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Abstract

Speech is noisy, ambiguous and complex. Here we study how the human brain uses high-order
linguistic structure to guide comprehension. Twenty-one participants listened to spoken narratives
while magneto-encephalography (MEG) was recorded. Stories were annotated for word class (specif-
ically: noun, verb, adjective) under two hypothesised sources of information: (i) ‘bottom-up’: the
most common word class given by the word’s phonology; (ii) ‘top-down’: the true word class given
the syntactic context. We trained a classifier on trials where the two hypotheses matched (about
90%), and tested the classifier on trials where they mismatched. The classifier predicted only the
syntactic word class labels, in line with the top-down hypothesis. These effects peaked ∼400ms after
word offset over frontal MEG sensors. Our results support that when processing continuous speech,
lexical representations are quickly built in a context-sensitive manner. We showcase the utility of
multivariate analyses in teasing apart subtle representational distinctions from neural time series.
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1 Introduction

It is remarkable that, from air particles that vibrate in synchrony, listeners can understand the complex

and novel meanings conveyed by their interlocutor. This auditory signal is an extremely unreliable

indicator of the meaning it contains, even in quiet listening conditions. For instance, speech varies a lot

both within and across people, which prohibits any straightforward link between sound and meaning [28].

In addition, speech is often ambiguous – the very same sounds, in the same order, can mean different

things depending on context and expectations. Yet, despite these countless challenges, listeners usually

understand speech without difficulty.

The saving grace of speech comprehension is context. The higher order structures of language, in

the form of syntactic rules and overarching semantic topic, significantly constrains the space of plausible

subsequent input [20, 26, 29, 37]. Given the utterance ‘MJ looked at the stars using a...’, the upcoming

word is more likely to be a noun, given the syntactic structure, and likely to be a word related to

astronomy, given the semantic topic.

The brain makes use of these constraints to guide interpretation of the input [7, 9, 38]. For example,

violations of semantic or syntactic constraints are known to lead to a reliable increase in brain responses,

as measured with electro-encephalography (EEG) [14, 17, 20, 24, 25]. Other forms of expectations likely

have an influence, too. For instance, when presented with distorted speech, perception is bolstered by

prior written cues [36] and prior exposure to similar distortions [10]. Furthermore, context which arrives

after the sensory input also influences perception of previous speech sounds [6, 8, 19].

Top-down information may be particularly important in the case of lexical ambiguity. For instance,

the grammatical class of some words is ambiguous: Depending on context, the same word may be used

as a noun or a verb. The corresponding meaning can be quite different depending on the assigned class,

e.g., lean, spell, watch, or quite similar, e.g., disguise, call, step. Previous work has demonstrated that

sentences containing a lot of ambiguous words elicit stronger neural responses in the inferior temporal

lobe and inferior frontal gyrus [33], even when comprehension is equivalent to low ambiguity sentences.

Context is required to disambiguate between alternative interpretations and understand the correct

meaning [12, 15, 32].

While we constantly disambiguate speech using contextual information, when, where and how top-

down disambiguation is implemented in the brain remain unknown. In the present study, we use lexical

ambiguity to test two competing hypotheses: The first states that word class is first generated bottom-

up based on the phonological form of the utterance, and corrected later (if necessary) using top-down

information. The second states that the top-down syntactic structure guides word representations di-

rectly, without requiring an initial bottom-up parse. For a visual schematic of the predicted results

under each hypothesis, see Figure 1. To adjudicate between these alternatives, we recorded magneto-

encephalography (MEG) from 21 native English participants while they listened to four short stories. We

modelled neural responses as a function of word class (e.g., noun, verb, adjective). Within our ecological

task of story listening, we found support for the second hypothesis: Top-down syntactic structure drives

lexical recognition directly, with no measurable trace of a bottom-up interpretation preceding it. The

brain thus appears to make higher order interpretations accessible as early as possible to form a rapid

and coherent understanding of speech in context.
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Figure 1: Analysis predictions. Schematic of expected results under our two hypotheses. The x-axis
represents time relative to word onset. The y-axis represents decoding performance, where the dashed
line is chance-level. The purple line represents the decoding of bottom-up labels of word class; the orange
line represents decoding the top-down labels. The lines can go above and below chance performance:
If the line goes below chance, it means that the classifier is systematically predicting a different class
label. Hypothesis 1 predicts that evidence about word class from its phonological form is processed
first (bottom-up information), followed by the higher-order syntactic structure (top-down information).
Consequently, we would be able to first decode the bottom-up representation of word class, followed by
the top-down representation. Hypothesis 2 predicts that top-down information exerts its influence on
lexical representations directly. If this is true, we would expect to only be able to decode the top-down
labels of word class from neural responses, with no trace of the bottom-up representation being encoded.

