Supplemental Information for:

A Multi-scale, Multiomic Atlas of Human Normal and Follicular Lymphoma Lymph Nodes

Andrea J. Radtke^{1#*}, Ekaterina Postovalova^{2#}, Arina Varlamova², Alexander Bagaev², Maria Sorokina², Olga Kudryashova², Mark Meerson², Margarita Polyakova², Ilia Galkin², Viktor Svekolkin², Sergey Isaev², Grigory Perelman², Yaroslav Lozinsky², Ziv Yaniv³, Bradley C. Lowekamp³, Emily Speranza¹, Li Yao⁴, Stefania Pittaluga⁵, Arthur L. Shaffer III^{6,7}, Danny Jonigk⁸, James D. Phelan⁶, Theresa Davies-Hill⁵, Da Wei Huang⁶, Pavel Ovcharov², Krystle Nomie², Ekaterina Nuzhdina², Nikita Kotlov², Ravshan Ataullakhanov², Nathan Fowler², Michael Kelly⁹, Jagan Muppidi⁶, Jeremy Davis¹⁰, Jonathan M. Hernandez¹⁰, Wyndham H. Wilson⁶, Elaine S. Jaffe⁵, Louis M. Staudt⁶, Mark Roschewski^{6#}, Ronald N. Germain^{1#}

¹Lymphocyte Biology Section and Center for Advanced Tissue Imaging, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA

²BostonGene, Waltham, MA, 02453, USA

³Bioinformatics and Computational Bioscience Branch, NIAID, NIH, Bethesda, MD, USA

⁴Howard Hughes Medical Institute, Chevy Chase, MD, USA

⁵Laboratory of Pathology, NCI, NIH, Bethesda, MD, USA

⁶Lymphoid Malignancies Branch, NCI, NIH, Bethesda, MD, USA

⁷Tumor Targeted Delivery, Heme Malignancy Target Discovery Group, AstraZeneca, Gaithersburg, MD, USA

⁸Institute of Pathology, Hannover Medical School, Hannover, Germany, Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH)

⁹CCR Single Analysis Facility, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Bethesda, MD, USA

¹⁰Surgical Oncology Program, Metastasis Biology Section, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA

#Equal contribution

*Corresponding author: Andrea J. Radtke (andrea.radtke@nih.gov)

Contents:

Figure S1: Evaluation of gene expression profile and cellular composition of normal and FL LNs using scRNA-seq.

Figure S2: RNA-seq assessment of clonotypes and *N*-glycosylation sites within variable regions of immunoglobulin genes.

Figure S3. Artificial intelligence (AI)-driven pipeline for multiplexed image analysis.

Figure S4: IBEX imaging allows detailed spatial profiling of tumor B, myeloid, stromal, and other cell types *in situ*.

Figure S5. Visualization and quantification of histological patterns and cellular communities using IBEX.

Figure S6. Workflows for comparing spatial patterns between IBEX and MxIF images.

Figure S7. Integration of multimodal technologies to evaluate normal and FL LNs.

Table S1. Clinical and pathological characteristics of non-FL and FL samples.

Table S2. Comparison of samples across omics and imaging platforms (Included as separate dataset).

Table S3. Differentially expressed genes from bulk RNA-seq reported as fold change values (Included as separate dataset).

Table S4. Cell-specific gene expression and cell annotations for bulk RNA-seq based deconvolution.

Table S5. Training settings for deep learning algorithms used in this study.

Table S6. IBEX and MxIF imaging panels for fixed frozen and FFPE tissues.

Table S7. Bulk RNA-seq gene signatures used for cell community assessment.

Accompanying Datasets: https://doi.org/10.5281/zenodo.6536724

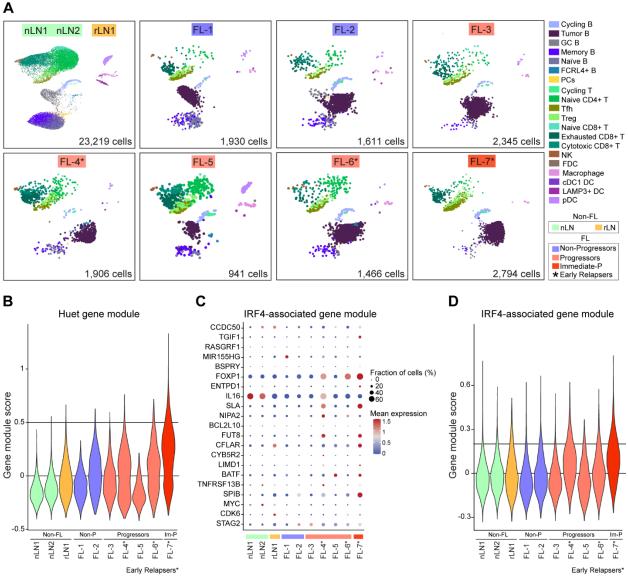
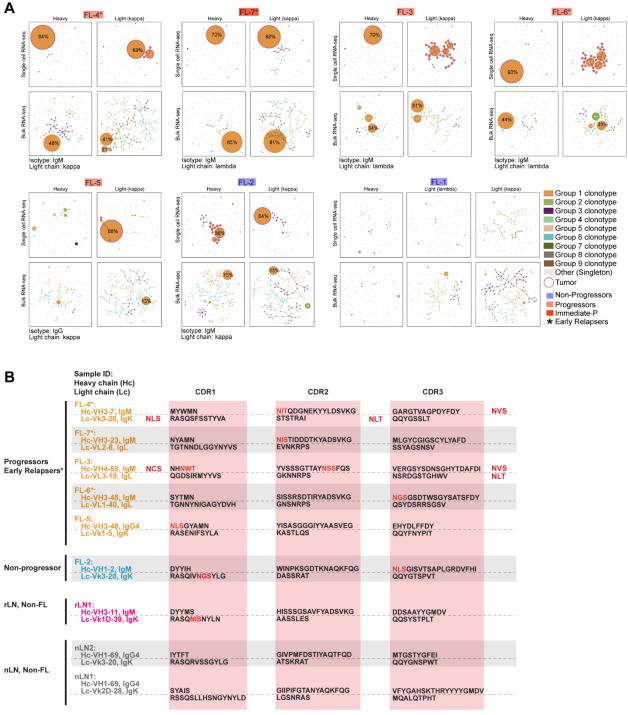



