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Abstract

Clonal dominance is a wake-up-call for adverse events in gene therapy applications.
This phenomenon has mainly been observed as a consequence of a malignancy
progression, and, in some rare cases, also during normal haematopoiesis. We propose
here a random-effects stochastic model that allows for a quick detection of clonal
expansions that possibly occur during a gene therapy treatment.

Starting from the Ito-type equation, the dynamics of cells duplication, death and
differentiation at clonal level without clonal dominance can be described by a local linear
approximation. The parameters of the base model, which are inferred using a maximum
likelihood approach, are assumed to be shared across the clones. In order to incorporate
the possibility of clonal dominance, we extend the base model by introducing random
effects for the clonal parameters. This extended model is estimated using a tailor-made
expectation maximization algorithm. The main idea of this paper is to compare the
base and the extended models in high dimensional clonal tracking datasets by means of
Akaike Information Criterion in order to detect the presence of clonal dominance. The
method is evaluated using a simulation study, and is applied to investigating the
dynamics of clonal expansion in a in-vivo model of rhesus macaque hematopoiesis.

Author summary

Preventing or quickly detecting clonal dominance is an important aspect in gene
therapy applications. Over the past decades, clonal tracking has proven to be a
cutting-edge analysis capable to unveil population dynamics and hierarchical
relationships in vivo. For this reason, clonal tracking studies are required for safety and
long-term efficacy assessment in preclinical and clinical studies. In this work we propose
a random-effects stochastic framework that allows to investigate events of clonal
dominance using high-dimensional clonal tracking data. Our framework is based on the
combination between stochastic reaction networks and mixed-effects generalized linear
models. We have shown in a simulation study and in a real world application that our
method is able to detect the presence of clonal expansions. Our tool can provide
statistical support to biologists in gene therapy surveillance analyses.
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Introduction

The idea of gene therapy is that the correction of the defective gene(s) underlying the
disease is, in principle, sufficient for inducing disease remission or even full recovery [1].
Since the blood system possesses a hierarchical structure with haematopoietic stem cells
(HSC) at its root [2], correction of HSCs might be sufficient to eradicate a genetic
disease in the blood system. Since transduction of stem cells has proven to be less
efficient than transduction of more mature cells, it might be necessary to allow very high
gene transfer rates, i.e., multiple vector copies, to ensure efficient genetic modification of
HSCs [3, 4]. But genetic modification of large numbers of cells is associated with the
higher probability of unintentional vector insertion events near the growth-regulatory
genes that may lead to insertional mutagenesis [5–7]. One particular drawback of
insertional mutagenesis is the phenomenon of clonal dominance, which occurs if one or
more clones dominate cell production [8]. The most extreme case of clonal dominance is
monoclonality, where an entire tissue is dominated by the progeny of one particular cell.
Although different gradients of clonal dominance (oligoclonality) exist, a precise
threshold that defines dominance is hard to be specified in general, and thus a clear
definition of what is meant by clonal dominance is required for any particular study.

Clonal dominance in malignant haematopoiesis has been previously identified as a
consequence of a clonal competition that is corrupted by disease progression [9, 10].
However, clonal dominance has also been observed in normal haematopoiesis, even in
the case of truly neutral clonal markers [11–13]. Indeed, on the basis of various
mathematical models, progression of monoclonality has been discussed also for normal
(non-leukaemic) stem cell systems [14–18]. While there is strong evidence for clonal
selection inducing monoclonal systems in the crypts of the small intestine [19–22], such
a process has not been demonstrated for the haematopoietic system yet. To shed more
light on those mechanisms, in this manuscript we extend the work of [23, 24] and
propose a random-effects cell differentiation network to model the dynamics of clonal
expansions for high dimensional clonal tracking data.

More in detail, starting from the definition of the master equation [25], a set of Ito
stochastic differential equations is derived to describe the first-two-order moments of the
process. We estimate the parameters of the Ito system from its Euler-Maruyama local
linear approximation (LLA) [26]. We propose a new inference procedure in the LLA
formulation using a maximum likelihood approach, replacing the iterative weighted least
square algorithm previously developed in [23,24]. Although the base LLA model
formulation has been shown to be effective in modelling cell differentiation [24], it has
some limitations as it only provides an average description of the dynamics across all
the clones, and does not take into account possible extreme behaviour. Indeed in the
base model all the dynamics parameters are shared across the clones, and thus is not
possible to identify heterogeneous clonal patterns. Thus the base LLA formulation
cannot be used to model clonal dominance. Therefore in this work we further increase
the flexibility of the base LLA model to check if the process dynamics is mainly due to
few clones and if those dominate a particular cell type. To this end we introduce
random effects for the clones inside the LLA formulation, providing a mixed-effects LLA
model. Then, if the mixed model outperforms the fixed one in terms of Akaike
Information Criterion we use the former to infer the process parameters in order to
identify which clones are mainly expanding and in which cell compartments. As every
mixed-effects formulation, inference of parameters is performed by means of an
expectation-maximization algorithm, for which we developed an efficient
implementation. Effectively, our random-effects LLA formulation describes a stochastic
process of clonal dominance on a network of cell lineages. We tested and validated our
method using a simulation study. Finally, our model allowed to investigate the
dynamics of clonal expansion in a in-vivo model of rhesus macaque hematopoiesis [27].
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Materials and Methods

This section contains background on clonal tracking data and a description of a Rhesus
Macaques study. We also provide a concise description of the clonal dominance model
and inference procedure. A more comprehensive, mathematical description can be found
in Section 1 of S1 Text.

Clonal tracking data

There are several high-throughput systems capable to quantitatively track cell types
repopulation from an individual stem cell after a gene therapy treatment [28–30].
Tracking cells by random labeling is one of the most sensitive systems [31]. In gene
therapy applications, haematopoietic stem cells (HSCs) are sorted from the bone
marrow of the patient and uniquely labeled by the random insertion of a viral vector
inside its genome. Each label, called clone, vector integration site (VIS), or barcode, is
defined as the genomic coordinates where the viral vector integrates. After
transplantation, all the progeny deriving through cell differentiation inherits the original
labels. During follow-up, the labels are collected from tissues and blood samples using
Next Generation Sequencing (NGS) [32–35]. Therefore NGS does allow identifying,
quantifying and tracking clones arising from the same HSC ancestor. Over the past
decades, clonal tracking has proven to be a cutting-edge analysis capable to unveil
population dynamics and hierarchical relationships in vivo [36–39].

We consider single cell barcode data collected from an established hematopoietic
stem cell gene therapy model previously used to investigate the hematopoietic
reconstitution in Rhesus Macaques. [27] applied a lentiviral cellular barcoding
technology to rhesus CD34+ HSPCs, thus allowing clonal tracking after myeloablative
autologous transplantation. In particular, mobilized peripheral blood (MPB) CD34+
cells from three macaques were transduced with barcoded vectors, and 7.8-16.7 million
autologous GFP+ cells were reinfused after an ablative total body irradiation.
Following engraftment, myeloid Granulocytes (G), Monocytes (M), and lymphoid T, B,
and Natural Killer (NK) cells were flow sorted (purity median 98.8%).

