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Abstract 
The maturation of human pluripotent stem cell (hPSC)-derived neurons mimics the protracted timing of 

human brain development, extending over months and years to reach adult-like function. Prolonged in vitro 

maturation presents a major challenge to stem cell-based applications in modeling and treating neurological 

disease. We designed a high-content imaging assay based on morphological and functional readouts in 

hPSC-derived cortical neurons to reveal underlying pathways and to identify chemicals capable of 

accelerating neuronal maturation. Probing a library of 2688 bioactive drugs, we identified multiple 

compounds that drive neuronal maturation including inhibitors of LSD1 and DOT1L and activators of 

calcium-dependent transcription. A cocktail of 4 factors GSK-2879552, EPZ-5676, NMDA and Bay K 

8644, which we collectively termed GENtoniK, triggered maturation across all assays tested including 

measures of synaptic density, electrophysiology and transcriptomics. Remarkably, GENtoniK was similarly 

effective in enhancing neuronal maturation in 3D cortical organoids and in spinal motoneurons, and 

improved aspects of cell maturation in non-neural lineages such as melanocytes and pancreatic beta cells. 

These results demonstrate that the maturation of multiple hPSC-derived cell types can be enhanced by 

simple pharmacological intervention and suggests that some of the mechanisms controlling the timing of 

human maturation are shared across lineages.  
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Introduction 
Recent advances in human pluripotent stem cell (hPSC) differentiation enable the derivation of a myriad of 

specific subtypes of neurons on demand1–3.  However, the application of this technology remains hampered 

by the slow maturation rates of human cells resulting in prolonged culture periods for the emergence of 

disease-relevant phenotypes. Indeed, most neurological and psychiatric disorders manifest as impairments 

in postnatal or adult neuron functions such as synaptic connectivity4, dendritic arborization5, and 

electrophysiological function6. Therefore, developing strategies to accelerate the maturation of hPSC-

derived neurons is critical to realize their full potential in modeling and treating neural diseases.  

Multiple cell-extrinsic factors have been identified as contributors to neuron maturation, including glial 

cells7, network activity8 and neurotrophic factors9. However, within a given micro-environment, cell-

intrinsic maturation rates appear dominant and seem to be determined by a species-specific molecular clock, 

which runs especially slow in human neurons10,11. For example, the maturation of hPSC-derived cortical 

neurons transplanted into the developing mouse brain follows human-specific timing, requiring 9 months 

to achieve mature, adult-like morphologies and spine function12. Similarly, the transplantation of mouse, 

versus pig versus human midbrain dopamine neurons into the brain of Parkinsonian rats results in graft-

induced functional rescue after 4 weeks, 3 months or 5 months respectively, indicating that transplanted 

cells retain their intrinsic, species-specific in vivo maturation timing rather than adopting the timing of the 

host speies13. 

Here we aimed at identifying effectors of neuronal maturation and developing a chemical strategy to 

accelerate it. We designed a multi-phenotypic, image-based assay to monitor maturation in nearly pure 

populations of hPSC-derived deep layer cortical neuron cultures and applied it to screen 2688 bioactive 

compounds. Among the screening hits, compounds targeting chromatin remodeling and calcium-dependent 

transcription were combined into a maturation cocktail that was effective across a broad range of maturation 

phenotypes and capable of driving aspects of maturation in both neuronal and non-neuronal lineages.    

 

Results 
High content assay of neuron maturity 

The phenotypic complexity of neurons makes single-readout assays unsuitable to fully capture maturation 

stages. Therefore, we used a multi-phenotype approach (via high-content screening, HCS)14 to design an 

assay that simultaneously monitors distinct features of neuronal maturation (Fig. 1a). Dendritic outgrowth 

is a widely used parameter of neuron maturity15 and can be monitored through automated tracing of 

microtubule-associated protein 2 (MAP2) immunostaining (Fig. 1b, c). Changes in nuclear size and 

morphology are also characteristic of neuron development and maturation16 and can be tracked via DAPI 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 3, 2022. ; https://doi.org/10.1101/2022.06.02.494616doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.02.494616
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

counterstaining (Fig. 1b, c). As an indirect measurement of neuronal function and excitability, we quantified 

the nuclear expression of immediate early gene (IEG) products FOS and EGR1 following 2 hours of KCl 

stimulation (Fig. 1b, d). IEGs are defined by their rapid induction in the absence of de-novo protein 

synthesis by stimuli that include sustained membrane depolarization in neurons17. In contrast to more 

traditional measures of neuronal activity such as calcium imaging and electrophysiology, IEG 

immunoreactivity is readily scalable as a readout for thousands of treatment conditions. However, IEGs can 

be triggered by stimuli other than neuronal activity including growth factor signaling18 and cellular stress 

responses19. Therefore, to avoid direct activation of IEGs, we used transient compound treatment (day 7-

14) and performed all measurements after rinsing of compounds followed by culture in compound-free 

medium for an additional 7 days (day 14-21) prior to analysis (Fig. 1a). Furthermore, we recorded IEGs 

under both basal and KCl-stimulated conditions to specifically determine the depolarization-induced signal 

by subtracting baseline from KCl-induced responses. Measuring maturation readouts only after compound 

withdrawal enabled the identification of compounds that trigger a long-lasting “memory” of a maturation 

stimulus even after compound removal.  

 

While these readouts are pan-neuronal, and therefore appropriate across different neuronal lineages, we 

chose cortical neurons for the screen for both technical and biological reasons. Cortical neurons can be 

derived at high efficiency in the absence of expensive recombinant proteins, and their even cell distribution 

free of clusters makes them amenable to high-throughput imaging. They also represent a brain region that 

undergoes a particularly protracted development, and a region of great importance to human neurological 

disease. Our cortical neuron differentiation protocol yields highly pure populations of post-mitotic deep-

layer TBR1+ cells, which can be readily scaled, cryopreserved and directly thawed for use in large-scale 

assays (Supp. Fig. 1a-d).  

To benchmark the assay performance in mature cells, we employed primary embryonic rat cortical neurons, 

which quickly and reliably develop mature-like functionality in vitro20. At 14 days after plating, rat neurons 

displayed large and round nuclei (130 µm2, 0.93 roundness index), extensive neurite growth (>2500 µm/ 

neuron), and near 100% of the neurons showed KCl-induced IEG responses (Supp. Fig. 1e-i). In contrast, 

in human PSC-derived cortical neurons, these properties only very gradually increased over a 50-day 

culture period and never reached the maturity of their rodent counterparts (Supp. Fig. 1j-m). These results 

indicate that our multi-phenotypic assay reliably captures the maturation of developing rat and human PSC-

derived human cortical neurons.  
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Chemical screen for maturation enhancers 

We next applied our maturity assay to screen a library of 2688 bioactive compounds in hPSC-derived 

cortical neurons (Supp. Fig. 2a). The library was applied at 5 µM and standard scores (z-scores) of duplicate 

screen runs were averaged for analysis. Viability was determined by quantifying intact nuclei, and 325 toxic 

compounds with a z-score below -2 were excluded from further analysis (Supp. Fig. 2b). For HCS hit 

selection, we applied principal component analysis (PCA) to 6 maturity z-scores to identify patterns of 

distribution among compounds, avoiding single threshold hit discrimination21 (Fig. 1e, left panel). The 6 

parameters were: nucleus size and roundness, total neurite length and branching (number of segments per 

cell), and fractions of KCl-induced FOS+ and EGR1+ cells. We identified 3 phenotypic clusters of 

compounds by PCA: maturation enhancers (hits); maturation suppressors, consisting mostly of inhibitors 

of the PI3K/AKT/mTOR axis; and inducers of non-neuronal contaminant proliferation, which were highly 

enriched in TGF-β signaling inhibitors as well as inhibitors of rho-associated protein kinase (ROCK) and 

other signaling pathways (Fig. 1e, right panel). 

We selected 32 compounds within the mature cluster for validation. While PCA identifies compounds with 

the greatest overall maturation effect, we reasoned that compounds with strong effects on single parameters 

could also be of interest. We therefore added the top 5 highest scoring compounds for each, total neurite 

length and double FOS/EGR1 positive cells, excluding compounds already selected by PCA (Supp. Fig. 