Figure S1: Evaluation of gene expression profiles and cellular composition of normal and FL LNs using scRNA-seq.

(A) UMAP plots from individual samples colored by cell populations measured by scRNA-seq. Cells from non-FL samples are included in one plot. (B) Violin plot of Huet gene module for all samples. *PDRM15* and *SMISA8* were not included due to no expression from the 23 Huet gene signature (Huet et al., 2018). See Figure 2I for individual genes. (C) Dot plot depicting dynamic expression of individual genes associated with IRF4 expression in hematological malignancies (Wang et al., 2014). (D) Violin plot of IRF4-associated gene module for all samples. For B and D, horizontal lines are included to aid in visual comparison only.

Amino Acid Sequence (N-linked glycosylation site = NXS/T)

Figure S2: RNA-seq assessment of clonotypes and *N*-glycosylation sites within variable regions of immunoglobulin genes.

(A) Clonal composition maps show clonal repertoire of FL samples derived from bulk and scRNAseq data analyses. The text below the plot indicates expressed B cell receptor as determined by bulk RNA-seq. (B) *N*-linked glycosylation sites in heavy and/or light chain variable regions of immunoglobulin genes from normal and malignant B cells. FL-1 is not included here due to cryptic translocation of BCL2 into the immunoglobulin locus that disrupted either expression or amplification of BCR sequences.

