts requiring Matrix packages for efficient dense and810

sparse matrices manipulations Bates and Maechler (2015) and integrated811

with C++ scripts calling ODEint (Ahnert and Mulansky, 2011) routines812
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that are available in the Boost library (Nakariakov, 2013). The quadratic813

programming problem is solved by means of IBM ILOG CPLEX Op-814

timizer, freely available under IBM Academic Initiative program (IBM,815

2010). All code used in this manuscript can be found in the online Sup-816

plement, and the latest version of the code is available at github.com/817

dp3ll1n/SLCDP_v1.0.818

Supplement E: Local linear approximation
(http://www.e-publications.org/ims/support/dowload/imsart-ims.zip). In this
supplement, we describe a linear approximation of (4.1), which provides
quick estimates for the parameters θ. This linear estimate is used in this
paper in two different situations. First and foremost, it provides reasonable
initial values for the exact non-linear algorithm described in Section 4.1. Sec-
ondly, it serves as a comparison in the evaluation of the proposed inference
procedure for different sampling intervals. The linear approximation consists
of calculating a computationally efficient, albeit approximate, solution for
mi(s) and m2

i,j(s) in (??) by Euler’s method,

mi(s) ' xi,s−1 +

r∑
k=1

vk,ihk(xs−1;θ)∆t

m2
i,j(s) ' xs−1,ixs−1,j +

r∑
k=1

vk,jxs−1,ihk(xs−1;θ)∆t

+

r∑
k=1

vk,ixs−1,jhk(xs−1;θ)∆t+

r∑
k=1

vk,ivk,jhk(xs−1;θ)∆t(7.5)

Since (7.5) is linear in θ, the regression model in (4.1) can be conviently
reformulated as

(7.6) dx1:S = M0:S−1θ + ε1:S

where dx1:S = x1:S − x0:S−1 is column vector with observed cells counts
differences between consecutive time points, M0:S−1θ = V ᵀD(x0:S−1)∆tθ
is a compact matrix equivalent of (7.5) with D(xs) an r× r diagonal matrix
with the appropriate polynomial of xs and Var(εs) component is estimated
using Ω0:S−1 = V ᵀD(x0:S−1)∆tDiag (θ)V . Analogously to (4.2) the local
linear estimate θ̃ are derived by means of an iterative procedure, in which
the following constraint least squares problem is solved,
(7.7)
θ̃ = arg min

θ
(dx1:S−M0:S−1θ)ᵀ(Ω0:S−1)−1(dx1:S−M0:S−1θ) s. t. θ ≥ 0r.
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The first estimate θ̂(0), used also as a starting point for the non-linear819

procedure, is calculated assuming homoscedastic and uncorrelated errors820

Ωs = IN .821

Supplement F: Human hematopoiesis parameter estimates822

(http://www.e-publications.org/ims/support/dowload/imsart-ims.zip). In the823

main paper, we compare a large number of models. For the selected model,824

we provide here the parameter estimates.

Parameter Estimate Parameter Estimate
αCD34 HSC 8.006e+00 λCD34 HSC→CD3 BM 0.721
αCD3 BM 7.930e-01 λCD34 HSC→CD14 BM 0.867
αCD14 BM 9.187e-11 λCD34 HSC→CD15 BM 0.591
αCD15 BM 3.900e-10 λCD34 HSC→CD19 BM 1.453
αCD19 BM 1.251e-01 λCD34 HSC→CD56 BM 0.146
αCD56 BM 2.852e-10 λCD34 HSC→CD61 BM 0.335
αCD61 BM 5.737e-01 λCD34 HSC→GLY CO BM 0.713
αGLY CO BM 1.643e-10 λCD3 BM→CD3 PB 0.386
αCD3 PB 6.690e-11 λCD3 BM→CD4 PB 0.180
αCD4 PB 9.959e-11 λCD3 BM→CD8 PB 0.276
αCD8 PB 4.176e-11 λCD3 BM→CD56 PB 0.151
αCD14 PB 1.006e-10 λCD14 BM→CD56 PB 0.384
αCD15 PB 7.344e-11 λCD15 BM→CD14 PB 0.207
αCD19 PB 3.763e-11 λCD15 BM→CD15 PB 0.223
αCD56 PB 1.770e-10 λCD19 BM→CD4 PB 0.149
δCD34 HSC 2.393e-02 λCD19 BM→CD19 PB 0.372
δCD3 BM 1.735e-04 λCD19 BM→CD56 PB 0.054
δCD14 BM 2.308e-04 λCD56 BM→CD56 PB 0.153
δCD15 BM 2.510e-04 λCD61 BM→CD15 PB 0.281
δCD19 BM 2.322e-03 λCD61 BM→CD56 PB 0.085
δCD56 BM 6.831e-04 λGLY CO BM→CD14 PB 0.153
δCD61 BM 4.734e-03
δGLY CO BM 1.333e-03
δCD3 PB 1.417e-04
δCD4 PB 3.366e-04
δCD8 PB 2.601e-05
δCD14 PB 1.512e-03
δCD15 PB 5.115e-04
δCD19 PB 4.390e-04
δCD56 PB 2.630e-04

Table 1
Parameter estimates for hematopoiesis in human, in-vivo, based on gene therapy clinical

trial data, assuming an underlying stochastic cell differentiation process.

825

Supplement G: Parameter estimates sensitivity to random ini-826

tialization827

(http://www.e-publications.org/ims/support/dowload/imsart-ims.zip). Here828

we show the sensitivity of the estimates to random initializations.829
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8 D. PELLIN ET AL.

Fig 10. Sensitivity analysis to random initialization. Model m̃ has been estimated
starting from 100 different θ̂(0) settings. Duplication and differentiation rates are sampled
from a Normal distribution with N (0.1, 0.1) and death rates from a N (0.01, 0.01). Abso-
lute value transformation was applied to avoid negative initial values. The distribution of
logarithm of the ratio between the random restart estimates and the local linear initializa-
tion estimate (Ref. estimate, see values in Appendix Supplement F) is represented using
boxplots.
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