3a). Because single-parameter readouts are susceptible to false positives, we excluded drugs with known 

maturation-independent effects, such as microtubule stabilizers docetaxel and paclitaxel. Interestingly, 

neurite-only hits included several inhibitors of Aurora kinase, in agreement with recent phenotypic screens 

targeting this phenotype22,23. Using these combined criteria, we selected 42 primary hits (Supp. Table 1).  

 

To validate primary hits, the 42 compounds were applied to the maturity assay in triplicates at the screening 

concentration (5µM) and ranked by their effect on 4 maturity parameters: nucleus size and roundness, total 

neurite length, and double KCl-induced FOS/EGR1 cells (Supp. Fig. 3b). The 22 compounds with the 

highest mean normalized score over DMSO across all parameters underwent additional dose-response 

studies (Fig. 2a) resulting in the identification of 4 compounds with the most pronounced, dose-dependent 

effects on the mean maturation score (Fig. 2b).  

 

Small molecule cocktail promotes neuron maturity 

The 4 confirmed maturation-promoting compounds consisted of two inhibitors of lysine-specific 

demethylase 1 (LSD1/KDM1A), an inhibitor of disruptor of telomerase-like 1 (DOT1L), and an agonist of 

L-type calcium channels (LTCC). LSD1 is a histone 3 demethylase at lysine 4 and 9, and a switch of 

specificity between these 2 substrates has been previously linked to neuron differentiation24,25. DOT1L is 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 3, 2022. ; https://doi.org/10.1101/2022.06.02.494616doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.02.494616
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 
 

the sole methyltransferase targeting lysine 79 within the globular domain of histone 326. LTCCs are 

involved in calcium-dependent transcription and play important roles in neuron development27. We 

reasoned that transcriptional induction by the LTCC agonist might potentiate the effect of chromatin 

remodeling by epigenetic regulators such as LSD1 and DOT1L. Accordingly, we next sought to determine 

whether a combination of the hits can further enhance neuron maturation. Because two of the confirmed 

hits target LSD1, we decided to only pursue one of them (GSK-2879552) for combinatorial experiments, 

as it displayed a stronger combined effect than OG-L002 (Fig. 2b). A combination of the 3 hit compounds 

significantly increased IEG induction, neurite growth, and nucleus size, but not nucleus roundness, as 

compared to the results following single compound treatments (Fig 2c, Supp. Fig. 4a). These effects appear  

to be independent of cell viability, as neither the individual treatments nor combination significantly altered 

the number of cells with respect to DMSO (Supp. Fig 4b). 

In addition to LTCCs, calcium-dependent transcription is initiated through activation of the NMDA 

glutamate receptors28, which have also been shown to participate in neuron maturation29. Interestingly, the 

compound NMDA itself was among the primary screen hits but did not pass validation as single agent 

treatment (Fig. 2a). We next tested whether the addition of NMDA could further enhance the maturation 

parameters in the presence of the above 3 hit combination. We observed significant improvements across 

all maturity parameters, again without changes in cell survival (Fig. 2d, Supp. Fig. 4c), and we nominated 

the resulting 4-drug cocktail (GSK-2879552, EPZ-5676, NMDA and Bay K 8644) as a maturation-

promoting strategy, naming it GENtoniK (Fig. 2e). 

  

GENtoniK promotes functional neuron maturation 

We next validated GENtoniK on additional maturation phenotypes that are orthogonal to those assayed 

during screening. Establishing independent functional read-outs was particularly important, as three of the 

proteins targeted by the cocktail have been reported to directly participate in IEG induction in neurons30–32. 

The formation of chemical synapses is a critical step in neuronal development that also occurs in protracted 

manner in the human cortex33. We used immunofluorescent staining in day 35 cortical neurons to assess 

the effect of GENtoniK on synaptogenesis. Density of synaptic assembly was quantified through the 

apposition of the pre- and post-synaptic markers SYN1 and PSD95 normalized to dendrite length (Fig. 3a). 

GENtoniK-treated neurons showed increased density of both pre- and post-synaptic markers per neurite 

length, as well as an increased density of the apposition of synaptic punctae (Fig. 3b-d).   

Intrinsic electrophysiological features, such as passive membrane properties and the ability to fire action 

potentials (APs) are also important indicators of functional neuronal maturation34. To assess the effect of 

the drug cocktail on membrane properties and excitability, we performed whole-cell patch-clamp 

recordings in cortical neurons at day 28 from plating. Similar to the IEG studies, treatment was withdrawn 
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7 days before recordings to ensure that differences were maturation-mediated and not a direct effect of the 

ion channel activators NMDA and Bay K 8644. Over 90% of GENtoniK-treated neurons displayed evoked 

APs compared to less than 40% of control neurons (Fig. 3e). Among AP-firing neurons, those treated with 

GENtoniK displayed higher firing frequencies (Fig. 3f) and lower AP thresholds (Fig. 3g). Despite resting 

membrane potential values being significantly more mature in treated neurons (Fig. 3h), their range was 

still distant from the physiological range of -60 to -70mV reported for the cortex in vivo35. These results 

indicate that GENtoniK significantly promotes synaptic connectivity and excitability, but additional, likely 

extrinsic factors may be required to achieve more mature resting membrane properties.  

 

GENtoniK induces immature to mature shift in transcription  

We next conducted RNA sequencing to assess global changes in gene expression induced by the small-

molecule treatment. In accordance with a dual effect of the cocktail on chromatin state and calcium influx, 

we treated hPSC-cortical neurons with either the two epigenetic factors, the two calcium channel agonists, 

or the complete GENtoniK cocktail (Supp. Fig. 5a). Genes differentially expressed in GENtoniK were 

similarly regulated by the epigenetic drugs alone but to a lesser magnitude, which is consistent with the 

hypothesis that calcium influx potentiates transcriptional changes facilitated by chromatin remodeling 

(Supp. Fig. 5b-d). Although both calcium-channel agonists were identified as maturation enhancers in our 

protein-based screen, their combined effect on gene expression was modest 7 days after treatment 

withdrawal (Supp. Fig. 5b).  

 

Gene ontology analyses of transcripts downregulated by GENtoniK revealed enrichment in immature, early 

post-mitotic neuron functions, including migration and axon guidance, as well as transcriptional regulation 

(Fig. 3i, Supp. Fig. 5e). Upregulated genes were enriched in mature neuron functionality, including 

chemical synaptic transmission and transmembrane ion transport (Fig. 3i, Supp. Fig. 5f). While previous 

studies indicate a switch from glycolytic to oxidative metabolism in maturing neurons36, we observed 

enrichment in both glycolysis and oxidative phosphorylation, as well as fatty acid metabolism in treated 

cells (Supp. Fig. 6). To match the transcriptional data with chronological changes of gene expression in 

vivo, we plotted differentially expressed genes against the BrainSpan Atlas of the Developing Human Brain 

dataset37. Genes that are downregulated by GENtoniK were more highly expressed in the early embryo and 

decreased towards birth (Fig 3j, left panel). In contrast, genes upregulated by the treatment generally 

showed an increase in expression through gestation (Fig 3j, right panel). 

 

We next performed CUT&RUN chromatin profiling on histone marks downstream of the epigenetic factors 

targeted by the cocktail (Fig. 3k). Although LSD1 can switch its substrate to H3K9 in the mature neuron-
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specific variant, we focused on its canonical target H3K4 reasoning that maturation-enhancing inhibition 

likely targets the immature form. In untreated, day 7 cortical neurons, both H3K4 and H3K79 2-methylation 

were more highly enriched at GENtoniK-downregulated versus GENtoniK-upregulated genes (Fig. 3l, m). 

H3K4me2 was widespread in the genome, with highest enrichment in the promoter region and near the 

transcription start site (Supp. Fig. 7a). In contrast, H3K79me2 was enriched at a much smaller subset of 

genes, where it extended into the transcribed region (Supp. Fig. 7b). Interestingly, genes within H3K79 

peaks showed near-identical ontology enrichment to those downregulated by GENtoniK by RNA-seq, being 

overrepresented in neuron migration, chromatin modifying, and RNA processing gene categories (Fig. 3i, 

Supp. Fig. 7c-e). Chromatin regulating genes within H3K79me2 peaks include GENtoniK target LSD1 

(Supp. Fig. 7d), while mRNA processing genes with H3K79me2 peaks, such as NOVA2 and CELF1 (Supp. 