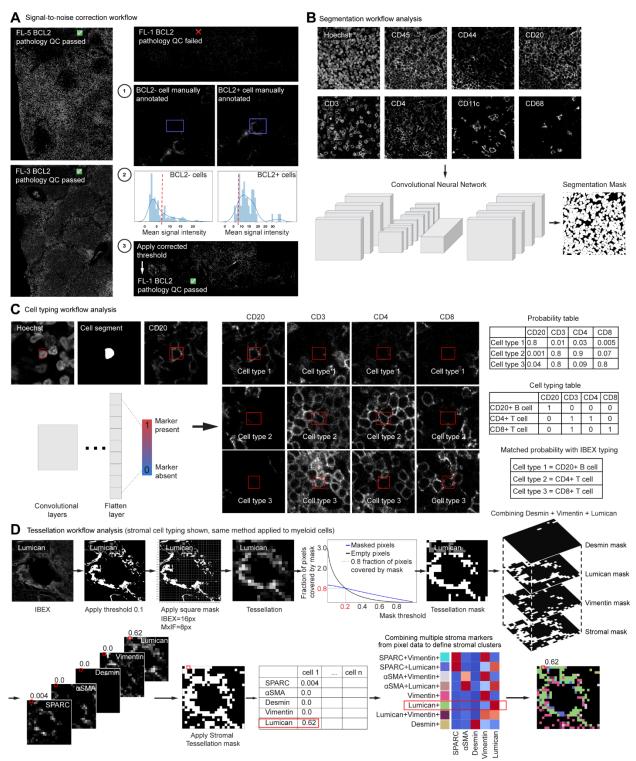
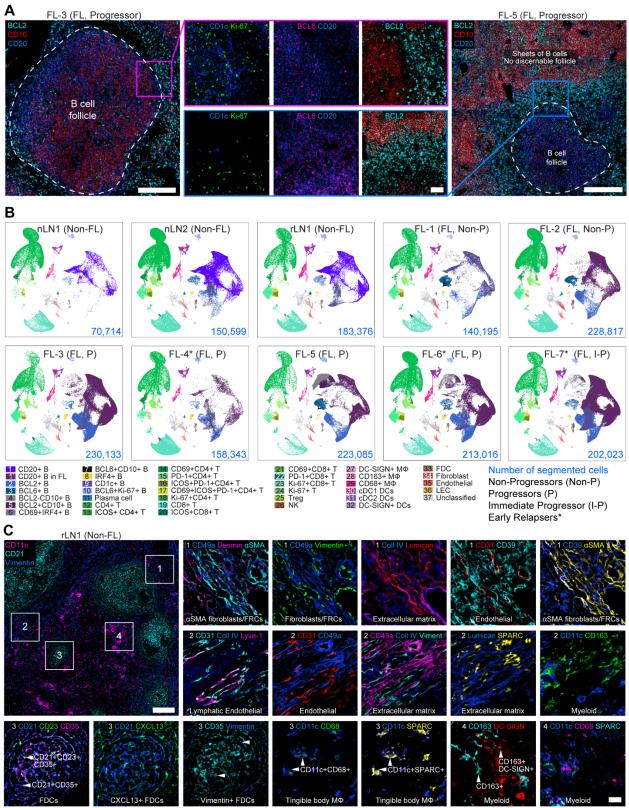
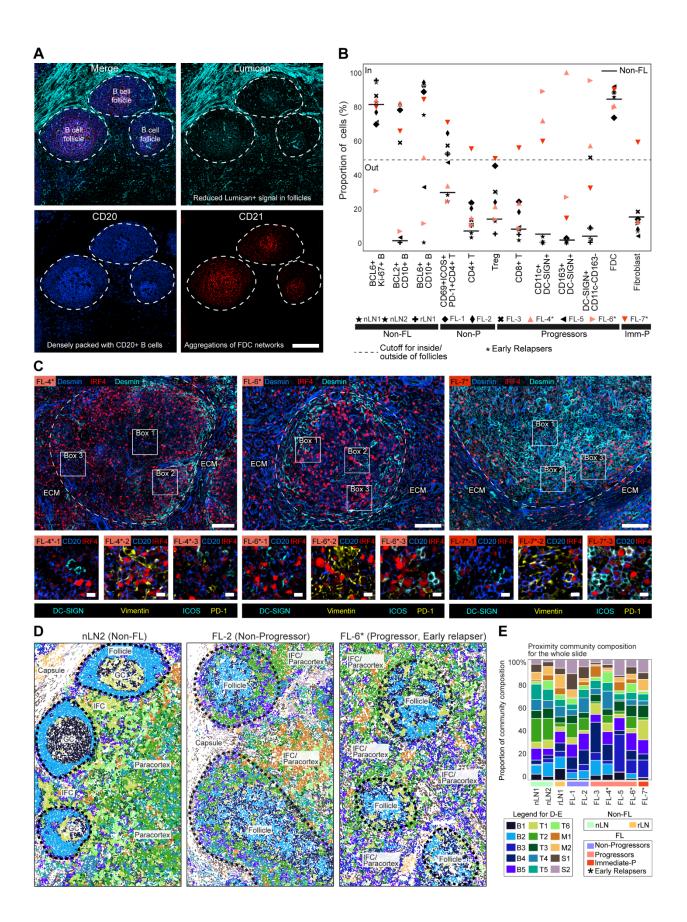
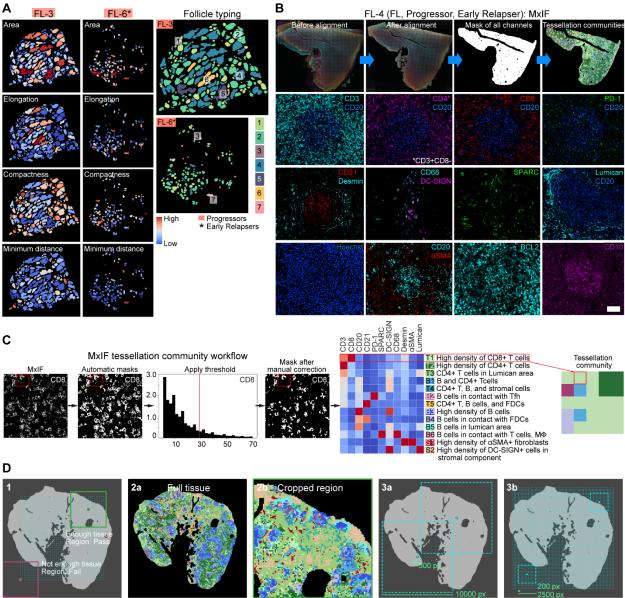


Figure S3. Artificial intelligence (AI)-driven pipeline for multiplexed image analysis.

(A) Signal-to-noise correction workflow. Representative BCL2+ images demonstrating quality control (QC) process based on signal-to-noise assessment by trained pathologists. (1) Example of manually annotated cells. (2) The distribution of mean signal intensity for BCL2- and BCL2+ cells. (3) Representative BCL2+ cell for patient FL-1 that now passes QC after applying the corrected threshold determined in (2). (B) Object-based cellular segmentation workflow.

Examples of the three input channels that were used: Hoechst for nuclei, CD45 for membrane. and a composite of several other markers (CD44, CD20, CD3, CD4, CD11c, CD68). Convolutional Neural Network (CNN) schema. Example of the cell segmentation mask. (C) Cell typing workflow analysis. Input channels: Hoechst for nuclei, cell segments, and CD20 marker, red boxes highlighting the position of the CD20+ cell. Schema of the neural network-based approach for cell typing: Convolutional layers (ResNet-50) with two neurons in the last flatten layer - marker present and marker absent. Example depicting cell type identification based on combination of markers and probability determined by CNN. In this example, four markers (CD20. CD3, CD4, CD8) from IBEX image yields three distinct cell types: Cell type 1 CD20+CD3-CD4-CD8-; Cell type 2 CD20-CD3+CD4+CD8-; Cell type 3 CD20-CD3+CD4-CD8+. CNN's output 0-1 range (probability table), where 1 corresponds to certain positive expressions and 0 corresponds to certain negative expressions (cell typing table). Matched probability with IBEX typing. (D) Tessellation workflow analysis (stromal cell typing shown, same method applied to myeloid cells). Original Lumican IBEX image; Lumican image after applying the threshold 0.1; Lumican image after splitting a mask derived from a marker of interest into non-intersecting squares that covers the full image area. Fraction of pixels covered by mask; Lumican image as a signal density heatmap representing the percentage of positive pixels computed for each of these squares. Tessellation masks for single markers Desmin, Lumican, Vimentin, and Stromal (Desmin+Lumican+Vimentin+) mask. An example of the markers that were used for phenotyping stromal cells from IBEX imaging data (SPARC, α -SMA, Desmin, Vimentin, Lumican). The red box highlights the square that can be roughly considered as a "pseudo-cell" measuring 16x16 pixels for stromal subpopulations identified in IBEX images. Percentages of masks in each square "pseudo-cell" is equivalent to mean cell marker expression for object-based cellular segmentation. Heatmap visualizing different stromal phenotypes. Final tessellation mask demonstrating stromal phenotypes pseudo-colored according to adjacent heatmap.


