
	 		
F.	Gaiti,	P.	Chamely,	A.	G.	Hawkins,	M.	Cortés-López	et	al.	(2022).	BioRxiv 1 

Single-cell	multi-omics	defines	the	cell-type	specific	impact	of	splicing	
aberrations	in	human	hematopoietic	clonal	outgrowths		
	
Federico	Gaiti1,2†,	Paulina	Chamely1,2†,	Allegra	G.	Hawkins1,2†,	Mariela	Cortés-López1,2†,	Ariel	D.	Swett1,2,	Saravanan	
Ganesan1,2,	Tarek	H.	Mouhieddine3,	Xiaoguang	Dai4,	Lloyd	Kluegel1,2,	Celine	Chen1,2,5,	Kiran	Batta6,	John	Beaulaurier7,	
Alexander	W.	Drong4,	Scott	Hickey7,	Neville	Dusaj1,2,5,	Gavriel	Mullokandov1,2,	Jiayu	Su1,8,	Ronan	Chaligné1,2,	Sissel	Juul4,	
Eoghan	Harrington4,	David	A.	Knowles1,8,9,	Daniel	H.	Wiseman6,	Irene	M.	Ghobrial3,	Justin	Taylor10,	Omar	Abdel-
Wahab11*,	Dan	A.	Landau1,2,12*	
	

1New	York	Genome	Center,	New	York,	NY,	USA.		
2Division	of	Hematology	and	Medical	Oncology,	Department	of	Medicine	and	Meyer	Cancer	Center,	Weill	Cornell	Medicine,	New	York,	NY,	USA.	
3Department	of	Medical	Oncology,	Dana-Farber	Cancer	Institute,	Boston,	MA,	USA.	
4Oxford	Nanopore	Technologies	Inc,	New	York,	NY,	USA.	
5Tri-Institutional	MD-PhD	Program,	Weill	Cornell	Medicine,	Rockefeller	University,	Memorial	Sloan	Kettering	Cancer	Center,	New	York,	NY,	
USA.	
6Division	of	Cancer	Sciences,	The	University	of	Manchester,	Manchester,	United	Kingdom.		
7Oxford	Nanopore	Technologies	Inc,	San	Francisco,	CA,	USA.	
8Department	of	Systems	Biology,	Columbia	University,	New	York,	NY,	USA.	
9Department	of	Computer	Science,	Columbia	University,	New	York,	NY,	USA.		
10Sylvester	Comprehensive	Cancer	Center,	University	of	Miami,	Miller	School	of	Medicine,	Miami,	FL,	USA.	
11Human	Oncology	and	Pathogenesis	Program,	Memorial	Sloan	Kettering	Cancer	Center,	New	York,	NY,	USA.	
12Institute	for	Computational	Biomedicine,	Weill	Cornell	Medicine,	New	York,	NY,	USA.	
	
†Contributed	equally	to	this	work;	*Co-corresponding	authors.	
	
Corresponding	authors	contact	details:	Dan	A.	Landau,	MD,	PhD	-	Weill	Cornell	Medicine	Belfer	Research	Building,	413	East	69th	Street,	New	
York,	NY	10021.	Email:	dlandau@nygenome.org;	Omar	Abdel-Wahab,	MD	-	Memorial	Sloan	Kettering	Cancer	Center,	1275	York	Ave,	New	
York,	NY	10065.	Email:	abdelwao@mskcc.org.	
	
Keywords:	Single-cell,	RNA-seq,	multi-omics,	splicing,	long-read	sequencing,	genotyping,	clonal	hematopoiesis,	myelodysplastic	syndrome	
	
ABSTRACT	
RNA	splicing	factors	are	recurrently	affected	by	alteration-of-function	mutations	in	clonal	blood	disorders,	highlighting	
the	importance	of	splicing	regulation	in	hematopoiesis.	However,	our	understanding	of	the	impact	of	dysregulated	RNA	
splicing	has	been	hampered	by	the	inability	to	distinguish	mutant	and	wildtype	cells	in	primary	patient	samples,	the	cell-
type	 complexity	 of	 the	 hematopoietic	 system,	 and	 the	 sparse	 and	 biased	 coverage	 of	 splice	 junctions	 by	 short-read	
sequencing	 typically	 used	 in	 single-cell	 RNA	 sequencing.	 To	 overcome	 these	 limitations,	we	developed	GoT-Splice	 by	
integrating	Genotyping	of	Transcriptomes	(GoT)	with	enhanced	efficiency	long-read	single-cell	transcriptome	profiling,	
as	well	as	proteogenomics	(with	CITE-seq).	This	allowed	for	the	simultaneous	single-cell	profiling	of	gene	expression,	cell	
surface	protein	markers,	somatic	mutation	status,	and	RNA	splicing.	We	applied	GoT-Splice	to	bone	marrow	progenitors	
from	patients	with	myelodysplastic	syndrome	(MDS)	affected	by	mutations	in	the	most	prevalent	mutated	RNA	splicing	
factor	–	the	core	RNA	splicing	factor	SF3B1.	High-resolution	mapping	of	SF3B1mut	vs.	SF3B1wt	hematopoietic	progenitors	
revealed	 a	 fitness	 advantage	 of	 SF3B1mut	 cells	 in	 the	megakaryocytic-erythroid	 lineage,	 resulting	 in	 an	 expansion	 of	
SF3B1mut	erythroid	progenitor	(EP)	cells.	SF3B1mut	EP	cells	exhibited	upregulation	of	genes	involved	in	regulation	of	cell	
cycle	and	mRNA	translation.	Long-read	single-cell	transcriptomes	revealed	the	previously	reported	increase	of	aberrant	
3’	splicing	site	usage	in	SF3B1mut	cells.	However,	the	ability	to	profile	splicing	within	individual	cell	populations	uncovered	
distinct	 cryptic	3’	 splice	 site	usage	across	different	progenitor	populations,	 as	well	 as	 stage-specific	 aberrant	 splicing	
during	erythroid	maturation.	Lastly,	as	splice	factor	mutations	occur	in	clonal	hematopoiesis	(CH)	with	increased	risk	of	
neoplastic	transformation,	we	applied	GoT-Splice	to	CH	samples.	These	data	revealed	that	the	erythroid	lineage	bias,	as	
well	 as	 cell-type	 specific	 cryptic	3’	 splice	 site	usage	 in	SF3B1mut	 cells,	 precede	overt	MDS.	Collectively,	we	present	 an	
expanded	multi-omics	single-cell	toolkit	to	define	the	cell-type	specific	impact	of	somatic	mutations	on	RNA	splicing,	from	
the	earliest	phases	of	clonal	outgrowths	to	overt	neoplasia,	directly	in	human	samples.	
	
INTRODUCTION		

Genetic	diversity	in	the	form	of	clonal	outgrowths	has	
been	 ubiquitously	 observed	 across	 normal	 and	
malignant	 human	 tissues1–13.	 Likewise,	 phenotypic	

diversity	is	a	hallmark	of	both	normal	and	malignant	
tissues	in	human	samples,	as	has	been	observed	with	
the	 widespread	 application	 of	 single-cell	 RNA	
sequencing	 (scRNA-seq)14–20.	 These	 two	 axes	 of	
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cellular	diversity	 likely	exhibit	 complex	 interplay,	as	
cell	state	may	affect	the	phenotypic	impact	of	somatic	
mutations21.	 Recent	 advances	 in	 single-cell	 multi-
omics	sequencing	have	allowed	us	to	reconcile	these	
two	 aspects	 of	 cellular	 variability	 in	 human	
tissues15,22,23,	 and	 link	 genetic	 variation	 and	
transcriptional	 cell	 state	 diversity	 in	 somatic	
evolution.	 For	 example,	 through	 the	 application	 of	
Genotyping	 of	 Transcriptomes	 (GoT)15	 technology,	
which	 enables	 genotyping	 of	 somatic	 mutations	
together	with	high-throughput	droplet-based	scRNA-
seq,	we	have	previously	demonstrated	that	the	effects	
of	 somatic	 mutations	 on	 cellular	 fitness	 in	 blood	
myeloproliferative	 disorders	 vary	 as	 a	 function	 of	
progenitor	cell	identity15.		

Mutations	 in	 genes	 encoding	 RNA	 splicing	
factors	 serve	 as	 an	 informative	 example	 of	 the	
challenge	of	linking	genotype	to	phenotype	in	complex	
human	tissues.	Somatic	change-of-function	mutations	
in	RNA	splicing	 factors	are	recurrent	 in	hematologic	
malignancies24–26,	 highlighting	 the	 importance	 of	
dysregulated	 RNA	 splicing	 in	 human	 hematopoietic	
disorders.	SF3B1	(splicing	factor	3b	subunit	1),	a	core	
component	 of	 the	 spliceosome	 complex,	 is	 a	
commonly	mutated	splicing	factor	across	hematologic	
malignancies	 and	 solid	 tumors,	 and	 is	 heavily	
implicated	 in	 the	 pathogenesis	 of	 myelodysplastic	
syndromes	(MDS)27,28.	SF3B1	mutations	also	occur	in	
subjects	with	clonal	hematopoiesis	(CH),	where	they	
confer	 increased	risk	of	conversion	to	overt	myeloid	
neoplasms	compared	to	other	CH	driver	mutations1,2.	
SF3B1	 mutations	 result	 in	 incorrect	 branch	 point	
recognition	during	RNA	 splicing,	 often	 leading	 to	 an	
increased	 usage	 of	 aberrant	 (or	 cryptic)	 intron-
proximal	3’	 splice	sites	 in	hundreds	of	genes29.	 Such	
aberrant	3’	splice	site	recognition	typically	results	in	
the	 inclusion	 of	 short	 intronic	 fragments	 in	 spliced	
mRNA,	which	most	commonly	alters	the	frame	of	the	
transcript	 and	 renders	 it	 a	 substrate	 for	 nonsense	
mediated	 mRNA	 decay	 (NMD)30.	 Prior	 work	 has	
demonstrated	 that	 through	 mis-splicing,	 SF3B1	
mutations	 lead	 to	 altered	 cell	 metabolism31	 and	
disruption	 of	 ribosomal	 biogenesis32,	 leading	 to	 the	
aberrant	hematopoietic	differentiation	typical	of	MDS.	
While	these	are	key	advances	in	our	understanding	of	
the	role	of	SF3B1	mutations	in	MDS	development,	the	
mechanisms	 through	 which	 mis-splicing	 leads	 to	
disrupted	 hematopoietic	 differentiation	 in	 humans	
remain	elusive.		

To	 date,	 cell	 culture	 systems	 and	 murine	
models	 have	been	 critical	 for	 elucidating	 the	 role	 of	
splicing	 factor	 mutations	 in	 disordered	
hematopoiesis.	Nonetheless,	 these	methods	may	not	

fully	 recapitulate	 MDS	 development	 in	 the	 human	
context.	For	example,	alternatively	spliced	genes	from	
murine	models	 of	 SF3B1mut	 MDS,	 which	 share	 some	
phenotypic	 similarities	 with	 human	 MDS,	 show	
limited	 overlap	 with	 those	 identified	 in	 human	
samples33.	 The	 study	 of	 splice-altering	mutations	 in	
humans	 has	 been	 further	 hampered	 by	 three	
important	 limitations.	 First,	 normal	 wildtype	 (WT)	
and	aberrant	mutated	(MUT)	cells	are	often	admixed	
without	discriminating	 cell	 surface	markers	 that	are	
required	 to	 uniquely	 isolate	 MUT	 cells,	 limiting	 the	
ability	to	identify	signals	that	can	be	specifically	linked	
to	the	SF3B1mut	genotype.	This	obstacle	is	magnified	in	
the	 context	 of	 CH	 where	 MUT	 cells	 commonly	
constitute	a	minority	of	the	hematopoietic	progenitor	
population.	Second,	the	hematopoietic	differentiation	
process	yields	significant	complexity	of	cell	progenitor	
types	that	further	hinders	the	ability	to	link	mutated	
genotypes	with	distinct	cellular	phenotypes.	SF3B1mut	
MDS	 is	 indeed	 associated	 with	 a	 specific	 clinico-
morphological	 phenotype	 of	 refractory	 anemia	 and	
accumulation	 of	 ringed	 sideroblasts28,34,	 strongly	
suggesting	that	the	interplay	between	cell	identity	and	
SF3B1	mutations	is	fundamental	in	driving	disrupted	
hematopoietic	differentiation.	Third,	scRNA-seq	by	3’	
or	 5’	 biased	 short-read	 sequencing	 is	 limited	 in	 its	
ability	 to	map	 full-length	RNA	 isoforms	and	 splicing	
aberrations.	

To	 overcome	 these	 limitations	 and	 identify	
cell-identity-dependent	 mis-splicing	 mediated	 by	
SF3B1	 mutations,	 we	 developed	 GoT-Splice	 by	
integrating	 GoT15	 with	 long-read	 single-cell	
transcriptome	 profiling	 (with	 Oxford	 Nanopore	
Technologies	[ONT])	as	well	as	proteogenomics	(with	
CITE-seq)35.	 This	 allowed	 for	 the	 simultaneous	
profiling	 of	 gene	 expression,	 cell	 surface	 protein	
markers,	 somatic	 mutation	 genotyping,	 and	 RNA	
splicing	within	the	same	single	cell.	The	application	of	
GoT-Splice	to	bone	marrow	progenitor	samples	from	
individuals	with	SF3B1-mutated	MDS	and	CH	revealed	
that,	 while	 SF3B1	 mutations	 arise	 in	 uncommitted	
hematopoietic	 stem	 progenitor	 cells	 (HSPCs),	 their	
effect	 on	 fitness	 increases	 with	 differentiation	 into	
committed	 erythroid	 progenitors	 (EPs),	 in	 line	with	
the	 SF3B1mut-driven	 dyserythropoiesis	 phenotype.	
Importantly,	 the	 integration	 of	 GoT	 with	 full-length	
isoform	 mapping	 via	 long-read	 sequencing	 showed	
that	 SF3B1	 mutations	 exert	 cell-type	 specific	 mis-
splicing,	 already	apparent	 in	CH	 long	before	disease	
onset.		
 
RESULTS	

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 9, 2022. ; https://doi.org/10.1101/2022.06.08.495292doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.08.495292
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 		
F.	Gaiti,	P.	Chamely,	A.	G.	Hawkins,	M.	Cortés-López	et	al.	(2022).	BioRxiv 3 

GoT	 integrated	 with	 proteogenomics	 reveals	
increased	fitness	of	SF3B1mut	cells	in	the	erythroid	
lineage	linked	to	overexpression	of	cell-cycle	and	
mRNA	translation	genes		

As	we	have	recently	demonstrated	that	the	impact	of	
somatic	mutations	 on	 the	 transcriptome	 varies	 as	 a	
function	 of	 underlying	 cell	 identity	 in	
myeloproliferative	neoplasms15,	we	hypothesized	that	
an	 interplay	 between	 cell	 identity	 and	 SF3B1	
mutations	 may	 drive	 disrupted	 hematopoietic	
differentiation	in	MDS.	To	test	this,	we	applied	GoT15	
(Fig.	1a)	to	CD34+	bone	marrow	progenitor	cells	from	
three	 untreated	 MDS	 patients	 with	 SF3B1	 K700E	
mutations	(discovery	cohort,	MDS01-03),	as	well	as	a	
distinct	 cohort	 consisting	 of	 three	 MDS	 patients	
undergoing	treatment	(validation	cohort,	MDS04-06)	
with	erythropoietin	(EPO)	and/or	granulocyte	colony-
stimulating	 factor	 (G-CSF;	 Fig.	 1b;	 Supplementary	
Table	1).	As	normal	hematopoietic	development	has	
been	 extensively	 studied	 using	 flow	 cytometry	 cell	
surface	 markers,	 we	 further	 integrated	 GoT	 with	
single-cell	proteogenomics	 (CITE-seq35,36;	Fig.	1a).	A	
total	of	24,315	cells	across	the	six	MDS	samples	were	
obtained	after	sequencing	and	quality	control	filtering	
(Extended	Data	Fig.	1a,	b;	MDS02	was	sequenced	in	
two	technical	replicates).	To	chart	the	differentiation	
map	of	the	CD34+	progenitor	cells,	we	integrated	the	
data	across	the	primary	MDS	samples	(MDS01-03),	as	
well	as	the	MDS	validation	samples	(MDS04-06),	and	
clustered	based	on	transcriptomic	data	alone,	agnostic	
to	 the	 genotyping	 and	 protein	 information	 (Fig.	 1c;	
Extended	 Data	 Fig.	 1c,	 d).	 Using	 previously	
annotated	 RNA	 identity	 markers	 for	 human	 CD34+	
progenitor	cells37,	validated	via	Antibody-Derived	Tag	
(ADT)	 markers	 in	 the	 CITE-seq	 panel	
(Supplementary	 Table	 2,	 3),	 we	 identified	 the	
expected	 progenitor	 subtypes	 in	 the	 primary	 MDS	
cohort,	along	with	a	population	of	mature	monocytic	
cells	 characterized	 by	 CD14	 expression	 and	 lack	 of	
CD34	expression	often	observed	in	CD34+	sorting	of	
human	bone	marrow38	 (Fig.	1c;	Extended	Data	Fig.	
2a-c).	Cell	clustering	was	further	validated	using	RNA	
and	ADT	multimodal	integration	(Extended	Data	Fig.	
2d).	The	expected	progenitor	subtypes	were	similarly	
identified	 in	 the	MDS	 validation	 cohort	 (MDS04-06;	
Extended	Data	Fig.	3a-c).		

