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 2 

Abstract 26 

Thermodynamic stability is a crucial fitness constraint in protein evolution and is a central factor 27 

in shaping the sequence landscapes of proteins. The correlation between stability and molecular 28 

fitness depends on the mechanism that relates the biophysical property with biological function. 29 

In the simplest case, stability and fitness are related by the amount of folded protein. However, 30 

when proteins are toxic in the unfolded state, the fitness function shifts, resulting in higher stability 31 

under mutation-selection balance. Likewise, a higher population size results in a similar change in 32 

protein stability, as it magnifies the effect of the selection pressure in evolutionary dynamics. This 33 

study investigates how such factors affect the evolution of protein stability, site-specific mutation 34 

rates, and residue-residue covariation. To simulate evolutionary trajectories with realistic 35 

modeling of protein energetics, we develop an all-atom simulator of protein evolution, 36 

RosettaEvolve. By evolving proteins under different fitness functions, we can study how the fitness 37 

function affects the distribution of proposed and accepted mutations, site-specific rates, and the 38 

prevalence of correlated amino acid substitutions. We demonstrate that fitness pressure affects the 39 

proposal distribution of mutational effects, that changes in stability can largely explain variations 40 

in site-specific substitution rates in evolutionary trajectories, and that increased fitness pressure 41 

results in a stronger covariation signal. Our results give mechanistic insight into the evolutionary 42 

consequences of variation in protein stability and provide a basis to rationalize the strong 43 

covariation signal observed in natural sequence alignments.   44 

 45 

 46 

 47 
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 3 

Introduction 49 

 50 

Unstable proteins reduce cell fitness by either reducing the concentration of active molecules or 51 

due to toxicity of the unfolded state[1-3]. Therefore thermodynamic stability provides a link 52 

between structure and energetics in proteins on the one hand, and fitness of sequences sampled 53 

during the process of evolution on the other hand. There is ample evidence to suggest that the 54 

stability fitness constraint is an important factor controlling the evolution of protein sequences. 55 

Models based on stability fitness constraints can explain the variation in overall substitution rates 56 

between proteins[1, 4, 5], mutational rates at individual sites in proteins[6, 7], and global amino 57 

acid substitution patterns [7]. 58 

 59 

The impact of thermodynamic stability on molecular fitness depends on the mechanism that 60 

couples stability to fitness. If the unfolded state is toxic, the cytotoxicity and the concentration of 61 

the unfolded state control the fitness effect of a stability-altering mutation. The effective 62 

population size also determines the impact of the fitness effect, as fixation probability for small 63 

selection coefficients is a function of effective population size and selection coefficient. Because 64 

proteins span a wide range of toxicity and expression levels, and there is considerable diversity in 65 

effective population sizes between organisms, it is important to understand the impact of fitness 66 

pressure on protein evolution. Here we study how variations in fitness pressure impact the 67 

sequence evolution of proteins.   68 

 69 

Previous work to understand the effect of protein stability on evolution has primarily used 70 

simplified models of protein energetics on rigid protein backbones. Given the high sensitivity of 71 
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 4 

real proteins to even the most conservative mutations, it is valuable to develop atomistic models 72 

of protein evolution that capture the detailed energetics and conformational variability of proteins. 73 

Here, we develop an all-atom evolution simulator, RosettaEvolve, to simulate evolutionary 74 

trajectories using the Rosetta macromolecular modeling package[8, 9]. We use RosettaEvolve to 75 

study how fluctuations in protein stability change in site-specific mutational rates with a single 76 

fitness function. Next, we study how selection pressure affects the distribution of proposed and 77 

accepted mutational effects and the degree of residue-residue covariation observed in evolved 78 

protein sequences.   79 

 80 

To generate evolutionary trajectories in RosettaEvolve a fitness model is used to evaluate how a 81 

change in computed stability affects the fitness of a sequence variant. The fitness model is then 82 

coupled with an evolutionary dynamics model that evaluates the fate of mutations during stochastic 83 

sequence trajectories. There are two possible fates under strong selection and weak mutation: 84 

Either the mutation spreads through the population and becomes fixed or is lost due to drift or 85 

selection. The probability of fixating a proposed mutation depends on the fitness of the new protein 86 

sequence but also on the effective population size. We evaluate fixation probabilities with 87 

Kimura’s expression for fixation probability[10]. Based on these two elements - the stability 88 

fitness model and expression for fixation probability - it is possible to describe the evolution of 89 

protein sequences and predict substitution rates. Substitution rates, amino acid substitution rates, 90 

and site-specific rates can be calculated directly from stochastic trajectories[1, 2, 4, 5, 11-18] or 91 

by converting the stability model into a Markov state model[6, 7]. 92 

 93 
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 5 

We have recently developed a Markov state model to predict amino acid substitution and site-94 

specific rates in proteins[7]. In this approach, substitution rates are evaluated in the context of a 95 

single structural and sequence environment, typically based on the native protein structure and 96 

sequence. In this study, we generate evolutionary trajectories with RosettaEvolve and use the 97 