Figure S4. IBEX imaging allows detailed spatial profiling of tumor B, myeloid, stromal, and other cell types *in situ*.

(A) IBEX confocal images from two FL samples demonstrating heterogeneity in tumor B cells based on the expression of indicated markers. The selected markers are known to vary by grade and subtype of FL. Cell phenotypes based on these markers varied between samples (Figure 3D) and (**B**, see below). Scale bar is 200 μ m or 50 μ m (insets). (**B**) UMAP plot of single cells from individual samples colored by cell populations measured by IBEX. Cell counts per sample were obtained by object-based segmentation (light blue text). (**C**) IBEX confocal images from non-FL LN showcasing the diversity of myeloid and stromal cells present in lymphoid tissues and phenotyped using tessellation masks in Figure 3F-I. In insets, 2-3 markers are displayed per image and combined with other markers for greater clarity. Several markers are repeated to reveal different cell phenotypes. Scale bar is 200 μ m or 20 μ m (insets), Vimentin (Viment), Fibroblastic reticular cell (FRC), Follicular dendritic cell (FDC), single and double positive FDCs denoted by arrowheads.

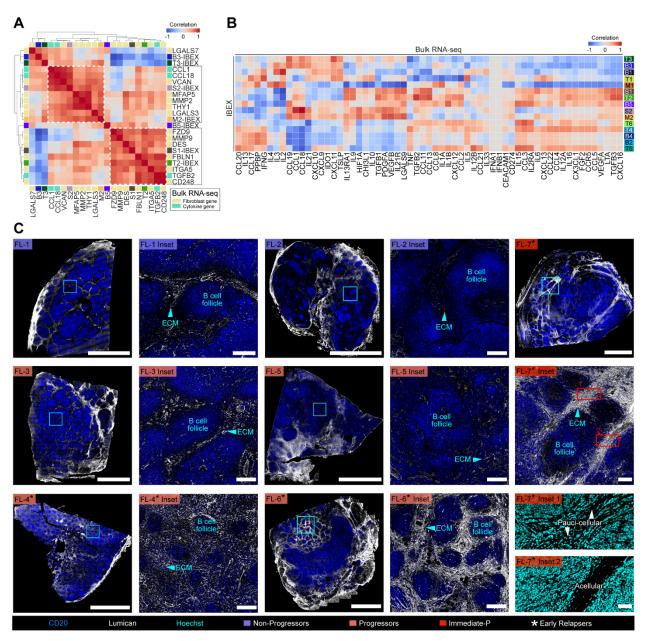


Figure S5. Visualization and quantification of histological patterns and cellular communities using IBEX.

(A) Representative IBEX images. Scale bar 200 µm. White dotted line denotes outer boundary of B cell follicles. For follicle annotations in Figures 4 and 6, B cell follicles were identified by pathologists using the presence of CD20 and CD21 and reduced density of the extracellular matrix marker lumican. (B) Scatter plot showing the distribution of major cell types based on IBEX image analysis. Values near zero along the y-axis represent cells located mostly outside of B cell follicles. Values near 100 represent cells located within B cell follicles. Black line indicates spatial distribution of indicated cell types for non-FL samples. (C) Confocal images of IRF4+ FL B cells in direct contact with DC-SIGN+ myeloid and stromal cells (Box 1), Vimentin+ FRCs (Box 2), and Tfh cells (Box 3, PD-1+ICOS+). Top row: Maximum intensity projection (MIP) of 5 µm z-stacks. Scale bar is 100 µm. Dotted line indicates B cell follicle boundary. Bottom row: Insets show 1 single z slice. Scale bar is 10 µm. (D) Spatial maps of selected regions of interest showing community composition of different samples pseudo-colored according to the legend. Black dotted line indicates follicle boundary. Intrafollicular cortex (IFC). The negligible IFC and paracortex in FL LNs reflects changes arising from malignancy. (E) Bar plots showing proportion of proximity communities identified by IBEX across the whole tissue section versus the follicles (Figure 5F).

