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Abstract

Patterns of endogenous activity in the brain reflect a stochastic exploration of the neuronal state space that is
constrained by the underlying assembly organization of neurons. Yet it remains to be shown that this interplay
between neurons and their assembly dynamics indeed suffices to generate whole-brain data statistics. Here we
recorded the activity from ∼ 40, 000 neurons simultaneously in zebrafish larvae, and show that a data-driven
generative model of neuron-assembly interactions can accurately reproduce the mean activity and pairwise cor-
relation statistics of their spontaneous activity. This model, the compositional Restricted Boltzmann Machine
(cRBM), unveils ∼200 neural assemblies, which compose neurophysiological circuits and whose various com-
binations form successive brain states. We then performed in silico perturbation experiments to determine the
interregional functional connectivity, which is conserved across individual animals and correlates well with
structural connectivity. Our results showcase how cRBMs can capture the coarse-grained organization of the
zebrafish brain. Notably, this generative model can readily be deployed to parse neural data obtained by other
large-scale recording techniques.
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1 Introduction
The brain is a highly connected network, organized across multiple scales, from local circuits involving

just a few neurons to extended networks spanning multiple brain regions (White et al., 1986; Song et al., 2005;
Kunst et al., 2019). Concurrent with this spatial organization, brain activity exhibits correlated firing among
large groups of neurons, often referred to as neural assemblies (Harris, 2005). This assembly organization of5

brain dynamics has been observed in, e.g., auditory cortex (Bathellier et al., 2012), motor cortex (Narayanan
et al., 2005), prefrontal cortex (Tavoni et al., 2017), hippocampus (Lin et al., 2005), retina (Shlens et al., 2009),
and zebrafish optic tectum (Romano et al., 2015; Mölter et al., 2018; Diana et al., 2019; Triplett et al., 2020).
These neural assemblies are thought to form elementary computational units and subserve essential cognitive
functions such as short-term memory, sensorimotor computation or decision-making (Hebb, 1949; Gerstein10

et al., 1989; Harris, 2005; Buzsáki, 2010; Harris, 2012; Palm et al., 2014; Eichenbaum, 2018). Despite the
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prevalence of these assemblies across the nervous system and their role in neural computation, it remains an
open challenge to extract the assembly organization of a full brain and to show that the assembly activity state,
derived from that of the neurons, is sufficient to account for the collective neural dynamics.

15

The need to address this challenge is catalyzed by technological advances in light-sheet microscopy, en-
abling the simultaneous recording of the majority of neurons in the zebrafish brain at single-cell resolution in
vivo (Panier et al., 2013; Ahrens et al., 2013; Wolf et al., 2015, 2017; Migault et al., 2018; Vanwalleghem et al.,
2018). This neural recording technique opens up new avenues for constructing near-complete models of neural
activity, and in particular its assembly organization. Recent attempts have been made to identify assemblies20

using either clustering (Panier et al., 2013; Triplett et al., 2018; Chen et al., 2018; Mölter et al., 2018; Bartoszek
et al., 2021), dimensionality reduction approaches (Romano et al., 2015; Mu et al., 2019) or latent variable
models (Diana et al., 2019; Triplett et al., 2020), albeit often limited to single brain regions. However, these
methods do not explicitly assess to what extent the inferred assemblies could give rise to the observed neural
data statistics, which is a crucial property of physiologically meaningful assemblies (Harris, 2005). Here, we25

address this challenge by developing a generative model of neural activity that is explicitly constrained by the
assembly organization, thereby quantifying if assemblies indeed suffice to produce the observed neural data
statistics.

Specifically, we formalize neural assemblies using a bipartite network of two connected layers representing30

the neuronal and the assembly activity, respectively. Together with the maximum entropy principle (Jaynes,
1957; Bialek, 2012), this architecture defines the Restrictive Boltzmann Machine (RBM) model (Hinton &
Salakhutdinov, 2006). Here we use an extension to the classical RBM definition termed compositional RBM
(cRBM) that we have recently introduced (Tubiana & Monasson, 2017; Tubiana et al., 2019a) and which brings
multiple advances to assembly-based network modeling: (1) The maximum entropy principle ensures that neural35

assemblies are inferred solely from the data statistics. (2) The generative nature of the model, through alternate
data sampling of the neuronal and assembly layers, can be leveraged to evaluate its capacity to replicate the
empirical data statistics, such as the pairwise co-activation probabilities of all neuron pairs. (3) The cRBM
steers the assembly organization to the so-called compositional phase where a small number of assemblies are
active at any point in time, making the resulting model highly interpretable as we have shown previously for40

protein sequence analysis (Tubiana et al., 2019b).

Here, we have successfully trained cRBMs to brain-scale, neuron-level recordings of spontaneous activity
in larval zebrafish containing 41000 neurons on average (Panier et al., 2013; Wolf et al., 2017; Migault et al.,
2018). This represents an increase of ∼2 orders of magnitude in number of neurons with respect to previously45

reported RBM implementations (Köster et al., 2014; Gardella et al., 2017; Volpi et al., 2020), attained through
significant algorithmic and computational enhancements. We found that all cells could be grouped into 100-200
partially overlapping assemblies, which are anatomically localized and together span the entire brain, and accu-
rately replicate the first and second order statistics of the neural activity. These assemblies were found to carry
more predictive power than a fully connected model which has orders of magnitude more parameters, validating50

that assemblies underpin collective neural dynamics. Further, the probabilistic nature of our model allowed us
to compute a functional connectivity matrix by quantifying the effect of activity perturbations in silico. This
assembly-based functional connectivity is well-conserved across individual fish and consistent with anatomical
connectivity at the mesoscale (Kunst et al., 2019).

55

In summary, we present an assembly decomposition spanning the zebrafish brain, which accurately accounts
for its activity statistics. Our cRBM model provides a widely applicable tool to the community to construct
low-dimensional data representations that are defined by the statistics of the data, in particular for very high-
dimensional systems. Its generative capability further allows to produce new (synthetic) activity patterns that
are amenable to direct in silico perturbation and ablation studies.60
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2 Results

2.1 Compositional RBMs construct Hidden Units by grouping neurons into assemblies
Spontaneous neural activity was recorded from 8 zebrafish larvae aged 5-7 days post fertilization expressing

the GCaMP6s or GCaMP6f calcium reporters using light-sheet microscopy (Panier et al., 2013; Wolf et al.,
2017; Migault et al., 2018). Each data set contained the activity of a large fraction of the neurons in the brain65

(40709 ± 13854; mean ± standard deviation), which, after cell segmentation, were registered onto the ZBrain
atlas (Randlett et al., 2015) and mapzebrain atlas (Kunst et al., 2019). Individual neuronal fluorescence traces
were deconvolved to binarized spike trains using blind sparse deconvolution (Tubiana et al., 2020). This data
acquisition process is depicted in Figure 1A.