Fig. 7e), have been shown to participate in cortical neuron development38,39. These results indicate that 

H3K79 methylation may play a role in maintaining immature gene expression programs, and that loss of 

this mark might facilitate neuronal maturation in GENtoniK-treated cells.  

 

GENtoniK enhances maturation across neuronal culture systems 

We next tested the efficacy of GENtoniK across hPSC-derived neuronal systems. Because our screen relied 

on the female hESC line H9 (WA09), we first replicated the results in male cortical neurons and derived 

from induced pluripotent stem cell (iPSCs) lines, confirming GENtoniK’s effect on maturation across 

different hPSC lines (hESC versus hiPSC) and across both sexes (Supp. Fig. 8).  

Alternative maturation strategies are routinely employed in neuronal cultures, including the addition of 

trophic factors such as brain-derived neurotrophic factor (BDNF) and the use of culture media with more 

physiological levels of glucose and ion concentrations (BrainPhys)40. We conducted time course 

experiments to assess efficacy and compatibility of GENtoniK with existing maturation approaches. 

GENtoniK in standard Neurobasal medium (without neurotrophic factors) induced neuronal maturation 

parameters more robustly than the combination of both BrainPhys and BDNF, while treatment with 

GENtoniK in combination with BrainPhys and neurotrophic factors showed an additional, albeit modest 

increase in maturation (Supp. Fig. 9).  

Self-organizing 3D culture systems such as brain organoids have become a widely used model system to 

study human brain development and disease41. However, similar to 2D culture systems, 3D organoids are 

subject to slow maturation rates42. We observed that forebrain organoids treated with GENtoniK from day 

15-50 of derivation, displayed an increased density of SYN1 puncta (Fig 4a, b), and increased number of 

cells with nuclear expression of EGR1 and FOS (Fig. 4c, d, Supp. Fig. 10) at day 60. For these studies, 

organoids were not subjected to KCl stimulation before IEG immunostaining, thus indicating higher levels 
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of spontaneous activity following GENtoniK treatment. GENtoniK-treated organoids also displayed lower 

expression of immature neuron marker DCX (Supp. Fig 10). 

We next addressed whether the treatment can drive the maturation of hPSC-derived neurons outside the 

cortex or forebrain. ISL1+ spinal motor neurons (SMNs) treated with GENtoniK displayed a highly 

significant increase across all the maturity parameters tested (Fig. 4e-h). We observed that SMNs exhibit 

high levels of spontaneous activity when cultured on high-density multielectrode arrays (Fig. 4i). In a time-

course experiment, average firing rates were increased modestly in the presence of the drug cocktail 

(possibly via direct ion channel activation effect). In contrast, a more pronounced effect was observed 

starting 6 days after treatment withdrawal indicating that the treatment triggered a long-lasting maturation 

effect (Fig 4j). Intriguingly, only SMNs pretreated with GENtoniK exhibited highly synchronous bursts of 

activity in the 0.8-0.6 Hz range (Fig. 4k, l), reminiscent of spontaneous network activity episodes observed 

in the embryonic spinal cord43.   

 

GENtoniK enhances cell function in non-neuronal lineages 

Slow maturation rates of human PSC-derived cells are a common problem across lineages beyond neurons. 

To assess the potential of GENtoniK in other cell types, we next looked at neural crest-derived melanocytes 

which produce the pigment melanin in a maturation-dependent manner. The production and secretion of 

melanin from melanocytes is responsible for human skin and hair color, and hPSCs-melanocytes have been 

used to model various pigmentation disorders44. Using our established differentiation protocol45, treatment 

of hPSC-derived melanocytes with GENtoniK, starting at day 11, induced a dramatic increase in 

pigmentation at day 33 of differentiation, compared to untreated melanocytes (Fig. 4m, n).  

Finally, we tested GENtoniK on a cell type derived from a different germ layer, hPSC-derived insulin-

secreting pancreatic beta cells. These cells arise from definitive endoderm46 and are of great interest in the 

development of cell-based treatments for  type I diabetes47. Although many protocols have been reported, 

one major limitation is the generation of a subset of glucagon(GCG)+insulin(INS)+ polyhormonal cells48. 

Flow cytometry analysis revealed that GENtoniK treatment decreased the number of GCG+ cells among 

INS+ cells (Fig. 4o, p). Importantly, beta-like cells that received GENtoniK treatment from days 20 to 27 

of differentiation displayed evidence of improved functional maturation including increased total insulin 

content, fraction of insulin granules, and KCl-induced insulin secretion at day 29 (Fig. 4q-r; Supp. Fig. 11). 

These results suggest that GENtoniK can trigger some aspects of cell function and maturation even in non-

neural lineages. 
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Discussion 

We present a combined chemical strategy aimed at promoting the maturation of human stem cell-derived 

neurons, which we obtained by combining hits from a high-content small molecule screen. Applying a 

multiparameter readout enabled us to identify compounds that effectively drive neuronal maturation rather 

than simply promoting individual features such as neurite outgrowth49,50. PCA of the screen results yielded 

three phenotypic clusters of compounds that either promoted or inhibited neuronal maturation and 

compounds that promoted the growth of non-neural contaminants. The enrichment of mTOR and PI3K 

regulators among maturation inhibitors concurs with recent findings proposing mTOR activation as driver 

of interneuron maturation51. An unexpected finding was the identification of TGF-β and ROCK-inhibitors 

as compounds promoting a “flat cell” non-neuronal fate, which is a known contaminant of neural 

differentiations and thought to represent a neural crest52 or fibroblast-derived53 mesenchymal cell lineage. 

Both TGF-β and ROCK-inhibitors are commonly used across many neural differentiation protocols, but 

our results indicate that they may promote undesired cell types if used at later differentiation stages. 

 

A central finding of our study was the presence of an epigenetic program in immature neurons that prevents 

rapid maturation of human neurons. We hypothesize that GENtoniK acts in a two-pronged manner. The 

epigenetic probes GSK2879552 and EPZ-5676 induce a shift in chromatin accessibility from an immature 

(migration, axon guidance) to a mature transcriptional program (synaptic transmission, ion channel 

subunits). We further speculate that those changes in chromatin state facilitate NMDA and Bay K 8644-

mediated activation of calcium-dependent transcription28 as an additional driver of maturation. 

 

We identified several inhibitors of LSD1 in our primary screen. LSD1 has been reported to regulate 

differentiation and maturation in olfactory25 and cortical neurons54,55, specifically as a member of the 

CoREST repressor complex. In addition to its roles in development, LSD1 participates in a myriad of 

functions in a highly context- and complex-specific manner56, highlighting the importance of limiting the 

time of treatment to avoid off-target effects. Alternatively, functional specificity could be mediated by 

targeting individual complexes. Although a CoREST-specific probe has been developed57, in our hands it 

was highly toxic to neuronal cultures preventing an assessment of any direct effects on maturation (data not 

shown). DOT1L has been shown to modulate cell-cycle exit during neuronal differentiation58, but its role 

in regulating post-mitotic maturation has not been studied. Our chromatin profiling data in immature 

neurons indicate that DOT1L substrate H3K79me2 could be involved in controlling the accessibility of 

other transcriptional regulators including LSD1, making it an intriguing candidate as a potential master 

regulator of gene expression during development. In agreement with this observation, H3K79me2 levels 

have been shown to increase globally alongside chromatin condensation during neuronal differentiation59, 
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suggesting it might participate in establishing an “epigenetic barrier” during the transition from pluripotent 

cells to neural progenitors and immature neurons; a barrier then retained in human neurons for protracted 

periods during neuronal maturation. The apparent absence of a demethylase for this mark make it a plausible 

timekeeper, as its valence appears to be determined by the rate of nucleosome turnover60.  

 

We demonstrate that the same chemical strategy promotes aspects of functional maturation in non-neuronal 

cells, but more in-depth studies will be required to define the optimal formulation to drive maturation across 

other cell types. For example, while NMDA receptors and voltage-gated calcium channels have 

demonstrated functions in melanocytes and pancreatic beta cells61–64, their activation might be dispensable 

to drive maturation in other cells, where alternative factors such as hormones might be required instead. 