Markov model to calculate site-specific rates along the trajectory, combining the strength of these 98 

two different approaches.  99 

 100 

Simulation of evolutionary trajectories enables studies of how temporal and structural fluctuations 101 

affect the evolution of proteins. Prior work, which applied an approximate representation of protein 102 

structure, has shown that changes in propensities of amino acids can occur in a protein during 103 

evolution and that the protein adopts to the mutated site making reversals less favorable over time, 104 

a mechanism referred to as the evolutionary Stokes-Shift[19]. 105 

 106 

 107 

 108 

 109 

 110 

 111 
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 112 

Figure 1: Simulation of evolutionary trajectories with RosettaEvolve. Mutations are proposed at 113 

the nucleotide level, and nucleotide changes are translated into amino acid substitutions. The 114 

fitness of a mutation is estimated by calculating the change in stability of the protein with a ΔΔG 115 

prediction method using the Rosetta all-atom energy function. Based on the change in fitness 116 

(selection coefficient), the probability of fixating the proposed nucleotide/amino acid is evaluated. 117 

 118 

Here we show how RosettaEvolve can be used to simulate evolutionary trajectories guided by an 119 

all-atom structural model of the detailed energetics of proteins. We demonstrate how variation in 120 

the molecular fitness parameters – such as cytotoxicity, the concentration of unfolded protein, and 121 

population size - affects both the proposal and fixated distribution mutational effects. We show 122 

that site-specific mutational rates fluctuate over trajectories largely dependent on fluctuations in 123 

the stability of the protein. We also show that phylogenetic trees generated by RosetteEvolve result 124 

in a robust residue-residue covariation signal which depends on selection pressure. 125 

 126 
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 7 

Results 127 

Simulation of evolutionary trajectories with RosettaEvolve 128 

RosettaEvolve simulates evolution at the nucleotide level (Fig. 1). Differences in the chemical 129 

properties of nucleotides result in different rates for transitions and transversions [1, 2]. This bias 130 

is controlled in the simulation by specifying the transition/transversion rate ratio k. Multi-131 

nucleotide or whole-codon changes are also observed in nature due to a multitude of genomic 132 

processes such as insertions, deletions, UV-damage, and tandem mutations[3, 4]. These nucleotide 133 

changes are captured by a multi-codon mutation rate r. The relative rate of single base pair changes 134 

to multi-codon mutation depends on r and k  but also the number of states that are accessible for 135 

the multi-nucleotide route: We calculate the probability of multi-nucleotide changes as 136 

𝑝!"#$%&'"(#)*$%+) =
,-∗/

,-∗/0-∗10,
  137 

 138 

k and r are parameters in the simulation. In this study, we have set the values found to optimize 139 

the correlations with empirical amino acid substitution rates presented in Norn et. al.[5], k=2.7 and 140 

r=0.1. 141 

To evaluate the probability that the introduced mutation will be fixated, we first have to evaluate 142 

the fitness of the mutation. Several fitness models based on protein stabilities have been 143 

described[6-9], and RosettaEvolve can easily be extended to use alternative fitness expressions. In 144 

this study, we use a fitness model that assumes that a protein’s contribution to fitness is 145 

proportional to the fraction of the protein folded in its native conformation[9]. As described in 146 

Norn et. al.[5], for stable proteins this is mathematically equivalent to a cytotoxicity fitness 147 

model[6], where fitness depends on the concentration of unfolded protein, but with an offset ΔG. 148 

Equating fitness to the fraction folded, the expression for fitness becomes 149 
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 150 

𝜔%,3*#+%'4 =
5

50)67(9:!/<=)
   (1) 151 

 152 

Where 𝜔%,3*#+%'4 is the fitness of sequence i and 𝛥𝐺 = 𝐺3*#+)+ − 𝐺"'3*#+)+ is the free energy of 153 

folding. When 𝛥𝐺 < -3 kcal/mol, the cytotoxicity fitness model has the same mathematical form 154 

as the stability fitness function[5] 155 

 156 

𝜔%,!%?3*#+%'4 =
5

50)67@
"#!	
%& 0ABC	((E)F

    (2) 157 

 158 

Where c is a toxicity parameter and A is the protein abundancy[6].  159 

 160 

There are currently no methods that can accurately compute DG values with an energy function or 161 

force field. However, DDG prediction methods can reach useful correlations between computed 162 

and experimental values (r2=0.56 reported for the method used in this study[10]). The stability of 163 

a protein sequence after each mutation is evaluated 164 

 165 

𝛥𝐺G = 𝛥𝐺% + 𝛥𝛥𝐺%→G 166 

 167 

For a trajectory started from the native sequence, we must assign a stability to the native state. This 168 

is done by subtracting an offset (Eref) from the energy of the native sequence 𝐸I*?)$$J so that 𝛥𝐺 =169 