70

We trained compositional Restricted Boltzmann Machine (cRBM) models to capture the activity statistics
of these neural recordings. cRBMs are maximum entropy models, i.e., the maximally unconstrained solution
that fits model-specific data statistics (Hinton & Salakhutdinov, 2006; Tubiana & Monasson, 2017; Gardella
et al., 2019), and critically extend the classical RBM formulation. Its architecture consists of a bipartite graph
where the high-dimensional layer of neurons v (named ‘visible units’ in RBM terminology) is connected to75

the low-dimensional layer of latent components, termed Hidden Units (HUs) h. Their interaction is charac-
terized by a weight matrix W that is regularized to be sparse. The collection of neurons that have non-zero
interactions with a particular HU, noted hµ (i.e., with |wi,µ| > 0), define its corresponding neural assembly µ
(Figure 1B). This weight matrix, together with the neuron weight vector g and HU potential U, defines the
transformation from the binarized neural activity v(t) to the continuous HU activity h(t) (Figure 1B). Figure 1C80

shows all recorded neurons of a zebrafish brain, color-labeled according to their strongest-connecting HU, illus-
trating that cRBM-inferred assemblies are typically densely localized in space and together span the entire brain.

Beyond its architecture (Figure 2A), the model is defined by the probability function P(v,h) of any data
configuration (v,h) (see Methods for details):

P(v,h) =
1
Z

exp (−E(v,h)) (1)

Where Z is the partition function that normalizes Equation 1 and E is the following energy function:

E(v,h) = −
∑

i

givi +
∑
µ

Uµ(hµ) −
∑
i,µ

wi,µvihµ (2)

HU activity h is obtained by sampling from the conditional probability function P(h|v):

P(h|v) =

M∏
µ=1

P(hµ|v) ∝
M∏
µ=1

exp

−Uµ(hµ) + hµ ·
∑

i

wi,µvi

 (3)

Conversely, neural activity is obtained from HU activity through:

P(v|h) =

N∏
i=1

P(vi|h) ∝
N∏

i=1

exp

givi + vi ·
∑
µ

wi,µhµ

 (4)

Equations 3 and 4 mathematically reflect the dual relationship between neural and assembly states: the Hidden
Units h drive ‘visible’ neural activity v, expressed as P(v|h), while the stochastic assembly activity h itself is85

defined as a function of the activity of the neurons: P(h|v). Importantly, the model does not include direct con-
nections between neurons, hence neural correlations 〈viv j〉 can arise solely from shared assemblies. Moreover,
this bipartite architecture ensures that the conditional distributions factorize, leading to a sampling procedure
where all neurons or all HUs can be sampled in parallel. The cRBM leverages this property to efficiently gen-
erate new data by Monte Carlo sampling alternately from P(h|v) and P(v|h) (Figure 2B).90
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The cRBM differs from the classical RBM formulation (Hinton & Salakhutdinov, 2006) through the intro-
duction of double Rectified Linear Unit (dReLU) potentialsUµ, weight sparsity regularization and normalized
HU activity (further detailed in Methods). We have previously demonstrated in theory and application (Tubiana
& Monasson, 2017; Tubiana et al., 2019a,b) that this new formulation steers the model into the so-called com-95

positional phase, which makes the latent representation highly interpretable. This phase occurs when a limited
number m of HUs co-activate such that 1 � m � M where M is the total number of HUs. Thus, each visi-
ble configuration is mapped to a specific combination of activated HUs. This contrasts with the ferromagnetic
phase (m ∼ 1) where each HU encodes one specific activity pattern, thus severely limiting the possible number
of encoded patterns, or the spin-glass phase (m ∼ M) where all HUs activate simultaneously, yielding a very100

complex assembly patchwork (Tubiana & Monasson, 2017). Therefore, the compositional phase can provide
the right level of granularity for a meaningful interpretation of the cRBM neural assemblies by decomposing
the overall activity as a time-dependent co-activation of different assemblies of interpretable size and extent.

2.2 Trained cRBMs accurately replicate data statistics
cRBM models are trained to maximize the P(v,h) log-likelihood of the zebrafish data recordings, which is105

achieved by matching the model-generated statistics 〈vi〉, 〈hµ〉 and 〈vihµ〉 (the mean neuronal activity, mean HU
activity and their correlations, respectively) to the empirical data statistics (Equation 14). In order to optimize
the two free parameters of the cRBM model - the sparsity regularization parameter λ and the total number of
HUs M - we assessed the cRBM performance for a grid of (λ,M)-values for one data set (fish #3). This analysis
yielded an optimum for λ = 0.02 and M = 200 (Fig S1). These values were subsequently used for all record-110

ings, where M was scaled with the number of neurons N.

We trained cRBMs on 70% of the recording length, and compared the statistics of model-generated data
to the withheld test data set (the remaining 30% of recording, see Methods for details). After convergence,
the cRBM generated data that replicated the training statistics accurately, with normalized Root Mean Square115

Error (nRMSE) values of nRMSE〈vi〉 = 0.11, nRMSE〈hµ〉 = 0.15 and nRMSE〈vihµ〉 = 0.09 (Figures 2C-E). Here,
nRMSE is normalized such that 1 corresponds to shuffled data statistics and 0 corresponds to the best possible
RMSE, i.e., between train and test data.

We further evaluated cRBM performance to assess its ability to capture data statistics that the cRBM was120

not explicitly trained to replicate: the pairwise correlations between neurons 〈viv j〉 and the pairwise correlations
between HUs 〈hµhν〉. We found that these statistics were also accurately replicated by model-generated data,
with nRMSE〈viv j〉 = −0.09 (meaning that the model slightly outperformed the train-test data difference) and
nRMSE〈hµhν〉 = 0.17 (Figures 2F, G). The fact that cRBM also accurately replicated neural correlations 〈viv j〉

(Figure 2F) is of particular relevance, since this indicates that (1) the assumption that neural correlations can be125

explained by their shared assemblies is justified and (2) cRBMs may provide an efficient mean to model neural
interactions of such large systems (N ∼ 104) where directly modeling all N2 interactions would be computa-
tionally infeasible or not sufficiently constrained by the available data.