Similarly, there may be alternative epigenetic regulators that contribute to maturation rates across distinct 

cell types and organ systems to assure appropriate tissue and species-specific timing of maturation. Recent 

studies have shown that differences in the rate of biochemical reactions including protein synthesis and 

degradation correlate with species-specific differences in somite and spinal cord development65,66. 

However, further studies are needed to demonstrate a causal relationship and to elucidate whether those 

mechanisms also apply to later developmental stages such as neuronal maturation. GENtoniK provides a 

simple, alternative, and likely complementary strategy to accelerate the timing of maturation in neuronal 

and some non-neural cell types. Furthermore, the use of GENtoniK may facilitate the application of human 

PSC technology in capturing more mature, adult-like states in modeling human development and disease. 
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Methods 
Cell Culture 

Human pluripotent stem cells (hPSCs), both embryonic and induced, were maintained in Essential 8 

medium (Thermo) on Vitronectin-coated plates as previously described67. Cells were passaged twice per 

week and collected for differentiations within passages 30 to 50. Mycoplasma testing was conducted every 

2 months. 

 

hPSC-derived excitatory cortical neurons were generated using a protocol based on the previously described 

dual-SMAD inhibition paradigm68. Briefly, hESC were dissociated into single cells with Accutase and 

seeded at 250,000/cm2 onto Matrigel-coated plates in Essential 8 medium with 10 μM Y-27632. During 

days 1 to 10 of the protocol, medium consisted of Essential 6 (Thermo) with 10 μM SB431542 (Tocris) and 

100 nM LDN193189 (Stemgent). Wnt inhibitor XAV-939 at 2 μM was included from day 1 to 3 to improve 

anterior patterning69. On days 11-20, medium consisted of N2-supplemented DMEM/F12 (Thermo). Cells 

received daily medium exchanges throughout the differentiation. On day 20 cells were dissociated in 

Accutase for 30 m and cryopreserved in STEM-CELLBANKER solution (Amsbio) at 10 million cells/ vial. 

Neurons were thawed as needed for experiments and plated on poly-L-ornithine and laminin-coated plates 

(PLO/Lam), in low-glucose (5 mM) Neurobasal-A medium supplemented with 2% B27 and 1% GlutaMAX 

(Thermo). Neurons received medium exchanges twice per week. During the first 7 days after plating, 

medium was supplemented with notch-inhibitor DAPT at 10 μM to force lingering progenitors out of the 

cell cycle70.  

 

Primary embryonic rat cortical neurons (Thermo) were thawed following vendor instructions and 

maintained in the same manner as hPSC-cortical neurons. 

 

Spinal motor neurons derivation was adapted from a previously described protocol71 to feeder-free 

monolayer culture. In brief, Accutase-dissociated hESCs were seeded at 600,000/cm2 onto Geltrex-coated 

plates and underwent dual-SMAD inhibition in the presence of CHIR99021 and Smoothened agonist. On 

day 11, spinal progenitors were collected and plated on poly-d-lysine, laminin, and fibronectin-coated 

(PDL/Lam/FN) plates and maintained in N2/B27 medium containing Smoothened agonist, retinoic acid, 

BDNF, GDNF, CTNF, and DAPT. On day 24, SMNs were re-plated on PDL/Lam/FN and maintained in 

Neurobasal medium supplemented with 2% B-27, ascorbic acid, retinoic acid, BDNF, GDNF, and CTNF. 

Treatment with GENtoniK or DMSO was initiated the day after re-plating.  
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Dorsal forebrain organoid generation was adapted from a previously reported protocol72. Briefly, 10,000 

EDTA-dissociated hPSCs were plated per well of a 96-well V-bottom low-attachment plate (S-bio). Cells 

were allowed to self-aggregate in hPSC growth medium overnight. From days 1 to 8, medium was changed 

every two days with Essential 6 supplemented with 10 μM SB431542, 100nM LDN193189, and 2 μM 

XAV-939. On day 8, media was switched to organoid growth medium consisting of a 50:50 mixture of 

Neurobasal and DMEM/F12 with 1% NeuroBrew 21 (Miltenyi), 0.5% N2, 1% GlutaMAX, 0.5% MEM 

non-essential amino acids solution, 0.1% 2-mercaptoethanol, and 1μM recombinant human insulin (Sigma). 

Organoids were collected from the wells on day 14 and transferred to 10cm dishes at roughly 20 organoids 

per dish. Dishes were placed on an orbital shaker set to gentle motion to prevent organoid fusion.  

 

Melanocyte differentiation was executed as previously reported73. In brief, the day before differentiation, 

hPSCs with were plated on Matrigel at 200,000 cells per cm2 in E8 medium with 10μM Y-27632. From 

days 0 to 11 of the protocol, cells received daily exchanges of Essential 6 containing: 1ng/ml BMP4, 10μM 

SB431542 and 600nM CHIR99021 (days 0-2); 10μM SB431542 and 1.5μM CHIR99021 (days 2-4); 1.5μM 

CHIR99021 (days 4-6); and 1.5μM CHIR99021, 5ng/ml BMP4 and 100nM EDN3 (days 6-11). On day 11, 

melanoblasts were sorted using a BD-FACS Aria6 cell sorter at the Flow Cytometry Core Facility of 

MSKCC. Cells were dissociated into single cells with Accutase for 20 minutes and then stained with an 

APC-conjugated antibody against cKIT (Invitrogen). Cells positive for APC (cKIT) were sorted and 4, 6-

diamidino-2-phenylindole (DAPI) was used to exclude dead cells. Upon FACS sorting, cKIT+ 

melanoblasts were plated onto dried PO/Lam/FN dishes. Cells were fed with melanocyte medium every 2 

to 3 days and passaged using Accutase at a ratio of 1:4 once a week. Melanocyte media consisted of 

Neurobasal supplemented with: 50ng/ml SCF, 500 μM cAMP, 10ng/ml FGF2, 3 μM CHIR99021, 25ng/ml 

BMP4, 100nM EDN3, 1mM L-glutamine, 0.1 mM MEM NEAA, 2% B27 and + 2% N2. 

 

Pancreatic beta cell differentiation was performed using INSGFP/W MEL-1 cells. Cells were cultured on 

Matrigel-coated 6-well plates in StemFlex medium (Thermo Fisher) and maintained at 37℃ with 5% CO2. 

MEL-1 cells were differentiated using a previously reported strategy74. Briefly, on day 0, cells were exposed 

to basal medium RPMI 1640 (Corning) supplemented with 1× GlutaMAX (Thermo Fisher), 50 μg/mL 

Normocin, 100 ng/mL Activin A (R&D systems), and 3 μM of CHIR99021 (Cayman Chemical) for 24 

hours. The medium was changed on day 2 to basal RPMI 1640 medium supplemented with 1× GlutaMAX, 

50 μg/mL Normocin, 0.2% FBS (Corning), 100 ng/mL Activin A for 2 days. On day 4, the resulting 

definitive endoderm cells were cultured in MCDB131 medium supplemented with 1.5 g/L sodium 

bicarbonate, 1×glutamax, 10 mM glucose, 2% BSA, 50 ng/ml FGF7, 0.25 mM ascorbic acid for 2 days. On 

day 6, the cells were differentiated in MCDB131 medium supplemented with 2.5 g/L sodium bicarbonate, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 3, 2022. ; https://doi.org/10.1101/2022.06.02.494616doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.02.494616
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
 

1× GlutaMAX, 10 mM glucose, 2% BSA, 0.25 mM ascorbic acid, 2 μM retinoic acid, 0.25 μM SANT1, 50 

ng/ml FGF7, 200 nM TPB, 200 nM LDN193189 and 0.5× ITS-X supplement for 2 days to pancreatic 

progenitor stage 1 cells. On day 8, the cells were induced to differentiate to pancreatic progenitor stage 2 

cells in MCDB131 medium supplemented with 2.5 g/L sodium bicarbonate, 1×glutamax, 10 mM glucose, 