𝐸I*?)$$J − 𝐸I)3. Analogously, as seen in equation 2, the cytotoxicity and abundance parameters 170 

offset DG in the fitness function. Furthermore, changes in effective population size (N) has a 171 
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 9 

similar effect as offsetting ∆𝐺,	 as ∆𝐺~ − log	 𝑁[5, 11]. Hence, we can model the fitness of a 172 

sequence as 173 

 174 

𝜔% =
5

50)67K
'()*+,,-,!

%& &LM
    (3) 175 

 176 

where O is the linear offset. Setting O=Eref converts the fitness function into the fraction folded 177 

model in equation 1. O is treated as a parameter in our simulations, while 𝐸I*?)$$J is calculated 178 

from the structure with the Rosetta energy function. The value of O controls the offset of the fitness 179 

function (through the cytotoxicity/abundance parameters or effective population size) and anchors 180 

the computed energy on the free energy scale. Setting a low value of the offset assigns a low fitness 181 

to the native sequence, which forces the introduction of stabilizing mutations to increase the fitness 182 

of protein and a decrease in the energy of the protein. Conversely, setting a high value for the offset 183 

assigns a high fitness of the native sequence, which facilitates the introduction of destabilizing 184 

mutations since such mutations carry little fitness cost, leading to an increase in the energy of the 185 

protein until mutation-selection balance is reached. By sliding the value of the offset parameter, 186 

we change the effective selection pressure. From here on, we refer to the negative of the offset O 187 

as the selection pressure.  188 

 189 

 190 

The flexibility of the Rosetta program enables different methods to calculate DDG of mutations 191 

during the evolutionary trajectory. Currently, we have implemented two methods for DDG 192 

predictions in RosettaEvolve: One with limited and one with more extensive backbone flexibility. 193 

The simulations presented in this study were carried out using the method with limited backbone 194 
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flexibility, a slight variation of the DDG prediction approach in Rosetta presented by Park et. 195 

al.[10]. The method involves repacking residues that are energetically coupled to the mutated 196 

amino acid and backbone energy minimization of the focal site and the nearest neighbors in the 197 

sequence. 198 

 199 

If populations evolve under sufficient strong selection pressure and at a sufficiently low mutation 200 

rate, the fixation probability can be estimated using Kimura’s fixation probability equation[10]. 201 

For diploid organisms 202 

 203 

𝑓%→G =
1 − 𝑒𝑥𝑝8−2𝑠%→G;
1 − 𝑒𝑥𝑝8−4𝑁𝑠%→G;

 204 

 205 

where  𝑓%→G is the probability of fixation of a mutation i to j, 𝑠%→G = 𝜔G/𝜔% − 1 is the selection 206 

coefficient, and N is the effective population size. In the simulations presented here, we set N=104.2 207 

, a value we previously found to optimize correlations between computed and empirical amino 208 

acid substitution rates [5, 11].  In experiments where we modeled changes to the selection pressure, 209 

we kept N constant and just modified the offset parameter O. 210 

 211 

Computed fixation probabilities are generally too low to enable efficient simulation of 212 

evolutionary trajectories. Instead, we used a rescaled fixation probability, 𝑝 = 𝑓%→G/𝑓%→GNEO, with 213 

the scale-factor defined as, 214 

 215 

𝑓%→GNEO =
1 − 𝑒𝑥𝑝8−2𝑠%→GNEO;
1 − 𝑒𝑥𝑝8−4𝑁𝑠%→GNEO;