Genotyping	 data	 were	 available	 for	 15,650	
MDS	 cells	 (64.4%	 across	 MDS01-06)	 through	 GoT	
(Fig.	1b;	Extended	Data	Fig.	4a-d).	The	per-patient	
mutant	 cell	 fractions	 obtained	 through	 GoT	 were	
highly	 correlated	with	 the	 variant	 allele	 frequencies	
(VAFs)	obtained	through	bulk	sequencing	of	matched	
unsorted	 peripheral	 blood	 mononuclear	 cells	

(Pearson’s	r	=	0.81,	P-value	=	0.008;	Extended	Data	
Fig.	 4a).	 Projection	 of	 the	 genotyping	 information	
onto	the	differentiation	map	demonstrated	MUT	and	
WT	 cells	 co-mingled	 throughout	 the	 differentiation	
topology	(Extended	Data	Fig.	4c,	d),	highlighting	the	
need	for	single-cell	multi-omics	to	link	genotypes	with	
cellular	phenotypes	 in	SF3B1mut	MDS.	Although	MUT	
cells	 were	 found	 across	 CD34+	 progenitor	 cells,	 we	
observed	 an	 accumulation	 of	 MUT	 cells	 along	 the	
erythroid	trajectory	(Fig.	1d),	suggesting	that	SF3B1	
mutant	cell	frequency	(MCF)	varies	as	a	function	of	the	
progenitor	subtype.	To	confirm	this,	we	evaluated	the	
MCF	 across	 the	 different	 prevalent	 progenitor	 cell	
types	(limited	to	progenitor	subsets	with	>	300	cells).	
Of	 note,	 as	 cells	 may	 display	 variable	 expression	 of	
SF3B1	 itself,	 we	 performed	 amplicon	 UMI-
downsampling	 to	 exclude	 sampling	 biases	 given	 the	
heterozygosity	 of	 the	 mutated	 allele	 as	 a	 potential	
confounder	 for	 observed	 differences	 in	 MCF	 (see	
Methods).	Across	samples,	we	observed	a	significant	
increase	 in	 MCF	 in	 the	 megakaryocyte-erythroid	
lineage	 with	 the	 highest	 MCF	 observed	 in	 EPs	
compared	 to	 HSPCs	 (P-value	 <	 10-16;	 Fig.	 1e;	
Extended	Data	Fig.	4e),	consistent	with	the	erythroid	
lineage-specific	impact	of	mutated	SF3B139,40.	

The	ability	to	layer	protein	measurements	on	
top	 of	 GoT	 data	 further	 allowed	 us	 to	 identify	
differentially	 expressed	 proteins	 between	 MUT	 and	
WT	cells	within	each	progenitor	subset.	After	quality	
control	 filtering	 for	 ADT	 markers	 with	 adequate	
expression	in	at	least	two	major	progenitor	subtypes	
(see	Methods),	protein	expression	was	highest	in	the	
expected	 cell	 types,	 and	 correlated	 with	 mRNA	
expression,	both	at	the	individual	cell	as	well	as	cell-
type	level,	comparable	to	previous	data35	(Extended	
Data	 Fig.	 5a,	 b).	 We	 directly	 compared	 protein	
expression	between	MUT	and	WT	cells,	accounting	for	
sample-to-sample	variability	in	mutated	cells	through	
downsampling	 (see	 Methods),	 and	 observed	
differential	expression	of	CD38,	CD99,	CD36	and	CD71	
in	 at	 least	 one	 progenitor	 cell-type	 (Fig.	 1f;	
Supplementary	Table	4).	 CD38	 is	 a	 known	marker	
for	 the	 transition	 of	 primitive	 CD34+	 stem	 and	
progenitor	 cells	 into	 more	 committed	 precursor	
cells37,41,42.	Its	overexpression	in	SF3B1mut	is	consistent	
with	 the	 observed	 higher	 MCF	 in	 committed	
progenitor	 subsets.	 CD99,	 over-expressed	 in	 MUT	
immature	 myeloid	 progenitor	 cells	 (IMP)	 cells,	 was	
previously	noted	to	be	overexpressed	in	both	AML	and	
MDS	 stem	 cells,	 serving	 as	 a	 potential	 therapeutic	
target	of	malignant	 stem	cells43,44.	 Finally,	 CD36	and	
CD71,	 erythroid	 lineage	 markers,	 were	 found	 to	 be	
over-expressed	 in	 MUT	 EPs	 when	 compared	 to	WT	
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EPs,	 consistent	 with	 the	 SF3B1mut-driven	
dyserythropoiesis	 phenotype.	 We	 further	 leveraged	
these	 erythroid	 maturation	 cell	 surface	 protein	
markers	 to	 validate	 pseudo-temporal	 (pseudotime)	

ordering	 of	 the	 continuous	 process	 of	 erythroid	
maturation45	 (Extended	Data	Fig.	5c).	This	analysis	
revealed	an	 increase	 in	MCF	along	erythroid	 lineage	
maturation	 (Fig.	 1g),	 confirming	 that	 SF3B1	
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mutational	fitness	increases	with	differentiation	into	
committed	EPs.	

To	 further	 explore	 SF3B1	 driven	
transcriptional	 dysregulation	 in	 committed	 EPs,	 we	
performed	 differential	 gene	 expression	 analysis	
between	 SF3B1mut	 and	 SF3B1wt	 cells.	 Mutated	 EPs	
upregulated	 genes	 encoding	 important	 translation	
and	ribosome	biogenesis	factors	(FDR	<	0.2;	Fig.	1h;	
Supplementary	Table	 5,	 6),	 including	 a	 number	 of	
eukaryotic	 initiation	 factors	 (e.g.,	EIF3,	EIF5),	DEAD-
box	 helicases	 (e.g.,	 DDX5,	 DDX17),	 and	 ribosome	
subunits	 (e.g.,	 RPS29).	 This	 dysregulation	 of	
translational	 activity,	 or	 ribosomal	 stress	 signal,	 is	
evocative	 of	 studies	 showing	 that	 translational	
regulation	 is	 critical	 during	 hematopoiesis46–49,	 and	
may	lead	to	cell-	and	tissue	type–restricted	activation	
of	 TP53	 signaling	 pathway	 in	 myeloid	 disease50–55.	
Specifically,	 cells	 that	 require	 high	 levels	 of	 protein	
synthesis,	such	as	erythroid	progenitors,	may	be	more	
sensitive	 to	 changes	 caused	 by	 translational	
dysfunction56.	 In	 line	 with	 this	 notion,	 TP53	 gene	
target	 upregulation	 in	 SF3B1mut	 cells	 was	 more	
prominent	 in	 the	 megakaryocyte-erythroid	 lineage,	
with	no	increased	expression	of	TP53-related	genes	in	
earlier	 progenitors	 (HSPCs)	 or	 in	 neutrophil	
progenitors	(NPs)	compared	to	WT	cells	(Fig.	1i).	Our	
results	therefore	establish	a	molecular	phenotype	for	
the	 SF3B1	 mutation	 in	 human	 bone	 marrow	

progenitors,	 potentially	 phenocopying	 translational	
dysregulation	 typically	observed	 in	 ribosomopathies	
driven	 by	 germline	 deleterious	 mutations	 of	
ribosomal	subunits56.		

Mutated	EPs	also	upregulated	genes	involved	
in	 cell-cycle	 and	 checkpoint	 control	 (FDR	<	0.2;	Fig.	
1h,	 j;	Supplementary	Table	5,	6).	 In	particular,	we	
observed	 an	 increase	 in	 expression	 of	 CCNE1,	 a	
positive	 regulator	 of	 the	 G1/S	 transition	 of	 the	 cell	
cycle57,	 and	MDM4.	 The	 latter	 gene	 works	 together	
with	TP53	during	the	G1/S	checkpoint	of	the	cell	cycle	
to	determine	cell	fate	by	regulating	pathways	such	as	
DNA	 repair,	 apoptosis,	 and	 senescence58.	 Increased	
expression	 of	 MDM4	 during	 ribosomal	 stress59		
prevents	TP53	degradation	and	blocks	subsequential	
inactivation	 of	 p21,	 resulting	 in	 a	 sustained	 cell	
proliferation60.	Together,	 the	combined	upregulation	
of	 TP53,	 CCNE1,	 and	 MDM4	 in	 mutated	 EPs	 may	
therefore	lead	to	cell	survival	and	accumulation	rather	
than	 cell	 death,	 supporting	 the	 finding	 that	 SF3B1	
mutations	 impart	 a	 greater	 fitness	 advantage	
specifically	in	the	erythroid	lineage.		
	
GoT-Splice	 links	 somatic	 mutations,	 alternative	
splicing,	 and	 cellular	 phenotype	 at	 single-cell	
resolution		

Figure	1.	Increased	fitness	advantage	of	SF3B1mut	cells	in	the	megakaryocytic-erythroid	lineage.		
(A)	 Schematic	of	GoT-Splice	workflow.	The	combination	of	GoT	with	CITE-seq	and	 long-read	 full-length	cDNA	using	Oxford	
Nanopore	Technologies	(ONT)	enables	the	simultaneous	profiling	of	protein	and	gene	expression,	somatic	mutation	status,	and	
alternative	splicing	at	single-cell	resolution.	(B)	Summary	of	patient	metadata	and	GoT	data	(after	quality	control)	for	MDS	and	
CH	samples	with	SF3B1	mutations.	(C)	Uniform	manifold	approximation	and	projection	(UMAP)	of	CD34+	cells	(n	=	15,436	cells)	
from	myelodysplastic	syndrome	patient	samples	with	SF3B1	K700E	mutations	(n	=	3	individuals),	overlaid	with	cluster	cell-type	
assignments.	 HSPC,	 hematopoietic	 stem	 progenitor	 cells;	 IMP,	 immature	 myeloid	 progenitors;	 MkP,	 megakaryocytic	
progenitors;	 MEP,	 megakaryocytic-erythroid	 progenitors;	 EP,	 erythroid	 progenitors;	 NP,	 neutrophil	 progenitors;	 E/B/M,	
eosinophil/basophil/mast	progenitor	cells;	T/B	cells;	Mono,	monocyte;	DC,	dendritic	cells;	Pre-B,	precursors	B	cells;	Mono	DC,	
monocyte/dendritic	cell	progenitors.	(D)	Density	plot	of	SF3B1mut	vs.	SF3B1wt	cells.	Genotyping	information	(MDS01-03)	was	
obtained	for	12,494	cells	(80.9	%	of	all	cells).	(E)	Normalized	frequency	of	SF3B1	K700E	MUT	cells	in	progenitor	subsets	with	
at	least	300	genotyped	cells.	Bars	show	aggregate	analysis	of	samples	MDS01-03	with	mean	+/-	s.e.m.	of	100	downsampling	
iterations	to	1	genotyping	UMI	per	cell.	Only	cell	types	with	>300	cells	were	used	in	the	analysis.	P-value	from	likelihood	ratio	
test	 of	 linear	mixed	model	with	 or	without	mutation	 status.	(F)	 Differential	ADT	marker	 expression	between	SF3B1mut	and	
SF3B1wt	cells.	Red:	higher	expression	in	SF3B1mut	cells;	blue:	higher	expression	in	SF3B1wt	cells.	Size	of	the	dot	corresponds	to	
the	average	expression	of	ADT	marker	across	cells	in	a	given	cell-type.	P-values	determined	through	permutation	testing.	(G)	
Mutant	 cell	 fraction	 and	 ADT	 expression	 levels	 of	 CD36	 and	 CD71	 as	 a	 function	 of	 pseudotime	 along	 the	megakaryocyte-
erythroid	 differentiation	 trajectory	 for	 SF3B1mut	and	 SF3B1wt	cells	 in	MDS01-03.	 Shading	 denotes	 95%	 confidence	 interval.	
Histogram	shows	cell	density	of	clusters	included	in	the	analysis,	ordered	by	pseudotime.	P-values	were	calculated	by	Wilcoxon	
rank	sum	test	by	comparing	mutant	cell	 fraction	between	pseudotime	 trajectory	quartiles.	(H)	Differential	gene	expression	
between	SF3B1mut	and	SF3B1wt	EP	cells	in	MDS	samples.	Genes	with	an	absolute	log2(fold	change)	>	0.1	and	P-value	<	0.05	were	
defined	as	differentially	expressed	(DE).	DE	genes	belonging	to	cell	cycle	(red)	and	translation	(blue)	pathways	(Reactome)	are	
highlighted	(BH-FDR	<	0.2).	(I)	Expression	(mean	+/-	s.e.m.)	of	TP53	pathway	related	genes	(Reactome)	between	SF3B1mut	and	
SF3B1wt	cells	in	progenitor	cells	from	MDS01-03	samples.	Red:	module	score	in	SF3B1mut	cells;	blue:	module	score	in	SF3B1wt	
cells.	P-values	from	likelihood	ratio	test	of	linear	mixed	model	with	or	without	mutation	status.	(J)	Same	as	(I)	for	expression	of	
cell	cycle	related	genes	(Reactome)	between	SF3B1mut	and	SF3B1wt	cells	in	progenitor	cells	from	MDS01-03	samples.		
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The	 integration	 of	 GoT	 with	 single-cell	
proteogenomics	data	 revealed	 that	SF3B1	mutations	
reshape	 hematopoietic	 differentiation	 and	 mediate	
cell-identity-dependent	 transcriptional	 changes	 (Fig.	
1).	Given	the	pivotal	role	of	SF3B1	in	mRNA	splicing,	
we	next	explored	how	mis-splicing	may	serve	as	a	link	
between	genotypes	and	cellular	phenotypes.	 Indeed,	
SF3B1	mutations	 promote	 recognition	 of	 alternative	
branch	 points,	most	 commonly	 leading	 to	 increased	
usage	of	aberrant	3’	splice	sites29.	However,	previous	
studies	 in	 primary	 human	 samples	 have	 been	
performed	 on	 bulk	 samples	 admixing	MUT	 and	WT	
cells	 as	 well	 as	 progenitor	 subtypes30,32,61,62.	
Conversely,	short-read	sequencing	typically	employed	
in	 scRNA-seq	 does	 not	 adequately	 cover	 splice	
junctions.	 Recent	 advances	 suggest	 that	 long-read	
integration	 into	 scRNA-seq	 may	 overcome	 these	
limitations63–67.	We	therefore	integrated	GoT	with	full-
length	ONT	 long-read	sequencing,	allowing	 for	high-
throughput,	 single-cell	 integration	 of	 genotype,	 cell	
surface	 proteome,	 gene	 expression,	 and	 mRNA	
splicing	 information	 (GoT-Splice;	 Fig.	 1a).	 We	 note	
that	 single-cell	 cDNA	sequencing	with	ONT	presents	
unique	challenges,	as	cDNA	amplification	artifacts	are	
still	 productively	 sequenced	 when	 using	 standard	
ONT	ligation	chemistry.	This	leads	to	a	high	fraction	of	
uninformative	reads	in	the	highly	amplified	single-cell	
libraries.	To	enhance	ONT	efficiency,	we	incorporated	
a	 biotin	 enrichment	 step	 using	 on-bead	 PCR	 to	
selectively	amplify	full-length	reads	containing	intact	
cell	 barcodes	 and	 unique	 molecular	 identifiers64	
(UMIs;	Fig.	2a).	This	approach	increased	the	yield	of	
full-length	 reads	 from	 50.4	 +/-	 2.7	 to	 77.6	 +/-	 2.0	
(mean	+/-	s.e.m.)	percent	of	all	sequenced	reads.	Thus,	
GoT-Splice	 delivers	 high-resolution	 single-cell	 full-
length	 transcriptional	 profiles	 that	 are	 comparable	
with	short-read	sequencing	(Fig.	2b,	c).	To	accurately	
identify	 splice	 junctions	 using	 single-cell	 long-read	
sequencing,	we	developed	an	analytical	pipeline	that	
leverages	the	recently	published	SiCeLoRe	pipeline64	
(Extended	Data	Fig.	6a).	To	reduce	alignment	noise,	
we	generated	a	splice	junction	reference	identified	in	
single-cell	SMART-seq2	data	from	human	CD34+	cells	
with	 no	 SF3B1	 mutation	 (see	 Methods).	 Next,	 we	
carried	 out	 intron-centric	 junction	 calling	 which	
allows	for	the	independent	measurement	of	splicing	at	
both	the	5’	and	3’	ends	of	each	intron.	This	allows	for	
an	 unbiased	 assessment	 of	 junctions	 and	 a	 greater	
accuracy	in	measuring	the	degree	of	mis-splicing	of	a	
particular	transcript	when	compared	to	exon-centric	
quantification	approaches68,	which	are	typically	used	
for	 cassette	 exon	 usage	 profiling	 and	 rely	 on	
predefined	transcript	models	or	splicing	events,	both	
of	 which	 may	 be	 inaccurate	 or	 incomplete69,70.	 As	

anticipated,	 we	 observed	 a	 4-fold	 increase	 in	 the	
number	of	junctions	per	cell	detected	using	full-length	
long-read	sequencing	over	short-read,	despite	 lower	
absolute	number	of	UMI/cell	 (Fig.	2d).	Additionally,	
GoT-Splice	 afforded	 greater	 coverage	 uniformity	
across	 the	 entire	 transcript,	 compared	 to	 3’-biased	
coverage	in	short-read	sequencing	(Fig.	2e).		