The authors showed with high confidence ( > 95%) that a single barcode marked
only one HSPC clone at these transplanted doses [40, 41]. Thus, only a minority of
clones containing more than one barcode would skew calculations of the frequency of
repopulating clones upward, but would not impact analysis of lineage contributions or
kinetics. Barcode retrieval by PCR, Illumina sequencing, and custom data analysis was
performed on purified hematopoietic lineage samples monthly for 9.5 months (ZH33),
6.5 months (ZH17), and 4.5 months (ZG66) [42]. They demonstrated high
reproducibility of barcode retrieval and quantitation via sequencing several replicates on
the same collected DNA samples. They also assayed independently processed replicate
blood samples to identify a lower barcode read threshold that would result in 95%
barcode retrieval between replicates. In particular they established a sampling error
threshold of 1144 reads. Therefore we also considered the same reads threshold here, so
as to be consistent with the previous studies. The total numbers of clones collected are
1165 (ZH33), 1280 (ZH17), and 1291(ZG66). To further remove bias, we only focused on
the clones recaptured at least 5 times across lineages and time. This resulted in a subset
of clones of size 481(ZH33), 139 (ZH17), and 202 (ZG66). Further details on
transduction protocols and culture conditions can be found in the original study.
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A stochastic model for cell differentiation

We consider three event types, such as cell duplication, cell death and cell differentiation
for a time counting process

Yt = (Y1t, . . . , YNt) (1)

of a single clone in N distinct cell lineages. The time counting process Yt for a single
clone in a time interval (t, t+�t) evolves according to a set of reactions {vk}k and
hazard functions {hk}k defined as

vk =

8
><

>:

(0 . . . 1i . . . 0)0

(0 · · ·� 1i . . . 0)0

(0 · · ·� 1i . . . 2j . . . 0)0
hk(Yt, ✓i) =

8
><

>:

Yit↵i for duplication

Y 2
it�i for death

Yit�ij for differentiation

(2)

which contains a linear growth term with a duplication rate parameter ↵i > 0, a
quadratic term for cell death with a death rate parameter �i > 0, and a linear term to
describe cell differentiation from lineage i to lineage j with differentiation rate �ij > 0
for each i 6= j = 1, . . . , N . Finally we use the LLA formulation of Section 1.3.1 from S1
Text with net-effect matrix and hazard vector defined as

V =
⇥
v1 · · · vK

⇤
; h(Yt; ✓) =

⇥
h1(Yt; ✓) · · ·hK(Yt; ✓)

⇤0
(3)

In this formulation we implicitly assume that cells belonging to the same lineage obey
to the same dynamics laws, that is all the clones share the same vector parameter ✓. In
case we argue that clones behave differently in terms of dynamics we can use the
random-effects LLA formulation of Eq. (6), where the random effects are defined on the
vector parameter ✓ w.r.t. the clones. This is the case in our application study presented
in next section, where we check wether there is heterogeneity in the clones for the
duplication and death parameters, which we use as a proxy for a clonal expansion or
contraction.

LLA formulation of clonal dominance

Let Yt = (Y1t, . . . , YNt) be a collection of “cells” of N different types at time t obeying
to a network of stochastic biochemical reactions defined by a net-effect matrix
V 2 ZN⇥K , a vector parameter ✓ and an hazard vector
h(Y, ✓) = (h1(Y, ✓), . . . , hK(Y, ✓)) and let
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be the local linear approximation of an Ito-type equation written in generalized linear
model formulation (see Section 1 of S1 Text for details) where

�Yt =
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dW (t)

dW (t) ⇠ NN (0,�tIN )

(5)

�2 is the noise variance, Mt✓ the mean drift, Wt(✓) the diffusion matrix, and
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�Yt = Yt+�t � Yt is a finite-time increment. In system (4) all the cell counts Y1, . . . , YN

share the same parameter vector ✓. To infer the parameters of (4)-(5) we developed a
maximum likelihood algorithm which is fully described in Section 1.4 of S1 Text. In
some cases it may happen that the cells being analysed are drawn from a hierarchy of J
different populations that possibly behave differently in terms of dynamics. In this case
it might be of interest to quantify the population-average ✓ and the subject-specific
effects u around the average ✓ for the description of the subject-specific dynamics.
Therefore we introduce here a novel stochastic framework which is more flexible then
the base LLA model thus allowing for the quantification of clonal contribution to the
process. In particular, to quantify the contribution of each subject j = 1, . . . , J on the
process dynamics we extend the LLA (4) with a mixed-effects model [43] introducing
random effects u for the J distinct subjects on the parameter vector ✓, leading to a
random-effects stochastic reaction network (RestoreNet). The extended random-effects
formulation becomes

�Y =

2

4
M1 0

. . .
0 MJ

3

5

| {z }
M2RN⇥Jp

u+ " u ⇠ NJp

 
1J ⌦ ✓| {z }
✓u

, IJ ⌦

2

4
⌧2
1 0
. . .

0 ⌧2
p

3

5

| {z }
�u

!
(6a)

" ⇠ NJp(0,⌃(✓,�
2)) (6b)

where M is the block-diagonal design matrix for the random effects u centered in ✓,
where each block Mj is subject-specific. As in the case of the null model (4), to explain
additional noise of the data, which has the additional advantage of avoiding singularity
of the covariance matrix W (✓), we add to its diagonal a small quantity �2 which we
infer from the data. Under this framework it can be shown that

u|�Y ⇠ NJp(Eu|�Y ; [u], Vu|�Y ; (u)) (7)

where  = (✓,�2, ⌧21 , . . . , ⌧
2
p ) is the set of all the unknown parameters. Once the

parameters are estimated (see next section for inference details), the conditional
expectations Eu|�Y ; [u] can then be used as a proxy for the clone-specific rate
parameters. This method allows to infer the clone-specific dynamic by extremely
reducing the problem dimensionality from J · p to 2 · p+ 1 (J � 2).

Inference procedure

In order to infer the Maximum Likelihood estimator  ̂ for  = (✓,�2, ⌧21 , . . . , ⌧
2
p ) we

develop an efficient tailor-made Expectation-Maximization algorithm where the
collected cell increments �Y and the random effects u take the roles of the observed
and latent states respectively. The full analytical expression of Eu|�Y ; [u], Vu|�Y ; (u),
the E-step function Q( | ⇤) = Eu|�Y ; ⇤ [`(�Y, u; )] and its partial derivatives
@
@ j

Q( | ⇤) are available (see Section 1.4 of S1 Text). In the EM-algorithm we

iteratively update the E-function Q( | ⇤) using the current estimate  ⇤ of  and then
we minimize the �Q( | ⇤) w.r.t.  . As the E-step function Q( | ⇤) is non-linear, we
used the L-BFGS-B algorithm from the optim() base R function for optimization, to
which we provided the objective function, along with its gradient r Q( | ⇤), as input.
Given the high-dimensionality of the clones being analysed, and due to the sparsity of
the clonal tracking datasets, the E-step function Q( | ⇤) and its gradient r Q( | ⇤)
are written in a sparse block-diagonal matrix fashion, so as to reduce computational
complexity and memory usage. The EM algorithm is run until a convergence criterion is
met, that is when the relative errors of the E-step function Q( | ⇤) and the parameters
 ⇤ are lower than a predefined tolerance.
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Fig 1. Logarithmic rescaled clonal abundance (y-axis) over time (x-axis) in each lineage (colors)
of each treated animal (a-c). The thin lines are clone-specific, while the thick lines are the
average across the clones. Data is rescaled according to equation (19) from S1 Text.

Once we get the EM estimate  ̂ for the parameters we evaluate the goodness-of-fit of
the mixed-model according to the conditional Akaike Information Criterion [44]. As
every EM algorithm, the choice of the starting point  s is very important from a
computational point of view. We chose  s = (✓s,�2

s , ⌧
2
1 = 0, . . . , ⌧2p = 0) as a starting

point where (✓s,�2
s) is the optimum found in the fixed-effects LLA formulation (4).

This is a reasonable choice since we want to quantify how the dynamics Eu|�Y ; ̂[u]j of

each subject (clone) j departs from the average dynamics ✓s. With the help of
simulation studies (see Section 2 of S1 Text) we empirically proved that this choice
always led to a conditional expectation Eu|�Y ; [u] consistent with the true
clone-specific dynamic parameters ✓. Computational details can be found in Section 1.4
of S1 Text. The pseudocode of the EM algorithm is provided in Algorithm 3 of S1 Text.

Computational implementation

The maximimul likelihood inference for the basal model and the expectation
maximization algorithm for the random-effects model are implemented in the

package RestoreNet. Few minimal working examples showing the usage of the
package are provided in Section 5 of S1 Text.