Next, we assessed the reconstruction quality after neural data was compressed by the cRBM low-dimensional130

bottleneck. This is important to prevent trivial, undesired solutions like wi,µ = 0 ∀ i, µ which would directly
lead to 〈hµ〉P(v,h) = 〈hµ〉data = 0 (potentially because of strong sparsity regularization). Figure 2H shows the dis-
tribution of cRBM reconstruction quality of all neurons (in purple), quantified by the normalized log-likelihood
(nLLH) such that 0 corresponds to an independent model (P(vi(t)) = 〈vi〉) and 1 corresponds to perfect recon-
struction (non-normalized LLH = 0). For comparison, we also reconstructed the neural activity using a fully135

connected Generalized Linear Model (GLM, see Methods and Figures S2, 2H, blue). The cRBM nLLH distribu-
tion is significantly greater than the GLM nLLH distribution (one-sided Mann Whitney U test, P < 10−42), with
medians LLHcRBM = 0.24 and LLHGLM = 0.20. Hence, projecting the neural data onto the low-dimensional
representation of the HUs does not compromise the ability to explain the neural activity. In fact, reconstruction
quality of the cRBM slightly outperforms the GLM, possibly due to the suppression of noise in the cRBM esti-140

mate. The optimal (λ = 0.02,M = 200) choice of free parameters was selected by cross-validating the median
of the cRBM reconstruction quality, together with the normalized RMSE of the 5 previously described statistics
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Figure 1: cRBMs construct Hidden Units by grouping neurons into assemblies
(A) The neural activity of zebrafish larvae was imaged using light-sheet microscopy (left), which resulted in brain-scale, single-cell resolu-
tion data sets (middle, microscopy image of a single plane shown for fish #1). Calcium activity ∆F/F was deconvolved to binarized spike
traces for each segmented cell (right, example neuron).
(B) cRBM sparsely connects neurons (left) to Hidden Units (HUs, right). The neurons that connect to a HU are defined to be its corre-
sponding assembly (depicted by color labeling, right panel). Data sets typically consist of N ∼ 104 neurons and M ∼ 102 HUs. The activity
of 500 randomly chosen example neurons (raster plot, left) and HUs 99, 26, 115 (activity traces, right) of the same time excerpt is shown.
HU activity is continuous and is determined by transforming the neural activity of its assembly.
(C) The neural assemblies of an example data set (fish #3) are shown by coloring each neuron according to its strongest-connecting HU.
7 assemblies are highlighted (starting rostrally at the green forebrain assembly, going clockwise: HU 177, 187, 7, 156, 124, 64, 178), by
showing their neurons with a connection |w| ≥ 0.1. See Figure 3 for more anatomical details of assemblies.
R: Right, L: Left, Ro: Rostral, C: Caudal.

(Figure S1).

Lastly, we confirmed that the cRBM indeed resides in the compositional phase, characterized by 1 � m(t) �145

M where m(t) is the number of HUs active at time point t (Figure S3A). This property is a consequence of the
sparse weight matrix W, indicated by its heavy-tail log-distribution (Figure 2I, purple). The compositional
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phase is the norm for the presently estimated cRBMs, evidenced by the distribution of median m(t) values for
all recordings (average median(m)

M is 0.26, see Figure S3B). Importantly, the sparse weight matrix does not auto-
matically imply that only a small subset of neurons is connected to the cRBM hidden layer. We validated this by150

observing that more neurons strongly connect to the hidden layer than expected by shuffling the weight matrix
(Figure 2J).

Sparsity facilitated that each assembly only connects to a handful of anatomical regions, as we quantified by
calculating the overlap between cRBM assemblies and anatomical regions (Figure S4). We found that cRBM155

assemblies connect to a median of 3 regions (interquartile range: 2 to 6 regions). Importantly, the cRBM has
no information about the locations of neurons during training, so the localization to a limited set of anatomical
areas that we observe is extracted from the neural co-activation properties alone. For comparison, Principal
Component Analysis (PCA), a commonly used non-sparse dimensionality reduction method that shares the
cRBM architecture, naturally converged to a non-sparse weight matrix (Figure 2I, yellow), with fewer connected160

neurons than expected by shuffling its weight matrix (Figure 2K). This led to unspecific assemblies that are
difficult to interpret by anatomy (Figure S4). As a result, sparsity, a cRBM property shared with some other
dimensionality reduction techniques, is crucial to interpret the assemblies by anatomy as we demonstrate in the
next section. Other clustering or dimensionality reduction methods, such as k-means, PCA and non-negative
matrix factorization, have been used previously to cluster neurons in the zebrafish brain (Chen et al., 2018; Mu165

et al., 2019; Marques et al., 2020). However, because these methods cannot generate artificial neural data using
their inferred assemblies, their quality cannot be quantitatively assessed as we have done for the cRBM (but see
Tubiana et al. (2019a) for other comparisons).

2.3 cRBM assemblies compose functional circuits and anatomical structures
Above, we have shown that cRBMs converge to sparse weight matrix solutions. This property enables us to170

visualize the neural assemblies as the collection of significantly connected neurons to an HU. Neurons from a
given neural assembly display concerted dynamics, and so one may expect their spatial organization to reflect
the neuroanatomy and functional organization of the brain. We here highlight a selection of salient examples
of neural assemblies, illustrating that assemblies match well with anatomical structures and functional circuits,
while the complete set of neural assemblies is presented in Supplementary Video 1. In particular, we identified175

assemblies that together compose a neural circuit, are neurotransmitter-specific, encompass a long-range path-
way, or can be identified by anatomy. The examples shown here are from a single fish (#3), but results from
other fish were comparable.

First, we identified six assemblies that together span the hindbrain circuit that drives eye and tail movements180

(Dunn et al., 2016; Wolf et al., 2017; Chen et al., 2018). We find two neural assemblies in rhombomere 2 which
align with the anterior rhombencephalic turning region (ARTR, (Ahrens et al., 2013; Dunn et al., 2016; Wolf
et al., 2017), Figure 3A-B). Each assembly primarily comprises neurons of either the left or right side of the
ARTR, but also includes a small subset of contralateral neurons with weights of opposite sign in line with the
established mutual inhibition between both subpopulations. Two other symmetric assemblies (Figure 3C, D)185

together encompass the oculomotor nucleus (nIII) and the contralateral abducens nucleus (nVI, in rhombomere
6), two regions engaged in ocular saccades (Ma et al., 2014) and under the control of the ARTR (Wolf et al.,
2017). Additionally, we observed two symmetric assemblies (Figure 3E, F) in the posterior hindbrain (in rhom-
bomere 7), in a region known to drive unilateral tail movements (Chen et al., 2018; Marques et al., 2020) and
whose antiphasic activation is also controlled by the ARTR activity (Dunn et al., 2016).190

Next, we observed assemblies that correspond to particular neurotransmitter expressions in the ZBrain atlas
(Randlett et al., 2015), such as the excitatory Vglut2 (Figure 3G) and inhibitory Gad1b (Figure 3H) neuro-
transmitters. These assemblies consist of multiple dense loci that sparsely populate the entire brain, confirming
that cRBMs are able to capture a large morphological diversity of neural assemblies. Figure 3I depicts another195

sparse, brain-wide assembly that encompasses the pallium, habenula (Hb) and interpeduncular nucleus (IPN),
and thus captures the Hb-IPN pathway that connects to other regions such as the pallium (Beretta et al., 2012;
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Bartoszek et al., 2021).