 216 
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 217 

 where 𝑠%→GNEO is calculated with 𝜔G = 1	, the maximal possible fitness. The scale-factor is stored to 218 

enable later rescaling for rate-calculations. 219 

 220 

In the following sections, we apply RosettaEvolve to study a specific protein, Azurin of P. 221 

aeroginosa. Azurin is a 128-residue protein with an immunoglobulin-like fold. The protein has a 222 

copper-binding site and a single disulfide bond. Before generating evolutionary trajectories with 223 

azurin the protein was adapted to the Rosetta energy function with a structure refinement 224 

calculation. 225 

 226 

Equilibration of trajectories 227 

 228 

Before analyzing the dynamics of sequence evolution, the simulations must be equilibrated so that 229 

the recorded trajectory is under mutation-selection balance. The fitness equilibria shift depending 230 

on the assumed stability of the protein. In our approach, the selection pressure is controlled by the 231 

offset value. A separate equilibration is required for each selection pressure. Mutations are 232 

evaluated using a ΔΔG prediction protocol that involves structure remodeling and energy 233 

minimization. This means that structural changes across the trajectory and the effect of this 234 

flexibility must be equilibrated.  In principle, one could return to the starting structure after each 235 

mutation, but this requires more extensive backbone sampling and leads to a far noisier energy 236 

estimation. 237 

 238 
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 12 

To follow the progress towards equilibrium, we measure the energy, mean change in energy of 239 

accepted mutations, and the average energy rank of the amino acid selected at sites. To calculate 240 

the rank, the amino acid variants at sites are sorted according to their relative energy. The energy 241 

rank is the position in the list (1-20) for the currently selected amino acid. We ran equilibration 242 

trajectories for 11 different selection pressure values corresponding to 10 mutations/site branch 243 

length. At every integer branch length, the average change in energy relative to the best choice 244 

amino acid and the average rank was evaluated. Figure 2A shows the result for a selection pressure 245 

value corresponding to lower stability than the native sequence. Destabilizing interactions are 246 

initially introduced into the protein, which increases the mean energy rank of the current amino 247 

acid. Trajectories with varying selection pressure values will equilibrate at different protein 248 

stabilities. This is observed in Figure 2B where the average energy value for accepted sequences 249 

is plotted against selection pressure values. The mean sequence energy is linearly dependent on 250 

the selection pressure. At low selection pressure values, sequences have increased stability relative 251 

to the native sequence and the mean rank is low because the energetically best choice amino acid 252 

occurs very frequently at sites in the protein. At high selection pressure values, the mean rank is 253 

close to 10, which is the value expected with a completely random distribution of amino acids at 254 

sites. Strong selection pressures – high cytotoxicity/high abundance of the unfolded protein and/or 255 

large effective population size – thus result in proteins with increased thermal stability. 256 

 257 
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 258 

Figure 2: Equilibration of azurin. A) Mean change in energy (blue) and mean energy rank 259 

(orange) as a function of branch length for a simulation with selection pressure set to -162.  B) 260 

Dependence of mean energy of accepted sequences (red) and mean rank (blue) on the selection 261 

pressure (fitness function offset).  262 

 263 

 264 

The selection pressure impacts the probability distribution over proposed and accepted DDG 265 

values 266 

 267 

Evolutionary trajectories at different selection pressure values were generated based on the final 268 

structure at the end of the equilibration runs. From these trajectories, we summarized the 269 

probability distribution over proposed and accepted ΔΔG values as a function of the selection 270 

pressure value (Fig. 3). With decreasing selection pressure (resulting in higher protein stability), 271 

the mean energetic effect of mutation (ΔΔG) increases (Figure 3C). In other words, mutations 272 

become more detrimental when the protein stability increases. The distribution of mutational 273 

effects in real proteins behaves the same way albeit the increase of the detrimental effect is about 274 

10 times higher [4]. 275 

A B
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 276 

At very high selection pressure values (resulting in low protein stabilities) the probability 277 

distribution over DDG for proposed mutations is symmetric and centered around 0, with an equal 278 

probability of proposing stabilizing and destabilizing mutations. Under these conditions, the 279 

distribution over proposed and accepted DDG values are almost identical. At lower selection 280 

pressures (resulting in higher protein stabilities), highly stabilizing mutations are much less likely 281 

to be proposed, and the probability distribution is shifted towards more destabilizing mutations 282 

(Fig. 3A). The probability distribution over accepted DDG values is symmetric around 0 for all 283 

selection pressure values but becomes more peaked as the stability increase (Fig. 3B).  284 

  285 

 286 

 287 

 288 
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 289 

Figure 3: The selection pressure affects the DDG proposal and acceptance probability 290 

distribution. A) Proposal DDG probability distribution as function of selection pressures. Values 291 

above 100 energy units (corresponding to severe atomic clashes) were placed in the highest bin. 292 

B) Accepted DDG probability distribution as function of selection pressure. C) Mean proposal 293 

DDG value (correspond to the distribution < 100 energy units) as a function of selection 294 

pressure(blue), with a fitted line (blue). The logarithm of number of available sequences as a 295 

function of selection pressure (red) calculated with an assumption of independent sites in the 296 

protein. Energies in Rosetta Energy Units (REU). D) Correlation between premutation energy and 297 

accepted DDG values as a function of selection pressure. Correlations are measured as squared 298 