2% BSA, 0.25 mM ascorbic acid, 0.2 μM retinoic acid, 0.25 μM SANT1, 2 ng/ml FGF7, 100 nM TPB, 400 

nM LDN193189 and 0.5× ITS-X supplement for 3 days. On day 11, the cells were induced to differentiate 

to insulin expressing cells in MCDB131 medium supplemented with 1.5 g/L sodium bicarbonate, 

1×glutamax, 20mM glucose, 2% BSA, 0.1 μM retinoic acid, 0.25 μM SANT1, 200 nM LDN193189, 1 μM 

T3, 10 μM ALKi5, 10 μM zinc sulfate, 10 μg/mL heparin and 0.5×ITS-X for 3 days. On day 14, the cells 

for static or dynamic KCl stimulated insulin secretion (KSIS) analysis were scraped off from plates and 

relocated onto 24mm insert and 3.0 μm polycarbonate membrane, 6-well tissue culture trans-well plate into 

hemispherical colonies and the cells for insulin content analysis and flow cytometry analysis were kept on 

original plates. All the cells then were further maturated in MCDB131 medium supplemented with 1.5 g/L 

sodium bicarbonate, 1×glutamax, 20 mM glucose, 2% BSA, 100 nM LDN193189, 1 μM T3, 10 μM zinc 

sulfate, 10 μg/mL heparin, 100 nM GS in XX and 0.5× ITS-X for 7 days. Then cells were further matured 

in MCDB131 medium supplemented with 1.5 g/L sodium bicarbonate, 1×glutamax, 20 mM glucose, 2% 

BSA, 1 μM T3, 10 μM zinc sulfate, 10 μg/mL heparin, 1 mM acetylcysteine, 10 μM Trolox, 2 μM R428 

and 0.5× ITS-X with GENtoniK or control treatment for 7 days. 
 

Small molecule treatment 
A bioactive compound library containing 2688 compounds was used for screening at a concentration of 5 

μM (Selleck Bioactive Library, Selleck Chemicals). 192 DMSO wells contained within the library were 

used as negative controls. For confirmation of primary hits, compounds were extracted from the library 

plates with an Agilent Bravo liquid handling platform and re-subjected to the high-content assay in 

triplicates at 5 μM. 22 confirmed compounds were purchased from Selleck Chemicals, reconstituted in a 

suitable solvent and applied for dose-response validation in a concentration log scale (30nM, 100nM, 

300nM, 1000nM, 3000nM, 10,000 nM). GENtoniK cocktail was defined as a mixture of 4 small molecules: 

GSK2879552, EPZ-5676, Bay K 8644, and NMDA, applied at a working concentration of 1 μM each. 

Stocks of individual GENtoniK ingredients were reconstituted in DMSO to 10mM (GSK2879552, EPZ-

5676, Bay K 8644), or in water to 50 mM (NMDA) and stored at -20 C until the day of experiments. Unless 

stated otherwise, controls received a corresponding volume of DMSO (3:10,000). 
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Immunostaining 
Monolayer cultures - Cells were fixed in 4% paraformaldehyde in PBS for 30 m, permeabilized for 5 m in 

PBS with 0.1% Triton X-100 and blocked for 30 m in PBS with 5 % normal goat serum (NGS). Incubation 

with primary antibodies was performed overnight at 4 C at the specified dilution in PBS with 2% NGS. 

Following 3 washes with PBS, cells were incubated with fluorescently conjugated secondary antibodies (2 

µg/ml) for 30 m at room temperature. Nuclear staining with DAPI at 1 µg/ml was simultaneous to secondary 

antibody incubation. For high-content experiments, all steps were assisted by automated liquid handling at 

the MSKCC Gene Editing and Screening Core Facility. A list of antibodies used in this study is presented 

in Supplementary Table 2.  

 

Forebrain organoids – Organoids were collected in 1.5 ml centrifuge tubes, washed in PBS, and fixed with 

4% paraformaldehyde solution in PBS overnight at 4 C. Fixed organoids were rinsed in PBS and 

equilibrated in a solution of 30% weight/volume sucrose in PBS for 24 h or until sunk to the bottom of the 

tube. Organoids were embedded in OCT compound (Fisher) on cryomolds, frozen and sectioned to a 

thickness of 30 μm in a cryostat. Sections were collected in 1 ml centrifuge tubes (1 per antibody), washed 

in TBS with 0.3% Triton-X and blocked in the same solution with 10% NGS. Primary antibody incubation 

was done overnight in TBS with 0.5% Tween-20, and followed by washes, and secondary antibody 

incubation for 2 h at RT in the same buffer. Sections were mounted on slides with ProLong medium (Fisher) 

and imaged on a Zeiss microscope equipped with a 20x high numerical aperture objective and an Apotome 

optical sectioning system (Zeiss). For quantification of SYN1 puncta, images were batch-analyzed using 

the Synapse Counter ImageJ plugin75.    

 

High-content imaging 
High-content maturity assay - Cortical neurons were seeded PLO/Lam-coated 384-well plates at a density 

of 5000/well and maintained as described. For bioactive compound screening, compounds were added 7 

days after plating to a final concentration of 5 μM in replicate plates. Following 7 days of treatment, cells 

were rinsed twice and maintained in plain medium for an additional 7 days. Before fixation, one replicate 

plate was stimulated with 50 mM KCl for 2 hours. Immunostaining for FOS, EGR1, and MAP2 and 

counterstaining with DAPI was performed as described above. Images (4 fields/well at 20x magnification) 

were captured through an INCell Analyzer 6000 HCA system (GE Healthcare).  

 

Image analysis and quantification of screen results - Phenotypic analysis of screen images was conducted 

using the Columbus software (Perkin Elmer). Extracted parameters included total number of nuclei, nuclear 

area, nuclear roundness index (DAPI); total neurite length per nucleus (MAP2); and fraction of FOS-
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positive, EGR1-positive and double-IEG positive nuclei (FOS/EGR1). For IEG quantification, ratios of 

positive nuclei were calculated by applying a threshold of fluorescence intensity within DAPI-positive 

nuclei. IEG nuclei ratios in unstimulated plates were then subtracted from KCl-stimulated plates to isolate 

the KCl depolarization-mediated response. Morphological variables (nuclear and neurite) were averaged 

between unstimulated and KCl plates. Sequential b-score and z-score normalization and principal 

component analysis were performed in the KNIME analytics platform76 with the High Content Screening 

Tools extension. 

 

Synaptic marker analysis - hPSC-cortical neurons were thawed and plated on PLO/Lam 96-well plates. 

Drug treatment was initiated after 7 days and maintained for 21 day. Cells were fixed after an additional 7 

days in plain medium. Immunostaining for Synapsin 1, PSD95, and MAP2 was conducted as described 

above. 10 images per well were captured using the confocal modality of the IN Cell 6000 HCA system. A 

mask was applied to the area surrounding MAP2-positive processes, and SYN1 and PSD95 puncta were 

quantified within the defined region. For quantification of pre- and post-synaptic marker apposition, a mask 

was applied to an area containing and immediately surrounding SYN1 puncta, and PSD95 puncta localized 

within this region were counted. Synaptic puncta counts per field were normalized to total neurite length. 

 

Electrophysiology 
Whole-cell patch-clamp - hPSC-cortical neurons were plated onto PLO/Lam-coated 35mm dishes at a 

density of 75k/cm2. Treatment with GENtoniK or DMSO began 7 days after plating and maintained for 14 

days. Recordings were initiated 7 days after treatment withdrawal, within days 28 to 33 from plating. 

Whole-cell recordings were performed at 23 – 24° C while the cells were perfused in freshly made ACSF 

containing (in mM): 125 NaCl, 2.5 KCl, 1.2 NaH2PO4, 1 MgSO4, 2 CaCl2, 25 NaHCO3 and 10 D-glucose. 

Solutions were pH-corrected to 7.4 and 300-310 mOsm. Neurons were recorded with pipettes of 3-7 MΩ 

resistance filled with a solution containing (in mM): 130 potassium-gluconate, 4 KCl, 0.3 EGTA, 10 Na2-

phosphocreatine, 10 HEPES, 4 Mg2-ATP, 0.3 Na2-GTP and 13 biocytin, pH adjusted to 7.3 with KOH and 

osmolarity to 285–290 mOsmol/kg. Recordings were performed on a computer-controlled amplifier 

(MultiClamp 700B Axon Instruments, Foster City, CA) and acquired with an AxoScope 1550B (Axon 

Instruments) at a sampling rate of 10 kHz and low-pass filtered at 1 kHz.  