Larger nuclei or circuits were often composed of a small number of distinct neural assemblies with some200

overlap. For example, the cerebellum was decomposed into multiple, bilateral assemblies (Figure 3J) whereas
neurons in the torus semicircularis were grouped per brain hemisphere (Figure 3K). As a last example, the optic
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Figure 2: cRBM is optimized to accurately replicate data statistics
(A) Schematic of the cRBM architecture, with neurons vi on the left, HUs hµ on the right, connected by weights wi,µ. (B) Schematic
depicting how cRBMs generate new data. The HU activity h(t) is sampled from the visible unit (i.e., neuron) configuration v(t), after which
the new visible unit configuration v(t + 1) is sampled and so forth.
(C) cRBM-predicted and experimental mean neural activity 〈vi〉 were highly correlated (Pearson correlation rP = 0.91, P < 10−307) and
had low error (nRMSE〈vi〉 = 0.11, normalized Root Mean Square Error, see Methods). Data displayed as 2D probability density function
(PDF), scaled logarithmically (base 10).
(D) cRBM-predicted and experimental mean Hidden Unit (HU) activity 〈hµ〉 also correlated very strongly (rP = 0.93, P < 10−86) and had
low nRMSE〈hµ〉 = 0.15 (other details as in C)
(E) cRBM-predicted and experimental average pairwise neuron-HU interactions 〈vihµ〉 correlated strongly (rP = 0.74, P < 10−307) and had
a low error (nRMSE〈vihµ〉 = 0.09).
(F) cRBM-predicted and experimental average pairwise neuron-neuron interactions 〈viv j〉 correlated well (rP = 0.58, P < 10−307) and had
a low error (nRMSE〈viv j〉 = −0.09, where the negative nRMSE value means that cRBM-predictions match the test data slightly better than
the train data). Pairwise interactions were corrected for naive correlations due to their mean activity by subtracting 〈vi〉〈v j〉.
(G) cRBM-predicted and experimental average pairwise HU-HU interactions 〈hµhν〉 correlated strongly (rP = 0.73, P < 10−307) and had a
low error (nRMSE〈hµhν〉 = 0.17).
(H) The low-dimensional cRBM bottleneck reconstructs most neurons above chance level (purple), quantified by the normalized log-
likelihood (nLLH) between neural test data vi and the reconstruction after being transformed to HU activity (see Methods). Median
normalized nLLHcRBM = 0.24. Reconstruction quality was also determined for a fully connected Generalized Linear Model (GLM) that
attempted to reconstruct the activity of a neuron vi using all other neurons v−i (see Methods). The distribution of 5000 randomly chosen
neurons is shown (blue), with median nLLHGLM = 0.20. The cRBM distribution is stochastically greater than the GLM distribution (one-
sided Mann Whitney U test, P < 10−42).
(I) cRBM (purple) had a sparse weight distribution, but exhibited a greater proportion of large weights wi,µ than PCA (yellow), both for
positive and negative weights, displayed in log-probability.
(J) Distribution of above-threshold absolute weights |wi,µ | per neuron vi (dark purple), indicating that more neurons strongly connect to the
cRBM hidden layer than expected by shuffling the weight matrix of the same cRBM (light purple). The threshold Θ was set such that the
expected number of above-threshold weights per neuron E(#wi > Θ) = 1.
(K) Corresponding distribution as in (J) for PCA (dark yellow) and its shuffled weight matrix (light yellow), indicating a predominance of
small weights in PCA for most neurons vi.
All panels of this figure show the data statistics of the cRBM with parameters M = 200 and λ = 0.02 (best choice after cross-validation, see
Figure S1) of example fish #3, comparing the experimental test data test and model-generated data after cRBM training converged.

tectum was composed of a larger set of approximately 18 neural assemblies, which spatially tiled the volume of
the optic tectum (Figure 3L). This particular organization is suggestive of spatially localized interactions within
the optic tectum, and aligns with the morphology of previously inferred assemblies in this specific region (Ro-205

mano et al., 2015; Diana et al., 2019; Triplett et al., 2020). However, Figure 3 altogether demonstrates that the
typical assembly morphology of the optic tectum identified by our and these previous analyses does not readily
generalize to other brain regions, where a large range of different assembly morphologies compose neural cir-
cuits.

210

Overall, the clear alignment of cRBM-based neural assemblies with anatomical regions and circuits suggests
that cRBMs are able to identify anatomical structures from dynamical activity alone, which enables them to
break down the overall activity into parts that are interpretable by physiologists in the context of previous, more
local studies.

2.4 HU dynamics cluster into groups and display slower dynamics than neurons215

HU activity, defined as the expected value of P(h|v) (Equation 9), exhibits a rich variety of dynamical pat-
terns (Figure 4A). HUs can activate very transiently, slowly modulate their activity, or display periods of active
and inactive states of comparable duration. Figure 4B highlights a few HU activity traces that illustrate this
diversity of HU dynamics. The top three panels of Figure 4B show the dynamics of the assemblies of Figure
3A-F which encompass the ARTR hindbrain circuit that controls saccadic eye movements and directional tail220