Pearson correlation coefficients.  299 

B

C D

A B
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 300 

The mean of the proposed DDG values linearly depends on selection pressure (and therefore on 301 

the mean stability of the protein, see figure 3C). Why does the proposal probability change with 302 

the stability of the protein? At high stability, there are few accessible mutations that can stabilize 303 

the protein since the best choice amino acid is often present at sites in the protein. We can estimate 304 

the space of accessible sequence at different reference stability values by multiplying together the 305 

effective number of amino acids at each site in the protein (assuming independent sites) calculated 306 

from the equilibrium amino acid frequency distribution at each site. As shown in Figure 3C, the 307 

sequence space is much smaller for more stable proteins evolved under higher selection pressure. 308 

This reduction in sequence space is likely to explain the shift of proposal DDG values towards 309 

more destabilizing mutations at higher selection pressures.  310 

 311 

The consequence of protein stability on the probability distributions over proposed and accepted 312 

DDG-values has previously been studied by Goldstein using a contact-based energy model [12]. 313 

He found that the stability of the protein before mutation and the DDG of accepted mutations 314 

correlated. We observe the same correlation with the all-atom simulations as seen in Figure 3D: 315 

Mutations accepted in a stable protein will generally be less stabilizing than those accepted in a 316 

protein with lower stability. The correlation between premutation stability and DDG reduces with 317 

decreasing selection pressure. 318 

  319 

A strong covariation signal is found when phylogenetic trees are simulated by RosettaEvolve 320 

The success of covariation analysis in identifying residue-residue contacts suggests that epistasis 321 

and coevolution are pervasive elements of evolution [25]. Yet, covariation, as measured by 322 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 1, 2022. ; https://doi.org/10.1101/2022.06.01.494278doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.01.494278
http://creativecommons.org/licenses/by/4.0/


 

 17 

statistical coupling methods [26-29], is not necessarily the same as coevolution [30]. Statistical 323 

coupling methods are based on sequence alignments and do not consider that substitution has 324 

occurred along branches of phylogenetic trees. Tree-based methods to detect coevolution based on 325 

evolutionary theory have been developed [31, 32], but their high computational cost hampers their 326 

use. A method developed to detect coevolving sites [33] does not identify contacting residues in 327 

evolutionary trajectories simulated by RosettaEvolve (data not shown). The evolutionary basis for 328 

sequence covariation is therefore not fully understood. Talavera et al. [30] argued that coordinated 329 

sequence changes require very high selective pressures to occur, which results in rates so slow that 330 

coevolution would not be measurable. They argue that covariation is the consequence of sites with 331 

slow evolutionary rates rather than coevolution. Given the practical importance of statistical 332 

coupling methods in bioinformatics, it is of great interest to understand the relationship between 333 

covariation, coevolution, and protein energetics. 334 

 335 

In this study, we investigate whether covariation signals emerge in sequences simulated from a 336 

phylogenetic tree using a detailed atomistic simulation of protein energetics and how the strength 337 

of the selection pressure affects the covariation signal. To address these questions, we inferred a 338 

phylogenetic tree from an alignment of the natural sequence of azurin and used it as the basis for 339 

evolutionary simulations with RosettaEvolve. Simulated phylogenetic trees were generated at 340 

different selection pressures, starting from equilibrated sequences at each given selection pressure. 341 

We developed a recursive algorithm that generates evolutionary trajectories over a given tree 342 

topology and branch lengths. We populated the tree 11 different times with variable selection 343 

pressure. 344 

 345 
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 346 

Figure 4: Simulation of phylogenetic trees of azurin with RosettaEvolve. Dependence of sequence 347 

entropy of leaf sequences with reference energies. The green line corresponds to the entropy in 348 

the natural sequences used to infer the azurin tree. The red line corresponds to the energy of the 349 

native sequence of azurin. The yellow line corresponds to the selection pressure that maximizes 350 

the correlation between computed and empirical amino acid substitution rates in Norn et al.[7]. 351 

 352 

 353 

Figure 5: ROC curve for residue-residue contact prediction. A) Comparison of ROC curve for 354 

natural sequences (black) and two simulated alignments (red and orange) at two different 355 

A B
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reference energies. B) Dependence of contact-prediction accuracy (AUC) on selection pressure. 356 

The green line corresponds to AUC for the natural sequence. The yellow line corresponds to the 357 

selection pressure that gives the optimal correspondence between predicted and empirical amino 358 

acid substitution rates in a Rosetta-based rate prediction method [7, 16]. The yellow line 359 

corresponds to the selection pressure that maximizes the correlation between computed and 360 

empirical amino acid substitution rates in Norn et al.[7].  The blue line shows the diagonal. 361 