 

Multi-electrode array recording - hPSC-derived spinal motor neurons were seeded onto poly-l-lysine-

coated complementary metal oxide semiconductor multi-electrode array (CMOS-MEA) probes (3Brain)77. 

A 100-μl droplet of medium containing 200,000 neurons was placed on the recording area. After 1 h 

incubation, 1.5 ml of medium were added to the probe and replaced every 3 days. Cells received treatment 
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with GENtoniK or DMSO during days 3 to 9 from plating. Recordings were performed every 3 days for 18 

days, 24 h after medium changes. 1 minute of spontaneous activity was sampled from 4096 electrodes using 

the BioCAM system and analyzed using BrainWave 4 software. Spikes were detected using a sliding 

window algorithm on the raw channel traces applying a threshold for detection of 9 standard deviations. 

Network bursts were detected by applying a hard threshold of 1 spike/second on the entire 4096-channel 

array.  

 

Gene expression and chromatin profiling 
RNA-seq - RNA was extracted using the Direct-zol RNA miniprep kit (Zymo). Total RNA samples were 

submitted to GENEWIZ for paired-end sequencing at 30-40 million reads. Analysis was conducted in the 

Galaxy platform78. Transcript quantification was performed directly from adapter-trimmed FASTQ files 

using the Salmon quasi-mapping tool79 referenced to GENCODE Release 36 (GRCh38.p13) transcripts. 

DESeq280 was used for differential expression analysis from Salmon-generated transcript per million 

(TPM) values. Differentially expressed genes with a Benjamini-Hochberg adjusted p-value below 0.05 and 

a baseMean cutoff of 1000 were applied to gene set overrepresentation analysis using the Goseq tool81. For 

gene set enrichment, all genes with a baseMean above 1000 were analyzed using the GSEA software82. 

 

CUT&RUN - hPSC-derived cortical neurons were collected 7 days after plating for CUT&RUN chromatin 

profiling using the standard protocol83. Antibodies against H3K4me2 (Upstate), H3K79me2 (Active Motif) 

and mouse IgG (Abcam) were used at 1:100 for 100k cells per antibody. DNA was collected via phenol-

chloroform extraction and submitted to the MSKCC Integrated Genomics Operation core for paired-end 

sequencing at 5 million reads. Analysis was performed in the Galaxy platform. Following alignment to 

ENSEMBL GRCh38 genome build using Bowtie 284, peaks were called using MACS85, and visualized with 

ChIPSeeker86 and deepTool287, using mouse IgG as control for normalization.  

 

Dot blot for melanocyte pigmentation 

hESC-melanocytes were dissociated in Accutase, rinsed, and collected in PBS. A pellet containing 1M cells 

was lysed in 50 μl RIPA buffer with sonication, and centrifuged at 10,000 RCF for 3 m. After discarding 

the supernatant, the insoluble fraction was resuspended in 80 μl of PBS. 10 μl of this solution was applied 

to a nitrocellulose membrane, air dried, and imaged with a standard office scanner to assess pigmentation.  

 

Pancreatic beta cell maturation assays 
Flow cytometry analysis - hESC-derived cells were dissociated using Accutase, fixed and permeabilized 

using Fixation/Permeabilization Solution Kit (BD Biosciences) according to the manufacturer’s 
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instructions. Briefly, cells were first fixed with fixation/permeabilization buffer for 30 mins at 4°C in dark 

and then washed twice with washing buffer with 10 mins incubation each time at room temperature. Then, 

the fixed cells were incubated with primary antibody overnight at 4°C, washed twice with washing buffer 

with 10 mins incubation each time at RT. After 30 mins incubation with fluorescence-conjugated secondary 

antibody at 4°C, cells were washed twice with washing buffer with 10 mins incubation each time at room 

temperature and re-suspended in PBS buffer for analysis. The following primary antibodies were used: anti-

Insulin (1:50, Dako) and anti-Glucagon (1:100, Abcam). Samples were analyzed with an Accuri C6 flow 

cytometry instrument and the data were processed using FlowJo v10 software. 

 

Static and dynamic KSIS - On day 30 cells were starved in 2 mL glucose-free pancreatic beta cells 

maturation media and followed by 2 mL glucose-free DMEM (with GlutaMAX) for 1 hour and additional 

1 hour incubation in KRBH buffer (containing 140 mM NaCl, 3.6 mM KCl, 0.5 mM NaH2PO4, 0.2 mM 

MgSO4, 1.5mM CaCl2, 10 mM Hepes (pH 7.4), 2 mM NaHCO3 and 0.1% BSA) in a 5% CO2/37°C 

incubator. To perform static KSIS, cells were exposed sequentially to 100 μL of KRBH with 2 mM glucose, 

or 2 mM glucose with 30 mM KCl; supernatants were collected after 60 mins and spun down to eliminate 

the cells and debris. Supernatants were used for ELISA (Insulin Chemiluminescence ELISA Jumbo, 

Alpco). To measure the total insulin levels in cells in each sample, cells were lysed in RIPA buffer 

supplemented with 1×protease inhibitor cocktail (ThermoFisher Scientific) with vortexing for 2 mins at RT 

and flash freeze the samples in liquid nitrogen and thaw to help the lysis and release the cellular insulin. 

Lysates were spun down, and supernatant was used for ELISA. Insulin secretion from cells in each 

condition was normalized to KRBH treatment. To perform dynamic KSIS, cells were embedded in 

chambers with the order of filter paper-biogel P4 beads-cells-biogel P4 beads order sandwich and then the 

chambers were installed on the biorep perfusion system (Biorep Technology) and first perfused with Krebs 

buffer containing 2 mM glucose at a flow rate of 100 μL/min and followed by perfusion with 2 mM glucose 

+ 30 mM KCl for 25 mins. Insulin secretion from cells in each fraction in KCl stimulation were normalized 

to KRBH treatment.  

 

Insulin content measurement - D30 hESC-derived beta-like cells were dissociated using Accutase and 

resuspended in DMEM containing 2% FBS and 1 mM EDTA. 80,000 INS-GFP+DAPI− cells were FACS 

sorted by an ARIA2 instrument, washed once with PBS and lysed in 200 µL RIPA buffer supplemented 

with 1× protease inhibitor cocktail (ThermoFisher Scientific). The insulin content was measured by ELISA. 

 

Immuno-electron microscopy - To analyze granular ultrastructure, control or chemical treated-hPSC-

derived beta-like cell clusters were washed with serum-free media and fixed with 2.5% glutaraldehyde, 4% 
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paraformaldehyde, 0.02 % picric acid in 0.1 M buffer. After three buffer washes, the cell clusters were fixed 

again using 1% OsO4
-1.5%K-ferricyanide at RT for 60 mins followed by three buffer washes. After 

dehydration steps of 50%, 70%, 85%, 95%, 100%, 100%,100% EtOH, the cell clusters were infiltrated with 

100% EtOH mixed 1:1 with acetonitrile, followed by acetonitrile, acetonitrile 1:1 with EMbed 812 epoxy 

resin, resin and finally, embedded in fresh resin which was polymerized at 50 deg C for 36 hr.  Sections 

were cut at 65 nm and picked up on nickel grids. Sections were washed with saturated Na-periodate, 

followed by 50 mM glycine, and blocking buffer. Then, the sections were stained with anti-insulin antibody 

at original dilution followed by 10 nm gold Goat anti-Guinea pig IgG (Aurion, 1:100). Samples were 

imaged with a JEOL JEM 1400 TEM with an Olympus-SIS  2K x 2K Veleta CCD camera. 

 

Statistical analysis  

Averages are reported as arithmetic means +/- SEM (standard error of the mean) unless otherwise indicated. 

Statistical significance was marked by asterisk notation as follows: (ns) p > 0.05, (*) p ≤ 0.05, (**) p ≤ 0.01, 

(***) p ≤ 0.001, (****) p ≤ 0.0001. Biological replicates are defined as independent differentiations of a 

given hPSC line unless indicated otherwise. 