Figure S6. Workflows for comparing spatial patterns between IBEX and MxIF images. (A) Follicle composition of MxIF images from indicated patient samples. Heatmaps depict high and low value for the size, shape, density, and distribution of B cell follicles, e.g., red follicles in area plot correspond to large follicles and dark blue correspond to small follicles. Plot showing 7 follicle types based on area, elongation, compactness, and minimum distance calculated as indicated in Figure 6C. (B) Top row: Workflow for serial alignment of MxIF images and assessment of tessellation communities in composite image. Confocal images of individual markers from different regions of FL-4 MxIF image; CD8 image after applying the automated mask; applying threshold for the image; CD8 mask after manual correction of threshold. The red box highlighted corresponds to 100 and 50 pixel-sized squares for IBEX and MxIF images respectively. Heatmap visualizing the obtained community clusters. Final tessellation mask colored as represented cellular niches. (D) Slide concordance analysis workflow for Figure 6. 1) Visualization of cropped images on tissue mask. The pink-boxed region contains more than 50% background and is further excluded from analysis. The green-boxed region contains more than 50% of tissue and is further compared to the full tissue area. 2) Comparison of regions including full tissue (2a) and cropped region (2b). For all regions that passed step 1, tessellation community percentages were calculated. These regions are then compared to communities present in full tissue sections using Pearson correlation. 3) Illustration of different sampling strategies based on the size of region selected. For 3a, the distance between region centers equals 500 pixels and the size of the side is equal to 10,000 pixels. For 3b the distance between region centers equals 200 pixels and the size of the side is equal to 2,500 pixels.

Figure S7. Integration of multimodal technologies to evaluate normal and FL LNs.

(A) Clustermap of pairwise correlations between IBEX communities (Figure 5) and gene signatures determined from bulk RNA-seq data. Colors represent the Spearman correlation coefficient. (B) Heatmap showing Spearman correlation between cytokine gene expression (bulk RNA-seq) and proximity community clusters (IBEX) described in Figure 5. (C) MxIF images showing the expansion of lumican+ extracellular matrix (ECM) around the B cell follicles of early relapsers. Scale bar is 4000 μ m, 200 μ m (Inset), and 50 μ m (Inset 1 and 2).

Patient ID	Age	Sex	BCL2 FISH	Lugano Stage	FLIPI Score	Primary Endpoint	Frontline Therapy*	After Therapy
nLN1	49	Male	NA, non-FL	NA, non-FL	NA, non-FL	NA, non-FL	NA, non-FL	NA, non-FL
nLN2	38	Female	NA, non-FL	NA, non-FL	NA, non-FL	NA, non-FL	NA, non-FL	NA, non-FL
rLN1	38	Male	NA, non-FL	NA, non-FL	NA, non-FL	NA, non-FL	NA, non-FL	NA, non-FL
FL-1	31	Male	Rearranged	4	2: Intermediate risk, spontaneous remission	Non- progressor	None	NA, non-FL
FL-2	54	Male	Rearranged	3	2: Intermediate risk	Non- progressor	None	NA, non-FL
FL-3	51	Male	Rearranged	3	2: Intermediate risk	Early progressor	Lenalidomide- Rituximab	Remission
FL-4*	60	Female	Rearranged	3	3: High risk	Early progressor	Bendamustine- Rituximab	Early relapser (6 months)
FL-5	71	Male	Rearranged	3	3: High risk	Early progressor	Copanlisib- Rituximab	Remission
FL-6*	45	Male	Rearranged	4	2: Intermediate risk	Early progressor	Bendamustine- Rituximab	Early relapser (2 months)
FL-7*	62	Female	Rearranged	3	4: High risk	Early progressor	Bendamustine- Rituximab	Early relapser (16 months)

Table S1. Clinical and pathological characteristics of non-FL and FL samples.

BCL2 Fluorescence in situ hybridization (FISH); Follicular Lymphoma International Prognostic Index (FLIPI)

*All biopsies in this study were obtained before frontline therapy. Non-neoplastic healthy controls (nLN1, nLN2) were mesenteric LNs. The LN with reactive changes in the form of pronounced follicular hyperplasia was excised from the retroperitoneum of patient rLN1. All FL LNs, except for FL-4 (axillary) were inguinal LNs.

 Table S4. Cell-specific gene expression and cell annotations for bulk RNA-seq based

 deconvolution.