 362 

The sequence entropy at the leaves of simulated azurin trees depends strongly on the selection 363 

pressure (Fig. 4). Using parameter values we previously found to explain natural amino acid 364 

substitution patterns  [5, 11],  we see similar position-specific sequence entropies between our 365 

simulated proteins and their natural counterparts.  366 

 367 

The leaf sequences generated by RosettaEvolve trajectories simulated at different selection 368 

pressure values were analyzed for covariation signal statistical coupling score using Gremlin 369 

[34]. The ability of Gremlin in predicting residue-residue contacts was summarized in Receiver 370 

Operator Characteristic (ROC) curves, where the true positive rate is plotted against false 371 

positive rate. In Figure 5, the ROC curve for the natural sequences is compared to sequences 372 

simulated at two different selection pressures, one corresponding to low (red curve) and one to 373 

high selection pressure (orange curve). The area under the curve (AUC) is a metric for the 374 

overall performance. For the high selection pressure simulations, the AUC reaches the same 375 

values as the natural sequences, while sequences evolved with low selection pressure provide a 376 

considerably worse basis for predicting residue-residue contacts. 377 
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  378 

Figure 6: Pair interaction energy for contacts predicted from alignments. Distribution of pair 379 

interaction energies for contacts predicted by Gremlin (blue) (orange lines mean) and all contacts 380 

within the structure (gray, green line) as a function of selection pressure. The width of the violin 381 

is related to the frequency of a given pair interaction value. Energies in Rosetta Energy Units 382 

(REU).383 
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 384 

Figure 7: Fluctuation in mutation rates during a trajectory and correlations with stability. A) 385 

Correlation between calculated and empirical site-specific rates (calculated as R2-values) for 386 

azurin (blue) as a function of the number of introduced mutations. Fluctuation in energy as a 387 

function of introduced mutations (blue). B) Correlation between R2-values and energies are shown 388 

in A). Selection pressure in trajectory is set to -322. C) Site-specific rates for the sites in azurin. 389 

Residue 41 (blue), residue 49 (green) and residue 66 (red). Empirical site rates from rate4site as 390 

solid lines and dashed lines show mutational events at the site. D) Dependence of site-rates in C) 391 

with premutation stability. Energies in Rosetta Energy Units (REU).392 

 393 

A B

C D
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Even though similar AUC values are found for some simulated sequences, the early enrichment is 394 

nonetheless better for the natural sequence, resulting in higher prediction accuracy in the range 395 

relevant for structure prediction. The overall predictive power (characterized by AUC) is highly 396 

dependent on the selection pressure. In Figure 5B, the AUC is plotted against selection pressure. 397 

The ability of GREMLIN to identify true residue-residue contacts drops with decreasing protein 398 

stability (as controlled by the selection pressure). For reference stabilities corresponding to most 399 

stable proteins, up to 78% (43 out of 55 contacts above the threshold used by Gremlin to predict 400 

contacts) of the predicted residue-contacts contacts are validated in the structure corresponding to 401 

the native sequence of azurin. 402 

 403 

We calculated residue-residue pair energies from the crystal structure of azurin using Rosetta, see 404 

Figure 6.  The average pair energy between residues predicted to be in contact by Gremlin (blue 405 

distribution) has pair interaction values that are considerably stronger than contacts in general in 406 

the protein (grey distribution). The mean interaction energy is around -1 kcal/mol for sequences 407 

simulated with stabilizing reference energies for the predicted Gremlin contacts, compared to -408 

0.15 kcal/mol for all contacts in the protein. So, for the most stable proteins, contacts detected by 409 

statistical coupling analysis correspond to pair interactions among the most stabilizing contacts in 410 

the protein. 411 

 412 

We further analyzed the evolutionary trajectory of contacts detected by the statistical coupling 413 

analysis. Starting from the leaf nodes, we identify the branch point where a residue pair found in 414 

the leaf node was first introduced and characterize the change in energy on the evolutionary path 415 

towards the leaf node. We find that the average change in energy for the two residues in the 416 
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predicted contact (in the context of the entire structure) is favorable, but only slightly so (-0.15 417 

kcal/mol). Thus, when the pair was formed, there did not appear to be a large energetic gain in 418 

forming the contact. However, the selected pair may become energetically entrenched after 419 

initially appearing (evolutionary Stokes shift), or there may be special conditions before it was 420 

inserted. Further analysis of the fluctuation in selection coefficients over time will have to be 421 

carried out to fully understand the mechanism behind covariation signals for these residue pairs.    422 