The	 most	 common	 mis-splicing	 events	
observed	in	MDS	SF3B1mut	cells	involved	alternative	3’	
splice	sites,	accounting	for	57%	of	alternative	splicing	
events	 (Fig.	 2f),	 consistent	 with	 prior	 reports29,71.	
Notably,	 the	 usage	 of	 such	 alternative	 3’	 splice	 sites	
was	not	observed	 in	a	CD34+	sample	with	no	SF3B1	
mutation	 (Extended	 Data	 Fig.	 6b).	 ONT	 long-read	
sequencing	also	allowed	us	to	quantify	the	presence	of	
different	 splicing	 events	 across	 the	 same	 mRNA	
transcript.	While	only	one	aberrant	3’	splice	site	event	
was	 observed	 for	 the	majority	 of	mRNA	 transcripts,	
we	identified	a	total	of	428	genes	(21.4%	of	the	total	
number	of	genes	with	at	least	one	cryptic	3’	splice	site)	
with	 more	 than	 one	 aberrant	 3’	 splice	 site	 event.	
Interestingly,	 these	cryptic	3’	splicing	events	 tend	to	
appear	in	different	copies	of	the	transcript	(Extended	
Data	Fig.	6c),	highlighting	 the	unique	advantages	of	
long-read	sequencing	in	this	context.	Consistent	with	
previous	MDS	bulk	sequencing	data72,73,	we	observed	
a	 relative	 enrichment	 of	 purines	 upstream	 of	 the	
aberrant	3’	splice	site	when	compared	to	the	canonical	
3’	splice	site	(Extended	Data	Fig.	6d).	

We	next	 leveraged	the	unique	ability	of	GoT-
Splice	 to	 resolve	 differential	 splice	 junction	 usage	
between	SF3B1mut	and	SF3B1wt	 cells	within	the	same	
primary	 human	 sample	 (see	 Methods).	 Of	 the	
differentially	mis-spliced	cryptic	3’	splice	sites	(those	
0-100bp	from	the	canonical	splice	site)	between	MUT	
and	WT	cells,	87%	were	used	more	highly	in	SF3B1mut	
cells	 (Fig.	 2f,	 inset),	 aligning	 with	 known	
characteristics	of	SF3B1	mutations.	Furthermore,	we	
observed	a	high	correlation	between	GoT-Splice	delta	
PSI	(dPSI;	percent	spliced	in)	measurements	obtained	
by	 comparing	 SF3B1mut	 and	 SF3B1wt	 cells,	 and	 dPSI	
derived	 from	 bulk	 RNA-sequencing	 of	 CD34+	 cells	
from	SF3B1mut	vs.	SF3B1wt	MDS	samples32	 for	shared	
cryptic	3’	splice	sites	(Fig.	2g).	 In	 line	with	previous	
work,	the	majority	of	these	cryptic	3’	splice	sites	were	
found	to	be	~15-20	bps	upstream	of	the	canonical	3’	
site29	(Fig.	3a;	Extended	Data	Fig.	7a-d).	GoT-Splice	
enabled	 the	 visualization	 of	 cryptic	 3’	 splice	 sites	 in	
SF3B1mut	 vs.	 SF3B1wt	 cells,	 highlighting	 the	 striking	
increased	 usage	 of	 cryptic	 3’	 splice	 sites	 specific	 to	
SF3B1mut	(Fig.	3b).	Altogether,	GoT-Splice	extends	the	
ability	 to	 connect	 somatic	 mutations	 not	 only	 to	
transcriptional	 and	 cell	 surface	 protein	 marker	
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phenotypes,	but	also	to	single-cell	mapping	of	splicing	
changes.		

GoT-Splice	 shows	progenitor-specific	 patterns	 in	
SF3B1mut-	mis-splicing	
An	important	advantage	of	GoT-Splice	is	the	ability	to	
detect	splicing	changes	at	single-cell	resolution,	which	

Figure	 2.	 Simultaneous	 profiling	 of	 gene	 expression,	 cell	 surface	 protein	 markers,	 somatic	 mutation	 status	 and	
alternative	splicing	at	single-cell	resolution.		
(A)	A	comparison	of	the	percentage	of	ONT	reads	with	either	incorrect	structure	(double	TSO,	no	adaptors,	single	R1	or	single	
TSO)	or	correct	structure	(full-length	reads)	both	before	and	after	the	inclusion	of	a	biotin	enrichment	protocol	step	during	
preparation	for	sequencing.	Bars	show	the	aggregate	analysis	of	n	=	5	samples	with	mean	+/-	s.d.	of	the	percentage	for	each	
category.	(B)	Scatter	plot	of	the	correlation	between	the	number	of	UMIs/cell	detected	in	long-read	ONT	vs.	short-read	Illumina	
data	for	cells	that	were	sequenced	across	both	platforms	for	sample	MDS05.	(C)	Density	plot	of	the	correlation	between	the	
number	of	UMIs/gene	detected	in	long-read	ONT	vs.	short-read	Illumina	data	for	sample	MDS05.	(D)	Number	of	splice	junctions	
captured	in	the	full-length	long-read	ONT	data	compared	to	short-read	sequencing	data,	showing	that	GoT-Splice	allows	for	a	
significant	 increase	 in	 the	 number	 of	 junctions	 captured	 per	 cell.	 (E)	 GoT-Splice	 provides	 greater	 sequencing	 coverage	
uniformity	compared	to	inadequate	coverage	of	short-read	sequencing	over	splice	junctions,	as	exemplified	here	for	the	ERGIC3	
gene.	(F)	Pie	chart	summarizing	the	distribution	of	different	alternative	splicing	events	detected	after	junction	annotation.	Inset:	
Pie	chart	summarizing	the	differences	in	the	usage	of	cryptic	3’	and	5’	splice	site	events	between	SF3B1mut	and	SF3B1wt	cells	
measured	with	a	dPSI	(SF3B1mut	PSI	-	SF3B1wt	PSI).	Associated	with	SF3B1mut:	+ve	dPSI;	associated	with	SF3B1wt:	-ve	dPSI.	(G)	
Comparison	of	 delta	 percent	 spliced-in	 (dPSI)	 values	 of	 shared	 cryptic	 3’	 splicing	 events	 identified	 in	 the	MUT	vs.	WT	 cell	
comparison	from	GoT-Splice	of	SF3B1mut	MDS01-03	samples	and	in	the	SF3B1mut	vs.	SF3B1wt	bulk	comparison	from	bulk	RNA-
sequencing	of	CD34+	cells	of	MDS	samples	in	Pellagatti	et	al.32.	Correlation	coefficient	ρ	calculated	using	Spearman’s	correlation	
and	P-value	derived	from	Student's	t-distribution.	
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enables	 the	 comparison	 of	 alternative	 splicing	
aberrations	between	MUT	and	WT	cells	within	specific	
cell	 subsets	 (Fig.	 3c,	 Supplementary	 Table	 7).	We	
identified	both	shared	and	unique	SF3B1mut	cryptic	3’	
splice	 site	 events	 across	 progenitor	 subtypes.	 The	
usage	of	cryptic	3’	splice	sites	was	highest	along	the	
megakaryocyte-erythroid	 lineage,	 with	 SF3B1mut	
MEPs	and	EPs	accounting	for	the	majority	of	cell-type	
specific	 cryptic	3’	 splice	 site	 events,	 highlighting	 the	
specific	 impact	of	SF3B1	mutations	on	 the	erythroid	
lineage.	These	progenitor	specific	patterns	in	SF3B1mut	
mis-splicing	were	 further	 detected	 in	 the	 validation	
cohort	of	MDS	patient	samples	(MDS04-06;	Extended	
Data	 Fig.	 7e,	 f).	 In	 both	 MDS	 cohorts,	 progenitor	
specific	cryptic	3’	splice	sites	involved	genes	related	to	
cell	cycle	(e.g.,	CENPT)74,	RNA	processing	(e.g.,	CHTOP,	
SF3B175,	SRSF11,	PRPF38A),	erythroid	differentiation	
(e.g.,	 CD36,	 FOXRED1,	 GATA134,76,77),	 and	 heme	
metabolism	 (e.g.,	 UROD,	 PPOX,	 CIAO1)	 (Fig.	 3c;	
Extended	Data	Fig.	7e,	 f;	Supplementary	Table	7,	
8).	Many	of	these	genes	and	pathways	have	previously	
been	reported	to	be	disrupted	by	alternative	splicing	
in	bulk	studies	of	SF3B1mut	MDS	samples32,	but	 their	
cell-type	specificity	was	unknown.	For	instance,	while	
the	alternative	splicing	event	in	SF3B1	itself	has	been	
suggested	before	as	being	neoplasm-specific,	here	we	
narrowed	 down	 its	 erythroid-specific	 pattern.	 This	
isoform	–	SF3B1ins	–	is	predicted	to	affect	splicing	by	
impairing	U2	snRNP	assembly75,	likely	contributing	to	
the	 enhanced	 mis-splicing	 dysregulation	 in	 the	
megakaryocyte-erythroid	 lineage.	 In	 addition,	 cell	
cycle	 plays	 a	 critical	 role	 in	 the	 terminal	
differentiation	of	hematopoietic	stem	cells78	and	RNA	
processing,	 erythroid	 differentiation,	 and	 heme	
metabolism	 pathways	 are	 directly	 linked	 to	 the	
regulation	 of	 erythropoiesis79–81.	 To	 further	 validate	
cell-type	 specificity	 of	 mis-splicing	 events,	 we	
compared	the	genes	with	cryptic	3’	splice	site	events	
unique	 to	 MEPs	 and	 EPs	 in	 the	 two	 distinct	 MDS	
cohorts	 and	 observed	 significant	 overlap	 of	
megakaryocyte-erythroid	 lineage-specific	 aberrantly	
spliced	 genes	 between	 the	 discovery	 and	 the	
validation	MDS	 cohorts	 (P-value	 =	 0.00029,	 Fisher’s	
exact	test,	with	46.8%	of	the	cryptically	spliced	genes	
in	MDS	also	aberrantly	spliced	in	the	MDS	validation	
cohort).	 In	 contrast,	 no	 significant	 overlap	 was	
observed	when	 comparing	 the	 genes	with	 cryptic	 3’	
splice	site	events	unique	to	MEPs	and	EPs	in	the	MDS	
discovery	cohort	to	genes	with	cryptic	3’	splice	sites	
unique	 to	 earlier	 progenitor	 cells	 in	 the	 MDS	
validation	 cohort	 (1.6%	 overlap;	 P-value	 =	 0.46,	
Fisher’s	 exact	 test;	 Extended	 Data	 Fig.	 7f).	 These	
findings	 reveal	 that	 alternative	 splicing	 is	 cell-type	
and	differentiation-stage	dependent27,82–84.	

Of	note,	erythropoiesis	occupies	a	continuum	
of	 cell	 states	 and	 is	 dependent	 on	 a	 series	 of	
transcriptional	changes	that	occur	along	a	continuous	
trajectory45.	Analyzing	the	SF3B1mut	mis-splicing	along	
this	continuum	(Fig.	4a)	revealed	that	some	erythroid	
differentiation	 and	 heme	 metabolism	 genes	 can	 be	
mis-spliced	more	 frequently	at	 the	earliest	 stages	of	
EP	 maturation	 (e.g.,	 UROD	 and	 FOXRED185),	 while	
others	 display	 increased	 mis-splicing	 in	 the	 more	
differentiated	EPs	(e.g.,	GYPA	and	PPOX).	UROD	is	part	
of	 the	 heme	 biosynthesis	 pathway	 and	 not	 only	 is	
heme	an	important	structural	component	of	erythroid	
cells	 but	 it	 also	 plays	 a	 regulatory	 role	 in	 the	
differentiation	 of	 erythroid	 precursors86.	 PPOX	
encodes	 for	 an	 enzyme	 involved	 in	 mitochondrial	
heme	biosynthesis	and,	as	such,	its	degradation	leads	
to	ineffective	erythropoiesis	and	accumulation	of	iron	
in	 the	 mitochondria	 typical	 of	 MDS	 with	 ring	
sideroblast	clinical	phenotype87.	These	results	provide	
evidence	 that	 disruptive	 and	 pathogenic	 SF3B1mut-
driven	 mis-splicing	 impacts	 key	 mediators	 of	
hemoglobin	synthesis	and	erythroid	differentiation	at	
all	stages	of	erythroid	maturation88,89.		

We	 further	 noted	 that	 the	 degree	 of	 mis-
splicing	of	a	particular	transcript	(measured	via	PSI)	
positively	 correlated	 with	 its	 expression	 across	 the	
erythroid	differentiation	trajectory	 in	some	cases.	 In	
others,	 mis-splicing	 was	 anti-correlated	 with	 gene	
expression,	often	 in	 cryptic	3’	 splice	 site	events	 that	
are	predicted	to	lead	to	transcript	degradation	by	the	
NMD	pathway	(Fig.	4b	for	representative	examples).	
Cryptic	3’	splice	sites	result	 in	 the	 inclusion	of	short	
intronic	 fragments	 in	 mRNA	 and	 often	 introduce	 a	
premature	 termination	 codon	 (PTC)90–92.	 mRNAs	
harboring	 an	 NMD-inducing	 PTC	 located	 ≥50	 bps	
upstream	of	the	last	exon–exon	junction	are	predicted	
to	 undergo	 NMD,	 which	 in	 turn	 prevents	 the	
production	 of	 potentially	 aberrant	 proteins.	 In	
contrast,	 mRNAs	 harboring	 an	 NMD-neutral	 PTC,	
which	 is	 generally	 located	 ≤50	 bps	 upstream	 of	 the	
last	 exon–exon	 junction	 or	 in	 the	 last	 exon,	 fail	 to	
trigger	NMD	and	produce	dysfunctional	proteins93,94.	
We	classified	cryptic	3’	splice	sites	detected	in	the	MDS	
samples	 into	 three	 major	 groups:	 (i)	 NMD-inducing	
event	 (due	 to	 the	 introduction	 of	 a	 PTC);	 (ii)	 NMD-
neutral	with	a	frameshift	event;	and	(iii)	NMD-neutral	
with	no	frameshift	event	(Supplementary	Table	7).	
In	 accordance	 with	 previous	 reports71,	 of	 the	 421	
cryptic	3’	splice	sites	significantly	associated	with	the	
SF3B1mut	cells,	228	(54%)	of	these	were	classified	as	
NMD-inducing	events	while	the	remaining	193	(46%)	
were	NMD-neutral	 (60	events	 involving	a	 frameshift	
and	 133	 events	 were	 in-frame).	 As	 expected,	 we	
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observed	 a	 significant	 decrease	 in	 the	 expression	 of	
genes	harboring	NMD-inducing	events	compared	with	

those	harboring	NMD-neutral	events	(P-value	=	0.017,	
Mann	Whitney	U	test;	Fig.	4c).		