deconvolution.	
CD4 T cells	ANKRD55, CD2, CD28, CD40LG, CD5, CD6, FHIT, FLT3LG, IL7R, ITK, ITM2A, KLRB1, LCK, LEF1, LRRN3, NELL2, P2RY8, TCF7, TESPA1, THEMIS, TRAT1, TRAF3IP3
CD8 T cells	CD2, CD3D, CD3G, CD3E, CD6, CD7, CD8A, CD8B, CD96, CRTAM, EOMES, FCRL6, GZMA, GZMB, GZMH, GZMK, ITK, KLRC2, KLRC4, KLRK1, PRF1, PTGDR, PVRIG, SH2D1A, TBX21, THEMIS, TIGIT, TRAC, TRAT1, TRBC2, UBASH3A, XCL2, ZAP70, CCL5, CXCR3
NK cells	CD160, CD244, CD247, CD7, CLDND2, CTSW, GZMM, IL2RB, KIR2DL1, KIR2DL2, KIR2DL3, KIR2DL4, KIR2DS2, KIR3DL1, KIR3DL2, KLRB1, KLRC2, KLRC3, KLRD1, KLRF1, KLRK1, NCAM1, NCR1, NCR3, NKG7, NMUR1, PRF1, PTGDR, PYHIN1, S1PR5, SAMD3, SH2D1B, TMIGD2, XCL2, CCL5, LIM2
B cells	BANK1, BLK, CD19, CD22, CD37, CD79A, CD79B, CLEC17A, CPNE5, CR2, FAM129C, FCRL1, FCRL2, FCRL3, FCRL5, FCRLA, HLA-DOB, MS4A1, PAX5, POU2AF1, SPIB, STAP1, TNFRSF13B, TNFRSF13C, TNFRSF17, VPREB3, CXCR5, DERL3, EAF2, FKBP11, GLCCI1, IGHG1, IGHG3, IGHM, IGKC, IGLL5, MZB1, SEC11C, SSR4, TXNDC11, TXNDC5
Macrophages	ADAP2, ADORA3, C1QA, C1QC, C3AR1, C5AR1, CCL7, CCR1, CD14, CD163, CD33, CD4, CD68, CLEC5A, CMKLR1, CSF1R, CYBB, FPR3, IL10, IL4I1, MRC1, MS4A4A, MSR1, PLA2G7, RAB7B, SIGLEC1, TREM2, VSIG4, MS4A7
Monocytes	AOAH, CCR1, CCR2, CD1D, CD300C, CD300E, CD300LB, CD302, CD33, CECR1, CSF1R, CTSS, CYBB, FCN1, IRF5, MEFV, MS4A6A, PADI4
Fibroblasts	ACTA2, ADAMTS2, CD248, COL16A1, COL1A1, COL1A2, COL3A1, COL4A1, COL5A1, COL6A1, COL6A2, COL6A3, FAP, FBLN2, FBN1, FGF2, LOXL1, MFAP5, PCOLCE, PDGFRA, PDGFRB, TAGLN, THBS2, THY1, VEGFC
Endothelium	ANGPT2, APLN, CDH5, CLEC14A, ECSCR, EMCN, ENG, ESAM, ESM1, FLT1, HHIP, KDR, MMRN1, MMRN2, NOS3, PECAM1, PTPRB, RASIP1, ROBO4, SELE, TEK, TIE1, VWF
cDC	CD1C, CD207, CLEC10A, FCER1A, HLA-DPA1, HLA-DPB1, HLA-DQB1, HLA-DRB1, HLA-DRA, ITGAX, THBD, FCGR3A, IL3RA, CLEC9A, CD14, PTPRC, ANPEP, CLEC4C, AXL, CD3G, CD19, NCAM1, SIGLEC6, CCDC103, ITGAE

NN	Segmentation	Marker Expression	Graph Network Encoder	Graph Network Discriminator
Training set size	251 images	9,485 images	1.8x10 ⁶ (all c	ells available)
Validation set size	51 images	1,879 images		
Loss function	see (He et al., 2017)	BCE (Binary Cross Entropy)	see (Pan et al., 2018)	see (Pan et al., 2018)
Optimizer	SGD	Adam	Adam	Adam
Learning rate	0.005	0.005	0.001	0.005
Batch size	4	15	1	
Number of epochs	100	100	10	00

Table S5. Training settings for deep learning algorithms used in this study.