2 Methods

2.1 Participants

Twenty-one native English speakers were recruited for the study (13 female; age: M=24.8, SD=6.4).

All were right-handed, with normal hearing and no history of neurological disorders. All provided their

informed consent and were compensated for their time. The study was approved by the IRB committee

at New York University Abu Dhabi, where the study was conducted.

2.2 Stimuli

Four fictional stories were selected from the Manually Annotated Sub-Corpus (MASC), which is a subset

of the Open American National Corpus [22] that has been annotated for its syntactic structure using

Penn Treebank format.

We synthesised the stories using the Mac-OS text-to-speech application. Three synthetic voices were

used (Ava, Samantha, Allison). Story duration ranged from 10-25 minutes. Participants answered a

two-choice question via button press on the story content every ∼3 minutes. All participants performed

this task at ceiling (98% correct).

2.3 Data acquisition

We used a 208-channel axial gradiometer MEG system (Kanazawa Institute of Technology, Kanazawa,

Japan). Data were acquired at a sample rate of 1,000Hz, with online low-pass filter at 200Hz and a

high-pass filter at 0.03Hz.

Stimuli were presented to participants though plastic tube earphones placed in each ear (Aero Tech-

nologies), at a mean level of 70 dB SPL. Each recording session lasted about one hour. Each participant

completed two recording sessions.
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2.4 Pre-processing

We removed bad channels from the MEG data using an amplitude threshold cut off of 3SD across all

channels within a recording session, and linearly interpolated the bad channels using closest neighbours.

We then applied a 1-50 Hz band-pass filter with firwin design [18] and downsampled the data to 250Hz.

The pre-processed continuous MEG data were epoched from -400 to 1,200ms relative to word onset, and

from -400 to 1,200ms relative to word offset. No baseline correction was applied. All preprocessing was

performed using the Python package mne, version 0.22.0.

2.5 Data annotation

We annotated the stories for the identity and timing of the 6,898 words they contained. We were

primarily interested in two properties of these words. First is the word class predicted by the “bottom-

up” hypothesis: i.e. the most frequent word class given its phonological form. We obtained these labels

by querying the English Lexicon Project [3] for the word class of the words in our stories. The English

Lexicon Project derives these labels from a collection of annotated spoken and written corpora. Second is

the word class predicted by the “top-down” hypothesis, which refers to the word class that a word actually

is assigned in the given sentence structure. We obtained these labels from the manual Penn-Treebank

syntactic annotation of our stories.

We focus on trials where the word class is an adjective, a noun or a verb in both the top-down and

bottom-up definition of word class. This sub-selection yielded 3,941 epochs per subject per run.

Some of the words whose class differ across these two definitions were polysemous (had related

meanings, and likely etymologically related) while others were homographs (had unrelated meanings,

and likely not etymologically related). Unfortunately we did not have enough trials to separate the

analysis by this factor, but it would be an interesting avenue for future work to explore.

2.6 Analysis implementation

The majority of decoding analyses used the python package scikit-learn, version 0.24.1. This includes

the functions LogisticRegressionCV, StandardScaler, and ShuffleSplit.

Trial-type sets We organised trials into two sets. “Match trials” refer to trials where the word class

was identical across the bottom-up and top-down hypotheses. This encompassed 3,662 trials per subject,

per run (93%). “Mismatch trials“ refers to trials where the word class was different depending on how the

word class was defined (279 trials, 7%). Our primary question was whether the bottom-up or top-down

definition of word class best explains neural activity when the definitions conflict. For this, match trials

were used to train the classifier, and mismatch trials were used to test the classifier.

Optimisation We used a logistic regression trained to perform a one-versus-all classification on the

3-class problem (noun, verb, adjective). The model was fit on each time sample independently, and no

sliding window was used. We optimised the regularisation parameter at each time sample, selecting the

best model fit on ten log-spaced alpha parameters from 1e-4 to 1e+4 (using LogisticRegressionCV).

We used the classifier to estimate the probabilistic class prediction for the held out test trials: i.e

the soft-maxed distance of that trial from the hyper-plane distinguishing one word-class category from

another.