 423 

Fluctuations in protein stability result in fluctuations in site rates 424 

During the evolutionary trajectories, sites in the protein will experience a fluctuating structural 425 

environment. How much do site rates fluctuate during a mutational trajectory? How much of this 426 

variation can be explained by fluctuations in protein stability during an evolutionary trajectory? 427 

We calculated site-specific rates across an evolutionary trajectory corresponding to a branch length 428 

of 1 mutation per site to address these questions. After each mutation, we calculated the energy, 429 

site-rates and compared site rates to empirical values predicted by rate4site [35] from the sequence 430 

alignment of azurin. Figure 7A shows the energy and correlation with empirical site rates fluctuate 431 

across the trajectory. The Pearson correlation between calculated and empirical site-specific rates 432 

fluctuates considerably during the trajectory, ranging from 0.48 to 0.61. Fluctuations in the 433 

stability of the protein (Figure 6A, red line) will result in an overall change in substitution rate, 434 

with less stable proteins having higher mutation rates. About 31% of the variation in the correlation 435 

with empirical site rates can be explained by the fluctuation in stability of the protein during the 436 

trajectory. 437 

 438 
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The rate at individual sites in the protein will also fluctuate considerably.  In Figure 7C, the rates 439 

for three different individual sites in the protein are plotted as a function of the number of mutations 440 

in the trajectory. The mutation rate can drop an order of magnitude during the trajectory, even 441 

though there are no mutations occurring at that site. Figure 7D demonstrates that rates at individual 442 

sites can be highly coupled to the stability of the proteins. 443 

 444 

Discussion 445 

Protein stability results from the net balance of forces involving thousands of interacting atoms. 446 

The result is typically a protein with only marginal stability where small changes in atomic 447 

interactions can shift the protein from a folded to unfolded state. The marginal stability of proteins 448 

can be understood as the result of the balance between the introduction of predominantly 449 

destabilizing mutations and selection [14]. This marginal stability also emerges in evolutionary 450 

simulations employing a simple contact-based potential of protein energetics [14]. Nonetheless, 451 

many mechanistically important aspects of protein evolution may be lost without consideration of 452 

the detailed atomic interactions in proteins. 453 

 454 

A few investigations have been presented where evolutionary trajectories have been simulated 455 

with atomistic energy functions. Typically, these studies have employed the FoldX energy 456 

function[13] to evaluate DDG values [14, 15]. In this manuscript, we simulate evolution with the 457 

Rosetta macromolecular modeling package, which provide a powerful framework for modeling 458 

structure and energetics of proteins[16] and where side-chain and backbone flexibility can be 459 

modeled with a wide range of structure-prediction protocols. RosettaEvolve can be readily 460 

extended to use additional fitness models and additional methods to model conformational changes 461 
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upon mutations, such as the flexible backbone approach developed by Bartlow et al. to model 462 

mutations in protein interfaces[17].  463 

 464 

Jiang et al. [18] used Rosetta to generate evolutionary trajectories along a single branch. There are 465 

several differences between their approach and ours. We simulate evolution based on nucleotide 466 

mutations, rather than at the protein level, we use a DDG calculation that includes more backbone 467 

flexibility, and our models differ in the selection pressure and effective population size. Jiang et 468 

al. [18] used protein design calculations to set the selection pressure value and used a smaller 469 

effective population size (100).  470 

 471 

We have previously developed a Rosetta-based method to predict amino acid substitution rates[5] 472 

from protein structure using the combination of structure-based stability calculations and mutation-473 

selection model, which we refer to as the TMS (Thermodynamic Mutation-Selection) model. 474 

Amino acid substitution rates at a site calculated can readily be summed up to evaluate the site 475 

substitution rates[18]. A benefit of the TMS method is that it enables us to evaluate the site-specific 476 

rates for all sequences continuously along an evolutionary trajectory. Our results show that the site 477 

rates fluctuate considerably during the trajectory, even for sites that are not mutated. Natural 478 

proteins have also experienced significant variation in backbone structure during their evolutionary 479 

trajectories as reflected by the structural variability found in sequence homologs. Such relatively 480 

large-scale structural fluctuations are not modeled with the limited backbone flexibility DDG 481 

method used in this study. Our simulation results highlight that relatively small changes in 482 

structure and energetics in proteins can have considerable consequences for substitution rates at 483 

individual sites in proteins and that accurate prediction of site-rates hinges on modeling the 484 
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detailed structural and energetic consequences of amino acid substitutions. Nonetheless, a 485 

significant amount of the fluctuation in substitution rates can be explained simply by fluctuations 486 

in the overall stability of proteins during the evolutionary trajectory (Fig. 7BD).  487 