IBEX I	maging						
Cycle	Marker	Clone	Conjugate	Vendor	Catalog Number	Dilution	RRID
1	Hoechst	-	-	Biotium	40046	1:5000	NA
	CD20	L26	AF488	Thermo	53-0202-82	1:200	AB 10734358
	SPARC	Goat IgG	AF532	R&D	AF941 (Unconjugated)	1:50	AB 2892754
	CD10	FR4D11	PE	Caprico	103926	1:50	
				Biotechnologies			
	CD10	HI10a	PE	BioLegend	312204	1:50	AB_314915
	CD3	UCHT1	AF594	BioLegend	300446	1:100	AB_2563236
	BCL2	100	AF647	BioLegend	658705	1:25	AB_2563279
	Collagen IV	-	None	Abcam	Ab6586	1:200	AB_305584
	Goat anti-rabbit	-	AF700	Thermo	A-21038	1:400	AB_2535709
<u> </u>	lgG			D: //	100.10	1 5000	
2	Hoechst	-	-	Biotium	40046 348216	1:5000	NA AD 44450505
	IgD	IA6-2	AF488	BioLegend		1:25	AB_11150595
	CD21	Bu32 MI15	AF532	BioLegend	NA, Custom 356504	1:600	AB_2892739
	CD138 CD3		PE AF594	BioLegend BioLegend	300446	1:200 1:100	AB_2561878
	BCL6	UCHT1 K112-91	AF594 AF647	BioLegend BD Biosciences	561525	1:25	AB_2563236 AB 10898007
	CD31	WM59	AF700	BioLegend	303133	1:25	AB 2566326
3	Hoechst	VVIVI39	AF700	Biotium	40046	1:5000	NA
5	HLA-DR	- L243	- AF488	BioLegend	307620	1:100	AB 493175
	CD23	EBVCS-5	AF532	BioLegend	NA, Custom	1:25	AB 2892740
	CD1c	L161	PE	BioLegend	331506	1:50	AB 1088999
	CD3	UCHT1	AF594	BioLegend	300446	1:100	AB 2563236
	CD163	GH1/61	AF647	BioLegend	333620	1:100	AB 2563475
	CD11c	B-Ly6	AF700	BD Biosciences	561352	1:25	AB 10612006
4	Hoechst	-	-	Biotium	40046	1:5000	NA
	CD8	SK1	AF488	BioLegend	344716	1:25	AB 10549301
	CD4	RPA-T4	AF532	Thermo	58-0049-42	1:25	AB 2802361
	FOXP3	236A/E7	eF570	Thermo	41-4777-82	1:25	AB 2573609
	CD3	UCHT1	AF594	BioLegend	300446	1:100	AB_2563236
	CD25	M-A251	AF647	BioLegend	356128	1:25	AB_2563588
	Ki-67	B56	AF700	BD Biosciences	561277	1:25	AB_10611571
5	Hoechst	-	-	Biotium	40046	1:5000	NA
	ICOS	CS98.4A	AF488	BioLegend	313514	1:25	AB_2122584
	CXCL13	Goat IgG	AF532	R&D	AF801 (Unconjugated)	1:25	AB_2892755
	PD-1	EH12.2H	PE	BioLegend	329906	1:100	AB_940483
		7					
	CD3	UCHT1	AF594	BioLegend	300446	1:100	AB_2563236
	CD69	FN50	AF647	BioLegend	310918	1:25	AB_528871
6	Hoechst	- A1	- FITC	Biotium	40046	1:5000	NA AD 010105
	CD39			BioLegend	328206	1:50	AB_940425
	Lyve-1	Goat IgG	AF532	R&D	AF2089	1:100	AB_2892756
	CD35	E11	PE	BioLegend	(Unconjugated) 333406	1:800	AB 2292231
	CD35 CD3	UCHT1	AF594	BioLegend	300446	1:100	AB_2292231 AB_2563236
	CD68	KP1	AF647	Santa Cruz	sc-20060	1:100	AB_2891106
7	Hoechst	-	-	Biotium	40046	1:5000	NA
,	α-SMA	- 1A4	- AF488	Thermo	53-9760-82	1:100	AB 2574461
	Lumican	Goat IgG	AF532	R&D	AF2846	1:50	AB 2892757
		-			(Unconjugated)		
	IRF4	IRF4.3E4	PE	BioLegend	646404	1:10	AB 2563005
	CD3	UCHT1	AF594	BioLegend	300446	1:100	AB 2563236
	DC-SIGN	9E9A8	AF647	BioLegend	330112	1:50	AB 1186092
8	Hoechst	-	-	Biotium	40046	1:5000	NA
	Desmin	Y66	AF488	Abcam	Ab185033	1:200	AB_2892748
	CD3	UCHT1	AF594	BioLegend	300446	1:100	AB_2563236
	CD49a	TS2/7	AF647	BioLegend	328304	1:50	AB_1236407
9	Hoechst	-	-	Biotium	40046	1:5000	NA
	CD94	DX22	AF488	BioLegend	305506	1:50	AB_314536
	Vimentin	O91D3	AF532	BioLegend	Custom	1:200	AB_2892753
	CD45	F10-89-4	PE/iFluor594	Caprico	1016185	1:50	AB_2892742
	L			Biotechnologies			4
	CD3	UCHT1	AF594	BioLegend	300446	1:100	AB_2563236
	CD44	IM7	AF647	BioLegend	103018	1:50	AB 493681

Table S6. IBEX and MxIF imaging panels for fixed frozen and FFPE tissues. IBEX Imaging

MxIF II	MxIF Imaging							
Panel	Steps	Marker	Clone	Conjugate	Vendor	Catalog Number	Dilution	RRID
1	1	Hoechst	-	-	Biotium	40046	1:5000	NA
	1	CD20	L26	AF488	Thermo	53-0202-82	1:40	AB_10734358
	1	BCL2	SP66	-	Abcam	Ab236221	1:40	NA

	2	Donkey anti-rabbit IgG	Polyclonal	AF594	Thermo	A-21207	1:200	AB_141637
	1	αSMA	1A4	eF660	Thermo	50-9760-82	1:200	AB 2574362
	1	CD10	Polyclonal	-	R&D	AF1182	1:50	AB 354652
	2	Donkey anti-goat IgG	Polyclonal	AF680	Thermo	A-21084	1:200	AB_141494
2	1	Hoechst	-	-	Biotium	40046	1:5000	NA
	3	Desmin	Y66	AF488	Abcam	Ab185033	1:200	AB_2892748
	1	CD21	SP186	-	Abcam	Ab240987	1:50	NA
	2	Donkey anti-rabbit IgG	Polyclonal	AF555	Thermo	A-31572	1:200	AB_162543
	3	CD68	KP1	iF594	Caprico Biotechnologies	1064135	1:40	AB_2892745
	3	DC-SIGN	h209	-	LS Bio	LS-B3782	1:40	AB 10689801
	4	Donkey anti-rat IgG	Polyclonal	AF647	Jackson ImmunoResearch	712-605-153	1:200	AB_2340694
	3	SPARC	Goat IgG	-	R&D	AF941	1:50	AB 355728
	4	Donkey anti-goat IgG	Polyclonal	AF680	Thermo	A-21084	1:200	AB_141494
3	1	Hoechst	-	-	Biotium	40046	1:5000	NA
	5	CD8	EPR10640	UT015	Cell IDx	HI06B-005	1:100	NA
	6	Anti-UT015	Polyclonal	CL490	Cell IDx	HI06B-005	1:100	NA
	3	CD3	SP7	-	Abcam	Ab16669	1:50	AB_443425
	4	Goat anti- rabbit IgG	Polyclonal	AF532	Thermo	A-11009	1:200	AB_2534076
	5	FOXP3	1054C	UT014	Cell IDx	HI06B-005	1:100	NA
	6	Anti-UT014	Polyclonal	CL550	Cell IDx	HI06B-005	1:100	NA
	1	PD-1	Polyclonal	-	Novus	AF1086	1:40	AB_354588
	2	Donkey anti-goat IgG	Polyclonal	AF680	Thermo	A-21084	1:200	AB_141494
4	1	Hoechst	-	-	Biotium	40046	1:5000	NA
	1	Lumican	Goat IgG	AF532	R&D	AF2846 (Unconjugated)	1:50	AB_2892757
	2	Donkey anti-goat IgG	Polyclonal	AF555	Thermo	A-21432	1:200	AB_2535853

The following markers were excluded from tessellation-based analysis due to poor antibody performance and/or high background: BCL6, CD4, CD20 (in Panels 2-4), CD34, HLA-DR, IRF4, Ki-67, and Vimentin.