flips. HUs 99 and 161 drive the left and right ARTR and display antiphasic activity with long dwell times of
∼15s, in accordance with previous studies (Ahrens et al., 2013; Dunn et al., 2016; Wolf et al., 2017). HU 102
and 163 correspond to the oculomotor neurons in the nuclei nIII and nVI that together drive the horizontal sac-
cades. Their temporal dynamics are locked to that of the ARTR units in line with the previously identified role
of ARTR as a pacemaker for the eye saccades (Wolf et al., 2017). HUs 95 and 135, which drive directional tail225
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flips, display transient activations that only occur when the ipsilateral ARTR-associated HU is active. This is
consistent with the previous finding that the ARTR alternating activation pattern sets the orientation of succes-
sive tail flips accordingly (Dunn et al., 2016). The fourth panel shows the traces of the brain-wide assemblies of
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Figure 3: cRBM assemblies compose functional circuits and anatomical structures
(A-I) Individual example assemblies µ are shown by coloring each neuron i with its connectivity weight value wi,µ (see color bar at the
right hand side). The assembly index µ is stated at the bottom of each panel. The orientation and scale are given in panel A (Ro: rostral,
C: caudal, R: right, L: left, D: dorsal, V: ventral). Anatomical regions of interest, defined by the ZBrain Atlas (Randlett et al., 2015), are
shown in each panel (Rh: rhombomere, nMLF: nucleus of the medial longitudinal fascicle; nIII: oculomotor nucleus nIII, Cl: cluster; Str:
stripe, P. nV TG: Posterior cluster of nV trigeminal motorneurons; Pa: pallium; Hb: habenula; IPN: interpeduncular nucleus).
(J-L) Groups of example assemblies that lie in the same anatomical region are shown for cerebellum (Cb), torus semicircularis (TSC) and
optic tectum (OT). Neurons i were defined to be in an assembly µ when |wi,µ | > 0.15, and colored accordingly. If neurons were in multiple
assemblies shown, they were colored according to their strongest-connecting assembly.

Figures 3G, I, displaying slow tonic modulation of their activity. Finally, the bottom panel, which corresponds to
the collective dynamics of assembly 122 (Figure 3H), comprises short transient activity that likely corresponds230

to fictive swimming events.

Some HUs regularly co-activate, leading to strong correlations between different HUs. This is quantified by
their Pearson correlation matrix shown in Figure 4C (top), which reveals clusters of correlated HUs. These were
grouped using hierarchical clustering (Figure 4C, bottom), and we then manually identified their main anatomi-235

cal location (top labels). We further observed that HU activity is bimodal, as evidenced by the distribution of all
HU activity traces in Figure 4D. This bimodality can emerge because the dReLU potentials Uµ (Equation 13)
can learn to take different shapes, including a double-well potential that leads to bimodal dynamics (see Meth-
ods). This allows us to effectively describe HU activity as a two-state system, where hµ(t) > 0 increases the
probability to spike (P(vi(t) = 1)) for its positively connected neurons, and hµ(t) < 0 decreases their probability240

to spike. The binarized neuron activity is also a two-state system (spiking or not spiking), which enabled us to
compare the time constants of neuron and HU state changes, quantified by the median time between successive
onsets of activity. We find that HUs, which represent the concerted dynamics of neuronal assemblies, operate
on a slower time scale than individual neurons (Figure 4E). This observation aligns with the expected difference
between cellular and circuit-level time scales.245

2.5 cRBM embodies functional connectivity that is strongly correlated across individ-
uals

The probabilistic nature of cRBMs uniquely enables in silico perturbation experiments to estimate the func-
tional connection Ji j between pairs of neurons, where Ji j is quantified by directly perturbing the activity of
neuron j and observing the change in probability to spike of neuron i. We first defined the generic, symmet-250

ric functional connection Ji j using P(vi|v j, vk,i, j) (Equation 15) and then used P(v) (Equation 12) to derive the
cRBM-specific Ji j (Equation 17, see Methods). Using this definition of Ji j, we constructed a full neuron-to-
neuron effective connectivity matrix for each zebrafish recording. We then asked whether this cRBM-inferred
connectivity matrix was robust across individuals. For this purpose we calculated the functional connections
between anatomical regions, given by the assemblies that occupy each region, because neuronal identities can255

vary across individual specimen. For this purpose we considered anatomical regions as defined by the mapze-
brain atlas (Kunst et al., 2019) for which a regional-scale structural connectivity matrix exists to which we will
compare our functional connectivity matrix.

We aggregated neurons using the L1 norm for each pair of anatomical regions to determine the functional260

connection between regions (see Methods). This led to a symmetrical functional connectivity matrix for each
animal, three of which are shown in Figure 5A-C (where non-imaged regions are left blank, and all 8 animals
are shown in Figure S5). The strength of functional connections is distributed approximately log-normal (Figure
5D), similar to the distribution of structural region-to-region connections (Kunst et al., 2019). To quantify the
similarity between individual fish, we computed the Pearson correlation between each pair of fish. Functional265

connectivity matrices correlate strongly across individuals, with an average Pearson correlation of 0.69 (Figures
5E and F).
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Figure 4: HU dynamics are bimodal and activate slower than neurons
(A) HU dynamics are diverse and are partially shared across HUs. The bimodality transition point of each HU was determined and
subtracted individually, such that positive values correspond to HU activation (see Methods). The test data consisted of 3 blocks, with a
discontinuity in time between the first and second block (Methods).
(B) Highlighted example traces from panel A. HU indices are denoted on the right of each trace, colored according to their cluster from
panel D. The corresponding cellular assemblies of these HU are shown in Figure 3A-I.
(C) Top: Pearson correlation matrix of the dynamic activity of panel A. Bottom: Hierarchical clustering of the Pearson correlation matrix.
Clusters (as defined by the colors) were annotated manually. This sorting of HUs is maintained throughout the manuscript. OT: Optic
Tectum, Di: Diencephalon, ARTR: anterior rhombencephalic turning region, Misc.: Miscellaneous, L: Left, R: Right.
(D) The distribution of all HU activity values of panel A shows that HU activity is bimodal and sparsely activated (because the positive
peak is smaller than the negative peak). PDF: Probability Density Function.
(E) Distribution of the time constants of HUs (black) and neurons (grey). Time constants are defined as the median oscillation period, for
both HUs and neurons. An HU oscillation is defined as a consecutive negative and positive activity interval. A neuron oscillation is defined
as a consecutive interspike-interval and spike-interval (which can last for multiple time steps, for example see Figure 1A). The time constant
distribution of HUs is greater than the neuron distribution (Mann Whitney U test, P < 10−16).