Results

A first comparative evaluation study on synthetic data, whose results are provided in
Section 2 of S1 Text, shows how the proposed random-effects formulation is able to
identify clonal dominance. We found that the random-effects model reached a
significantly lower AIC than the null model, thus detecting the simulated dominance of
a single clone into a cell type.

Next, we compared the base and random-effects models on the clonal tracking data
of the rhesus macaque study fully described in Section “Clonal tracking data”.
Although the sample DNA amount was maintained constant during the whole
experiment (200 ng for ZH33 and ZG66 or 500 ng for ZH17), the sample collected
resulted in different magnitudes of total number of reads (see Table 2 from S1 Text).
This discrepancy makes all the samples not comparable across time and cell types.
Therefore we rescaled the barcode counts according to Eq. (19) from S1 Text, and we
report the rescaled cell counts, at clonal level, in Fig. 1. Since the CD34+ cells were not
collected, we only estimated the duplication parameters ↵T , ↵B , ↵NK , ↵M , ↵G and the
death parameters �T , �B , �NK , �M , �G of the lymphoid (T, B, NK) and myeloid (M, G)
cells. Therefore the differentiation parameters are not present in our model, and the
net-effect matrix and the hazard vector are obtained from Eq. (2) - (3) accordingly. The
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p AIC KLdiv KLdiv/n

ZH33
M0 11.00 81377.27
M1 434.16 38160.15 21062.95 1.87

ZH17
M0 11.00 336752.11
M1 478.43 29478.05 291854802.44 114228.89

ZG66
M0 11.00 31194.60
M1 410.92 21384.85 232030.37 83.77

Table 1. Comparison between fixed and mixed effects model: Number of parameters (p),
Akaike Information Criterion (AIC), Kullback-Leibler divergence (KLdiv) and rescaled KLdiv

(KLdiv/n) for the fixed (M0) and the mixed (M1) models in each treated individual.

a ZH33

T
B

N
K

G
M

0 4 8

b ZH17

T
B

N
K

G
M

0 40 80

c ZG66

T
B

N
K

G
M

0 2 4
Fig 2. For each animal analyzed (a-c), the boxplots of the conditional expectations
Eu|�Y ; ̂[u

k
↵l
]� Eu|�Y ; ̂[u

k
�l
] computed from the estimated parameters  ̂ for the clone-specific

net-duplication ↵l � �l in each cell lineage l (different colors). The whiskers extend to the data
extremes.

corresponding model becomes effectively a birth/death model. We fitted both the fixed
model (4) and the mixed-effects model (6) separately to the data of each animal, where
J is equal to 481 (ZH33), 139 (ZH17), and 202 (ZG66) respectively. The size of the
dynamic vector parameter ✓ is equal to 10, that is one scalar value for each combination
of the five cell types with the duplication and death reactions. Also, N equals 11275
(ZH33), 2555 (ZH17), and 2770 (ZG66), while the number of time-points T is equal to 6
(ZH33), 5 (ZH17), and 4 (ZG66).

We report the results on model selection in Table 1 and the estimated parameters  ̂
in Table 3 of Section 4 from S1 Text. Then, from the estimated parameters  ̂ following
Eq. (18) from S1 Text we computed the conditional expectations
Eu|�Y ; ̂[u

k
↵l
]� Eu|�Y ; ̂[u

k
�l
], which we use as a proxy for the k-th clone-specific

net-duplication ↵l � �l in each cell lineage l. The resulting values are reported in Fig. 2
in a box-plot fashion. To visualize our findings at clonal level, in Fig. 3 we propose to
use a weighted pie chart. Each pie corresponds to a particular clone and is weighted by
the corresponding conditional expectations Eu|�Y ; ̂[u

k
↵l
]� Eu|�Y ; ̂[u

k
�l
]. The biological

interpretation of this figure is that the larger the diameter, the more the corresponding
clone is dominating cell production into the lineage associated to the largest slice.

As a result, according to the AIC values, in each treated individual the mixed model
(M1) outperformed the fixed one (M0). This means that the clones did not follow the
same average dynamics for the birth/death process. Instead, the dynamic of some
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Fig 3. Graphical representation of the results obtained with the proposed the mixed effects
model: Random effects for the clones to the process parameters of the rhesus macaques ZH33 (a),
ZH17 (b) and ZG66 (c). Each k-th clone is identified with a pie whose slices are lineage-specific
and weighted with wk defined as the difference between the corresponding duplication and death
parameters, that is wk = Eu|y[u

k
↵lin

]�Eu|y[u
k
�lin

]. The diameter of the k-th pie is proportional
to the euclidean 2-norm of wk. The legend scales are different across the three plot panels.

clones departed from the average dynamics with a significant (random) effect. In
particular, the conditional net-duplication rates Eu|�Y ; ̂[u

k
↵l
]� Eu|�Y ; ̂[u

k
�l
] of Fig. 2 -

3 suggest that there is clonal dominance in specific cell lineages. As an example, for the
animals ZH33 and ZG66 we observed clonal expansions into NK cells with high
conditional rates. Whereas, for the animal ZH17 we observed clonal expansions into G

and B cell lineages with high conditional rates. Finally, for the animal ZG66 we also
observed events of clonal dominance into M and T cell lineages. Furthermore, the
weighted pie charts shown in Fig. 3 reveal different gradients of clonal dominance
between the three rhesus macaques. As an example, looking at the size of the pies it is
possible to observe an higher clonal dominance of NK cells in ZH33 and of G cells in
ZH17 compared to the expansions of M, NK and T cells detected in ZG66, where the
diameters of the clone-specific pies are rather similar. Not only does the proposed
mixed effect model detect clonal dominance of certain cell types, it is also able to detect
which clones are responsible.

Discussion and conclusion

In this work we proposed a random-effects cell differentiation network which takes into
account heterogeneity in the dynamics across the clones. Our framework extends the
clone neutral local linear approximation of a stochastic quasi-reaction network, written
in the Ito formulation, by introducing random-effects for the clones to allow for clonal
dominance. To infer the parameter of the base (fixed-effects only) model we used a
maximum likelihood approach. Whereas, to infer the parameters of the random-effects
model, we have developed an expectation-maximization (EM) algorithm. We tested our
framework with a ⌧ -leaping simulation study (see Section 2 from S1 Text for details),
showing accurate performance of the method in the identification of a clonal expansion
and in the inference of the true parameters. Subsequently, the application of the method
on a rhesus macaque clonal tracking study revealed significant clonal dominance for
specific cell types. Particularly interesting is that the NK clonal expansions detected by
our model were already observed by former studies [27,45,46], and therefore our findings
are consistent with those previously obtained. Indeed [45] described the oligoclonal
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expansions of NK cells and the long-term persistence of HSPCs and immature NK cells.
The main approximation in both the basal and random-effects formulations is the

piece-wise linearity of the process. That is, in both cases we consider first a local linear
approximation of the Ito equation, which then we use to infer the process parameters
either with or without random-effects. Although the linearity assumption makes all the
computations easier, this approximation becomes poor as the time lag increments (the
�ts) of the collected data increase. This can be addressed by introducing in the
likelihood higher-order approximation terms than the ones considered by the
Euler-Maruyama method. The Milstein approximation is a possible choice. Another,
completely different, approach is to employ extended Kalman filtering (EKF) which is
suitable for non-linear state space formulations. Also, our framework cannot consider
false-negative errors or missing values of clonal tracking data. Also for this issue, an
EKF formulation could be a possible extension.