 

Data Availability 
Data generated during this study are deposited at NCBI GEO under accession numbers GSE172544 (RNA-

seq) and GSE172543 (CUT&RUN). 
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Figure Legends 
Fig. 1 | High-content chemical screen for drivers of neuron maturation. a, Outline of screening protocol 

in hPSC-derived excitatory cortical neurons. 2SMAD-i, dual SMAD inhibition. b, Example of input 

immunofluorescent images. Top: unstimulated neurons at day 21 post plating. Bottom, neurons received 

50 mM of KCl 2 hours before fixation. c, automated analysis of neuron morphology. Left, nuclei detection 

mask from DAPI channel. Right, automated neurite tracing from MAP2 channel. d, Quantification of 

neuron excitability by applying an intensity threshold to FOS and EGR1 channels within the nuclear mask. 

e, Principal component analysis of screened compound library computed from 6 maturity parameters (z-

scores averaged from n = 2 independent screen runs). Left, PCA plot of 2343 non-toxic library compounds 

(out of 2688 total compounds tested) with phenotypic clustering of maturation enhancing (orange), 

maturation inhibiting (blue), and non-neuronal proliferation enhancing (grey) compounds. Right, 

representative screen images and 10 representative hit compounds within each cluster. Scale bars are 50 

μm. 

 

Fig. 2 | Validation and combination of screen hits identifies maturation-promoting cocktail 

GENtoniK. a, Ranking of primary hits by the mean of 4 maturity parameters (nucleus size and roundness, 

neurite length, and KCl-induced double FOS/EGR1+ cells) normalized to DMSO (n = 3 microplate wells). 

22 top-ranked compounds were selected for validation. b, Dose-response validation of 22 screen hits 

comparing the mean of 4 maturity parameters normalized to DMSO (n = 15 microplate wells from 3 

independent differentiation). c-f, Comparison of confirmed hits GSK-2879552, EPZ-5676, Bay K 8644, 

and a combination of the 3 (G+E+K) across maturity parameters IEG induction (c), neurite growth (d), 

nucleus size (e), and nucleus area (f) (n = 8 microplate wells from 2 independent experiments). g-j, 

Comparison of 3-hit drug combination (G+E+K) to the same with the addition of NMDA across maturity 

parameters IEG induction (g), neurite growth (h), nucleus size (i), and nucleus roundness (j) (n = 8 

microplate wells from 2 independent differentiations). k, Top, representative images of cortical neurons 

treated with DMSO or maturation promoting cocktail GENtoniK. Bottom, formulation of GENtoniK. a-b, 

Brown-Forsythe and Welch ANOVA with Dunnett’s T3 multiple comparison test. c-j, Two-tailed Welch’s 

t-test; asterisks indicate statistical significance. Mean values are represented by a bar graph (a) or a line (c-

j). Error bars represent S.E.M. Scale bars are 50 μm. 

 

Fig. 3 | Validation of small molecule maturation strategy with orthogonal readouts. a, Representative 

images for synaptic marker detection in day 35 hPSC-derived cortical neurons that received DMSO versus 

GENtoniK treatment from days 7 to 21. Orange dots represent instances of SYN1 and PSD95 apposition. 

Inset, input immunofluorescent images used for quantification, with examples of pre- and post-synaptic 
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marker apposition highlighted by arrows. b-d, GENtoniK increases density of SYN1, PSD-95, and their 

apposition expressed as punctate per neurite length (n = 16 wells from n = 2 independent experiments). e-

h, GENtoniK promotes excitability and mature resting properties in day 28 hPSC-cortical neurons. e, >90% 

of treated neurons fired evoked action potentials in contrast to <40% of DMSO controls. Traces show 

representative responses for each group. f-h, Quantification of electrophysiology parameter AP frequency 

(f), AP threshold (g), and resting membrane potential (h) (n = 11 neurons per group from 4-6 dishes and 3 

independent experiments). i-m, RNA-seq and CUT&RUN (3 biological replicates) reveal that GENtoniK 

induces shift from immature to mature transcriptional programs. i, Gene ontology analysis showing 

enrichment for mature neuron function in genes upregulated by the cocktail; and enrichment for immature 

function and transcriptional regulation in genes downregulated by the cocktail or occupied by DOT1L-

target H3K79 2-methylation. j, In the BrainSpan Atlas of the Developing Human Brain 

(https://www.brainspan.org), genes downregulated by GENtoniK display higher average expression during 

early development and decrease over time (left), genes upregulated by GENtoniK display an average 

expression that increases from early development to gestation and after birth (right). Top panels show 

smoothed means curves with confidence intervals, bottom panels show heatmaps of normalized expression 

k-m, CUT&RUN peak profiles of LSD1 and DOT1L targets H3K4 and H3K79 2-methylation in immature, 

untreated d7 hPSC-cortical neurons across the whole genome (k) and in genes downregulated (l) or 

upregulated (m) by GENtoniK in RNA-seq. b-d and f-h, Two-tailed Welch’s t-test; asterisks indicate 

statistical significance. Mean values are represented by a black line (b-d) or a bar graph (f-h). Error bars 

represent S.E.M. Scale bars are 50 μm. 

 

Fig. 4 | Validation of maturation strategy across neuronal and non-neuronal hPSC-derived cells. a-

d, GENtoniK treatment induces synaptogenesis and spontaneous activity in cortical organoids. a, 

Representative images of immunofluorescent staining for SYN1 and MAP2 in day 60 organoids. b, 

Quantification of total SYN1 puncta per field (n = 8 cryosections randomly sampled from n = 20 organoids). 

c, Representative images of immunofluorescence staining for EGR1 and MAP2 in unstimulated day 60 

organoids. d, Quantification of EGR1+ cells per field (n = 8 cryosections randomly sampled from n = 20 

organoids). e-h, GENtoniK promotes maturation of hPSC-derived spinal motor neurons. e, Representative 

high-content maturation assay images of ISL1/2+ spinal motor neurons (day 40 of hPSC differentiation). f-

h, Quantification showing GENtoniK-improved KCl-induction of FOS+ cells (f), total neurite length (g), 

and nucleus area (h) in SMNs (n = 12 microplate wells from 2 independent differentiations). i-l, GENtoniK 

treatment increases firing rates and induces spontaneous bursting activity on SMNs plated on high-density 

multielectrode arrays. i, Sample single channel trace of GENtoniK-treated SMNs illustrating spike 

detection. j, Time-course analysis of average firing rates in SMNs plated on HD-MEAs, calculated from 
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60 s of activity in the 1/64 most active electrodes (n = 128 electrodes from 2 MEA probes). k, 

Representative 60-second spike rastergrams (top) and average firing rates (bottom) of SMNs plated on a 

HD-MEAs. Only GENtoniK-treated SMNs displayed spontaneous bursting events (orange bars). l, Whole 

array heatmap of a 4-second bursting event. m-n, GENtoniK treatment induces early pigmentation in hPSC-

melanocytes. m, Brightfield images of melanocytes (day 33 of hPSC differentiation) that received 

GENtoniK or DMSO from day 11. n, Dot blot analysis of PBS or cell extract of melanocytes treated with 

GENtoniK or DMSO (n = 3 biological replicates). o-r, GENtoniK promotes maturation of hESC-derived 

beta-like cells. Representative flow cytometry analysis (o) and quantification (p) of the percentage of GCG+ 

cells in INS-GFP+ cells after 7 days treatment with GENtoniK or control followed by 2 days treatment-free 

(n = 4 biological replicates). q, Total insulin content of INS-GFP+ cells after 7 days treatment with 

GENtoniK or control followed by 2 days treatment-free (n = 6-7 biological replicates). r, Static KCl-

stimulated human insulin secretion and fold change in beta-like cells after 7 days treatment with GENtoniK 

or control followed by 2 days treatment-free. The assay was performed in the presence of 2 mM D-glucose 

(n = 8-9 biological replicates). b, d, f-h, j and p-r, Two-tailed Welch’s t-test; asterisks indicate statistical 

significance. Mean values are represented by a black line (b, d, f-h) or a bar graph (p-r). Error represent 

S.E.M. Scale bars are 50 μm. 