We conclude that similar functional circuits spontaneously activate across individuals, despite the limited
duration of neural recordings (∼25 minutes), which can be identified across fish using independently estimated270

cRBMs. In the next section we aggregate these individual matrices to a general functional connectivity matrix
for comparison with the zebrafish structural connectivity matrix.
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Figure 5: cRBM gives rise to functional connectivity that is strongly correlated across individuals
(A) The functional connectivity matrix between anatomical regions of the mapzebrain atlas (Kunst et al., 2019) of example fish #2 is shown.
Functional connections between two anatomical regions were determined by the similarity of the HUs to which neurons from both regions
connect to (Methods). Mapzebrain atlas regions with less than 5 imaged neurons were excluded, yielding NMAP = 50 regions in total. See
Table S1 for region name abbreviations. The matrix is shown in log10 scale, because functional connections are distributed approximately
log-normal (see panel D).
(B) Equivalent figure for example fish #3 (example fish of prior figures).
(C) Equivalent figure for example fish #4. Panels A-C share the same log10 color scale (right).
(D) Functional connections are distributed approximately log-normal. (Mutual information with a log-normal fit (black dashed line) is 3.83,
while the mutual information with a normal fit is 0.13). All connections of all 8 fish are shown, in log10 scale (purple).
(E) Functional connections of different fish correlate well, exemplified by the 3 example fish of panels A-C. All non-zero functional
connections (x-axis and y-axis) are shown, in log10 scale. Pearson correlation rP between pairs: rP(#2, #3) = 0.73, rP(#2, #4) = 0.73,
rP(#3, #4) = 0.78. All correlation P values < 10−20 (two-sided t-test).
(F) Pearson correlations rP of region-to-region functional connections between all pairs of 8 fish. For each pair, regions with less than 5
neurons in either fish were excluded. All P values < 10−20 (two-sided t-test), and average correlation value is 0.69.

2.6 cRBM-inferred functional connectivity reflects structural connectivity
In the previous section we have determined the functional connections between anatomical regions using

the cRBM assembly organization. Although functional connectivity stems from the structural (i.e., biophysical)275

connections between neurons, it can reflect correlations that arise through indirect network interactions (Bassett
& Sporns, 2017; Das & Fiete, 2020). Using recently published structural connectivity data of the zebrafish
brain (Kunst et al., 2019), we are now able to quantify the overlap between a structurally defined connectivity
matrix and our functional connectivity matrix estimated through neural dynamics. Kunst et al. (2019) deter-
mined a zebrafish structural connectivity matrix between 72 anatomical regions using structural imaging data280

from thousands of individually Green Fluorescent Protein (GFP)-labeled neurons from multiple animals. We
slightly extended this matrix by using the most recent data, filtering indirect connections and accounting for
the resulting sampling bias (Figure 6A, regions that were not imaged in our light-sheet microscopy experiments
were excluded). Next, we aggregated the functional connectivity matrices of all our calcium imaging recordings
to one grand average functional connectivity matrix (Figure 6B).285
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For comparison, we also calculated the connectivity matrices defined by either covariance or Pearson corre-
lation (Figure S6). The cRBM functional connectivity spans a larger range of values than either of these meth-
ods, leading to a more fine-grained connectivity matrix akin to the structural connectivity map (Figure 6B).
This greater visual resemblance was statistically confirmed by calculating the Spearman correlation between290

structural and functional connectivity, which is greater for cRBM (rS = 0.39, Figure 6C), than for covariance-
based connectivity (rS = 0.18, Figure S6 left) or correlation-based connectivity (rS = 0.26, Figure S6 right).
Hence, using recordings of ∼ 25 minutes on average, cRBMs were able to identify functional connections that
resemble the anatomical connectivity between brain regions. Strong or weak functional connections are predic-
tive of present or absent structural connections respectively (Figure 6D), and could thus potentially be used for295

inference in systems where the structural connectivity pattern is unknown.

3 Discussion
We have developed a cRBM model that accurately replicated the data statistics of brain-scale zebrafish

recordings, thereby forming neural assemblies that spanned the entire brain. The objective of our study was
threefold: first, to show that the cRBM model can be applied to high-dimensional data, such as whole-brain300

recordings, second, to prove that an assembly-based model is sufficient to generate whole-brain neural data
statistics, and third, to describe the physiological properties of the assembly organization in the zebrafish brain
and use it to create a functional connectivity map. We have shown that, after convergence, the cRBM-generated
data not only replicated the data statistics that it was constrained to fit, but also extrapolated to fit the pairwise
correlation statistics of neurons and HUs, leading to a better reconstruction of neural data than a fully connected305

GLM (Figure 2). These results thereby quantify how neural assemblies play a major role in determining the
collective dynamics of the brain. To achieve this, cRBMs formed sparsely localized assemblies that spanned the
entire brain, facilitating their biological interpretation (Figure 3, S4, 4). Further, the probabilistic nature of the
cRBM model allowed us to create a mesoscale functional connectivity map that was largely conserved across
individual fish and correlated well with structural connectivity (Figures 5, 6).310

The maximum entropy principle underlying the cRBM definition has been a popular method for inferring
pairwise effective connections between neurons or assemblies of co-activating cells (Schneidman et al., 2006;
Tavoni et al., 2017; Ferrari et al., 2017; Meshulam et al., 2017; Posani et al., 2018; Chen et al., 2019). However,
its computational cost has limited this pairwise connectivity analysis to typically ∼102 neurons. The two-layer315

cRBM model that we used here alleviates this burden, because the large number of neuron-to-neuron connec-
tions are no longer explicitly optimized, which enables a fast data sampling procedure (Figure 2B). However,
we have shown that these connections are still estimated indirectly with high accuracy via the assemblies they
connect to (Figure 2F). We have thus shown that the cRBM is able to infer the 1

2 N2 ≈ 109 (symmetric) pairwise
connections through its assembly structure, a feat that is computationally infeasible for many other methods.320

Previously, we have extensively compared cRBM performance to other dimensionality reduction techniques,
including Principal Component Analysis (PCA), Independent Component Analysis (ICA), Variational Autoen-
coders (VAEs) and their sparse variants, using protein sequence data as a benchmark (Tubiana et al., 2019a).
Briefly put, we showed that PCA and ICA could not accurately model the system due to their deterministic325

nature, putting too much emphasis on low-probability high-variance states, while VAEs were unable to capture
all features of data due to the unrealistic assumption of independent, Gaussian-distributed latent variables. Ad-
ditionally, while PCA has previously been successful in describing zebrafish neural dynamics in terms of their
main covariances modes (Ahrens et al., 2012; Marques et al., 2020), we show here that it is not appropriate for
assembly extraction due to the absence of both a compositional and stochastic nature (Figures 2, S4). Further-330

more, we have shown that the generative component of cRBM models is essential for quantitatively assessing
that the assembly organization is sufficient for reproducing neural statistics (Figure 2), moving beyond deter-
ministic clustering analyses such as k-means (Panier et al., 2013; Chen et al., 2018), similarity graph clustering
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Figure 6: cRBM-inferred functional connectivity reflects structural connectivity
(A) Structural connectivity matrix is shown in log10 scale, adapted from Kunst et al. (2019). Regions that were not imaged in our ex-
periments were excluded (such that NMAP = 50 out of 72 regions remain). Regions (x-axis and y-axis) were sorted according to Kunst
et al. (2019). Additional structural data was added and the normalization procedure was updated to include within-region connectivity (see
Methods). See Table S1 for region name abbreviations.
(B) Average functional connectivity matrix is shown in log10 scale, as determined by averaging the cRBM functional connectivity matrices
of all 8 fish (see Methods). The same regions (x-axis and y-axis) are shown as in panel A.
(C) The average functional and structural connectivity of panels A and B correlate well, with Spearman correlation rS = 0.39 (P < 10−20,
two-sided t-test). Each data point corresponds to one region-to-region pair. Data points for which the structural connection was exactly 0
were excluded (see panel D for their analysis).
(D) The distribution of average functional connections of region pairs with non-zero structural connections is greater than functional con-
nections corresponding to region pairs without structural connections (P < 10−15, two-sided Kolmogorov-Smirnov test). The bottom panel
shows the evidence for inferring either non-zero or zero structural connections, defined as the fraction between the PDFs of the top panel
(fitted Gaussian distributions were used for denoising).