Our tool can be considered as complementary to the classical Shannon entropy
index [47] in detecting fast and uncontrolled growing of clones after a gene therapy
treatment. Indeed, while the Shannon entropy measures the diversity of a population of
clones as a whole, RestoreNet provides a clone-specific quantification of dominance in
terms of conditional mean and variance of the expansion rates. In conclusion, our
proposed stochastic framework allows to detect deviant clonal behaviour relative to the
average dynamics of hematopoiesis. This is an important aspect for gene therapy
applications where is crucial to quickly detect clonal dominance to prevent any adverse
event that may be related to malignant scenarios. Therefore our tool can provide
statistical support to biologists in gene therapy surveillance analyeses. With slight
modifications our framework can be applied to every study of population dynamics that
can be described with an Ito-type formulation, even when the whole population needs
to be drawn from an hierarchical structure having subject-specific dynamics.

S1 Text Stochastic inference of clonal dominance in gene therapy studies
(PDF)
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S1 Text: Stochastic inference of clonal dominance in gene
therapy studies

L. Del Core et al.
l.del.core@rug.nl

1 Mathematical details

1.1 Stochastic quasi-reaction networks

Stochastic quasi-reaction networks (S-QRN) allow to implement a particular class of
stochastic differential equations that can be used to model biochemical reactions. More
formally, let

Yt = (Y1t, . . . , YNt)

be a collection of molecules of N different types observed at time t, and consider K
distinct (and competing) reactions

rj1Y1 + · · ·+ rjNYN
✓j! pj1Y1 + · · ·+ pjNYN j = 1, . . . ,K (1)

each occurring with its own rate ✓j . The coefficients rji’s defining the left-side of the
reaction are called reagents and represent the minimum amount of molecules of type
i needed for the j-th reaction to occur. Similarly, the coefficients pji defining the
right-side of the reaction are called products and represents the amount of produced
molecules of type i after the j-th reaction is triggered. We assume that, if we observe
Y0 = (rj1, . . . , rjN ) molecules at time t = 0, the j-th reaction will occur after

Tj ⇠ exp(✓j), j = 1, . . . ,K

Namely, if exactly rij molecules of each type i would be present, then the j-th reaction
can only take place in one way, with the exponential hazard rate ✓j . The interpretation
is that, after a waiting time Tj , rji molecules of type i collide with each other and
produce pji molecules of type i (8i = 1, . . . , N), while the molecules move randomly in
a hosting “cellular” environment. However, in general at time t = 0 we might observe
Yi0 � rji molecules of each type i and, therefore, the j-th reaction can take place in a
combinatorial number of ways leading to the following waiting time formulation

Tj ⇠ exp

 
✓j

NY

i=1

✓
Yi0

rji

◆!

| {z }
h(Y0,✓)

, where

✓
x

y

◆
= 0 for x < y (2)

In this case, the effect will be that at time t+ Tj we have the following expression for
the number of molecules of substrate i,

Yi,t+Tj = Yit + pji � rji = Yit + vji (3)

where vji = pji � rji is the j-th net effect. More compactly, for a set of K reactions and
N species, the molecular transfer from reagent to product species is a net change of

V = P �R
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Algorithm 1: ⌧ -leaping algorithm

Input: S (no. simulations), Y0(initial state), ⌧ (time lag),
✓(t) (reaction rates)

Output: {Yt}t
t 0;
Yt  Y0;
for s = 1 : S do

for r = 1 : K do

⇥r
t =

R t+�t
t ✓r(s)ds ;

end

Yt+�t  Yt + V

2

64

⇥1
t

Qp
i=1

�Yit

r1i

�

...
⇥K

t

Qp
i=1

�Yit

rKi

�

3

75;

t t+ ⌧ ;
end

where P = [pji]0 denotes the N ⇥ r dimensional matrix of products, R = [rji]0 is the
N ⇥ r dimensional matrix of reactants, and V = [vji]0 is an N ⇥ r dimensional matrix
called net-effect matrix. Therefore, a S-QRN of K-distinct reactions is fully identified
by a net-effect matrix V and by the hazard vector

h(Y, ✓) =
⇥
h1(Y, ✓) · · · hK(Y, ✓)

⇤0

1.2 Simulating a trajectory of molecules

A ⌧ -leaping algorithm is an alternative method to a Gillespie algorithm for simulating
triggering-chain events. Instead of simulating a waiting time for the first reaction to
occur and selecting the corresponding winner reaction, a ⌧ -leaping algorithm simulates
the number of occurrences of each possible event after a time-lag equal to ⌧ elapsed.
Formally, let {Nr(t)}t�0 be an inhomogeneous Poisson point process representing the
number of reactions of type r that took place up to (and including) time t. Therefore

Nr(t) ⇠ Poisson

✓Z t

0
✓(s)ds

◆
and (4)

E[Nr(t+�t)�Nr(t)] =

Z t+�t

t
✓(s)ds =^ ⇥r

t (5)

The last equation gives an estimate of the expected number of reactions of type r that
took place within the time interval [t, t +�t[. Furthermore, the expected number of
molecules Yt+�t at time t+�t given the current number of molecules Yt is given by

Yt+�t = Yt + V

2

64

⇥1
t

Qp
i=1

�Yit

r1i

�

...
⇥K

t

Qp
i=1

�Yit

rKi

�

3

75 (6)

The pseudocode of the ⌧ -leaping algorithm (⌧ -LA) is reported in Algorithm 1.
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1.3 Inference of the rates

1.3.1 Local linear approximation

In order to estimate the rates ✓ =
⇥
✓1 · · · ✓K

⇤0
, we focus on the first two-order

moments of the process, that is we consider the Ito equation

dYt = µ(dYt; ✓)dt+ �1/2(dYt; ✓)dW (t) dW (t) ⇠ N(0, dtI) (7)

where dYt = Yt+dt � Yt is an infinitesimal time drift and µ(dYt; ✓) and �(dYt; ✓) are
called mean-drift and diffusion respectively. Given a �-algebra (⌦,F ,P), the solution

Y : [0,+1)⇥ ⌦! RN

of (7) is called Ito diffusion. Instead of finding the Ito diffusion itself, we focus on the
first two-order moments µ(dYt; ✓) and �(dYt; ✓) of the infinitesimal time drift dYt which
can be approximated with the following Lemma and Proposition.

Lemma 1. Given the hazard function as a limit of a conditional probability

h(t) = lim
dt!0

P(T < t+ dt|T > t)

dt

for small dt the following approximation holds

h(t)dt ⇡ P(T < t+ dt|T > t)

Furthermore, the event {Yt+dt � Yt = V·j} ⌘ {Yt+dt = Yt + V·j} occurs with probability
P(Tj < t+ dt|Tj > t).

Proposition 1. An approximation of the mean drift µ(dYt; ✓) and the diffusion �(dYt; ✓)
for a small time increment dt is given by

µ(dYt; ✓) ⇡
small dt

V h(Yt, ✓) (8)

�(dYt; ✓) ⇡
small dt

V

"
h1(Yt;✓)

...
hK(Yt;✓)

#

| {z }
diag(h(Yt,✓))

V 0 (9)

Proof.