Because the test set contained relatively few trials, we stabilised the performance estimates by allo-

cating different shuffled subsets of training trials with a 20-split ensemble scheme. The subsets comprised
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Figure 2: Definitions of word class. A: Bottom-up word class corresponds to the most frequent word
class category assigned to a particular phonological form. In this case, the word ‘hammer’ is more often
used as a noun than a verb; therefore, the bottom-up definition of word class for this word is noun.
B: Top-down word class corresponds to the syntactic word class the item is being used in within the
sentence structure. The two sentences provide examples where the same word, ‘hammer’ is being used
as a noun (the sentence above) and as a verb (the sentence below).

a random 75% of trials from the train set (2,746 trials). These random subsets were allocated 20 times,

once for each split. Each time, we tested the model using the same 279 trials from the test set.

Evaluation To evaluate decoding performance we compared the model’s probabilistic predictions

(ypred) separately to the bottom-up labels (ybu) and to the top-down labels (ytd). We used the re-

ceiver operating characteristic (ROC) area under the curve (AUC) to summarise the likelihood that

brain activity responded similarly to either hypothesis. This evaluation was repeated for each of the

20-splits within the cross-validation loop. Classifier performance was then averaged across the 20 splits

for each subject.

Statistical assessment To evaluate the reliability of decoding over time, we used a non-parametric

temporal permutation cluster test across participants. First, we compute a t-value at each time-point by

submitting the distribution of decoding accuracy across subjects to a one-sample t-test against chance

performance. Second, we identified putative clusters by grouping consecutive t-values that exceeded a t

> 1.96 (p < 0.05) threshold. Third, the mean t-value within the cluster is compared to a null distribution

of t-values, formed by randomly flipping the sign of the distance from chance level, re-running the cluster
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forming step, and collecting the average t-value. This was performed 1,000 times. We consider clusters

significant when their mean t-values exceeds 950 of the lowest values in the distribution (p < 0.05).

Word-class decoding To evaluate the overall decoding of word class, we also used a 20-split shuffle

ensemble cross-validation scheme on the match trials. This means that on each of the 20 splits, we

randomly shuffle the data, and then separate trials into train and test partitions. The classifier was

trained on 75% of trials and tested on the held-out 25%. Performance was evaluated on the 20-split

average similarly to the above procedure.

3 Results

Our goal was to understand the contribution of bottom-up and top-down computations during naturalis-

tic listening, focusing on the lexical representation of word class (e.g., noun, verb, adjective). We defined

word class in two different ways. First, a bottom-up definition: The most frequent word class ascribed

to that phonological form (Figure 2A). For instance, the phoneme sequence ‘hammer’ is most often used

as a noun, and so, this would be the bottom-up definition regardless of the context it was being used in.

Second, a top-down definition: The true word class assigned given the syntactic structure it is occurring

within (Figure 2B).

First, we observed that word class was decodable from the neural responses to the spoken narratives.

For this, we subset all words that were either a noun, verb, or adjective, and whose bottom-up and

top-down definitions gave the same word class label (3,662 trials). We then used logistic regression to

distinguish the three classes, and the Area Under the Curve (AUC) to summarise decoding performance.

Using a temporal permutation cluster test, we found that nouns were decodable during the entire epoch,

timelocked both to word onset (average t = 8.1, p < .001) and word offset (average t = 9.2, p < .001).

Verbs were decodable from -40 to 1050ms from word onset (average t = 7.3, p < .001) and from -400 to

1080ms relative to word offset (average t = 8.2, p < .001). Although adjectives were not significantly

decodable relative to word onset after correction for multiple comparison, they were decodable relative

to word offset from 210-320ms (average t = 3.6, p = .004) and from 370-810ms (average t = 4.4, p <

.001).

Next, we averaged decoding performance over the three classes (black trace in Figure 3B, to assess the

time-course of word class encoding, more broadly. We find that decoding performance is higher relative

to word offset than word onset (mean AUC from 0-1000ms; word onset = 0.515; word offset = 0.52;

t value = 2.7; p = 0.02). Furthermore, we find two reliable peaks in decoding performance. Relative

to word onset, averaged over subjects, the peaks occur at around 110ms and 680ms. Relative to word

offset, they occur at 390ms and 600ms.

Overall, this first set of analyses confirms that word class is encoded in neural activity, and is maxi-

mally decodable around 400-600ms after word offset.