Table S7. Bulk RNA-seq gene signatures used for cell community assessment (Figure 7C-D, Figure S7B-C)

Cytokine signature name	Cytokine gene list
Matrix metalloproteinases	MMP2, MMP3
(Myo)fibroblasts	FAP, CD248, ACTA2
Matrix collagen	COL11A1, COL4A1, COL5A1, COL1A2, COL3A1, COL1A1
Mesenchymal cells	NT5E, THY1, ITGA5, VCAM1, NOTCH3, FZD9, ENG
Cancer cell migration	LAMA3, LAMC2, LAMB3
Fibroblastic reticular cells	NT5E, LTBR, ICAM1, DES, ACTA2, PDPN, PTGS2, VIM, VCAM1, PDGFRA, THY1
T cell exhaustion	TIGIT, PDCD1LG2, PDCD1, HAVCR2, BTLA, CTLA4, LAG3, CD274
B cell antibody production	IFNB1, IFNG, IL2, IL21, IL21R, IL15, IL6, IL10
Th2 response	IL4, IL6, IL10, CCL8, CXCL13
Myeloid inflammation	IL1A, IL1B, TNF, IL6, LTA
Treg recruitment	CXCL13, CCL1, CCL3, CCL4, CCL5, CCL18, CCL17, CCL22, CCL19, CCL21
Th1 response	IFNG, IFNA1, IFNB1, IL12A, IL12B, IL2, TNF, IL9
Granulocyte activation	IL5, IL9, CCL13
NK cell recruitment	IL15, CCL5, CCL3, CCL4, CXCL9, CXCL10, CCL19, CCL21
T cell activation	TGFB1, TGFB3, IL12, CXCL9, IFNG, LGALS9, CEACAM1, CD274
Th1/CD8+ T cell recruitment	CCL3, CCL4, CXCL9, CXCL10, CCL5, CCL19, CCL21
B cell recruitment	IL12A, IL12B, CCL19, CCL20, CCL21, CXCL13, CXCL12, CXCL10
Fibroblast recruitment	CCL4, CCL2, FGF2, PDGFA, TGFB1, TGFB3, HIF1A, VEGFA, VEGFB, CXCL12, IL6

Gene signatures were manually annotated from several sources (Jonigk et al., 2019; Kamp et al., 2022; Luzina et al., 2015; Mourcin et al., 2021; Nagarsheth et al., 2017).

REFERENCES

He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017). Mask R-CNN. Paper presented at: 2017 IEEE International Conference on Computer Vision (ICCV).

Huet, S., Tesson, B., Jais, J.-P., Feldman, A.L., Magnano, L., Thomas, E., Traverse-Glehen, A., Albaud, B., Carrère, M., Xerri, L., *et al.* (2018). A gene-expression profiling score for prediction of outcome in patients with follicular lymphoma: a retrospective training and validation analysis in three international cohorts. The Lancet Oncology *19*, 549-561.

Jonigk, D., Stark, H., Braubach, P., Neubert, L., Shin, H.O., Izykowski, N., Welte, T., Janciauskiene, S., Warnecke, G., Haverich, A., *et al.* (2019). Morphological and molecular motifs of fibrosing pulmonary injury patterns. The journal of pathology Clinical research *5*, 256-271.

Kamp, J.C., Neubert, L., Stark, H., Hinrichs, J.B., Boekhoff, C., Seidel, A.D., Ius, F., Haverich, A., Gottlieb, J., Welte, T., *et al.* (2022). Comparative Analysis of Gene Expression in Fibroblastic Foci in Patients with Idiopathic Pulmonary Fibrosis and Pulmonary Sarcoidosis. Cells *11*, 664.

Luzina, I.G., Todd, N.W., Sundararajan, S., and Atamas, S.P. (2015). The cytokines of pulmonary fibrosis: Much learned, much more to learn. Cytokine *74*, 88-100.

Mourcin, F., Verdière, L., Roulois, D., Amin, R., Lamaison, C., Sibut, V., Thamphya, B., Pangault, C., Monvoisin, C., Huet, S., *et al.* (2021). Follicular lymphoma triggers phenotypic and functional remodeling of the human lymphoid stromal cell landscape. Immunity *54*, 1788-1806.e1787.

Nagarsheth, N., Wicha, M.S., and Zou, W. (2017). Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nature Reviews Immunology *17*, 559-572.

Pan, S., Hu, R., Long, G., Jiang, J., Yao, L., and Zhang, C. (2018). Adversarially regularized graph autoencoder for graph embedding. arXiv preprint arXiv:180204407.

Wang, L., Yao, Z.Q., Moorman, J.P., Xu, Y., and Ning, S. (2014). Gene expression profiling identifies IRF4-associated molecular signatures in hematological malignancies. Plos One *9*, e106788-e106788.