µ(dYt; ✓) =
^ lim

dt!0

E[dYt|Yt, ✓]

dt

= lim
dt!0

PK
j=1 P(Tj < t+ dt|Tj > t)V·j

dt

⇡
small dt

lim
dt!0

PK
j=1 hj(Yt, ✓)V·j

dt
= V h(Yt, ✓)

�(dYt; ✓) =
^ lim

dt!0

Cov(dYt|Yt, ✓)

dt

= lim
dt!0

E[dYtdY 0
t |Yt; ✓]� E[dYt|Yt; ✓]E[dYt|Yt; ✓]0

dt

⇡
small dt

PK
j=1 V·jV 0

·jhj(Yt; ✓)dt� V h(Yt; ✓)h0(Yt; ✓)V 0dt2

dt

=
KX

j=1

V·jV
0
·jhj(Yt; ✓) = V

2

64
h1(Yt; ✓)

. . .
hK(Yt; ✓)

3

75V 0
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Using previous results and some linear algebra, the approximated Ito equation (7) can
be further approximated as

�Yt =

Mtz }| {

V

2

4

QN
i=1 (

Yit
r1i

)
. . . QN

i=1 (
Yit
rKi

)

3

5�t

"
✓1
...
✓K

#

| {z }
✓

+

0

BBBB@
V

"
h1(Yt,✓)

. . .
h1(Yt,✓)

#
V 0

| {z }
Wt(✓)

+�2IN

1

CCCCA

1/2

�W (t)

�W (t) ⇠ NN (0,�tIN )
(10)

or more compactly

�Yt = Mt✓ + " �W (t) ⇠ NN (0,Wt(✓) + �2IN ) (11)

where we included the term �2IN so as to prevent singularity of the diffusion term, and
to additionally explain noise variance. In practice, since we collect only discrete-time
increments �Yt = Yt+�t�Yt, we consider an Euler-Maruyama local linear approximation
(LLA) of the approximated Ito equation. Indeed we also replaced the infinitesimal incre-
ments dt and dYt with the discrete increments �t and �Yt. Then, all the time-specific
blocks can be stacked together obtaining the full generalized linear model (GLM) formula-

tion

2

4
�Yt0

...
�YtT�1

3

5

| {z }
�Y

=

2

4
Mt0

...
MtT�1

3

5

| {z }
M

"
✓1
...
✓K

#

| {z }
✓

+"; " ⇠ NNT

0

BBBBB@
0,

⌃(✓,�2)z }| {2

4
Wt0 (✓)

. . .
WtT�1

(✓)

3

5

| {z }
W (✓)

+�2INT

1

CCCCCA
(12)

which is convenient for parameters inference.

1.3.2 Maximum Likelihood (ML)

We infer the parameters (✓,�2) with a maximum likelihood approach, that is we solve
the following constrained optimization problem

✓̂pML  argmin
✓�0;�2�0

f(✓,�2) (13)

where the objective function is

f(✓,�2) = log(|W⇤|) + (dX �M✓)0W�1
⇤ (dX �M✓) (14)

and we compactly write the diffusion matrix W⇤ = W (✓,�2) as a function of the free
parameters. Using the rules of matrix calculus [1], the partial derivatives of f w.r.t. ✓
and �2 can be written as

r✓f(✓,�2) = r✓log(|W⇤|) + dX 0r✓W�1
⇤ dX + 2✓0M 0W�1

⇤ M+

� 2(M 0W�1
⇤ + ✓0M 0r✓W�1

⇤ )dX + ✓0M 0r✓W�1
⇤ M✓

(15)

r�2f(✓,�2) = r�2 log(|W⇤|) + dX 0r�2W�1
⇤ dX+

� 2✓0M 0r�2W�1
⇤ dX + ✓0M 0r�2W�1

⇤ M✓

tr
�
W�1

⇤
�
� (dX �M✓)0W�1

⇤ W�1
⇤ (dX �M✓)

(16)

where
@

@✓j
W�1

⇤ = �W�1
⇤

@

@✓j
W⇤W

�1
⇤ ;

@

@✓j
W⇤ = W ((. . . , 1, . . . )

j
, 0)
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Algorithm 2: Maximum Likelihood inference for the base (null) model.

Input: M , dX, ↵, �
Output: ✓̂pML
✓̂pML  ✓k

argmin
✓�0;�2�0

�
log(|W⇤|) + (dX �M✓)0W�1

⇤ (dX �M✓)
 

@

@�2
W�1

⇤ = �W�1
⇤ W�1

⇤ ;
@

@✓j
log|W⇤| = tr

✓
W�1

⇤
@

@✓j
W⇤

◆
;

@

@�2
log|W⇤| = tr

�
W�1

⇤
�

Then, we solve (26) by using the objective function (14) and its gradients (15)-(16)
inside the L-BFGS-B optimization algorithm from the optim() function of the stats R

package. The inference procedure is summarised in Algorithm 2.

1.4 A mixed effects LLA model

In the system (24) all the molecules Y1, . . . , YN share the same parameter vector ✓.
In some cases it may happen that the molecules being analysed are drawn from a
hierarchy of J different populations having different properties. In this case it might be
of interest to quantify the population-average ✓ and the subject-specific effects u around
the average ✓ for the description of the subject-specific dynamics. Therefore, to quantify
the contribution of each subject j = 1, . . . , J on the process’s dynamics we extended the
LLA (24) by introducing random effects u for the J distinct subjects on the parameter
vector ✓, leading to the following mixed-effects [2] formulation

�Y =

2

64
M1 0

. . .
0 MJ

3

75

| {z }
M2RN⇥Jp

u+ " " ⇠ N(0,⌃(✓,�2)) (17a)

u ⇠ NJp

0

BBBBBB@
1J ⌦ ✓| {z }
✓u

, IJ ⌦

2

64
⌧21 0

. . .
0 ⌧2p

3

75

| {z }
�u

1

CCCCCCA
(17b)

where M is the block-diagonal design matrix for the random effects u centered in ✓,
where each block Mj is subject-specific. As in the case of the null model (24), to explain
additional noise of the data and to avoid singularity of the stochastic covariance matrix
W (✓) we added to its diagonal a small unknown quantity �2 which we infer from the
data. In order to infer the maximum likelihood estimator  ̂ for  = (✓,�2, ⌧21 , . . . , ⌧

2
p )

we developed an efficient tailor-made expectation-maximization algorithm where �Y
and u take the roles of the observed and latent states respectively. Under this framework

p(u|�Y ) /u p(�Y |u)p(u)

/u exp

✓
�1

2
u0(M0⌃�1(✓,�2)M+��1

u )u+ u0(M0⌃�1(✓,�2)�Y +��1
u ✓u)

◆

and therefore

u|�Y ⇠ NJp(Eu|�Y ; [u], Vu|�Y ; (u))
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where

Eu|�Y ; [u] = Vu|�Y ; (u)(M0⌃�1(✓,�2)�Y +��1
u ✓u)

Vu|�Y ; (u) = (M0⌃�1(✓,�2)M+��1
u )�1

(18)

Also, the joint log-likelihood of �Y and u is given by

l(�Y, u; ) / l(�Y |u; ) + l(u; )

/ �
1

2
log|⌃(✓,�2)|� 1

2
(�Y �Mu)0⌃�1(✓,�2)(�Y �Mu)+

� 1

2
log|�u|�

1

2
(u� ✓u)0��1

u (u� ✓u)

which only depends on u linearly via its first two-order conditional moments (18).
Therefore, it follows for the E-step function that

Q( | ⇤) = Eu|�Y ; ⇤ [l(�Y, u; )]

= �1

2
log|⌃(✓,�2)|� 1

2
{�Y 0⌃�1(✓,�2)�Y � 2Eu|�Y ; ⇤ [u]0M0⌃�1(✓,�2)�Y+

+tr
�
M0⌃�1(✓,�2)M[Vu|�Y ; ⇤(u) + Eu|�Y ; ⇤ [u]Eu|�Y ; ⇤ [u]0]

�
}+

�1

2
log|�u|�

1

2
tr(��1

u [Vu|�Y ; ⇤(u) + Eu|�Y ; ⇤ [u]Eu|�Y ; ⇤ [u]0])+

+Eu|�Y ; ⇤ [u]0��1
u ✓u �

1

2
✓0u�

�1
u ✓u

The gradient of Q( | ⇤) is defined by the following partial derivatives

@

@✓j
Q( | ⇤) = �1

2
tr

✓
⌃�1(✓,�2)

@

@✓j
⌃(✓,�2)

◆
+

�1

2
{��Y 0⌃�1(✓,�2)