Figure	3.	Progenitor	cell-type	specific	mis-splicing	in	SF3B1mut	MDS.		
(A)	Differential	splicing	analysis	between	SF3B1mut	and	SF3B1wt	cells	across	MDS	samples.	Junctions	with	an	absolute	dPSI	>	2	
and	 BH-FDR	 adjusted	 P-value	 <	 0.2	 were	 defined	 as	 differentially	 spliced.	 Top:	 Bars	 showing	 the	 percentage	 of	 genes	
differentially	spliced	in	SF3B1mut	and	SF3B1wt	cells	in	the	MDS	and	MDS	validation	cohorts.	Inset:	Expected	peak	in	the	number	
of	 identified	cryptic	3’	 splice	 sites	at	 the	anticipated	distance	 (15-20	base	pairs)	upstream	of	 the	canonical	3’	 splice	 site	 in	
SF3B1mut	cells.	(B)	Sashimi	Plot	of	METTL17	intron	junction	with	an	SF3B1mut	associated	cryptic	3’	splice	site	showing	RNA-seq	
coverage	in	SF3B1mut	vs.	SF3B1wt	cells	within	MDS	samples.	Inset:	Expected	marked	increase	in	the	PSI	value	for	the	usage	of	this	
cryptic	3’	splice	site	in	SF3B1mut	cells.	(C)	Representation	of	dPSI	values	between	SF3B1mut	and	SF3B1wt	cells	for	cryptic	3’	splicing	
events	 identified	 in	 the	main	progenitor	 subsets	across	MDS	samples.	Rows	correspond	 to	 cryptic	3’	 junctions	 found	 to	be	
differentially	spliced	in	at	least	one	cell-type,	with	P-value	<=	0.05	and	dPSI	>=	2.	Columns	correspond	to	cell-type.	Genes	that	
belong	 to	 pathways	 cell	 cycle	 (purple),	 heme	metabolism	 (green),	 oxygen	 homeostasis	 (black),	 RNA	 processing	 (red)	 and	
erythroid	differentiation	(yellow)	are	highlighted.	The	left	bar	plots	show	the	fraction	of	differentially	spliced	cryptic	3’	splice	
sites	per	cell.	Top	bar	plots	quantify	the	total	number	of	cell	types	where	an	event	is	differentially	spliced,	with	the	cell-type	
specific	events	located	to	the	right	side	of	the	plot.			
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NMD-inducing	events	affected	genes	including	
UROD,	 GYPA,	 FOXRED1	 and	 PPOX	 –	 key	 genes	 in	
erythroid	development.	The	 loss	of	 these	transcripts	
via	 NMD95,96	 may	 thus	 contribute	 to	 disrupted	

terminal	differentiation	of	EPs.	Notable	among	NMD-
neutral	affected	genes,	we	identified	BAX,	a	member	of	
the	 Bcl-2	 gene	 family	 and	 transcriptional	 target	 of	
TP53.	 BAX	 is	 a	 vital	 component	 of	 the	 apoptotic	

Figure	4.	SF3B1mut-associated	mis-splicing	changes	along	the	continuum	of	erythropoiesis.		
(A)	Percent	spliced-in	(PSI)	of	junctions	in	SF3B1mut	cells	along	the	hematopoietic	differentiation	trajectory	(HSPCs,	IMPs,	MEPs,	
EPs).	Rows	(z-score	normalized)	correspond	to	cryptic	3’	splice	sites;	columns	represent	the	PSI	for	the	usage	of	a	given	cryptic	
3’	splice	site	in	each	window	(size	of	3000	SF3B1mut	cells,	sliding	by	300	SF3B1mut	cells).	Only	junctions	found	to	be	differentially	
spliced	in	at	least	one	cell-type	with	a	dPSI	>	2	were	used	in	the	analysis.	The	ADT	expression	of	erythroid	lineage	marker	CD71,	
along	with	the	fraction	of	cell	types	in	each	window,	is	shown.	Rows	are	ordered	according	to	the	peak	in	PSI.	Genes	that	belong	
to	 pathways	 cell	 cycle	 (purple),	 heme	 metabolism	 (green),	 oxygen	 homeostasis	 (black),	 RNA	 processing	 (red),	 erythroid	
differentiation	(yellow)	and	apoptosis	(blue)	are	highlighted.	(B)	Examples	of	mis-spliced	genes	at	different	stages	of	erythroid	
maturation.	Bars	represent	PSI	in	SF3B1mut	cells.	Red	lines	represent	ONT	expression	of	the	given	junction	in	SF3B1mut	cells.	(C)	
Fold	change	(log2)	of	gene	expression	between	SF3B1mut	and	SF3B1wt	EP	cells	in	NMD-inducing	vs.	NMD-neutral	genes.	(D)	Gene	
model	of	BAX	and	relevant	isoforms.	Characteristic	domains	and	their	location	are	highlighted	in	BAX-ɑ,	the	main	isoform.	The	
cryptic	3’	splicing	event	on	the	terminal	exon	defines	the	BAX-ω	isoform,	characterized	by	the	disruption	of	the	transmembrane	
domain	(TM)	as	a	result	of	a	frameshift.				
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cascade	 and	 in	 turn	 plays	 an	 important	 role	 in	
balancing	 the	 control	of	 survival,	differentiation	and	
proliferation	of	EPs	at	later	stages	of	erythropoiesis97	
(Fig.	 4a).	 The	 identified	 BAX	 cryptic	 3’	 splice	 site,	

though	NMD-neutral,	 causes	 a	 frameshift	 in	 the	 last	
exon,	 disrupting	 the	 C-terminus	 of	 the	 protein.	 This	
BAX	 isoform,	previously	denoted	as	BAX-ω	(Fig.	4d),	
has	 been	 shown	 to	 protect	 cells	 from	 apoptotic	 cell	

Figure	5.	SF3B1	mutation	promotes	accumulation	of	mutant	cells	along	the	erythroid	lineage	in	clonal	hematopoiesis.	
(A)	UMAP	of	CD34+	cells	(n	=	9,007	cells)	from	clonal	hematopoiesis	(CH)	samples,	one	with	SF3B1	K700E	mutation	and	one	
with	 SF3B1	 K666N	 mutation	 (n	 =	 2	 individuals),	 overlaid	 with	 cluster	 cell-type	 assignments.	 HSPC,	 hematopoietic	 stem	
progenitor	cells;	IMP,	immature	myeloid	progenitors;	MEP,	megakaryocytic-erythroid	progenitors;	EP,	erythroid	progenitors;	
MkP,	 megakaryocytic	 progenitors;	 NP,	 neutrophil	 progenitors;	 E/B/M,	 eosinophil/basophil/mast	 progenitor	 cells;	 Pre-B,	
precursors	B	cells.	 (B)	UMAP	of	CD34+	cells	 from	CH	samples	overlaid	with	genotyping	data.	WT,	cells	with	genotype	data	
without	SF3B1	mutation;	MUT,	cells	with	genotype	data	with	SF3B1	mutation;	NA,	unassignable	cells	with	no	genotype	data.	(C)	
UMAP	of	CD34+	cells	from	CH	samples	overlaid	with	pseudotemporal	ordering.	Inset:	Pseudotime	in	SF3B1mut	vs.	SF3B1wt	cells	
in	the	aggregate	of	CH01-02.	P-value	for	comparison	of	means	from	Wilcoxon	rank	sum	test.	(D)	Normalized	ratio	of	mutated	
cells	 along	 pseudotime	 quartiles.	 Bars	 show	 aggregate	 analysis	 of	 samples	 CH01-CH02	 with	 mean	 +/-	 s.e.m.	 of	 100	
downsampling	iterations	to	1	genotyping	UMI	per	cell.	Only	cell	types	with	>300	cells	were	used	in	the	analysis.	P-value	from	
likelihood	 ratio	 test	 of	 linear	 mixed	 model	 with	 or	 without	 mutation	 status.	 Bottom:	 Fraction	 of	 cell	 types	 within	 each	
pseudotime	quartile.	(E)	Differential	gene	expression	between	SF3B1mut	and	SF3B1wt	HSPC	cells	in	CH	samples.	Genes	with	an	
absolute	log2(fold	change)	>	0.1	and	P-value	<	0.05	were	defined	as	differentially	expressed	(DE).	DE	genes	belonging	to	the	
translation	pathway	(red,	Reactome)	are	highlighted	(BH-FDR	<	0.2).	(F)	Gene	Set	Enrichment	Analysis	of	DE	genes	in	SF3B1mut	
HSPC	cells	across	CH	samples.	Gene	sets	that	overlap	with	SF3B1mut	EP	cells	in	MDS	highlighted	(red).	(G)	Expression	(mean	+/-	
s.e.m.)	of	mRNA	translation-related	genes	(Reactome)	between	SF3B1mut	and	SF3B1wt	cells	 in	progenitor	cells	from	CH01-02	
samples.	P-values	from	likelihood	ratio	test	of	linear	mixed	model	with	or	without	mutation	status.	
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death98,99.	 Interestingly,	 a	 recent	 study	 revealed	 C-
terminal	BAX	mutations	in	myeloid	clones	that	arise	in	
chronic	 lymphocytic	 leukemia	 patients	 upon	
prolonged	 exposure	 to	 venetoclax,	 demonstrating	 a	
role	 for	 BAX	 c-terminal	 alterations	 in	 conferring	 a	
survival	 advantage	 to	 myeloid	 cells	 with	 this	 pro-
apoptotic	 treatment.	 Of	 note,	 early	 clinical	
observations	 reported	 lower	 response	 to	 venetoclax	
in	 SF3B1mut	 	 AML100,101,	 consistent	 with	 a	 potential	
anti-apoptotic	 effect	 of	 BAX-ω.	 Together,	 these	
findings	 suggest	 a	 potential	 mechanism	 underlying	
the	 erythroid-dysplasia	 phenotype	 of	 SF3B1mut	MDS.	
Despite	the	injury	to	translational	machinery	(Fig.	1h-
i),	SF3B1mut	EPs	may	gain	some	degree	of	protection	
against	cell	death	due	to	the	presence	of	isoform	BAX-
ω,	arising	from	aberrant	splicing.		

Accumulation	 of	 SF3B1mut	 cells	 in	 the	 erythroid	
progenitor	population	and	extensive	mis-splicing	
in	clonal	hematopoiesis		
While	SF3B1	mutations	are	the	most	common	genetic	
alterations	 in	MDS	patients,	 they	are	also	associated	
with	a	high-risk	of	malignant	transformation	in	clonal	
hematopoiesis	 (CH)4–8,102,103.	 However,	 the	 study	 of	
SF3B1	mutations	directly	in	primary	human	samples	
has	been	 largely	 limited	to	MDS,	where	confounding	
co-occurrence	of	other	genetic	alterations	is	common.	
Thus,	CH	presents	a	unique	setting	to	interrogate	the	
molecular	 consequences	of	SF3B1	mutations	 in	non-
malignant	human	hematopoiesis.		

We	therefore	isolated	viable	CD34+	cells	from	
two	 CH	 samples	 with	 SF3B1	 mutations	 (VAFs:	 0.15	
and	0.22,	from	CD34+	autologous	grafts	collected	from	
patients	 with	 multiple	 myeloma	 in	 remission)	 and	
performed	 GoT-Splice.	 A	 total	 of	 9,007	 cells	 across	
both	 samples	 passed	 quality	 filters	 (Extended	Data	
Fig.	8a)	and	were	integrated	and	clustered	based	on	
transcriptome	 data	 alone,	 agnostic	 to	 genotyping	
information	 (Fig.	 5a;	 Extended	 Data	 Fig.	 8b).	
Consistent	 with	 clinical	 data	 indicating	 normal	
hematopoietic	production,	we	identified	the	expected	
progenitor	 subtypes	 using	 previously	 annotated	
progenitor	identity	markers	(Fig.	5a;	Extended	Data	
Fig.	8c,	d).	Genotyping	data	were	available	for	3,642	
cells	 of	 these	 9,007	 cells	 (40.4%)	 through	 GoT	
(Extended	 Data	 Fig.	 9a).	 Finally,	 to	 exclude	
additional	 genetic	 lesions	 in	 these	 CH	 samples,	 we	
performed	copy	number	analysis	with	scRNA-seq	data	
and	 identified	 no	 significant	 chromosomal	 gains	 or	
losses	(Extended	Data	Fig.	9b).	

Projection	of	the	genotyping	information	onto	
the	differentiation	map	(Fig.	5b),	showed	no	novel	cell	
identities	formed	by	the	SF3B1	mutations,	consistent	

with	 the	 fact	 that	 patients	with	 CH	 exhibit	 no	 overt	
peripheral	 blood	 count	 or	 morphological	
abnormalities.	However,	a	differentiation	pseudotime	
ordering	 analysis	 showed	 that	 SF3B1mut	 cells	 are	
enriched	at	 later	pseudotime	points	when	compared	
to	SF3B1wt	cells	(Fig.	5c;	Extended	Data	Fig.	9c).	To	
further	identify	differentiation	biases	in	SF3B1mut	CH,	
we	evaluated	the	mutated	cell	frequencies	across	the	
different	 prevalent	 progenitor	 cell	 types,	 as	
performed	 in	 MDS	 (Fig.	 1e).	 Mutated	 cells	 were	
enriched	in	more	differentiated	EPs	compared	to	the	
earlier	HSPCs	 (P-value	 <	 0.001,	 linear	mixed	model,	
Fig.	 5d;	 Extended	 Data	 Fig.	 9d),	 showing	 that	
SF3B1mut	 CH	 cells	 already	 demonstrate	 an	 erythroid	
lineage	bias.		

To	 further	 identify	 transcriptional	
dysregulation	 in	 SF3B1mut	 HSPCs,	 we	 performed	
differential	 gene	 expression	 analysis	 between	
mutated	and	wildtype	cells.	We	observed	a	similar	up-
regulation	of	 genes	 involved	 in	mRNA	 translation	 in	
the	SF3B1mut	HSPC	in	CH	(Fig.	5e,	f;	Supplementary	
Table	 9,	 10),	 a	 pathway	 also	 observed	 to	 be	
upregulated	 in	 our	 MDS	 analysis	 (Fig.	 1h).	 In	 CH,	
upregulation	of	mRNA	translation	pathway	genes	was	
observed	 across	 multiple	 cell	 subtypes	 along	
erythroid	 differentiation,	 while	 absent	 in	 NPs	 (Fig.	
5g).	 Thus,	 although	 no	 overt	 blood	 count	
abnormalities	 are	 observed	with	 SF3B1	mutation	 in	
CH	individuals,	both	the	erythroid	differentiation	bias	
and	 aberrant	 transcriptional	 profiles	 are	 already	
apparent	at	this	early	pre-disease	stage.		

The	analysis	of	differentially	used	alternative	
3’	splice	sites	between	SF3B1mut	and	SF3B1wt	CH	cells	
revealed	 a	 marked	 increase	 in	 cryptic	 3’	 splice	 site	
usage	in	SF3B1mut	cells,	as	observed	in	MDS	(Fig.	6a).	
These	mutant-specific	 cryptic	 3’	 splice	 sites	 affected	
genes	 including	 UROD,	 OXAIL,	 SERBP1,	 MED6	 and	
ERGIC3,	 which	 were	 also	 detected	 to	 be	 cryptically	
spliced	 in	 the	 SF3B1mut	 MDS	 cells.	 Importantly,	 the	
lower	VAF	associated	with	pre-malignant	CH	samples	
highlights	the	necessity	for	GoT-Splice	to	increase	the	
detection	 of	 mis-splicing	 events	 occurring	 at	 low	
frequencies,	and	that	may	otherwise	be	missed	in	bulk	
sequencing	 studies	 (Fig.	 6b;	 Extended	 Data	 Fig.	
10a).		

To	 compare	mis-spliced	 transcripts	 between	
CH	and	MDS,	we	compared	cryptic	3’	splice	sites	with	
a	P-value	<	0.05	and	dPSI	of	>=	2	in	at	least	one	cell-
type	 along	 the	 erythroid	 differentiation	 trajectory	
(HSPC,	IMP,	MEP	or	EP)	in	both	CH	and	in	MDS	cohorts	
(Supplementary	 Table	 11).	 While	 the	 overall	
number	of	significant	cryptic	3’	splice	sites	in	CH	was	
lower	than	in	MDS,	we	observed	a	significant	overlap	
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in	shared	cryptic	events	(P-value	<	10-16,	Fisher’s	exact	
test;	 Fig.	 6c).	 Similarly	 to	 MDS,	 we	 identified	 mis-
spliced	events	specific	to	different	stages	of	erythroid	
maturation,	 the	 majority	 of	 which	 overlapped	 with	

MDS	cryptic	3’	splice	sites	(Fig.	6d).	Notably,	CH	and	
MDS	showed	similar	mis-splicing	dynamics	in	the	BAX	
transcript	 along	 the	 erythroid	 differentiation	
trajectory	(Fig.	6e).		

