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Appendences  

Appendix A. Supplementary Methods 

MRI processing stages  

Raw stage raw MRI DICOMs were saved in the NifTi-1 format in their native space.  

Freesurfer volume stage First, T1-MRIs were subject to the recon-all preprocessing pipeline 

of FreeSurfer 5.3.0 (Fischl 2012). This includes a brain extraction step, intensity normalization 

procedures, linear registration to the FreeSurfer standard space, and rescaling between 0-

255. Then, the intermediate processing stage of the T1-image (‘brain.finalsurf.mgz’) was used 

to linear register (Rigid, linear interpolation; ANTs 2.2; Avants et al. 2011) also images of the 

other two sequences (FLAIR, SWI) to the space of the T1-weighted images. Before rescaling 

the images of these two MR sequences to the same range (0-255), high intensity outliers were 

clipped to 383, which guaranteed that their intensity distributions do not show skewed biases 

based on high intensity noise nor high intensity values which potentially correlate with age, 

e.g., in white matter lesions. 

MNI stage To bring images also to a common space across participants, all available 

sequences were non-linearly warped to the MNI152 space (Fonov et al. 2011)  with 2 mm 

isotropic resolution (ANTs 2.2).  

Freesurfer surface stage This stage is a targeted output of FreeSurfer’s recon-all pipeline, 

mapping the brain in volume-space to surface-space by creating a 3D-mesh around its folds. 
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The corresponding computed mapping files were later used to first convert and then explore 

the relevance maps of our interpretation algorithm (LRP) in the individual surface space. 

Hence, this image stage was only used for visualization and analysis after the training of the 

prediction models.  

Brain atlases  

For the model training on distinct regions of the brain (multi-layer ensemble, MLENS type ii), 

as well as for the structural mapping of LRP relevance distributions, we used a combination 

of three atlases that cover nearly the entire brain as defined by the MNI152 template: the 

Harvard-Oxford i) cortical and ii) subcortical structural atlases, and iii) the cerebellar atlas 

(Diedrichsen et al. 2009), all distributed via FSL 5.0.8. While there is a minimal overlap 

between the cerebellum to the other two atlases, we removed the left and right cerebral cortex 

labels from the subcortical atlas, due to their informational redundancy with respect to the 

cortical atlas. For details on the Juelich histological atlas, see: 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases/Juelich. 

Appendix B. Additional simulation studies 

We ran two further simulations to test how the model captures i) shape and ii) gradual intensity 

shifts as functions of age, respectively. For the first simulations, age was introduced as linear 

changes in height and width of a torus. Young tori are taller and thinner, while old tori become 

flatter and wider. In contrast to the main simulation, lesions and atrophies were not added. For 

the second additional simulation, the shape of tori was kept equal across the full age range, 

adding a degree of randomness; also, no lesions nor atrophies were added. Instead, age was 

represented as a linear gradual intensity shift including random noise in the upper quadrant of 

a torus. Young tori have low intensity values, while older tori have higher values in that 

quadrant (maximum at 1; for details see the open repository XDLreg; 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases/Juelich
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https://github.com/SHEscher/XDLreg). All other hyperparameters, such as model 

architecture, training epochs etc., where the same as in the main simulation.  

In both simulations, the respective model could predict age with a high accuracy in the unseen 

test set (simulation i: MAE = 1.69; simulation ii: MAE = 2.36). For the shape simulation, the 

LRP analysis revealed that the model particularly looks at the boarder of a torus for its age 

estimation (Fig. A1a). In the simulation of the age-related local intensity shifts, the LRP 

analysis revealed that the model primarily focuses on the respective upper quadrant (Fig. 

A1b). 
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Fig. A1 (a) Shape simulation The age of tori is purely a function of their shape. No atrophies 

nor lesions are added. Left: Torus of age 37, predicted 33.7. Right: Torus of age 77, predicted 

74.9. LRP reveals that the model mainly looks at the border of tori, potentially estimating height 

and width, which both reflect age in this additional simulation. (b) Local intensity simulation 

Here the age of a torus is a function of the intensity values in the upper quadrant of its body. 

The shape of tori across the full age range is equal, adding some randomness. No atrophies 

nor lesions are added. Left: Torus of age 25, predicted 21.7. Right: Torus of age 80, predicted 
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74.9. LRP reveals that the model mainly looks at upper quadrant of a torus, which reflects age 

in this simulation. However, also some random locations at the border and in the body of the 

tori are picked up. Note that the darker a location is (here upper quadrant of left torus) the less 

strong relevance values are visible. This is because voxel intensities are multiplied with 

relevance values for visualization. Consequently, relevance values in the quadrant of the 

young tori appear more dark than blue.    