@

@✓j
⌃(✓,�2)⌃�1(✓,�2)�Y+

+2Eu|�Y ; ⇤ [u]0M0⌃�1(✓,�2)
@

@✓j
⌃(✓,�2)⌃�1(✓,�2)�Y+

+tr(�M0⌃�1(✓,�2)
@

@✓j
⌃(✓,�2)⌃�1(✓,�2))M[Vu|�Y ; ⇤(u) + Eu|�Y ; ⇤ [u]Eu|�Y ; ⇤ [u]0]}+

+Eu|�Y ; ⇤ [u]0��1
u

@

@✓j
✓u � ✓0u��1

u
@

@✓j
✓u

@

@⌧j
Q( | ⇤) = �1

2
tr

✓
��1

u
@

@⌧j
��1

u

◆
+

�1

2
tr

✓
��1

u
@

@⌧j
��1

u ��1
u

⇥
Vu|�Y ; ⇤(u) + Eu|�Y ; ⇤ [u]Eu|�Y ; ⇤ [u]0

⇤◆
+

�Eu|�Y ; ⇤ [u]0��1
u

@

@⌧j
��1

u ��1
u ✓u +

1

2
✓0u�

�1
u

@

@⌧j
��1

u ��1
u ✓u

@

@�2
Q( | ⇤) = �1

2
tr(⌃�1(✓,�2))� 1

2
{��Y 0⌃�1(✓,�2)⌃�1(✓,�2)�Y+

+2Eu|�Y ; ⇤ [u]0M0⌃�1(✓,�2)⌃�1(✓,�2)�Y+

+tr(�M0⌃�1(✓,�2)⌃�1(✓,�2)M[Vu|�Y ; ⇤(u) + Eu|�Y ; ⇤ [u]Eu|�Y ; ⇤ [u]0])}
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Algorithm 3: EM algorithm for the mixed-effects LLA model

Input: (✓s,�2
s) = (✓̂fixed, �̂2

fixed) starting point

Output:  ̂EM

chose a small tolerance tol and set ✏k = +1 ;
while ✏k > tol do

update Eu|�Y ; [u] and Vu|�Y ; (u) as defined in (18) ;
set to zero the negative elements of Eu|�Y ; [u] ;
update Q( | ⇤) and r Q( | ⇤) according to (1.4) - (1.4) ;
set  old   ⇤ ;
update  ⇤  ARGMAX

 �0
Q( | ⇤) ;

update ✏k = |Q( old| old)�Q( ⇤| ⇤)| ;
 ̂EM =  ⇤

A

C

D

B

Fig 1. Differentiation structure of four synthetic cell types A, B, C, D. Duplication, death and
differentiation moves are indicated with green, red and grey arrows respectively.

In the EM-algorithm we iteratively update the E-function Q( | ⇤) using the current
estimate  ⇤ of  and then we minimize the �Q( | ⇤) w.r.t.  . The EM algorithm is run
until a convergence criterion is met, that is when the relative errors of both the E-step
function Q( | ⇤) and the vector parameter  are lower than a predefined tolerance.
Once we get the EM estimate  ̂ for the parameters we evaluate the goodness-of-fit of the
mixed-model according to the conditional Akaike Information Criterion [3]. As every EM
algorithm, the choice of the starting point  s is very important from a computational
point of view. We chose as a starting point  s = (✓s,�2

s , ⌧
2
1 = 0, . . . , ⌧2p = 0) where (✓s,�2

s)
is the optimum found in the fixed-effects LLA formulation (24). This is a reasonable
choice since we want to quantify how the dynamics Eu|�Y ; ̂[u]j of each subject j departs
from the average dynamics ✓s. The EM pseudocode is given in Algorithm 3.

2 Simulation studies

Here we mimic the dynamics of J = 3 distinct clones in four synthetic cell types A, B,
C, D following the differentiation network structure of Figure 4. The net-effect matrix
V and hazard vector h(Y, ✓) can be derived from equations (6)-(7) of the main paper.
To simulate the clonal tracking data we used the ⌧ -leaping Algorithm 1 with a time lag
⌧ = 1, that has been run independently for each clone. We designed each simulation
so that the first clone dominates lineage D and the third clone dominates lineage C.
We first run a single simulation under different magnitudes for the noise variance �2.
Then we fitted both the base (24) and random-effects (27) models to the simulated data
using Algorithms 2 and 3. We reported in Figure 2 the simulated trajectories and a
scatterplot of the estimated conditional expectation Eu|�Y ; ̂[u] for the random-effects
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�2 = 1
c1 c2 c3

↵A 0.183 0.191 0.198
↵B 0.146 0.148 0.145
↵C 0.163 0.168 0.518
↵D 0.450 0.100 0.121
�A 0.001 0.001 0.001
�B 0.007 0.007 0.007
�C 0.004 0.004 0.004
�D 0.002 0.002 0.002

�A!B 0.129 0.130 0.133
�A!C 0.148 0.149 0.151
�B!C 0.079 0.080 0.078

�2 = 1
c1 c2 c3

0.183 0.191 0.198
0.146 0.148 0.145
0.163 0.168 0.518
0.450 0.100 0.121
0.001 0.001 0.001
0.007 0.007 0.007
0.004 0.004 0.004
0.002 0.002 0.002
0.129 0.130 0.133
0.148 0.149 0.151
0.079 0.080 0.078

�2 = 10
c1 c2 c3

0.151 0.139 0.127
0.163 0.148 0.137
0.166 0.175 0.649
0.479 0.199 0.319
0.001 0.000 0.001
0.008 0.007 0.007
0.004 0.005 0.005
0.002 0.003 0.004
0.127 0.126 0.110
0.154 0.155 0.153
0.082 0.079 0.058

�2 = 100
c1 c2 c3

0.000 0.105 0.050
0.442 0.337 0.358
0.300 0.214 0.958
0.499 0.691 0.778
0.000 0.000 0.000
0.016 0.014 0.015
0.008 0.006 0.008
0.002 0.010 0.007
0.119 0.177 0.173
0.197 0.197 0.133
0.081 0.084 0.059

Table 1. Conditional expectations Eu|�Y ; ̂[u] of the random-effects obtained from the

estimated parameters  ̂ under different magnitudes of the noice variance �2 (outer columns)
for each clone (inner columns).

model against the true clone-specific parameters. In the same figure we also show a
piechart where each clone k is identified with a pie whose slices are lineage-specific
and weighted with wk, defined as the difference between the conditional expectations
of the duplication and death parameters, that is wk = Eu|�Y ; ̂[u

k
↵lin

]� Eu|�Y ; ̂[u
k
�lin

],
where lin is a cell lineage. The diameter of the k-th pie is proportional to the euclidean
2-norm of wk. Therefore, the larger the diameter, the more the corresponding clone is
expanding into the lineage associated to the largest slice. The values of the estimated
conditional expectations are reported in Table 1. The scatterplot of Figure 2 clearly
indicate strong correlation between the true parameters and the conditional expectations
Eu|�Y ; ̂[u]. In particular, as expected, as the noise variance �2 increases, the parameter
estimates gradually move away from the diagonal, so that the correlation decreases.
Also, our model correctly detected the dominance of clones 1 and 3 in lineages D and C

respectively even for large values of �2, as suggested by the pie-charts of Figure 2 and
by the values of Table 1.