Second, and critically for the aims of the current study, we assessed whether the neural representation

of word class is built using a “bottom-up → top-down” sequence of representation, or whether top-down

processes influence word class generation directly. This is the analysis for which we plot predictions in

Figure 1. We trained a logistic regression classifier on trials where the two definitions matched (same

as above), and examined the predictions of trials where they diverged (see Methods for details). We

found significant decoding of top-down labels relative to word onset, from 30-260ms (average t = 2.8,

p = .03) and 650-1100ms (average t = 2.7, p = .005). They were also decodable relative to word offset

(average t = 3.7, p < .001). We found that decoding of bottom-up labels were significantly worse than

chance in all cases, relative to word onset (0-190ms; average t = -3.0, p = .02) and relative to word

offset (-260-840ms; average t = -3.1, p < .001). This demonstrates that model predictions significantly
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Figure 3: Timecourse of word class decoding. Above: Result of decoding the three word classes
time-locked to word onset (left) and word offset (right). Below: Comparing bottom-up and top-down
labels to the decoding model’s predictions on the mismatch trials. Horizontal lines below the timecourse
represent the significant temporal clusters resulting from the permutation test. *** = p < .001. Shading
represents standard error of the mean across subjects.

correlate with the top-down definition of word class, and significantly anti-correlate with the bottom-up

definition of word class. Our results therefore align with Hypothesis 2 shown in Figure 1: Top-down

labels are predicted above chance throughout the timecourse of reliable decoding; bottom-up labels are

predicted below chance throughout.

Finally, we sought to investigate the spatial patterns with which word class is encoded. For this,

we focused on the encoding of nouns and verbs relative to word offset, given these contrasts and timing

yielded the strongest decoding performance. We applied a logistic regression decoding model to tri-

als where the top-down and bottom-up labels matched, withholding regularisation so that the spatial

patterns remained interpretable. We found that the coefficients that discriminate these word classes are

largest at sensors over frontal/temporal cortex, evolving from a right-lateralised topography to a bilateral

topography over time. The sensors with highest absolute model weight are shown in Figure 4.
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Figure 4: Sensor weights of decoder over time. Visualising the decoding model coefficients when
discriminating nouns and verbs. Topographies are depicted at three peaks in the sensor magnitudes.
Time-courses are displayed for sensors whose absolute max coefficient magnitude exceeds the 80th per-
centile over sensors. Each line in the timecourse corresponds to a single MEG sensor, coloured by its
x/y position in the helmet. Time is plotted relative to word offset.

4 Discussion

Deriving meaning from speech requires overcoming a multitude of sensory and structural ambiguities.

We propose that the brain uses high-order linguistic structure to guide the correct interpretation of what

is being said. Here, we test a specific prediction of this proposition: Lexical representations are context

sensitive, and are built from the global structure that they occur within. The lexical feature we test is

word class (noun, verb, adjective), and the type of global structure we test is syntactic. Our main results

show that, in line with our predictions, the representation of a word is formed based upon the words

which precede it. This suggests that hierarchical linguistic structure primarily exerts influence from the

top down, altering how lower order structure is built and interpreted.

Previous work investigating top-down processing has primarily used adverse listening conditions. For

instance, making comprehension more difficult by adjusting the signal-to-noise ratio by adding noise on

top of the speech signal [11, 38] or by degrading the quality of the speech signal [21, 35]. Other studies

have engineered language stimuli to include systematic ambiguity at the phonetic [19, 27] and lexical

levels [31, 33], or provided top down information in a different modality, such as hearing speech while

reading text [36]. All these studies demonstrate, in different ways, that top down information serves to

resolve noise and ambiguity in the speech stimulus. Our work highlights that top-down processing is
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not only recruited when speech is particularly difficult to understand. Rather, even in ideal listening

conditions, the predominant direction of information flow remains top-down.

The major implication of our results is that, in the ecological task of story listening, the neural

representation of a lexical item encompasses not just information at t0, but also information provided in

previous time-steps. This result is consistent with the Syntax First [13] model of language processing,

which posits that even though syntactic structure is a very complex property of language, it is one of

the first to come online during processing. Our results also aid interpretation of recent studies that use

neural networks to model language processing [5, 30, 34]. One key result of this previous work is that

artificial models do better at predicting neural responses when they make use of longer context windows

[4, 5, 16, 23]. Our findings anchor a concrete interpretation of this result: The boost in explanatory

power is caused by incorporating higher order syntactic information into the lexical representations that

are being cross-correlated.

Taken together, our findings are inconsistent with the classic view of language processing that as-

sumes that lower order properties of speech, closer to the sensory signal, are processed first, and serially

composed into more complex abstract features over time. Here, we show that during continuous speech

processing, higher order structures of speech precede lower levels, more akin to a reverse hierarchy [1, 2].