 

 

Legends to Supplementary Figures  
Supplementary Figure 1 | Design and optimization of high-content maturation assay. a-c, 

immunofluorescent staining of day 10 hPSC-cortical neurons for pan-neuronal marker MAP2 (a,b), 

forebrain marker FOXG1 (a), and deep-layer cortex marker TBR1 (b). c, Quantification of 

immunofluorescent staining (n = 12 microplate wells). d, Time-course quantification of cell number in post-

mitotic hPSC-cortical neurons (DAPI+ cells per field, n = 24 microplate wells). e, Immunofluorescent 

staining of primary embryonic rat cortex neurons (E18) using high-content markers. f-i, Quantification of 

maturation parameters primary rat neurons demonstrate mature values for nucleus size (f), nucleus 

roundness (g), neurite length (h), and KCl-induced IEG expression (i) (n = 12 microplate wells). j-m, Time 

course quantification of maturation parameters in hPSC-derived cortical neurons showing time-dependent 

increases in nucleus size (j), nucleus roundness (k), neurite length (l), and KCl-induced IEG expression (m) 

(n = 24 microplate wells). Mean values are represented by a black line. Error bars represent S.E.M. Scale 

bars are 50 μm. 
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Supplementary Figure 2 | High-content screen data preparation and analysis. a, Pipeline of analysis 

of high-content screen using a 2688-compound bioactive library. Normalization scores (z-scores) of 2 

independent screens were averaged and used for selection of hits via PCA or single-parameter scores. b, 

Exclusion of toxic compounds with a mean z-score of total cell number below -2. Note that increases in 

total cell number were only observed for compounds inducing non-neural cells (Fig. 1e). c, Correlation of 

mean maturation z-scores from 2 screen runs among non-toxic compounds.  

 

Supplementary Figure 3 | Single parameter hit selection. a, Left, representative high-content screen 

image of a DMSO control well. Right, library compounds (excluding the PCA hits already selected) plotted 

against individual maturation parameter. Selected compounds are highlighted in bold, non-highlighted 

compounds were not included due to phenotype and/or known molecular target unrelated to neuronal 

maturation. Screen images are representative of high-scoring compounds for each parameter. b, ranking of 

42 primary hits (PCA and single parameter) in individual maturation parameters (n = 3 microplate wells). 

Mean values are represented by bar graph. Error bars represent S.E.M. Scale bars are 50 μm. 

 

Supplementary Figure 4 | Maturation-promoting small molecules do not significantly affect neuron 

survival. a, Representative staining images from hit combination experiments (Fig. 2c-e), showing day 21 

neurons that received the specified treatment from days 7-14. b, Quantification of number of cells per well 

in neurons treated with screen hits GSK-2879552, EPZ-5676, Bay K 8644, and a combination of the 3 

(G+E+K) c, Quantification of number of cells per well in neurons treated with 3-hit drug combination 

(G+E+K) and the same with the addition of NMDA. n = 8 microplate wells from 2 independent 

experiments. Error bars represent S.E.M. Scale bars are 50 μm. 

 

Supplementary Figure 5 | RNA-seq results of day 21 neurons treated with maturation promoting 

small molecules from d7-14. a, Principal component analysis of RNA-seq results from neurons treated 

with DMSO, two epigenetic drugs (G+E), two calcium influx driving compounds (N+K), or complete 

GENtoniK. b-d, Volcano plots of RNA-seq differential expression analysis vs DMSO of calcium influx 

agonist NMDA and Bay K 8644 (b), epigenetic drugs GSK-2879552 and EPZ-5676 (c), or complete 

GENtoniK (d). e,f, Heatmaps of genes within overrepresented biological process ontology categories 

among GENtoniK-downregulated (e), and upregulated (f) genes. RNA-seq results from 3 biological 

replicates. Heatmaps show expression normalized by row, calculated from mean TPM values. Displayed 

p-values are for enrichment of stated gene ontology categories among differentially expressed transcripts.  
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Supplementary Figure 6 | GENtoniK induces transcriptional activation of diverse metabolic 

pathways in cortical neurons. a-c, Gene set enrichment analysis (GSEA) of RNA-seq results showing 

enrichment for oxidative phosphorylation (a), canonical glycolysis (b), and fatty acid metabolism (c) gene 

ontology categories enriched in GENtoniK-treated neurons. N = 3 biological replicates.  

 

Supplementary Figure 7 | CUT&RUN analysis of LSD1 and DOT1L-targeted histone marks in 

untreated day 10 immature neurons. a, Left, normalized genome enrichment profile of H3K4me2 over 

IGG control along 12Kb region surrounding the transcription start site (TSS). Right, genome-wide 

distribution of gene features among H3K4me2 peaks. b, Left, normalized genome enrichment profile of 

H3K79me2 over IGG control along 24Kb region surrounding the transcription start site (TSS). Right, 

genome-wide distribution of gene features among H3K79me2 peaks. c-e, Enrichment of H3K79me2 vs 

IGG control in gene ontology categories significantly overrepresented among H3K79me2 peaks with 

representative tracks for genes within each category: GO:0001764-neuron migration and GO:0007411-

axon guidance (c), GO:0016569-covalent chromatin modification (d), and GO:0006397-mRNA processing 

(e). Displayed p-values are for enrichment of stated ontology categories among genes within H3K79me2 

peaks.  

 

Supplementary Figure 8 | GENtoniK promotes maturation of cortical neurons derived from induced 

pluripotent stem cells (iPSCs). a-d, Neurons derived from reprogrammed normal lung fibroblast line 

MRC5 (n = 16 microplate wells): representative high-content maturation assay images (a), and 

quantification of maturation parameters nucleus size (b), neurite length (c) and IEG induction by KCl (d). 

e-h, Neurons derived from reprogrammed skin fibroblasts of 10-year-old male (n = 16 microplate wells): 

representative high-content maturation assay images (e), and quantification of maturation parameters 

nucleus size (f), neurite length (g) and IEG induction by KCl (h). Two-tailed Welch’s t-test; asterisks 

indicate statistical significance. Mean values are represented by a black line. Error bars represent S.E.M. 

Scale bars are 50 μm. 

 

Supplementary Figure 9 | GENtoniK improves upon and complements alternative neuron 

maturation strategies. a, Immunofluorescent stain for MAP2, FOS, and SYN1 of day 35 hPSC-derived 

cortical neurons in plain Neurobasal medium, BrainPhys medium+BDNF, Neurobasal with GENtoniK, and 

BrainPhys+BDNF with GENtoniK. b-e, Time-course quantification of the maturity parameters: FOS 

induction by KCl (b), neurite length (c), nucleus size (d), and SYN1 puncta density (e) in neurons that 

received GENtoniK versus DMSO from day 7 from plating. Plates were collected for analysis every 7 days, 
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beginning 7 days after the start of DMSO/GENtoniK treatment. n = 12 microplate wells. Error bars 

represent S.E.M. Scale bars are 50 μm. 

 

Supplementary Figure 10 | GENtoniK decreases migratory marker expression and increases 

neuronal activity marker expression in forebrain organoids. a, Representative images of 

immunofluorescent staining for FOS, DCX, and MAP2 in day 60 forebrain organoids that received DMSO 

(top) or GENtoniK (bottom) from days 15 to 50. Scale bars are 50 μm. 

 

Supplementary Figure 11 | GENtoniK increases dynamic insulin secretion and insulin+ granules in 

hPSC-derived beta-like cells. a, Schematic representation of the stepwise differentiation protocol. hESC-

derived immature beta-like cells were treated with GENtoniK or DMSO from days 20 to 27. b,c, Dynamic 

KCl stimulated human insulin secretion (b) and area under curve (AUC, c) in hESC derived cells after 7 

days treatment with GENtoniK or control followed by 2 days treatment-free culture. The assay was 

performed in the presence of 2 mM D-glucose. Fold change was calculated by dividing the amount of 

secreted insulin at each time point by the average amount of secreted insulin at 2 mM D-glucose. N = 5 

biological replicates. d, Representative electron micrographs showing immunogold labelling of insulin in 

beta-like cells. Circles indicate insulin+ granules (10 nm gold particles). Magnification = 50,000x. e, 

Percentage of insulin+ granules in control and GENtoniK-treated beta-like cells (N = 16). c and e, Two-

tailed Student’s t-test; asterisks indicate statistical significance. Error bars represent S.E.M. 
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