Figure	6.	SF3B1mut	clonal	hematopoiesis	progenitor	cells	display	cell-type	specific	cryptic	3’	splice	site	usage.	
(A)	Differential	splicing	analysis	between	SF3B1mut	and	SF3B1wt	cells	across	CH	samples.	Junctions	with	an	absolute	delta	percent	
spliced-in	(dPSI)	>	2	and	BH-FDR	adjusted	P-value	<	0.2	were	defined	as	differentially	spliced.	(B)	Sashimi	Plot	of	ERGIC	intron	
junction	with	an	SF3B1mut	associated	cryptic	3’	splice	site	showing	RNA-seq	coverage	in	SF3B1mut	vs.	SF3B1wt	cells	within	CH	
samples,	as	well	as	compared	to	the	CH	samples	when	treated	as	bulk	(pseudobulk	of	all	cells	regardless	of	genotype).	PSI	values	
showing	the	expected	marked	increase	in	the	usage	of	this	cryptic	3’	splice	site	in	SF3B1mut	cells	alone	when	compared	to	both	
SF3B1wt	 cells	 as	well	 as	 all	 cells	 (pseudobulk	 of	 sample).	 (C)	 Venn	 Diagram	 of	 the	 overlap	 of	 genes	with	 cryptic	 junctions	
significantly	differentially	spliced	in	at	least	one	erythroid	lineage	cell	type	(HSPCs,	IMPs,	MEPs,	EPs)	with	a	dPSI	>	2	between	
MDS01-03	and	CH	samples.	P-value	for	the	overlap	from	Fisher’s	Exact	test.	(D)	Percent	spliced-in	(PSI)	of	junctions	in	SF3B1mut	
cells	 along	 the	 hematopoietic	 differentiation	 trajectory	 of	 erythroid	 lineage	 cells.	 Rows	 (z-score	 normalized)	 correspond	 to	
cryptic	3’	splice	sites;	columns	represent	the	PSI	for	the	usage	of	a	given	cryptic	3’	splice	site	in	each	window	(size	of	600	SF3B1mut	
cells,	sliding	by	60	SF3B1mut	cells).	Only	junctions	found	to	be	differentially	spliced	in	at	least	one	cell	type	with	a	dPSI	>	2	were	
used	in	the	analysis.	Pseudotime	across	each	window	shown.	Rows	are	ordered	according	to	the	peak	in	PSI.	Cryptic	events	also	
found	to	be	differentially	spiced	in	MDS	highlighted	(red).	(E)	Bar	plots	of	the	PSI	values	for	the	usage	of	the	BAX-ω	isoform	across	
each	window	of	SF3B1mut	cells	in	the	MDS,	MDS	validation	and	CH	cohorts	along	the	hematopoietic	differentiation	trajectory	of	
erythroid	lineage	cells.	Fraction	of	cell	types	in	each	window	shown	per	cohort	(MDS:	SF3B1mut	cells	(n	=	6376)	ordered	by	CD71	
expression,	MDS	validation:	SF3B1mut	cells	(n	=	987)	ordered	by	pseudotime,	CH:	MUT	cells	(n	=	1021)	ordered	by	pseudotime).	
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DISCUSSION	

Here,	we	present	GoT-Splice,	a	single-cell	multi-omics	
integration	 that	 enables	 joint	 profiling	 of	 genotype,	
gene	expression,	protein,	 and	alternative	 splicing	all	
within	 the	same	cell.	GoT,	as	previously	described15,	
allows	 for	 the	 comparison	 between	 somatically	
mutated	and	wildtype	 cells	within	 the	 same	sample,	
for	genotype	to	phenotype	inferences.	Next,	by	further	
optimization	 of	 long-read	 sequencing	 of	 scRNA-seq	
libraries64,	 we	 were	 able	 to	 simultaneously	 capture	
both	 short	 and	 long-read	 data	within	 the	 same	 cell,	
making	 it	 possible	 to	 analyze	 the	 impact	 of	 somatic	
mutations	on	transcriptional	and	splicing	phenotypes.			

To	date,	few	tools	are	available	to	process	and	
analyze	 single-cell	 long-read	 data,	 especially	 for	 the	
purpose	 of	 alternative	 splicing.	 To	 address	 existing	
analytic	 gaps,	 we	 developed	 a	 long-read	 splicing	
analysis	 pipeline	 that	 detects	 and	 quantifies	
alternative	 splicing	 events	 within	 single	 cells	 and	
highlights	 differential	 junction	 usage	 across	 cell	
subpopulations.	For	processing	the	long-read	data,	the	
pipeline	 integrates	 SiCeLoRe64	 to	 error-correct	 cell	
barcodes	 and	 UMIs,	 followed	 by	 the	 generation	 of	
consensus	reads.	Next,	unlike	other	isoform	detection	
methods	 that	 perform	 exon-centric	 junction	 calling	
(such	as	SiCeLoRe,	TALON63,	FLAME104),	we	opted	for	
an	 intron-centric	 approach	 followed	 by	 split	 five	
prime	and	three	prime	PSI	measurements.	Calculating	
the	rate	of	splicing	at	the	5’	and	3’	ends	of	the	intron	
improves	the	detection	of	the	true	splicing	rate	of	each	
individual	 intron,	 compared	 to	 exon-centric	
approaches68.	 In	 addition,	 our	 pipeline	 detected	
differential	 splicing	 patterns	 between	MUT	 and	WT	
cells,	both	across	entire	samples	and	within	individual	
cell	types,	with	sample-aware	permutation	testing	to	
integrate	across	samples.	Finally,	the	pipeline	includes	
a	functional	annotation	step	that	provides	information	
regarding	 the	 translational	 consequences	 of	 the	
alternative	spliced	isoforms.	Altogether,	our	pipeline	
provides	 a	 comprehensive	 toolkit	 to	 process	 and	
analyze	differential	splicing	events	in	scRNA-seq	long-
read	data.	

By	 applying	GoT-Splice	 to	 the	most	 common	
splice-altering	 mutation	 (SF3B1),	 we	 interrogated	
differentiation	 biases,	 differential	 gene	 expression,	
protein	 expression	 and	 splicing	patterns,	 comparing	
SF3B1mut	vs.	SF3B1wt	cells	co-existing	within	the	same	
bone	marrow.	 Importantly,	while	 GoT	 revealed	 that	
SF3B1mut	 cells	 arise	early	on	 in	uncommitted	HSPCs,	
we	 observed	 a	 differentiation	 bias	 of	 SF3B1mut	 cells	
toward	the	erythroid	progenitor	fate.	This	finding	is	of	
particular	 interest	 given	 the	 clinical	 association	
between	 SF3B1	 mutations	 and	 dysplastic	

erythropoiesis.	 Differential	 gene	 and	 protein	
expression	 in	 erythroid	 progenitors	 revealed	
signatures	 that	 may	 contribute	 to	 this	 observed	
differentiation	 bias	 of	 SF3B1mut	 cells	 toward	 the	
erythroid	 fate.	Notably,	 an	 increase	 in	 cell	 cycle	 and	
checkpoint	gene	expression	(TP53,	MDM4	and	CCNE1)	
as	 well	 as	 the	 over-expression	 of	 erythroid	 lineage	
markers,	CD36	and	CD71,	specifically	in	SF3B1mut	EPs,	
suggest	a	fitness	advantage	for	SF3B1mut	cells	along	the	
erythroid	lineage.		

CH	samples	likewise	showed	erythroid	biased	
differentiation	with	higher	mutated	cell	frequency	in	
committed	 erythroid	 progenitors	 compared	 with	
HSPCs.	This	 is	 one	of	 the	 first	 phenotypic	 studies	of	
clonal	 mosaicism	 in	 human	 samples,	 and	 thus	 the	
observation	of	a	somatic	mutation-related	phenotype,	
which	aligns	with	the	more	advanced	MDS	phenotype,	
is	 of	 particular	 interest.	 In	 our	 results,	 SF3B1mut	 CH	
cells	 showed	 upregulation	 of	 genes	 in	 pathways	
involved	in	translation	and	mRNA	processing,	similar	
to	SF3B1mut	cells	in	MDS.	This	finding	suggests	that	the	
pervasive	 mis-splicing	 observed	 with	 SF3B1																																																																									
mutations	 may	 disrupt	 translation,	 reminiscent	 of	
ribosomopathies,	 which	 often	 also	 result	 in	
dyserythropoiesis105,106.	 Interestingly,	 it	 has	 been	
shown	 that	 overexpression	 of	MDM4	 prevents	TP53	
degradation	and	leads	to	TP53	complex	sequestration,	
which	interferes	with	p21	activation	and	results	in	a	
sustained	 cell	 proliferation.	 This	 finding	 aligns	 with	
the	 observed	 upregulation	 of	TP53	 and	 other	TP53-
related	pathway	genes	in	SF3B1mut	EPs	in	MDS.	Thus,	
in	addition	to	the	shared	erythroid	differentiation	bias	
in	 MDS	 and	 CH,	 aberrant	 transcriptional	 profiles	
linked	 to	 a	 dyserythropoiesis	 phenotype	 are	 also	
already	apparent	at	the	pre-disease	CH	stage.			

Leveraging	 the	 single-cell	 resolution	 of	 GoT-
Splice	 and	 differential	 splicing	 analysis	 between	
SF3B1mut	and	SF3B1wt	cells	revealed	cell-type	specific	
effects	of	SF3B1	mutations	on	patterns	of	mis-splicing.	
First,	 key	 genes	 involved	 in	 pathways	 important	 for	
terminal	differentiation	of	hematopoietic	stem	cells	as	
well	as	the	regulation	of	erythropoiesis	(namely	RNA	
processing,	 erythroid	 differentiation,	 cell	 cycle	 and	
heme	 metabolism)	 were	 found	 to	 be	 cryptically	
spliced	across	distinct	SF3B1mut	progenitor	cell	types,	
many	 of	 which	 were	 previously	 reported	 to	 be	
affected	in	bulk	studies	of	SF3B1mut	MDS54,72,73.	While	
some	cryptic	events	were	neutral	in	their	effect,	many	
key	 genes	 important	 for	 erythroid	 differentiation	
were	 found	 to	 be	 NMD-inducing	 (e.g.,	 UROD,	 GYPA,	
PPOX)	 or	 cause	 a	 frameshift	 event	 that	 may	 affect	
protein	structure	and	function	(e.g.,	BAX)	in	both	the	
primary	and	validation	MDS	 cohorts.	Thus,	 our	data	
suggest	 that	mis-splicing	 of	 erythroid	 specific	 genes	
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and	 pathways,	 together	 with	 the	 dysregulation	 of	
apoptotic	 programs,	 may	 ultimately	 lead	 to	 the	
accumulation	 of	 SF3B1mut	 EPs	 that	 fail	 to	 reach	
terminal	 differentiation97,	 leading	 to	 the	
dyserythropoiesis	 clinical	 phenotype.	 Importantly,	
this	 SF3B1mut	 mis-splicing	 phenotype	 was	 already	
evident	in	the	CH	samples,	suggesting	that	the	impact	
of	 somatic	 CH	 driver	 mutations	 may	 be	 conserved	
from	CH	to	overt	myeloid	neoplasia.	
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METHODS		

Patient	samples	
The	study	was	approved	by	the	local	ethics	committee	
and	by	the	Institutional	Review	Board	(IRB)	of	Weill	
Cornell	Medicine,	University	of	Manchester	and	Dana	
Farber	Cancer	Institute,	conducted	in	accordance	with	
the	 Declaration	 of	 Helsinki	 protocol.	 Cryopreserved	
mononuclear	 cells	 isolated	 from	 bone	 marrow	
biopsies	 or	 peripheral	 blood	 from	 myelodysplastic	
syndrome	 patients	 with	 SF3B1	 mutations	 were	
retrieved	 from	 Memorial	 Sloan	 Kettering	 and	
University	of	Manchester.	Additionally,	cryopreserved	
G-CSF	mobilized	stem	cell	 grafts	 (without	additional	
mobilizing	 agents	 such	 as	 plerixafor	 or	
cyclophosphamide)	 from	 CH	 patients	 with	 SF3B1	
mutations	 were	 retrieved	 from	 the	 Dana	 Farber	
Cancer	 Institute	 (Supplementary	 Table	 1).	
Cryopreserved	 mononuclear	 cells	 and	 grafts	 were	
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thawed	and	stained	using	standard	procedures.	Cells	
were	 first	 incubated	 with	 Human	 FcX	 blocking	
solution	 (Biolegend,	 #422302)	 and	 then	 incubated	
with	 the	 surface	 antibody	 CD34-PE-Vio770	 (clone	
AC136,	 lot	 #5180718070,	 dilution	 1:50,	 Miltenyi	
Biotec)	 and	DAPI	 (Sigma-Aldrich)	 for	 10	minutes	 at	
4°C.	Cells	were	then	sorted	for	DAPI-negative,	CD34+	
cells	using	BD	Influx	at	the	Weill	Cornell	Medicine	flow	
cytometry	core.		

GoT-Splice	with	CITE-seq		
GoT-Splice	 with	 CITE-seq	 integrates	 Genotyping	 of	
Transcriptomes	(GoT)	with	both	long-read	single-cell	
transcriptome	 profiling	 (with	 Oxford	 Nanopore	
Technologies	[ONT])	and	proteogenomics	(with	CITE-
seq).	 GoT	was	 performed	 as	 previously	 described15.	
For	 samples	 without	 CITE-seq,	 CD34+	 cells	 were	
sorted,	 and	 RNA	 was	 prepared	 for	 sequencing	
following	 the	 standard	 10x	 Genomics	 Chromium	 3’	
(v.3.1	 chemistry)	 protocol	 and	 according	 to	
manufacturer’s	 recommendations	 for	 the	generation	
of	 scRNA-seq	 libraries	 (Fig.	 1a).	 For	 GoT-Splice	
samples	that	were	processed	with	CITE-seq,	prior	to	
sorting,	 cells	 were	 blocked	 with	 FcX	 block	 for	 15	
minutes	 prior	 to	 being	 stained	 with	 Total-SeqA	
antibodies	for	30	minutes	on	ice	(see	Supplementary	
Table	3	for	list	of	antibodies	used).	The	standard	10x	
Genomics	 Chromium	 3’	 (v.3.1	 chemistry)	 and	 CITE-
seq	 protocols35,36	 were	 carried	 out	 according	 to	
manufacturer’s	 recommendations	 for	 the	generation	
of	scRNA-seq	and	ADT	libraries	(Fig.	1a).	At	the	cDNA	
amplification	step	in	the	10x	Genomics	protocol,	1	μL	
of	 1	 μM	 spike-in	 primer	 (5’-
GATCCTCGTCCTCATTGAACCGC-3’)	 was	 added	 to	
increase	the	yield	of	SF3B1	cDNA	and	1	µL	of	0.2	µM	
ADT	 PCR	 additive	 primer	 (5’	 –	
CCTTGGCACCCGAGAATTCC	–	3’)	was	added	to	amplify	
ADT.	 After	 cDNA	 amplification	 and	 a	 double-sided	
cleanup	with	SPRI	beads	 to	separate	cDNA	and	ADT	
fractions,	the	ADT	fraction	was	amplified	for	10	cycles	
with	SI-PCR	oligo	 (10x	Genomics)	and	TruSeq	Small	
RNA	RPI-x	 (Illumina)	 primers	 to	 index	 the	 samples.	
SPRI	was	used	to	clean	up	the	ADT	final	products.	In	
both	 samples	 in	which	CITE-seq	was	 conducted	and	
not	 conducted,	 cDNA	 was	 allocated	 for	 gene	
expression	 library	 creation	 (standard	 10x	 protocol;	
25%	of	 cDNA),	 targeted	 genotyping	 (10%	of	 cDNA),	
and	ONT	sequencing	with	biotin	enrichment	(10	ng	of	
cDNA).	 Any	 remaining	 cDNA	was	 stored.	 For	 locus-
specific	 amplification	 (GoT),	 two	 serial	 PCRs	 were	
performed	with	nested	reverse	primers,	based	on	the	
SF3B1	mutation	of	interest.	For	mutations	upstream	of	
K700E,	(5’-GATCCTCGTGGTCATTGAACCGC-3’	and	5’-