Appendix C. Model prediction performance 

Ensembles Head model Base models 

  meanMAE ±SD minMAE maxMAE Nbm, MLENS 

Multi-level ensemble (type i)  3.88 - - - 30 

T1 sub-ensemble 4.31 5.15±0.94 4.42 13.89 10 

FLAIR sub-ensemble 4.13 5.12±1.53 3.99 12.93 10 

SWI sub-ensemble 5.83 6.55±0.87 5.15 13.44 10 

Multi-level ensemble (type ii)  3.69 - - - 45 

Cortical-T1 sub-ensemble 5.10 6.89±2.61 4.51 14.77 5 

Cortical-FLAIR sub-ensemble 4.34 6.36±2.89 4.34 13.52 5 

Cortical-SWI sub-ensemble 6.11 7.66±1.78 5.44 14.77 5 

Sub-Cortical-T1 sub-ensemble 9.88 12.22±2.06 6.42 14.78 5 

Sub-Cortical-FLAIR sub-ensemble 5.34 8.91±3.97 4.48 12.84 5 

Sub-Cortical-SWI sub-ensemble 6.33 9.01±2.54 5.67 14.77 5 

Cerebellum-T1 sub-ensemble 6.28 9.45±3.22 5.72 14.53 5 

Cerebellum-FLAIR sub-ensemble 4.89 6.52±2.51 4.98 14.53 5 

Cerebellum-SWI sub-ensemble 7.58 8.80±1.18 7.03 14.77 5 

Table A2 Prediction performances of both multi-level ensembles (type i, ii) with ReLU 

activation functions and their respective sub-ensembles and 3D-CNN base models (bm), 

measured in mean absolute error (MAE). Note, MAEs > 13 indicate that a specific model did 

not learn from the data, i.e., it only output the approximate population mean, which was set at 

the bias in the output layer.   
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Appendix D. Data distribution of LIFE 

Fig. A3 Age distribution in LIFE MRI dataset after exclusion (n=2016, mean age = 57.32, 

median age = 63.0).  

 

Appendix E. Relevance per brain component 

For each participant, relevance values from the aggregated relevance map of MLENS type i 

were summed in three brain components (grey matter, GM; white matter, WM, cortical spinal 

fluid, CSF), respectively, and plotted over the corresponding ages of the participants (Fig. A4). 

To retrieve the relevance per component, relevance maps were warped to MNI152 space 

(2mm resolution) and then masked with the respective component using nilearn 0.9.0 

(specifically the functions: load_mni152_gm_mask for GM, load_mni152_wm_mask for WM, 

and fetch_icbm152_2009 for CSF). For nearly all components, but CSF in the SWI sub-

ensemble, there was a significant correlation between age and the sum-score (see Table A5). 

Note that, here, the sum of relevance only approximates the overall prediction, since i) it is 

split in three components, and ii) they are taken from the aggregated relevance map of single 

20 30 40 50 60 70 80

Age (years)

0

10

20

30

40

50

60

70

80

C
o

u
n

t

m
ean

m
edia

n

0.00

0.01

0.02

0.03

0.04

0.05

D
e

n
s
ity

fem ale

m ale



7 

participants (i.e., the average relevance map between base models of a sub-ensemble; see 

Section 2.5.2. in the main manuscript). 

 

Fig. A4 Summed relevance per brain component Left column: sum of relevance values 

over components (grey matter: GM, white matter: WM, cortical spinal fluid: CSF). Right 

column: Relative sum of relevance over components, normalized by the respective size (in 

number of voxels) of each component. 
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 GM WM CSF 

T1 R = 0.91, *** R = 0.88, *** R = 0.76, *** 

FLAIR R = 0.50, *** R = 0.27, *** R = 0.05, * 

SWI R = 0.49, *** R = 0.16, *** R = 0.05, ns 

 

Table A5 Correlation table of summed relevance per brain component and age 
Pearson’s correlation (R) between age and sum of relevance values in the three major brain 
components grey matter (GM), white matter (WM) and cortical spinal fluid (CSF) in all three 
sub-ensembles of MLENS type i that were trained on different MRI sequences (T1, FLAIR, 
SWI).  ns: p>0.05; *: p<0.05; **: p<0.01; ***: p<0.001. 

Appendix F. Relevance difference between MRI modalities  

To explore how the models extract age information differently between MRI modalities, we 

took the aggregated relevance maps from the sub-ensembles of MLENS type i, that were 

trained with MRIs in one of the three modalities (T1, FLAIR, SWI), respectively. For each 

participant, we subtracted the relevance maps in a pair-wise fashion from each other (T1-

FLAIR, T1-SWI, FLAIR-SWI). We then run a 1-sample t-test on these three difference maps 

over the full age-range using FSL 5.0.8 (randomise function; 5000 permutations; threshold-

free cluster enhancement). As expected, we find that the model predominantly attributes 

higher relevance to cortical grey matter areas, including the occipital lobe in T1-weighted 

images than in FLAIR and SWI. In contrast, white-matter in sub-cortical but also in fronto-

cortical areas showed higher relevance in FLAIR in comparison to T1. In SWI, the model 

attributed higher relevance in ventral parts of the brain including the brain stem and ventricles 

towards the cerebellum, but also bilateral regions of the central opercular cortex in contrast to 

T1-weighted images (Fig. A6).  