(Mölter et al., 2018) or non-negative matrix factorization (Mu et al., 2019).
335

After having quantitatively validated the resultant assemblies, we moved to discussing the biological im-
plications of our findings. Previous studies of the zebrafish optic tectum have identified neural assemblies that
were spatially organized into single dense clusters of cells (Romano et al., 2015; Diana et al., 2019; Triplett
et al., 2020). We have replicated these findings by observing the distinct organization of ball-shaped assemblies
in the optic tectum (Figure 3L). However, our data extends to many other anatomical regions in the brain, where340
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we found that assemblies can be much more dispersed, albeit still locally dense, consisting of multiple clusters
of neurons (Figure 3).

cRBM allowed us to compute the effective, functional connections between each pair of neurons, aggregated
to functional connections between each pair of regions, by perturbing neural activity in silico. Importantly, we345

found that this region-scale connectivity is well-conserved across specimen. This observation is non-trivial be-
cause each recording only lasted ∼25 minutes, which represents a short trajectory across accessible brain states.
It suggests that, although each individual brain may be unique at the neuronal scale, the functional organization
could be highly stereotyped at a sufficiently coarse-grained level.

350

It would be naive to assume that these functional connections equate biophysical, structural connections
(Das & Fiete, 2020). Both represent different, yet interdependent aspects of the brain organization. Indeed,
we found that structural connectivity is well-correlated to functional connectivity, confirming that functional
links are tied to the structural blueprint of brain connectivity (Figure 6). Furthermore, strong (weak) functional
connections are predictive of present (absent) structural connections between brain regions, though intermediate355

values are ambiguous.

It will be crucial to synergistically merge structural and dynamic information of the brain to truly com-
prehend brain-wide functioning (Bargmann & Marder, 2013; Kopell et al., 2014). Small brain organisms are
becoming an essential means to this end, providing access to a relatively large fraction of cells (Ahrens & En-360

gert, 2015). To generate new scientific insights it is thus essential to develop analytical methods that can scale
with the rapidly growing size of both structural and dynamic data (Helmstaedter, 2015; Ahrens, 2019). In this
study we have established that the cRBM can model high-dimensional data accurately, and that its application
to zebrafish recordings was crucial to unveil their brain-scale assembly organization. In future studies, cRBMs
could be used to generate artificial data whose statistics replicate those of the zebrafish brain. This could be used365

for further in silico ablation and perturbation studies with strong physiological footing, crucial for developing
hypotheses for future experimental work (Jazayeri & Afraz, 2017; Das & Fiete, 2020). Lastly, the application of
cRBMs is not specific to calcium imaging data, and can therefore be readily applied to high-dimensional neural
data obtained by other recording techniques.

370
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7 Methods

7.0.1 Data and Code Availability395

The cRBM model has been developed in Python 3.7 and is available at:
https://github.com/jertubiana/PGM
An extensive example notebook that implements this model is provided here.

Calcium imaging data pre-processing was performed in MATLAB (Mathworks) using previously published400

protocols and software (Panier et al., 2013; Wolf et al., 2017; Migault et al., 2018; Tubiana et al., 2020). The
functional data recordings, the trained cRBM models and the structural connectivity matrix will be made pub-
licly available after publication.

Figures of neural assemblies or neurons (Figure 1, 3) were made using the Fishualizer, which is a 4D (space405

+ time) data visualization software package that we have previously published (Migault et al., 2018), available
at https://bitbucket.org/benglitz/fishualizer public
Minor updates were implemented to tailor the Fishualizer for viewing assemblies, which can be found at
https://bitbucket.org/benglitz/fishualizer public/src/assembly viewer

410

All other data analysis and visualization was performed in Python 3.7 using standard packages (numpy
(Harris et al., 2020), scipy (Virtanen et al., 2020), scikit-learn (Pedregosa et al., 2011), matplotlib (Hunter,
2007), pandas (McKinney et al., 2010), seaborn (Waskom, 2021), h5py). The corresponding code is available
from the authors on request.

7.0.2 Zebrafish larvae415

Experiments were conducted on nacre mutants, aged 5-7 days post-fertilization (dpf). Larvae were reared
in Petri dishes at 28◦C in embryo medium (E3) on a 14/10h light/dark cycle, and were fed powdered nursery
food every day from 6 dpf. They were expressing either the calcium reporter GCaMP6s (fish 1-4, 6 and 8) or
GCaMP6f (fish 5 and 7) under the control of the nearly pan-neuronal promoter elavl3 expressed in the nucleus
Tg(elavl3:H2B-GCaMP6). Both lines were provided by Misha Ahrens and published by Vladimirov et al.420

(2014) (H2B-GCaMP6s) and Quirin et al. (2016) (H2B-GCaMP6f). Experiments were approved by Le Comité
d’Éthique pour l’Experimentation Animale Charles Darwin C2EA-05 (02601.01).