Subsequently, to check parameter uncertainty we run nsim = 100 independent
simulations separately for each noise variance setting. After fitting both the base (24)
and the random-effects (27) models, the latter always reached a significantly lower AIC
compared to the null model as suggested by the boxplots of Figure 3. In Figure 3 we also
report the boxplots of the estimated conditional expectation Eu|�Y ; ̂[u], obtained from
the independent simulations, divided by the true parameters ✓true. Not surprisingly, as
the noise variance �2 increases, the parameter estimates get poor, but they still fluctuate
around the true values, even under extreme magnitudes of �2. These results clearly
show accurate performance of the method in the identification of a simulated clonal
dominance and in the inference of the true parameters, regardless of the noise level of
the data.
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Fig 2. (a): Simulated trajectories. (b): Scatterplot between the clone-specific true parameters
✓true and the conditional expectation Eu|�Y ; ̂[u] of the random effects obtained from the

estimated parameters  ̂ of the random-effects model. (c): Clonal pie-charts where each
clone k is identified with a pie whose slices are lineage-specific and weighted with wk =
Eu|y[u

k
↵lin

]� Eu|y[u
k
�lin

]. The diameter of the k-th pie is proportional to the euclidean 2-norm
of wk. Each row refers to specific values of the noise variance �2 used for simulations.
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Fig 3. Boxplot of the AICs of the base and random-effect models (a) and boxplots of the
estimated conditional expectation Eu|�Y ; ̂[u] divided by the corresponding true parameters
✓true obtained under 100 independent simulations (b). Each row refers to a specific value of
noise variance �2 used for simulation.
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3 Rhesus macaque data rescaling

Although the sample DNA amount was maintained constant during the whole experiment
(200 ng for ZH33 and ZG66 or 500 ng for ZH17), the sample collected resulted in different
magnitudes of total number of reads. Table 2 shows the total number of reads collected
in each sample of the rhesus macaque clonal tracking dataset. This discrepancy makes
all the samples not comparable across time and cell types. Therefore we rescaled the
barcode counts according to

Yijk  Yijk ·
minij

P
c YijcP

c Yijc
(19)

where Yijk is the ijk-entry of the barcode matrix with dimensions (i, j, k) mapping
respectively time, cell type and clone.

T B NK M G

ZH33
1 1465289 74735 135092 119331 2831
2 225797 216844 335789 1035270 908685
3 243986 413757 663184 886682 816990

4.5 485542 479493 834064 985821 987171
6.5 645005 676413 926089 895309 911637
9.5 829073 962325 1057398 1229233 1220506

ZH17
1 51802 1347050 1288718 1351450 707382
2 826190 1342700 1350703 1354355 1213749
3 1303922 1347692 1338024 1347177 1283250

4.5 190591 1206361 489098 572877 1195585
6.5 887851 610999 1344488 381552 1339299

ZG66
1 752127 0 211350 13382 0
2 692133 58890 308800 363310 145252
3 339292 209137 424458 808404 704331

4.5 617281 338977 718472 887183 897672
Table 2. Total number of reads (sum across the different clones) collected in each treated
animal at each time point and for all the cell types.

4 Estimated parameters

ZH33

✓ ⌧2

↵T 0.813 1.176
↵B 0.193 0.597

↵NK 0.758 2.253
↵G 0.197 0.403
↵M 0.360 0.547
�T 0.155 0.074
�B 0.102 0.059

�NK 0.228 0.089
�G 0.039 0.029
�M 0.100 0.059

ZH17

✓ ⌧2

2.246 1.051
6.503 4.648
2.435 2.364
10.931 53.216
3.298 4.256
0.172 0.741
2.159 36.268
0.223 0.406
13.211 70.756
0.012 0.018

ZG66

✓ ⌧2

1.081 2.702
0.055 0.876
1.095 1.943
0.847 1.318
2.198 1.800
0.039 0.059
0.006 0.051
0.098 0.100
0.018 0.017
0.035 0.019

Table 3. Parameter estimated for proposed mixed effects model: Fixed effects (✓) and
variance (⌧2) of the random effects for both the duplication ↵ and death � parameters for each
cell lineage and each treated animal.
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A

C

D

B

Fig 4. Cell differentiation structure of four synthetic cell types A, B, C and D. Duplication,
death and differentiation moves are indicated with green, red and grey arrows respectively.

5 RestoreNet package: minimal working examples

This section reviews some key functionalities of RestoreNet package. Section 5.1 shows
how to simulate a clonal tracking dataset from a stochastic quasi-reaction network. In
particular, we show how to simulate clone-specific trajectories, following a given set of
biochemical reactions. Sections 5.2 and 5.3 show how to fit the null (base) model and
the random-effects model to a simulated clonal tracking dataset. Finally in Section 5.4
we show how to visualize the results at clonal level.

5.1 Simulating clonal tracking datasets

A clonal tracking dataset compatible with RestoreNet’s functions must be formatted as a
3-dimensional array Y whose ijk-entry Yijk is the number of cells of clone k for cell type
j collected at time i. The function get.sim.tl() can be used to simulate a trajectory
of a single clone given an initial conditions Y0 for the cell counts, and obeying to a
particular cell differentiation network defined by a list rct.lst of biochemical reactions.
In particular, our package considers only three cellular events, such as cell duplication
(Yit ! 1), cell death (Yit ! ;) and cell differentiation (Yit ! Yjt) for a clone-specific
time counting process

Yt = (Y1t, . . . , YNt) (20)

observed in N distinct cell lineages. The time counting process Yt for a single clone in a
time interval (t, t+�t) evolves according to a set of biochemical reactions defined as

vk =

8
><

>:

(0 . . . 1i . . . 0)0 dup. of the i-th cell type

(0 · · ·� 1i . . . 0)0 death of the i-th cell type

(0 · · ·� 1i . . . 1j . . . 0)0 diff. of the i-th type into the j-th type

(21)

with the k-th hazard function given by

hk(Yt, ✓i) =

8
><

>:

Yit↵i for duplication

Y 2
it�i for death

Yit�ij for differentiation

(22)

Finally, the net-effect matrix and hazard vector are defined as

V =
⇥
v1 · · · vK

⇤
; h(Yt; ✓) =

⇥
h1(Yt; ✓) · · ·hK(Yt; ✓)

⇤0
(23)

In particular, the cellular events of duplication, death and differentiation are respectively
coded in the package with the character labels "A->1", "A->0", and "A->B", where A
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and B are two distinct cell types. The following R code chunk shows how to simulate
clone-specific trajectories of cells via a ⌧ -leaping simulation algorithm. In particular, as
an illustrative example we focus on a simple cell differentiation network structure of four
synthetic cell types A, B, C and D and only one clone, as illustrated in Figure 4.

> library(RestoreNet)
> rcts <- c("A->1", "B->1", "C->1", "D->1",

"A->0", "B->0", "C->0", "D->0",
"A->B", "A->C", "C->D") ## set of reactions

> S <- 100 ## trajectory length
> tau <- 1 ## for tau -leaping algorithm
> theta <- c(.2 ,.15 ,.17 ,.09*5,

.001 , .007 , .004 , .002 ,

.13, .15, .08) ## parameters
> names(theta) <- rcts
> Y0 <- c(100,0,0,0) ## initial state names(Y0) <- rownames(V)
> names(Y0) <- head(LETTERS ,4)
> s20 <- 1 ## noise variance
> Y <- get.sim.tl(Yt = Y0,

theta = theta ,
S = S,
s2 = s20 ,
tau = tau ,
rct.lst = rcts) ## simulation

> head(Y) ## look at the simulated data
A B C D

0 100.61983 0.06136727 0.7714631 0.3255576
1 82.64798 25.80389091 30.2276346 0.0000000
2 67.38059 44.75329724 52.8111779 4.9761676
3 59.22818 57.88492115 64.9075555 15.2798701
4 49.95502 57.19943051 73.4204752 32.5405621
5 43.79580 56.15629549 73.4675043 57.1191486

5.2 Fitting the base model

The base model is defined as

2

4
�Yt0

...
�YtT�1

3

5

| {z }
�Y

=

2

4
Mt0

...
MtT�1

3

5

| {z }
M

✓ + "; " ⇠ NNT

0

BBBBB@
0,

⌃(✓,�2)z }| {2

4
Wt0 (✓)

. . .
WtT�1

(✓)

3

5

| {z }
W (✓)

+�2INT

1

CCCCCA
(24)

where

Yt+�t � Yt| {z }
�Yt

=

Mtz }| {

V

"
h1(Yt,✓)

. . .
hK(Yt,✓)

#
�t

"
✓1
...
✓K

#

| {z }
✓

+

0

BBBB@
V

"
h1(Yt,✓)

. . .
h1(Yt,✓)

#
V 0

| {z }
Wt(✓)

+�2IN

1

CCCCA

1/2

�W (t)

�W (t) ⇠ NN (0,�tIN )

(25)

Further details can be found in []. The package RestoreNet allows to infer the parameters
(✓,�2) of (24) with a maximum likelihood approach, that is by solving the following
constrained optimization problem

✓̂pML  argmin
✓�0;�2�0

f(✓,�2) (26)

where the objective function f is the negative log-likelihood of the multivariate normal
distribution NNT

�
M✓,⌃(✓,�2)

�
. The following R code chunk shows how to accomplish
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this on a clonal tracking dataset simulated from the same differentiation network structure
of previous section. In this case we simulate the trajectories of three independent clones
following different dynamics of clonal dominance, that is we use clone-specific values for
the vector parameter ✓.