The reverse hierarchy theory, as put forward for visual processing, suggests that because higher order

structure is more robust to noise in the sensory signal, it is used to guide processing and interpretation

at the lower levels. We posit that a similar process is happening here for the case of speech processing:

Higher order information, in the form of syntactic structure and semantic content, serves to inform inter-

pretations at lower levels. This top-down process may aid the processing of the low-level, and generally

noisy, representations of speech signals.

More broadly, our results confirm that linguistic processing is context sensitive [5, 23]. This means

that experimenters should be cautious when presenting human subjects with isolated syllables or words

because the computations applied to these speech units in isolation may not be the same when they are

embedded in continuous speech. The effect we report here is only observable because we presented sub-

jects with language in context, where the language input has an overarching semantic topic and syntactic

frame. Prior work that presents subjects with de-contextualised language input (i.e. isolated words or

phrases) may have overestimated the role of bottom-up processing for everyday speech comprehension.
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[5] Charlotte Caucheteux and Jean-Rémi King. Brains and algorithms partially converge in natural

language processing. Communications biology, 5(1):1–10, 2022.

[6] Cynthia M Connine, Dawn G Blasko, and Michael Hall. Effects of subsequent sentence context in

auditory word recognition: Temporal and linguistic constrainst. Journal of Memory and Language,

30(2):234–250, 1991.

[7] Thomas E Cope, E Sohoglu, W Sedley, Karalyn Patterson, PS Jones, Julie Wiggins, C Dawson,

M Grube, RP Carlyon, TD Griffiths, et al. Evidence for causal top-down frontal contributions to

predictive processes in speech perception. Nature communications, 8(1):1–16, 2017.

[8] Delphine Dahan. The time course of interpretation in speech comprehension. Current Directions in

Psychological Science, 19(2):121–126, 2010.

[9] Matthew H Davis and Ingrid S Johnsrude. Hearing speech sounds: top-down influences on the

interface between audition and speech perception. Hearing research, 229(1-2):132–147, 2007.

[10] Matthew H Davis, Ingrid S Johnsrude, Alexis Hervais-Adelman, Karen Taylor, and Carolyn McGet-

tigan. Lexical information drives perceptual learning of distorted speech: evidence from the com-

prehension of noise-vocoded sentences. Journal of Experimental Psychology: General, 134(2):222,

2005.

[11] Matthew H Davis, Michael A Ford, Ferath Kherif, and Ingrid S Johnsrude. Does semantic context

benefit speech understanding through “top–down” processes? evidence from time-resolved sparse

fmri. Journal of cognitive neuroscience, 23(12):3914–3932, 2011.

[12] Miriam Faust and Christine Chiarello. Sentence context and lexical ambiguity resolution by the two

hemispheres. Neuropsychologia, 36(9):827–835, 1998.

[13] Angela D Friederici. Towards a neural basis of auditory sentence processing. Trends in cognitive

sciences, 6(2):78–84, 2002.

[14] Angela D Friederici, Erdmut Pfeifer, and Anja Hahne. Event-related brain potentials during natural

speech processing: Effects of semantic, morphological and syntactic violations. Cognitive brain

research, 1(3):183–192, 1993.

[15] Edward Gibson. The interaction of top–down and bottom–up statistics in the resolution of syntactic

category ambiguity. Journal of Memory and Language, 54(3):363–388, 2006.

10

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 31, 2022. ; https://doi.org/10.1101/2022.05.31.494173doi: bioRxiv preprint 

https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.1101/2022.05.31.494173
http://creativecommons.org/licenses/by-nc-nd/4.0/


This work is shared under a CC BY-SA 4.0 license unless otherwise noted

[16] Ariel Goldstein, Zaid Zada, Eliav Buchnik, Mariano Schain, Amy Price, Bobbi Aubrey, Samuel A

Nastase, Amir Feder, Dotan Emanuel, Alon Cohen, et al. Shared computational principles for

language processing in humans and deep language models. Nature neuroscience, 25(3):369–380,

2022.

[17] Ana C Gouvea, Colin Phillips, Nina Kazanina, and David Poeppel. The linguistic processes under-

lying the p600. Language and cognitive processes, 25(2):149–188, 2010.

[18] Alexandre Gramfort, Martin Luessi, Eric Larson, Denis A Engemann, Daniel Strohmeier, Christian

Brodbeck, Lauri Parkkonen, and Matti S Hämäläinen. Mne software for processing meg and eeg
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