Note, here, higher relevance is relative: For individual regions there can be age-related biases 

within the sub-ensembles. For instance, if the T1 sub-ensemble looks in a specific region 

exclusively for information towards a younger age, that is, attributing only negative relevance 

values to this region if applicable, while the FLAIR sub-ensemble ignores the region for all of 
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its predictions (zero relevance), this would lead to a negative difference score in that region 

(T1-FLAIR). In turn, the corresponding difference map could be misinterpreted by falsely 

assuming that the specific region is more informative in FLAIR (towards a higher age), due to 

the flipped sign in the difference maps in that particular region.  

 

Fig. A6 Difference relevance maps of three MRI sequences T1, FLAIR, SWI After 

subtracting relevance maps per participant in different MRI sequences from each other, 1-

sample t-tests were computed to find areas which showed significant differences between the 
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modalities. Rows: Three difference maps (T1-FLAIR, n=402; T1-SWI, n=314; FLAIR-SWI, 

n=314), which were cut (x=0, y=0, z=0) in three orientations (columns). Red-yellow colors 

indicate where relevance values are higher in the first modality in contrast to the second 

modality, and vice versa for blue-green colors (e.g., i. T1 and ii. FLAIR, in the first row T1-

FLAIR). T-maps were clipped at (-18, -4) and (4, 18). 

 

Appendix G. Contrastive relevance maps 

Fig. A7 Contrastive relevance maps of diabetics vs. control. For T1-sub-ensemble in 

MLENS type I, subjects with type 2 diabetes mellitus (n=29) were contrasted to controls 

(n=217; TFCE, FWE- corrected p ≤ 0.05) in older subjects (50-75 years). 
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Fig. A8 The role of diverging brain age (DBA) on relevance attribution T-maps (2, 7) of 

the GLM analysis on the modulation of relevance maps as function of DBA, corrected for age 

in the older sub-cohort (age ≥ 50).  
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Appendix H. Age-bias corrected diverging brain-age 

 

In spite of the architectures of multi-level ensembles, we still found an age-bias in diverging 

brain-age (DBA; Fig. 2), which also other studies have reported (e.g., Cole et al., 2017; Peng 

et al., 2021; Smith et al., 2019). This bias might affect the correlation analysis between DBA 

and other bio- and lifestyle-related markers (Fig. 7) despite the applied sliding-window 

approach, which aimed to minimize this effect. To attenuate the role of the age-bias in DBA 

further, we fitted a linear model between age (independent variable) and DBA (dependent 

variable), and then subtracted the newly estimated DBA* of the linear model from the original 

predictions, similar to Beheshti et al. (2019). In contrast to these authors, we used a polynomial 

fit, i.e., with a degree > 1. We found that the polynomial degree of 4 showed the highest 

correlation between age and DBA across the full sample (MLENS type i, R2=0.14; MLENS 

type ii, R2=0.14); that is, it was optimal to minimize the respective mean absolute errors 

(MAEs) of the two multi-level ensembles (MLENS type i, MAE=3.56, cf., uncorrected 

MAE=3.86; MLENS type ii, MAE=3.05, uncorrected MAE=3.37). Note, we explicitly overfitted 

the linear correction model (i.e., we did not fit its coefficients on separated data) in order to 

maximally reduce the effect of age in the DBA correlation analysis.   

For the correlation analysis between the bias-corrected DBA and other variables, we found 

that the overall trends remained the same (Fig. A9, cf. Fig. 7). For some variables the number 

of significant correlations (per window) with the bias-corrected DBA remained in a narrower 

age-range, for instance, in BMI between 35-45 years, which showed before significant 

correlations up to 70 years. In contrast, for WM lesions the correlations in the oldest population 

were even more pronounced. This was to be expected, since the initial age-bias in DBA 

resulted in older people being estimated on average to be younger than they actually are (Fig. 

2), while there is an expected increase of WM lesions (Beck et al. 2021). 
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Fig. A9 Relationship of diverging brain-age (DBA) to biomarkers and lifestyle factors 

after correcting DBA for its age-bias Similar to Fig.7, with the difference that DBA (i.e., 

prediction error) is corrected for the observed age-bias (regression towards the mean, Fig. 2). 

After the age-correction, the overall trend in all variables remains similar. For some variables 

the number of significant correlations in age-windows is reduced to a narrower age-range, as 

in bmi, whereas in other variables there is a shift towards an older age, as in log lesionload-

WM-ratio. 
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