> library(RestoreNet)
> rcts <- c("A->1", "B->1", "C->1", "D->1",

"A->0", "B->0", "C->0", "D->0",
"A->B", "A->C", "C->D") ## set of reactions

> ctps <- head(LETTERS ,4)
> nC <- 3 ## number of clones
> S <- 100 ## trajectory length
> tau <- 1 ## for tau -leaping algorithm
> u_1 <- c(.2, .15, .17, .09*5,

.001, .007, .004, .002,

.13, .15, .08)
> u_2 <- c(.2, .15, .17, .09,

.001, .007, .004, .002,

.13, .15, .08)
> u_3 <- c(.2, .15, .17*3, .09,

.001, .007, .004, .002,

.13, .15, .08)
> theta_allcls <- cbind(u_1, u_2, u_3) ## clone -specific parameters
> rownames(theta_allcls) <- rcts
> s20 <- 1 ## additional noise
> Y <- array(data = NA,

dim = c(S + 1, length(ctps), nC),
dimnames = list(seq(from = 0, to = S*tau , by = tau),

ctps ,
1:nC)) ## empty array to store simulations

> Y0 <- c(100,0,0,0) ## initial state
> names(Y0) <- ctps
> for (cl in 1:nC) { ## loop over clones
> Y[,,cl] <- get.sim.tl(Yt = Y0,

theta = theta_allcls[,cl],
S = S,
s2 = s20 ,
tau = tau ,
rct.lst = rcts)

> }
> null.res <- fit.null(Y = Y, rct.lst = rcts) ## null model fitting
> null.res$ fit ## model fitting results
$par
[1] 6.788801e-02 2.125983e-02 9.192739e-03 2.753155e-03

1.000000e-07 2.102263e-03 8.510596e-05 7.137124e-05
[9] 7.727499e-02 1.147283e-01 3.631258e-02 1.297511e+00

$value
[1] 3419.932

$counts
function gradient

673 673

$convergence
[1] 0
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$message
[1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
> null.res$stats ## model statistics
nPar cll mll cAIC mAIC Chi2 p-value
12.000 -2812.692 -2812.692 5649.384 5651.691 337324.840 0.000

> head(null.res$design$M) ## design matrix
6 x 11 sparse Matrix of class "dgCMatrix"
1 100.61983 . . . -10124.350 . .
1 . 0.06136727 . . . -0.003765942
1 . . 0.7714631 . . .
1 . . . 0.3255576 . .
1 82.64798 . . . -6830.688 .

> null.res$design$V ## net -effect matrix
A->1 B->1 C->1 D->1 A->0 B->0 C->0 D->0 A->B A->C C->D

A 1 0 0 0 -1 0 0 0 -1 -1 0
B 0 1 0 0 0 -1 0 0 2 0 0
C 0 0 1 0 0 0 -1 0 0 2 -1
D 0 0 0 1 0 0 0 -1 0 0 2

5.3 Fitting the random-effects model

The random-effects model is defined as

�Y =

2

64
M1 0

. . .
0 MJ

3

75

| {z }
M2RN⇥Jp

u+ " u ⇠ NJp

0

BBBBBB@
1J ⌦ ✓| {z }
✓u

, IJ ⌦

2

64
⌧21 0

. . .
0 ⌧2p

3

75

| {z }
�u

1

CCCCCCA
(27a)

" ⇠ NJp(0,⌃(✓,�
2)) (27b)

where Yt+�t � Yt = �Y is the vector of cellular increments that took place in the time
interval �t, M is the block-diagonal design matrix for the random effects u centered in ✓,
J is the number of clones, and each block Mj is clone-specific. As in the case of the null
model (24), to explain additional noise of the data, which has the additional advantage
of avoiding singularity of the covariance matrix W (✓), we add to its diagonal a small
quantity �2 which we infer from the data. Under this framework (see [] for details) the
conditional distribution of the random effects u given the data �Y has the following
explicit formulation

u|�Y ⇠ NJp(Eu|�Y ; [u], Vu|�Y ; (u))

where Eu|�Y ; [u] and Vu|�Y ; (u) provide clone-specific mean and variance of the (ran-
dom) reaction rates. The package RestoreNet allows to infer the vector parameter
 = (✓,�2, ⌧21 , . . . , ⌧

2
p ), and in turn to get the corresponding conditional first two-

order moments Eu|�Y ; [u] and Vu|�Y ; (u), by the means of an efficient tailor-made
Expectation-Maximization algorithm where �Y and u take the roles of the observed
and latent states respectively. The following R code chunk shows how to accomplish this
on the simulated clonal tracking dataset of previous section. In this example we use the
optimal parameter vector ✓̂0 estimated for the null model in the previous section, as
initial guess for the corresponding parameters in the random-effects model.

> re.res <- fit.re(theta_0 = null.res$fit$par ,
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Y = Y,
rct.lst = rcts ,
maxemit = 100) ## random -effects model fitting

> re.res$fit$par ## estimated parameters
[1] 1.000000e-07 1.843245e-03 1.000000e-07 1.036969e-04

5.255077e-04 1.000000e-07 1.000000e-07 1.000000e-07
[9] 1.026921e-03 5.080835e-03 1.000000e-07 3.837475e-02

2.862468e-02 7.111302e-02 6.109796e-02 1.000000e-07
[17] 4.675422e-05 1.550055e-05 4.952111e-06 1.416910e-02

2.576975e-02 1.106758e-02 1.720079e+00

> re.res$fit$VEuy$euy ## conditional expected values of u|y
33 x 1 Matrix of class "dgeMatrix"

[,1]
[1,] 0.1693522400
[2,] 0.1478834088
[3,] 0.1643743275
[4,] 0.4553735855
[5,] 0.0006527738

.

.

.
> re.res$fit$VEuy$vuy ## conditional covariance matrix of u|y
33 x 33 sparse Matrix of class "dsCMatrix"

[1,] 3.552098e-04 2.910616e-05 2.925707e-05 . . .
[2,] 2.910616e-05 2.095979e-04 -3.311544e-07 . . .
[3,] 2.925707e-05 -3.311544e-07 1.478458e-04 . . .

. . .

. . .

. . .

5.4 Visualizing results

The main graphical output of RestoreNet is a clonal piechart. In this representation each
clone k is identified with a pie whose slices are lineage-specific and weighted with wk,
defined as the difference between the conditional expectations of the random-effects on
duplication and death parameters, that is wk = Eu|�Y ; ̂[u

k
↵l
]� Eu|�Y ; ̂[u

k
�l
], where l is

a cell lineage. The diameter of the k-th pie is proportional to the euclidean 2-norm of wk.
Therefore, the larger the diameter, the more the corresponding clone is expanding into
the lineage associated to the largest slice. The package RestoreNet includes the function
get.scatterpie() which returns a clonal piechart given a fitted random-effects model
previously obtained with the function fit.re(). The following R code chunk illustrates
how to obtain a clonal piechart with few lines of R code.

> re.res <- fit.re(theta_0 = null.res$fit$par ,
Y = Y,
rct.lst = rcts ,
maxemit = 100) ## random -effects model fitting

> get.scatterpie(re.res , txt = TRUE) ## get the clonal piechart
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