CACCCGAGAATTCCAGGCTACTATGATCTCTACCATGA
GACCTG-3’)	 and,	 for	 K700E	 mutations,	 (5’-
GTGCAAAAGCAAGAAGTCCT-3’	 and	 5’-
CACCCGAGAATTCCATGAACATGGTCTTGTGGATGAG-
3’)	 were	 used	 as	 reverse	 primers.	 These	 reverse	
primers	and	 the	generic	 forward	SI-PCR	amplify	 the	
site	of	interest	from	the	cDNA	template	(10	PCR	cycles	
each).	 The	 second	 locus-specific	 reverse	 primers	
contain	 a	 partial	 Illumina	 TruSeq	 Small	 RNA	 read	 2	
handle	 and	 a	 locus-specific	 region	 to	 allow	 SF3B1	
specific	 priming.	 The	 SI-PCR	 oligo	 (10x	 Genomics)	
anneals	 to	 the	 partial	 Illumina	 TruSeq	 read	 1	
sequence,	preserving	the	cell	barcode	(CB)	and	unique	
molecule	 identifier	 (UMI).	 After	 these	 rounds	 of	
amplification	 and	 SPRI	 purification	 to	 remove	
unincorporated	primers,	a	 third	PCR	was	performed	
with	a	generic	 forward	PCR	primer	(P5_generic,	5’	–	
AATGATACGGCGACCACCGAGATCTACAC	 –	 3’)	 to	
retain	the	CB	and	UMI	together	with	an	RPI-x	primer	
(Illumina)	 to	complete	 the	P7	end	of	 the	 library	and	
add	 a	 sample	 index	 (6	 PCR	 cycles).Gene	 expression,	
ADT,	 and	 SF3B1	 amplicon	 libraries	 were	 pooled	 to	
receive	 25,000,	 5,000,	 and	 5,000	 reads	 per	 cell,	
respectively,	 during	 Illumina	 sequencing.	 The	 cycle	
settings	were	as	follows:	28	cycles	for	read	1,	90	cycles	
for	read	2,	10	cycles	for	i7,	and	10	cycles	for	i5	sample	
index.	 To	 examine	 splicing	 patterns	 broadly	 in	 the	
whole	transcriptome,	full	length	cDNA	was	sequenced	
using	the	Oxford	Nanopore	Technologies	sequencing	
on	PromethION	and	GridION	flow	cells.	To	enrich	for	
transcripts	 that	 contain	 CBs	 and	UMIs	 and	decrease	
the	 presence	 of	 PCR	 artifacts,	 on-bead	 PCR	 with	 a	
biotinylated	primer	selecting	for	an	adapter	upstream	
of	the	CB	was	completed64	(Fig.	2a).	In	brief,	10	ng	of	
full-length	cDNA	was	amplified	with	LongAmp	master	
mix	 (NEB)	 and	 TSO	 (5’-
NNNAAGCAGTGGTATCAACGCAGAG-3’)	 and	
biotinylated	 read	 1	 (5’-
/5Biosg/AAAAACTACACGACGCTCTTCCGATCT-3’)	
primers	 for	 5	 cycles.	 M270	 streptavidin	 beads	
(ThermoFisher)	 were	 washed	 with	 1X	 SSPE	 buffer,	
resuspended	 in	 5X	 SSPE	 buffer	 and	 incubated	 with	
PCR	 amplicon	 after	 clean	 up	 with	 0.8X	 SPRI	 beads.		
After	a	15-minute	incubation,	the	beads	were	washed	
with	1X	SSPE	and	10	mM	Tris-HCl	(pH	8)	resuspended	
in	 PCR	 master	 mix,	 and	 further	 amplified	 with	
LongAmp	 master	 mix,	 TSO	 and	 read	 1	 (5’	 –	
NNNCTACACGACGCTCTTCCGATCT	–	3’)	primers	for	5	
cycles.	 After	 cleanup	with	 SPRI,	 100-300	 ng	 of	 each	
full-length	 cDNA	 library	 was	 sequenced	 on	 one	
PromethION	or	GridION	flow	cell	with	SQK-LSK110.	
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ScRNA-seq	 Illumina	 data	 processing,	 alignment,	
clustering	and	cell-type	classification		
10x	 Illumina	 data	 was	 processed	 using	 Cell	 Ranger	
(v.3.1.0)	 with	 default	 parameters	 and	 reads	 were	
aligned	to	the	human	reference	sequence	GRCh38.	For	
all	 samples,	 the	 Seurat	 package	 (v.3.1)	 was	 used	 to	
perform	 QC	 filtering,	 and	 unbiased	 clustering	 of	
CD34+	sorted	cells107.	As	an	overview,	for	each	sample	
dataset,	 cells	 with	 number	 of	 UMIs	 (nCount_RNA)	
<1000	 or	 nCount_RNA	 >	 3	 s.d.	 above	 the	 mean	
nCount_RNA	 value,	 number	 of	 unique	 genes	
(nFeature_RNA)	 >	 3	 s.d.	 above	 the	 mean	
nFeature_RNA	 value	 and	 mitochondrial	 gene	
percentage	(perc.mito)	>	20%	were	filtered.	Using	the	
SCTransform	 function,	 each	 dataset	 was	 log	
normalized	 using	 the	 default	 scale	 factor	 of	 10,000,	
scaled	 and	 potential	 confounders	 (such	 as	
nCount_RNA,	 perc.mito	 and	 S	 phase	 and	G2M	phase	
gene	 expression	 scores)	 were	 regressed	 out	 of	 the	
data.	 SCTransform	 also	 identified	 the	 top	 3000	
variable	genes	found	in	each	dataset	that	are	used	for	
integration.	Before	clustering,	the	individual	datasets	
were	integrated	based	on	disease	status	(i.e.	primary	
MDS	 samples,	 MDS01-03,	 were	 integrated	 together,	
MDS	 validation	 samples,	 MDS04-06,	 from	 patient	
treated	with	growth	factors	at	the	time	of	biopsy	were	
integrated	together	and	then	the	CH	samples,	CH01-
02,	were	 integrated	 together)	 and	 underwent	 batch	
correction	within	Seurat	which	implements	canonical	
correlation	 analysis	 (CCA)	 and	 the	 principles	 of	
mutual	nearest	neighbors	(MMN)108.	For	 integration,	
30	 canonical	 vectors	 were	 used	 for	 the	 CCA	 in	 the	
FindIntegrationAnchors	 function,	 and	 30	 principal	
components	were	used	for	the	anchor	weightings	step	
in	 the	 IntegrateData	 function	 (as	 recommended	 in	
Seurat).	 Next,	 a	 principal	 component	 analysis	 (PCA)	
was	 performed	 using	 the	 variable	 genes	 of	 the	
integrated	 dataset	 and	 the	 JackStraw	 method	 was	
used	 to	 determine	 statistically	 significant	 principal	
components	(PCs)	to	be	used	as	inputs	into	the	UMAP	
algorithm	 for	 cluster	 visualization.	 Clustering	 was	
performed	 with	 the	 FindNeighbors	 (using	 only	
significant	PCs)	and	the	FindClusters	(resolution	=	2)	
functions	 which	 rely	 on	 the	 k-nearest	 neighbors	
(KNN)	 algorithm	 to	 identify	 cell	 clusters.	 Unique	
clusters	 were	 manually	 assigned	 on	 the	 basis	 of	
differentially	 expressed	 genes	 identified	 with	 the	
FindAllMarkers	 function	which	 looked	only	at	 genes	
found	in	at	least	25%	of	cells	in	either	of	the	two	input	
comparison	 groups	 and	 only	 returned	 results	 for	
genes	with	at	least	a	0.25	log	transformed	fold	change	
between	 groups.	 More	 specifically,	 cluster	
annotations	were	made	according	 to	 the	differential	

expression	 of	 canonical	 lineage	 marker	 genes	
identified	 in	 previous	 single-cell	 RNA-seq	 data	 of	
normal	 hematopoietic	 progenitor	 cells37	
(Supplementary	 Table	 2).	 Clusters	 with	 similar	
increased	expression	of	these	canonical	markers	were	
merged	to	form	the	main	progenitor	subsets:	HSPCs,	
IMPs,	NPs,	MkPs,	MEP,	EPs,	Pre-Bs	and	E/B/Ms	in	the	
primary	MDS,	MDS	validation	and	CH	cohort	as	well	as	
Mono,	MonoDCs,	DCs,	B	cells	and	T	cells	 in	MDS	and	
MDS	 validation.	 Finally,	 pseudotime	 analysis	 was	
performed	 using	 the	 Monocle3	 R	 package	 with	
recommended	parameters	(v.0.2.1)109.	

IronThrone	GoT	for	processing	targeted	amplicon	
sequences	and	performing	mutation	calling	
Genotyping	 of	 single	 cells	 was	 carried	 out	 with	 the	
IronThrone	 (v.2.1)	 pipeline	 as	 previously	
described15,110.	 In	 brief,	 individual	 amplicon	 reads	
were	 assessed	 for	 the	 appropriate	 structure	 (i.e.,	
presence	 of	 the	 primer	 sequence	 and	 the	 expected	
sequence	 between	 the	 primer	 and	 given	 mutation	
site)	and	all	reads	were	assessed	 for	a	matching	cell	
barcode	to	the	list	generated	from	the	10x	paired	GEX	
dataset.	A	Levenshtein	distance	of	0.1	was	allowed	for	
all	 sequence	matching	and	collapsing	steps	and	only	
UMIs	 with	 a	 minimum	 of	 2	 supporting	 reads	 were	
retained	for	final	genotyping.	Following	UMI	collapse,	
genotype	 assignment	 of	 individual	 UMIs	 was	
conducted	as	described	previously	with	majority	rule	
of	 supporting	 reads	 for	 wildtype	 or	 mutant	 status	
(using	a	0.7	PCR	read	ratio,	above	which	the	majority	
of	PCR	reads	must	be	in	order	for	a	UMI	to	be	called	
definitively).	 Rare	 UMIs	 that	 did	 not	 pass	 this	
threshold	were	removed	as	ambiguous.	Additionally,	
to	remove	reads	that	result	from	PCR	recombination,	
UMIs	in	the	amplicon	library	that	match	UMIs	of	non-
SF3B1	 genes	 in	 the	 gene	 expression	 library	 were	
discarded.	 Finally,	 given	 the	 heterozygous	 nature	 of	
these	SF3B1	mutations,	each	single	cell	was	assigned	
as	either	mutant	(MUT)	or	wildtype	(WT)	as	follows:	
cells	with	at	least	1	mutant	UMI	were	assigned	as	MUT	
cells	 and	 cells	 with	 0	 mutant	 UMIs	 and	 at	 least	 1	
wildtype	 UMI	 were	 assigned	 as	 WT.	 While	 the	
genotyping	 information	 is	 derived	 from	 transcribed	
molecules	 alone	 and	 may	 be	 affected	 by	 whether	
transcripts	from	wildtype	versus	mutant	alleles	were	
expressed	and/or	captured,	the	fraction	of	MUT	cells	
as	determined	by	GoT	using	all	cells	with	at	least	1	UMI	
yielded	 similar	 values	 to	 those	 determined	 by	 bulk	
DNA	 exon	 sequencing	 (Extended	 Data	 Fig.	 4a).	
Despite	 this,	 we	 systematically	 applied	 specific	
approaches	 to	 exclude	 the	 effect	 of	 this	 confounder	
(that	is,	the	expression	level	of	the	target	gene)	on	the	
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conclusions	of	other	downstream	analyses.	Firstly,	to	
rule	out	the	possibility	that	higher	SF3B1	expression	
results	in	a	greater	ability	to	detect	mutant	alleles,	and	
thereby	 in	 a	 higher	 mutant-cell	 frequency,	 we	
downsampled	all	cells	to	a	single	amplicon	UMI	before	
mutation	 calling	 when	 conducting	 the	 mutant-cell	
frequency	analyses.	Finally,	 for	 the	remaining	of	our	
downstream	 analyses	 between	 SF3B1	 mutant	 and	
wildtype	 cells	 (except	 for	 the	 differential	 gene	
expression	 and	 gene	 set	 enrichment	 analyses	 in	 CH	
due	to	low	numbers	of	genotyped	cells),	we	took	the	
more	 conservative	 approach	 considering	 only	
genotyped	 cells	 with	 two	 or	 more	 genotyping	
amplicon	UMIs.	As	benchmarking,	the	SF3B1	genomic	
regions	 of	 interest	 that	 were	 used	 for	 GoT	 were	
examined	in	each	matching	GEX	library	to	determine	
how	many	UMIs	were	able	to	successfully	capture	the	
targeted	 sequence	 in	 conventional	 10x	 data	
(Extended	Data	Fig.	4b,	9a).	
	
Mutant	cell	frequency	
The	frequency	of	mutant	cells,	as	determined	by	GoT,	
was	assessed	as	previously	performed	in	Nam	et	al.110.	
Firstly,	we	used	only	cells	with	at	least	1	UMI	and	only	
considered	cell	types	with	at	least	300	genotyped	cells.	
To	 account	 for	 the	 potential	 confounding	 effect	 of	 a	
heterozygous	 mutation	 as	 well	 as	 variable	 SF3B1	
expression,	 we	 performed	 amplicon	 UMI	 down-
sampling	 to	 1	 UMI	 per	 genotyped	 cell	 prior	 to	
mutation	calling	for	calculating	MUT	cell	frequencies.	
An	equal	number	of	cells	from	each	sample	within	the	
MDS	 cohort,	 were	 subsampled	 randomly	 for	 the	
integrated	data	 to	ensure	equal	 representation	 from	
each	 patient.	 Genotyping	 amplicon	 UMIs	 were	
downsampled	(x100	iterations)	to	1	UMI	per	cell	and	
MUT	 cell	 frequency	 was	 determined	 for	 each	
progenitor	cluster	for	either	the	integrated	dataset	or	
individual	samples.	This	 frequency	was	then	divided	
by	 the	 total	 mutant	 cell	 frequency	 across	 all	
progenitor	 subsets	 for	 each	 of	 the	 iterations.	 Linear	
mixed	effects	analysis	was	performed	using	the	lme4	
package	(v.1.2-1).	Progenitor	identity	was	defined	as	
the	 fixed	 effect,	 and	 for	 random	 effects,	 we	 used	
intercepts	 for	 individual	 patients	 (subjects)	 and	
iterative	 downsampling.	 P-values	 were	 obtained	 by	
likelihood	ratio	tests	of	 the	full	model	with	the	fixed	
effect	against	the	model	without	the	fixed	effect111.		

Differential	 gene	 expression	 and	 gene	 set	
enrichment	
The	 differential	 gene	 expression	 analysis	 (DGEA)	
comparing	WT	and	MUT	cells	and	gene	set	enrichment	
analysis	 (GSEA)	were	 performed	 as	 done	 in	Nam	 et	

al.110.	In	brief,	for	each	cohort	we	used	a	within-sample	
permutation	 test	 for	 the	 analysis	 of	 each	progenitor	
cell	 subtype.	 To	 ensure	 equal	 representation	 from	
each	 patient,	 we	 downsampled	 the	 total	 number	 of	
mutated	and	wildtype	cells	to	the	same	number	across	
all	patients.	The	observed	log2	fold	change	values	were	
calculated	comparing	the	MUT	versus	WT	cells	for	the	
tested	genes.	The	tested	genes	included	the	top	2,000	
most	variable	genes	(excluding	mitochondrial	genes)	
which	 were	 filtered	 for	 those	 expressed	 in	 at	 least	
10%	 of	 either	 group	 (MUT	 versus	 WT),	 for	 each	
progenitor	 subtype.	 Next,	 the	 WT	 and	 MUT	 labels	
were	 shuffled	 over	 100,000	 iterations,	 within	 each	
patient,	and	fold	change	values	were	re-calculated	to	
create	 a	 background	 distribution.	 P-values	 were	
calculated	 per	 gene	 as	 a	 percent	 of	 permutations	
whose	 absolute	 fold	 change	 values	 were	 more	
extreme	than	the	absolute	value	of	the	observed	fold	
change	(Supplementary	Table	5,	9).	Hypergeometric	
test	for	GSEA	of	the	integrated	differentially	expressed	
genes	 (P-value	 <	 0.05,	 log2(fold	 change)	 >	 0.1)	 was	
performed	using	the	Cluster	Profile	package	(v.	0.1.9).	
FDR	 multiple	 hypothesis	 testing	 correction	 was	
performed.	 MSigDB	 C2	 curated	 gene	 sets	 were	
included	 in	 the	 analyses	 (Supplementary	 Table	 6,	
10).		