 488 

We show that phylogenetic trees populated with sequences using an evolutionary all-atom 489 

structural and energetic model result in sequences with a significant covariation signal. Sites with 490 

high statistical coupling have considerably more favorable pair interaction energies than average 491 

contacts in proteins. This suggests that the basic premise behind statistical coupling analysis for 492 

contact prediction - that strong residue-residue interactions lead to covariation signal - is correct. 493 

Nonetheless, although some covariation signal is also observed at lower selection pressures, only 494 

at very high fitness pressures does the covariation signal reach the levels seen for natural 495 

sequences. Furthermore, the limited backbone flexibility in the simulation likely overestimates the 496 

relative strength of specific residue-residue interactions, resulting in enhanced covariation signals. 497 

We, therefore, expect that more realistic modeling of structural variability would reduce the 498 

covariation signal. Taken together, this may suggest that additional mechanisms can be behind the 499 

strong covariation signal found in natural protein sequences. Further investigations of the 500 

correlation between substitution history of RosettaEvolve trajectories, statistical coupling score, 501 

and protein energetics should enable a more detailed understanding of how covariation emerges 502 

among homologous proteins. 503 

 504 

  505 
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Materials and Methods 506 

 507 

Structural modeling 508 

 509 

The crystal structure of azurin (PDB ID: 5AZU) was used as the basis for all modeling. All 510 

structural modeling was done with the Rosetta macromolecular modeling suite[16] using the 511 

beta_nov16 energy function. 5AZU was energy refined before running the evolutionary 512 

trajectories using the method described by Niven et al.[19] to make the crystal structure compatible 513 

with the energy function. Prediction of DDG values for mutations was done using a modified 514 

version of the approach presented by Park et al. [10], with a 6.0  instead of 9.0 Å distance cutoff 515 

in the Lennard-Jones energy term. Backbone flexibility is allowed at the mutated and neighboring 516 

residues, and side-chains are repacked for all residues that have at least an interaction energy more 517 

than 0.1 kcal/mol.     518 

 519 

Site-specific rate calculations 520 

 521 

Site rates were calculated with the TMS method presented in Norn et al. [7] as described in [41]. 522 

In reference [41] a single selection pressure was fitted for a benchmark of 66 proteins based on 523 

maximizing the similarity with empirical site-specific rates. In this study, the selection pressure 524 

used in the rate calculation corresponds to the value used in the evolutionary trajectory that 525 

generated the structure. Empirical rates for azurin were calculated with rate4site [35] using the 526 

empirical Bayes method with the LG instantaneous rate matrix and an alignment consisting of 500 527 

sequences.   528 
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Tree inference phylogenetic tree simulation 529 

 530 

A phylogenetic tree was generated based on a sequence alignment generated by Gremlin [20] using 531 

RAxML[21] with the LG as the instantaneous rate matrix.  532 

 533 

Before running the tree crawling algorithm the effective mutation rate of RosettaEvolve for a given 534 

selection pressure was determined by running trajectories with both synonymous and non-535 

synonymous mutations enabled. By measuring the number of non-synonymous mutations per 536 

mutational trials in the simulation the mutation rates were calculated as  537 

 538 

𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛	𝑟𝑎𝑡𝑒 =
#𝑛𝑜𝑛	𝑠𝑖𝑙𝑒𝑛𝑡	𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑	𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠

∑𝑝!"#$!%
&'(  539 

 540 

where 𝑝I)'*I!
3%6  corresponds to the amount of time before fixation at each step in the trajectory.  541 

Filling of the phylogenetic tree was done from a node at the center of the tree to optimize 542 

computational speed. For each branch RosettaEvolve was run with the number of mutations 543 

expected from the branch length in the empirical tree. At each internal node a structure is stored 544 

and use as a basis for the next set of branches originating from each leaf.  545 

 546 

Statistical coupling analysis  547 

Leaf sequences from the phylogenetic tree simulation (1050 sequences) were analyzed with 548 

Gremlin[20] web server (gremlin.bakerlab.org). Gremlin was run without MSA enrichment so that 549 

only simulated sequences was used in the analysis. Classification of contact prediction was done 550 

using the standard distance threshold of 8.0 Å between Cb (Ca for glycine) using the coordinates 551 
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in 5AZU. A default threshold value of a scaled score above 1.0 was used to select contacts 552 

predicted by Gremlin.  553 

 554 

Pair energies were determined using the residue_energy_breakdown.linuxgccrelease application 555 

using the beta_nov16 energy function and the energy-refined 5AZU structure.  556 

 557 

Command lines and code 558 

RosettaEvolve will be made available through a release of Rosetta[16]. Additional scripts and 559 

running information can be found at https://github.com/Andre-lab/RosettaEvolve. Command lines 560 

used in this study are found in Supplementary materials.  561 
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