ADT	processing	
CITE-seq	was	performed	on	the	primary	MDS	cohort	
(for	samples	MDS02-03)	and	as	mentioned	above,	the	
10x	 Illumina	 ADT	 data	 was	 processed	 using	 Cell	
Ranger	 (v.3.1.0)	with	default	parameters	and	counts	
were	generated	for	each	marker	in	the	CITE-seq	panel	
(Supplementary	 Table	 3).	 After	 using	 the	 Seurat	
package	 (v.3.1)	 for	 QC	 filtering,	 and	 unbiased	
clustering	 of	 the	 CD34+	 sorted	 cells	 based	 on	 RNA	
data,	 ADT	 data	 was	 also	 normalized	 using	 centered	
log-ratio	 (CLR)	 normalization,	 scaled	 and	 the	
expression	 of	 various	 ADT	 markers	 was	 used	 in	
confirming	 the	 cell-type	 assignment	 of	 different	
progenitor	 subsets.	 For	 benchmarking	 purposes,	
Seurat’s	Weighted	Nearest	Neighbor	(WNN)	Analysis	
was	also	performed,	which	is	a	multi-modal	analysis	
that	 integrates	 both	 RNA	 and	 ADT	 data	 when	
performing	cell	clustering.	This	was	used	to	compare	
to	 the	 clustering	 output	 when	 using	 the	 KNN	
algorithm	 that	 relies	 on	 RNA	 data	 alone	 (Extended	
Data	 Fig.	 2d).	 For	 the	 WNN	 analysis,	 cells	 were	
filtered	 and	 integrated	 using	 SCTransform	 (as	
described	 above).	 The	RNA	data	was	 logNormalized	
and	the	ADT	data	was	run	through	CLR	normalization	
and	the	RunPCA	function	for	dimensionality	reduction	
was	 also	 run	 independently	 on	 each	modality.	Next,	
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the	 FindMultiModalNeighbors	 function	 was	 used	
which	for	each	cell,	calculates	its	closest	neighbors	in	
the	dataset	based	on	a	weighted	combination	of	RNA	
and	 ADT	 similarities.	 This	 constructs	 a	WNN	 graph	
that	was	visualized	with	the	RunUMAP	function.	The	
cell-type	 assignments	 generated	 from	 the	 initial	
clustering	(with	RNA	data	alone)	were	then	projected	
onto	this	new	UMAP	for	comparison	(Extended	Data	
Fig.	2d).			

Denoised	 scaled	 by	 background	 normalization	
(DSB)	filtering	and	differential	protein	expression	 
We	used	the	dsb	package112	(v.0.1.0)	as	an	alternative	
form	of	normalization	for	the	ADT	protein	expression	
values.	Normalized	values	were	applied	for	selection	
filtering	of	ADT	markers	for	which	the	true	signal	was	
above	 the	 background	 noise	 levels,	 within	 the	
captured	 cell-contained	 droplets.	 dsb	 discriminates	
between	background	noise	by	differentiating	between	
empty	 droplets	 (containing	 ambient	 mRNA	 and	
antibody	but	no	cell)	and	true	cell-containing	droplets.	
The	 background	 matrix	 was	 defined	 from	 the	
comparison	of	the	raw	feature	barcode	matrices	from	
the	 10x	 sequencing	 output	 versus	 the	 processed	
filtered	feature	barcode	matrix	results	generated	from	
running	 Cell	 Ranger	 (see	Methods	 above).	 The	 final	
output	filters	out	empty	droplets	and	retains	only	true	
cell-containing	droplets	based	on	the	10x	cell	calling	
algorithm.	As	such,	the	matrix	of	background	noise	is	
generated	 by	 subtracting	 out	 the	 positive	 cell	
containing	droplets	found	in	the	filtered	matrices	from	
the	 negative	 empty	 droplets	 in	 the	 raw	 matrices.	
Furthermore,	 with	 an	 additional	 filter	 requiring	 the	
removal	of	drops	with	protein	 library	size	>	1.5	and	
number	 of	 genes	 <	 80	 was	 applied	 to	 refine	 the	
background	 noise	 signal.	 Normalization	 was	
performed	 using	 the	 DSBNormalizeProtein	 function	
omitting	 isotype	 controls	 and	 denoised	 counts.	 The	
dsb	normalized	values	were	defined	as	the	number	of	
standard	deviations	above	the	background	noise	and	
antibodies	were	then	filtered,	keeping	only	those	with	
a	dsb	normalized	expression	value	of	>	2	in	at	least	1	
cell-type	(Supplementary	Table	4).	

When	 performing	 the	 differential	 protein	
expression	 analysis	 across	 our	 patient	 samples,	 we	
used	 an	 iterative	 downsampling	 (x1,000)	 approach	
that,	 at	 each	 iteration,	 randomly	 samples	 an	 equal	
number	 of	 SF3B1mut	 and	 SF3B1wt	 cells	 from	 each	
patient	sample	before	calculating	the	median	log10FC	
of	 protein	 expression	 between	 SF3B1mut	 /	 SF3B1wt	
cells.	This	was	done	to	ensure	equal	representation	of	
genotyped	 cells	 from	 each	 patient.	 To	 calculate	 the	
median	 log10FC	 of	 SF3B1mut	 /	 SF3B1wt	 cells,	 we	 first	

modified	the	Seurat’s	FindMarker	function	to	calculate	
the	median	instead	of	the	mean	expression,	a	measure	
that	 is	more	 robust	 to	outlier	 values.	Then,	 for	 each	
downsampled	object	we	obtained	a	 table	 containing	
the	 log10FC	 of	 each	 antibody	 per	 cell-type.	 log10FC	
matrices	 are	 combined	 by	 taking	 the	median	 across	
the	downsampled	 iterations,	resulting	 in	the	median	
log10FC	values.	Statistical	significance	was	assessed	by	
performing	permutation	 tests	 (x10,000)	within	each	
patient	 sample	 matrix.	 (Fig.	 1f)	 shows	 normalized	
ADT	expression	across	cell-types,	using	the	maximum	
expression.	
	
ScRNA-seq	 ONT	 long-read	 sequencing	 data	
processing,	 alignment,	 junction	 calling	 and	
annotation		
Guppy	 (v.3.0.6	 -	 4.0.11)	 was	 used	 for	 base	 calling	
FAST5	 files	 output	 from	 ONT	 sequencing.	 We	 then	
filtered	 for	only	reads	containing	a	polyA	 tail	within	
100	 base	 pairs	 of	 either	 5’	 or	 3’	 end	 using	 the	
`NanoporeReadScanner-0.5.jar`	within	 the	SiCeLoRe-
1.0	 workflow.	 Filtered	 reads	 are	 aligned	 to	 the	
primary	human	genome,	assembly	GRCh38.p12	using	
minimap2	(v.2.17).	Minimap2	was	used	with	the	`-ax	
splice`	 flag	 to	 prioritize	 annotated	 splice	 junctions.	
Additionally,	we	made	use	of	the	`--junc-bed`	option,	
to	increase	alignment	scores	for	those	splice	junctions	
found	 in	 the	 reference	 junction	 bed	 file.	 For	 our	
reference	 junctions,	 we	 used	 splice	 junctions	 from	
single-cell	SMART-seq2	data	from	human	CD34+	cells	
obtained	from	a	CH	sample	with	no	SF3B1	mutation.	
Additionally,	 we	 used	 `--secondary=no`	 to	 suppress	
multi-mappings.	 In	 preparation	 to	 identify	 the	 cell	
barcodes	 and	 UMIs	 present	 in	 the	 long-read	
sequencing,	 we	 used	 the	 `IlluminaParser-1.0.jar`	 in	
SiCeLoRe	to	parse	the	cell	barcodes	and	UMIs	present	
in	the	complementary	short-read	sequencing	library.	
We	continued	to	use	SiCeLoRe	to	tag	the	aligned	BAM	
files	 with	 cell	 barcodes	 and	 UMIs	 identified	 in	 the	
short-read	library	and	generate	consensus	sequences	
for	 each	 unique	 cell	 barcode	 and	 UMI	 combination.	
Consensus	sequences	were	used	 to	create	a	gene	by	
cell	 count	 matrix.	 For	 all	 other	 steps,	 we	 used	 the	
default	parameters	set	by	SiCeLoRe-1.0,	following	the	
workflow	 found	 at	
https://github.com/ucagenomix/sicelore.	 Intron-
junction	 calling	 is	 then	 performed	 on	 consensus	
sequence	BAM	files,	adapted	from	the	method	used	in	
the	 LeafCutter	 pipeline	 for	 short-read	 RNA-seq	
data69,113.	In	brief,	the	intron-junction	calling	pipeline	
utilizes	 the	 pysam.fetch()	 function	 and	 iterates	
through	each	transcript	in	the	BAM	file,	noting	its	cell	
barcode	 (CB)	 tag	 as	well	 as	 the	 coordinates	 of	 each	
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intron-junction	 for	 that	 transcript.	 On	 iterating	
through	 the	 BAM	 file,	 counts	 for	 the	 usage	 of	 each	
unique	intron-junction	and	the	corresponding	CB	are	
recorded.	 This	 ultimately	 generates	 an	 Intron-
Junction	x	Cell	Barcode	count	matrix	for	the	given	BAM	
file.	 Each	 intron-junction	 is	 then	 identified	 using	
annotations	 available	 in	 the	 GENCODE	 GRCh38.p12	
v31	basic	annotation	reference	file	as	either	canonical	
3’,	 canonical	 5’,	 alternative	 3’,	 alternative	 5’.	 This	
outputs	 a	 metadata	 file	 with	 annotations	 for	 each	
junction	corresponding	to	the	junctions	of	the	Intron-
Junction	 x	 Cell	 Barcode	 count	matrix.	 The	metadata	
included	the	3’	and	5’	sites	defining	each	junction,	the	
distance	from	the	canonical	3’	or	5’	site	end	for	each	
start	and	end	site,	and	the	classification	of	each	site.	
Alternative	 3’	 and	 5’	 junctions	 were	 further	 broken	
down	 into	 alternative	 and	 cryptic	 based	 on	 the	
distance	 the	 junction	 was	 from	 the	 canonical	 splice	
site.	If	the	alternative	splice	site	was	within	100	base	
pairs	of	the	canonical	splice	site,	it	was	classified	as	a	
cryptic	splice	site.	Given	the	 intron-centric	approach	
of	the	pipeline,	each	event	could	be	classified	as	either	
annotated,	 alternative	 3’,	 alternative	 5’,	 a	 cryptic	 3’	
splice	site,	a	cryptic	5’	splice	site	or	an	exon-skipping	
event	 (see	 Methods	 below	 for	 exon-skipping	
annotation;	Supplementary	Table	7,	8,	11).	

Differential	transcript	usage	
All	 alternative	 3’	 junctions	 were	 filtered	 to	 only	
include	those	that	contained	at	least	5	total	reads.	To	
identify	 differentially	 used	 transcripts	 between	
SF3B1mut	and	SF3B1wt	cells,	 junction	reads	were	then	
pseudobulked	 based	 on	 mutation	 status	 across	 all	
MDS	patients	or	all	CH	patients.	We	then	computed	the	
log10(odds	 ratio)	 of	 the	 likelihood	 of	 each	 junction	
being	observed	in	the	MUT	cells	over	the	WT	cells.	The	
genotype	 labels	 of	 each	 of	 the	 cells	 was	 permuted	
100,000	 times	and	we	 then	 repeated	pseudobulking	
and	 computation	 of	 the	 log(odds	 ratio)	 of	 each	
junction.	 Permutations	 of	 the	 genotype	 label	 were	
patient	 aware,	 so	 the	 mutant	 cell	 frequency	 across	
patients	was	unchanged	for	each	permutation.	The	P-
value	 was	 determined	 based	 on	 the	 likelihood	 of	
seeing	the	observed	odds	ratio	 in	comparison	to	 the	
null	distribution	of	the	permuted	odds	ratios	for	each	
junction.	The	same	testing	was	done	within	each	cell-
type	 to	 identify	 the	 differentially	 used	 junctions	
between	SF3B1mut	and	SF3B1wt	cells	within	a	specific	
cell-type.	 We	 classified	 junctions	 as	 differentially	
spliced	 events	 if	 they	 had	 P-value	 <	 0.05	 and	 delta	
percent	spliced	in	(dPSI)	of	>=	2	(a	positive	dPSI	here	
represents	 a	 splicing	 event	more	 highly	 used	 in	 the	
SF3B1mut	population	of	cells).		To	observe	the	usage	of	

these	differentially	spliced	cryptic	3’	events	(P-value	<	
0.05	and	dPSI	>=	2)	across	the	continuum	of	erythroid	
maturation	 as	 opposed	 to	 within	 discrete	 cellular	
states,	 erythroid	 lineage	 MUT	 cells	 (HSPCs,	 IMPs,	
MEPs	 and	 EPs)	 were	 ordered	 from	 least	 to	 most	
differentiated,	grouped	into	bins	and	the	MUT	cell	PSI	
for	each	cryptic	event	was	calculated	per	bin	(Fig.	4a,	
6d).	Specifically,	in	the	primary	MDS	cohort	(Fig.	4a),	
6301	SF3B1mut	cells	were	ordered	by	the	expression	of	
the	erythroid	marker	CD71	(obtained	from	CITE-seq)	
and	a	bin	 size	of	3000	SF3B1mut	cells,	 sliding	by	300	
SF3B1mut	cells	 at	 each	 step,	was	 used	 to	 capture	 the	
continuous	change	in	the	usage	of	the	different	cryptic	
3’	 junctions	 via	 the	MUT	 cell	 PSI	measurements	per	
bin.	The	variance	in	the	usage	of	each	cryptic	3’	event	
was	measured	by	calculating	the	range	of	PSIs	across	
all	 the	 bins	 along	 the	 continuum	 and	 only	 cryptic	
junctions	that	had	a	PSI	range	of	at	least	2	and	average	
coverage	across	all	bins	of	10	reads	were	considered.	
This	 approach	was	 taken	 to	 focus	 on	 cryptic	 events	
that	 had	 a	 variable	 signal	 and	 that	 were	 also	 well	
supported.	 In	 CH	 (Fig.	 6d),	 1020	 MUT	 cells	 were	
ordered	by	pseudotime	and	a	bin	size	of	600	SF3B1mut	
cells,	sliding	by	60	SF3B1mut	cells	at	each	step,	was	used	
to	 capture	 the	MUT	 cell	 PSI	 per	 bin.	 Similarly,	 only	
cryptic	junctions	that	had	a	PSI	range	of	at	least	2	and	
average	coverage	of	10	reads	were	considered.		
For	the	BAX	cryptic	event	(Fig.	6e),	in	order	to	directly	
compare	 the	 per	 bin	 PSI	 values	 across	 all	 3	 cohorts	
(MDS,	MDS	validation	and	CH)	we	adjusted	the	bin	and	
window	sizes	across	 the	cohorts	 to	ensure	 the	same	
number	 of	 final	 bins	 for	 each	 cohort.	 In	 order	 to	
achieve	 this,	we	 took	 the	 following	approach:	MDS	 -	
MUT	cells	ordered	by	CD71	expression,	window	size	
of	 3750	SF3B1mut	cells,	 sliding	by	375	SF3B1mut	cells,	
MDS	validation:	cells	ordered	by	pseudotime,	window	
size	of	580	SF3B1mut	cells,	sliding	by	58	SF3B1mut	cells,	
CH:	cells	ordered	by	pseudotime,	window	size	of	600	
SF3B1mut	cells,	sliding	by	60	SF3B1mut	cells.	To	note,	for	
each	of	 the	 sliding	window	analyses,	only	MUT	cells	
with	 at	 least	 2	 genotyping	 amplicon	 UMIs	 were	
considered.		

Exon	 skipping	 and	 nonsense-mediated	 decay	
(NMD)	annotations	
In	 order	 to	 identify	 exon	 skipping	 events,	 for	 each	
gene	 in	 the	 GENCODE	 GRCh38.p12	 v31	 basic	
annotation	 reference	 file	 we	 determined	 its	 main	
functional	isoform	(as	those	that	belong	to	the	APPRIS	
database	 and	 carry	 the	 “appris_princial”	 tags)	 to	
compare	to	 the	 transcript	 isoforms	generated	 in	our	
data.	With	this,	for	a	given	gene,	each	identified	intron	
junction	 within	 our	 data	 was	 compared	 to	 the	
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reference	and	labeled	as	an	“exon_skip”	if	it	excluded	
any	of	the	exons	present	in	the	reference.	The	number	
of	exons	skipped	was	also	recorded.	To	identify	NMD	
inducing	 alternative	 splicing	 events,	 we	 also	
developed	 a	 pipeline	 that	 inspects	 each	 intron	
junction	 in	 the	 Intron-Junction	 x	 Cell	 Barcode	 count	
matrix	 and	 detects	 the	 presence	 of	 premature	
termination	 codons	 (PTCs)	 and	 frameshift	 events	
induced	as	a	result	of	alternative	splicing.	In	brief,	this	
is	done	by	grabbing	the	entire	nucleotide	sequence	of	
a	 particular	 isoform	 noting	 the	 position	 of	 the	 last	
exon-exon	 junction,	 finding	 the	 position	 of	 the	 first	
start	codon	and	from	there,	phasing	along	the	triplets	
of	 nucleotides	 of	 that	 given	 sequence	 string.	 By	
following	 the	 known	 rules	 of	 NMD,	 each	 intron	
junction	 was	 further	 annotated	 as	 being	 NMD-
inducing	(which	would	lead	to	NMD	of	its	associated	
transcript)	 or	 NMD-neutral.	 Specifically,	 the	 50-
nucleotide	 rule	 was	 followed	 such	 that	 an	 event	 is	
labeled	NMD-inducing	 if	a	PTC	 is	 introduced	greater	
than	 50	 nucleotides	 away	 from	 the	 last	 exon-exon	
junction	or	NMD-neutral	if	a	PTC	is	introduced	within	
50	 nucleotides	 of	 the	 transcript's	 last	 exon-exon	
junction.	 Finally,	 Intron-junctions	 were	 labeled	 to	
cause	 frameshifts	 if	 the	 total	 number	 of	 nucleotides	
involved	in	an	alternative	3’	or	5’	splicing	event	was	
not	divisible	by	3.	Altogether,	each	intron	junction	was	
classified	as	follows:	(i)	NMD-inducing	event	(due	to	
the	 introduction	 of	 a	 PTC);	 (ii)	 NMD-neutral	 with	 a	
frameshift	 event;	 and	 (iii)	 NMD-neutral	 with	 no	
frameshift	event.	
	
Motif	enrichment	analysis		
High	quality	cryptic	3’	junctions	(MUT	read	coverage	
>	 3,	 PSI	 >=	 2,	 junction	 cluster	 read	 coverage	 >	 20	
across	at	least	2	junction	clusters)	were	obtained	from	
the	 junction	 quantification	 matrix	 from	 samples	
MDS05-06.	Each	of	 these	cryptic	3’	 splice	sites	were	
then	 paired	 to	 a	 corresponding	 canonical	 junction,	
requiring	both,	canonical	and	cryptic	junctions,	to	be	
part	of	the	same	splicing	cluster	(as	described	above).	
Flanking	sequences,	50	nucleotides	upstream	and	10	
nucleotides	 downstream	 of	 the	 3’	 splice	 site	 were	
obtained	 from	 the	 two	 junction	 sets	 and	 used	 to	
calculate	 position	weight	matrices	 (PWM).	 For	 each	
position,	 a	 log	 odds	 ratio	 enrichment	 for	 each	
nucleotide	 was	 calculated	 using	 Fisher's	 exact	 test,	
comparing	 the	 cryptic	 3’	 splice	 site	 nucleotide	
composition	against	the	canonical.	Reported	positions	
were	 filtered	 according	 to	 their	 enrichment	
significance	(P-value	<	0.05).	
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EXTENDED	DATA		
 

 

Extended	Data	Figure	1.		MDS	and	MDS	validation	QC	and	integration.	
(A)	Number	of	genes	per	cell	(top)	and	number	of	UMIs	per	cell	(bottom)	in	CD34+	sorted	hematopoietic	progenitors	 from	
samples	MDS01-03	after	QC	filters,	shown	by	each	patient	sample.	(B)	Number	of	genes	per	cell	(top)	and	number	of	UMIs	per	
cell	 (bottom)	 in	 CD34+	 sorted	 hematopoietic	 progenitors	 from	 samples	MDS04-06	 after	 QC	 filters,	 shown	 by	 each	 patient	
sample.	(C)	UMAP	of	CD34+	sorted	progenitor	cells	for	each	individual	sample	of	MDS01-03	after	integration	using	the	Seurat	
package.		(D)	UMAP	of	CD34+	sorted	progenitor	cells	for	each	individual	sample	of	MDS04-06	after	integration	using	the	Seurat	
package.	
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Extended	Data	Figure	2.		MDS	clustering	and	cell-type	assignment.	
(A)	Expression	of	lineage-specific	genes	from	Velten	et	al.37	scored	and	projected	onto	the	UMAP	representation	of	cells	from	
MDS01-03.	(B)	CD34	expression	per	progenitor	cell-type	of	CD34-	monocytes	among	CD34+	sorted	hematopoietic	progenitors.	
(C)	Heatmap	of	top	10	differentially	expressed	genes	for	each	progenitor	subset	for	MDS01-03.	(D)	UMAPs	comparing	the	graph-
based	clustering	output	when	using	the	k-nearest	neighbors	(KNN)	algorithm	to	perform	clustering	of	cells	with	RNA	data	alone	
vs.	when	using	the	weighted	nearest	neighbors	(WNN)	algorithm	that	allows	for	the	integration	of	both	RNA	and	ADT	data	for	
clustering	 cells.	 The	 cell-type	 assignments	 determined	 from	 the	 KNN-RNA	 based	 clustering	 are	 projected	 onto	 the	WNN-
RNA+ADT	clustering	for	comparison	between	the	two	methods.			
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Extended	Data	Figure	3.		MDS	validation	clustering	and	cell-type	assignment.	
(A)	UMAP	of	CD34+	sorted	cells	(n	=	8,879	cells)	from	samples	MDS04-06	with	SF3B1	K700E	mutations	(n	=	3),	overlaid	with	
cluster	 cell-type	 assignments.	 HSPC,	 hematopoietic	 stem	 progenitor	 cells;	 IMP,	 immature	 myeloid	 progenitors;	 MkP,	
megakaryocytic	 progenitors;	 MEP,	 megakaryocytic-erythroid	 progenitors;	 EP,	 erythroid	 progenitors;	 NP,	 neutrophil	
progenitors;	 E/B/M,	 eosinophil/basophil/mast	 progenitor	 cells;	 T/B	 cells;	 Mono,	 monocyte;	 DC,	 dendritic	 cells;	 Pre-B,	
precursors	B	cells;	Mono	DC,	monocyte/dendritic	cell	progenitors.	(B)	Expression	of	lineage-specific	genes	from	Velten	et	al.37	
scored	and	projected	onto	the	UMAP	representation	of	cells	from	MDS04-06.	(C)	Heatmap	of	top	10	differentially	expressed	
genes	for	each	progenitor	subset	for	MDS04-06.	
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Extended	Data	Figure	4.	GoT	statistics	and	analyses.	
(A)	SF3B1	K700E	(7)	and	K666N	(1)	mutant	cell	fractions	determined	by	GoT	in	single	cells	versus	SF3B1	K700E	and	K666N	
mutation	variant	allele	frequencies	(VAF)	determined	in	bulk	sequencing	of	matched	unsorted	bone	marrow	mononuclear	cells	
(MDS)	or	matched	unsorted	stem	cell	product	(CH).	(B)	Fraction	of	cells	in	MDS01-03	by	number	of	SF3B1	UMIs	in	standard	10x	
Genomics	data	without	genotyping	information	(left),	SF3B1	UMIs	with	K700E	locus	coverage	in	standard	10x	data	(middle),	
and	SF3B1	UMIs	with	K700E	 locus	 coverage	 in	GoT	amplicon	 library	 (right).	 (C)	UMAP	of	progenitor	 cells	 from	MDS01-03	
overlaid	with	genotyping	data.	WT,	cells	with	genotype	data	without	SF3B1	mutation;	MUT,	cells	with	genotype	data	with	SF3B1	
mutation;	NA,	unassignable	cells	with	no	genotype	data.	(D)	UMAP	of	progenitor	cells	from	MDS04-06	overlaid	with	genotyping	
data.	 WT,	 cells	 with	 genotype	 data	 without	 SF3B1	 mutation;	 MUT,	 cells	 with	 genotype	 data	 with	 SF3B1	 mutation;	 NA,	
unassignable	 cells	 with	 no	 genotype	 data.	 (E)	 Normalized	 ratio	 of	 SF3B1mut	 cells	 in	 progenitor	 subsets	 with	 at	 least	 300	
genotyped	cells.	Bars	show	aggregate	analysis	of	samples	MDS01-03	with	mean	+/-	s.e.m.	of	100	downsampling	iterations	to	1	
genotyping	UMI	per	cell.	Points	represent	the	mean	of	n	=	100	downsampling	iteration	per	sample.	

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 9, 2022. ; https://doi.org/10.1101/2022.06.08.495292doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.08.495292
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 		
F.	Gaiti,	P.	Chamely,	A.	G.	Hawkins,	M.	Cortés-López	et	al.	(2022).	BioRxiv 30 

	

Extended	Data	Figure	5.	MDS	CITE-seq	and	pseudotime.	
(A)	Comparison	of	 the	single-cell	expression	of	markers	captured	 in	both	CITE-seq	(x-axes)	and	RNA-seq	(y-axes)	 libraries.	
Correlation	coefficient	r	calculated	using	Spearman’s	correlation.	Cells	are	colored	by	each	progenitor	subset.	(B)	Comparison	
of	the	mean	expression	per	progenitor	subset	of	markers	captured	in	both	CITE-seq	(x-axes)	and	RNA-seq	(y-axes)	libraries.	
Correlation	coefficient	r	calculated	using	Spearman’s	Correlation.	P-values	derived	from	Student’s	t-distribution.	(C)	UMAP	of	
progenitor	cells	from	MDS01-03	samples	overlaid	with	pseudotemporal	ordering.	
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Extended	Data	Figure	6.	Long-read	splicing	and	motif	analysis.	
(A)	Long-read	sequencing	processing	and	splicing	analysis	pipeline.	(B)	Comparison	of	the	usage	of	various	alternative	3’	splice	
sites	found	in	our	MDS	SF3B1mut	cells	vs.	a	CD34+	sample	with	no	SF3B1	mutation.	(C)	Bar	plot	of	the	number	of	cryptic	3’	splice	
sites	identified	per	gene	in	MDS.	Inset:	Gene	example,	PFDN5,	with	2	unique	cryptic	3’	splice	sites,	showing	the	transcripts	that	
have	usage	of	either	site.	(D)	Nucleotide	enrichment	(measured	as	log-odds	ratio)	across	the	3’	splice	site	region	comparing	
cryptic	vs.	canonical	sites	in	MDS02-03	samples.	
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Extended	Data	Figure	7.	MDS	vs.	MDS	validation	cohort	splicing	comparison.	
(A)	Bars	showing	the	percentage	of	genes	differentially	spliced	in	SF3B1mut	and	SF3B1wt	cells	with	BH-FDR	adjusted	P-value	<	
0.2	in	each	sample	of	the	MDS	cohort	(MDS02(A/B)-03).	(B)	Differential	splicing	analysis	between	SF3B1mut	and	SF3B1wt	cells	
across	the	aggregate	of	the	MDS	validation	cohort	(MDS04-06).	Junctions	with	an	absolute	delta	percent	spliced-in	(dPSI)	>	2	
and	 BH-FDR	 adjusted	 P-value	 <	 0.2	 were	 defined	 as	 differentially	 spliced.	 Bars	 (top)	 showing	 the	 percentage	 of	 genes	
differentially	 spliced	 in	 SF3B1mut	 and	 SF3B1wt	 cells	 of	 MDS	 validation	 cohort.	 (C)	 Bars	 showing	 the	 percentage	 of	 genes	
differentially	spliced	in	SF3B1mut	and	SF3B1wt	cells	with	BH-FDR	adjusted	P-value	<	0.2	in	each	sample	of	the	MDS	validation	
cohort	(MDS04-06).	 (D)	Venn	Diagram	for	 the	overlap	of	differentially	spliced	genes	used	more	highly	 in	SF3B1mut	 cells	 (P-	
values	<	0.05,	dPSI	>0)	 from	 the	bulk	 comparison	of	SF3B1mut	 	 vs.	SF3B1wt	cells	 in	 the	MDS	and	MDS	validation	 cohorts	 [i].	
Increasing	the	read	coverage	threshold	for	the	differentially	spliced	genes	showed	a	more	significant	overlap	between	cohorts	
[ii].	P-values	for	the	overlap	from	Fisher’s	exact	test.	(E)	Heatmap	of	dPSI	values	between	SF3B1mut	and	SF3B1wt	cells	for	cryptic	
3’	 splicing	 events	 identified	 in	 the	 main	 progenitor	 subsets	 across	 MDS	 validation	 samples.	 Rows	 (z-score	 normalized)	
correspond	to	cryptic	3’	junctions	found	to	be	differentially	spliced	in	at	least	one	cell-type,	with	P-value	<=	0.05	and	dPSI	>=	2.	
Columns	correspond	to	cell-type.	Genes	with	an	SF3B1mut	associated	cryptic	3’	splice	site	found	in	the	MDS	cohort	highlighted	
(Red).	(F)	Pie	chart	showing	the	percent	overlap	of	cryptically	3’	spliced	genes	unique	to	MEPs	and	EPs	in	the	primary	MDS	
cohort	that	are	also	cryptically	3’	spliced	and	unique	to	earlier	progenitor	cells	(HSPCs	and	IMPs)	in	the	MDS	validation	cohort	
(left)	as	well	as	the	percent	overlap	with	genes	cryptically	3’	spliced	and	unique	to	the	MEPs	and	EPs	in	the	MDS	validation	
cohort	(right).	P-value	for	the	overlap	from	Fisher’s	exact	test.	
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Extended	Data	Figure	8.	CH	cohort	QC	and	integration.	
(A)	Number	of	genes	per	cell	(top)	and	number	of	UMIs	per	cell	(bottom)	in	CD34+	sorted	hematopoietic	progenitors	 from	
samples	CH01-02	after	QC	filters,	shown	by	each	patient	sample.	(B)	UMAP	of	CD34+	sorted	progenitor	cells	for	each	individual	
sample	of	CH01-02	after	integration	using	the	Seurat	package.	(C)	Expression	of	lineage-specific	genes	from	Velten	et	al.37	scored	
and	projected	onto	the	UMAP	representation	of	cells	from	CH01-02.	(D)	Heatmap	of	top	10	differentially	expressed	genes	for	
each	progenitor	subset	for	CH01-02.	
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Extended	Data	Figure	9.		CH	GoT	statistics	and	analyses.	
(A)	Fraction	of	cells	in	CH01-02	by	number	of	SF3B1	UMIs	in	standard	10x	Genomics	data	without	genotyping	information	(left),	
SF3B1	UMIs	with	K666N	(CH01)	or	K700E	(CH02)	locus	coverage	in	standard	10x	data	(middle),	and	SF3B1	UMIs	with	K666N	
(CH01)	or	K700E	(CH02)	locus	coverage	in	GoT	amplicon	library	(right).	(B)	Normalized	ratio	of	SF3B1mut	cells	in	HSPC	and	EP	
cells	for	CH01	and	CH02.	Bars	show	the	mean	of	n	=	100	downsampling	iterations	to	1	genotyping	UMI	per	cell.	(C)	Per	sample	
heatmap	 of	 relative	 expression	 of	 genes	 ordered	 by	 chromosome/chromosomal	 position	 following	 copy	 number	 variation	
analysis	using	the	InferCNV	package	(see	Methods).	Cells	(y-axis)	are	stratified	by	SF3B1	genotype	status.		(D)	Pseudotime	in	
SF3B1mut	vs.	SF3B1wt	cells	per	CH	sample.	P-value	for	comparison	of	means	from	Wilcoxon	rank	sum	test.	
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Extended	Data	Figure	10.	CH	cryptic	signal,	WT/MUT/Pseudobulk	comparison.	
(A)	Comparison	of	the	PSI	values	of	identified	cryptic	junctions	in	WT	cells	only	(gray)	vs.	MUT	cells	only	(red)	vs.	all	cells	in	
pseudobulk	in	CH01-02.	P-values	for	comparison	of	means	from	Wilcoxon	rank	sum	test.	
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