7.0.3 Light-sheet microscopy of zebrafish larvae
Spontaneous neural activity (i.e., in the absence of sensory stimulation) was recorded in larval zebrafish us-

ing light-sheet microscopy, which acquires brain-scale scans by imaging multiple z-planes sequentially (Panier425

et al., 2013; Wolf et al., 2017; Migault et al., 2018). Larvae were placed in 2% low melting point agarose
(Sigma-Aldrich), drawn tail-first into a glass capillary tube with 1mm inner diameter via a piston and placed in
chamber filled with E3 in the microscope. Recordings were of length 1514 ± 238 seconds (mean ± standard
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deviation), with a brain volume imaging frequency of 3.9 ± 0.8 Hz.
430

The following imaging pre-processing steps were performed offline using MATLAB, in line with previously
reported protocols (Panier et al., 2013; Migault et al., 2018). Automated cell segmentation was performed using
a watershed algorithm (Panier et al., 2013; Migault et al., 2018) and fluorescence values of pixels belonging
to the same neuron was averaged to obtain cell measurements. The fluorescence intensity values F were nor-
malized to ∆F/F = (F − 〈F〉)/(〈F〉 − F0) where 〈F〉 is the baseline signal per neuron and F0 is the overall435

background intensity (Migault et al., 2018). The ∆F/F activity of different imaging planes was subsequently
temporally aligned using interpolation (because of the time delay between imaging planes) (Migault et al., 2018)
and deconvolved to binarized spike traces using Blind Sparse Deconvolution (BSD) (Tubiana et al., 2020). BSD
estimates the most likely binary spike trace by minimizing the L2 norm of the difference between the estimated
spike trace convolved with an exponential kernel and the ground-truth calcium data, using L1 sparsity regular-440

ization and online hyperparameter optimization. Calcium kernel time constants used for deconvolution were
inferred using BSD on the spontaneous activity of three different fish (approximately 5000 neurons per fish,
recorded at 10Hz, previously reported by Migault et al. (2018)). For the GCaMP6s line, we used a rise time of
0.2s and a decay time of 3.55s; for the GCaMP6f line, we used 0.15s and 1.6s, respectively.

445

Brain activity was recorded of 15 animals in total. Of these recordings, 1 was discarded because of poor
image quality and 6 were discarded because neurons were inactive (defined by less than 0.02 spikes/(neurons
× time points)), hence leaving 8 data sets for further analysis. The recorded brains were then registered onto
the ZBrain Atlas (Randlett et al., 2015) and the mapzebrain atlas (Kunst et al., 2019) for anatomical labeling
of neurons (Migault et al., 2018). The ZBrain Atlas was used in figures 1-4 because of its detailed region450

descriptions (outlining 294 regions in total). However, we also registered our data to the mapzebrain atlas (72
regions in total) in order to compare our results with the structural connectivity matrix which was defined for
this atlas only (Kunst et al., 2019). Only neurons that were registered to at least 1 ZBrain region were used for
analysis (to filter imaging artefacts). This resulted in 40709 ± 13854 neurons per recording (mean ± standard
deviation, minimum = 23446, maximum = 65517).455

7.0.4 Maximum Entropy Principle
Here we provide in brief the general derivation of the class of maximum entropy probabilistic models.

Restricted Boltzmann Machines are an instance of this model, which is detailed in the following sections. The
maximum entropy principle is used to create probabilistic models P(x) (where x denotes one data configuration
sample) that replicate particular data statistics fk, but are otherwise most random, and therefore least assumptive,
by maximizing their entropy H = −

∑
x P(x) log(P(x)) (Gardella et al., 2019). The goal of the model is to match

its model statistics 〈 fk〉model =
∑

x P(x) fk(x) to the empirical data statistics 〈 fk〉data = Fk. This is done using
Lagrange multipliers Λk:

H̃ = −
∑

x

P(x) log (P(x)) −
∑

k

Λk

∑
x

P(x) fk(x) − Fk

 (5)

which yields, when H̃ is maximized with respect to P(x), the Boltzmann distribution (see, e.g., Bialek (2012)
for a full derivation):

P(x) =
1
Z

exp

− ln 2
∑

k

Λk fk(x)

 =
1
Z

exp (−E(x)) (6)

where E(x) is defined as the resulting energy function. Importantly, the data dependency (Fk) disappears when
going from Equation 5 to Equation 6. Hence, the maximum entropy principle only defines the shape of the
distribution P(x), but not its specific parameters Λk (Bialek, 2012). In the case of RBM, these are then optimized
using maximum likelihood estimation, as detailed in the sections below.460
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7.0.4.1 Motivation for choice of statistics

The derivation above describes the general maximum entropy model for a set of statistics { fk}. The objective of
this study is to extract the assembly structure from neural data, therefore creating two layers: a visible (neural
data) layer v = (v1, v2, ..., vN) and a hidden (latent) layer h = (h1, h2, ..., hM). The model should capture the
mean activity of each neuron 〈vi〉, their pairwise correlations 〈viv j〉, the neuron-HU interactions 〈vihµ〉 and a465

function of hµ. The latter is determined by the potential U, which we set to be a double Rectified Linear Unit
(dReLU), as motivated in the following sections. Fitting all N2 pairwise interactions 〈viv j〉 is computationally
infeasible, but under the cell assembly hypothesis we assume that this should not be necessary because collective
neural behavior is expected to be explained by membership to similar assemblies via 〈vihµ〉, and can therefore
be excluded. We later show that pairwise correlations are indeed optimized implicitly (Figure 2). All other470

statistics are included and therefore explicitly optimized, also see Equation 14.

7.0.5 Restricted Boltzmann Machines
A Restricted Boltzmann Machine (RBM) is an undirected graphical model defined on a bipartite graph

(Smolensky, 1986; Hinton, 2002; Hinton & Salakhutdinov, 2006), see Figure 2A. RBMs are constituted by
two layers of random variables, neurons v and Hidden Units (HUs) h, which are coupled by a weight matrix
W. There are no direct couplings between pairs of units within the same layer. Here, each visible unit vi

corresponds to a single recorded neuron with binary (spike-deconvolved) activity (vi(t) ∈ {0, 1}). Each Hidden
Unit (HU) hµ corresponds to the (weighted) activity of its neural assembly and is chosen to be real-valued. The
joint probability distribution P(v,h) writes (Hinton & Salakhutdinov, 2006; Tubiana & Monasson, 2017):

P(v,h) =
1
Z

exp (−E(v,h)) =
1
Z

exp

∑
i

givi −
∑
µ

Uµ(hµ) +
∑
i,µ

wi,µvihµ

 (7)

Where E is the energy function and Z =
∑

v
∫

h dv dh · exp (−E(v,h)) is the partition function. The weights
gi and potentials Uµ control the activity level of the visible units and the marginal distributions of the HUs
respectively, and the weights wi,µ couple the two layers.475

7.0.5.1 From data to features

Given a visible layer configuration v, a HU hµ receives the input Iµ(v) =
∑

i wiµvi ≡ wµ
T v and, owing to the

bipartite architecture, the conditional distribution P(h|v) factorizes as:

P(h|v) =
∏
µ

P(hµ|v) =
∏
µ

exp
(
−Uµ(hµ) + hµIµ(v) − Γµ(I)

)
(8)

Where Γµ(I) = log
(∫

h dh · exp
(
−Uµ(h) + hI

))
is the cumulant generating function associated to the potential

Uµ that normalizes Equation 8 (Tubiana et al., 2019b). The average activity of HU hµ associated to a visible
configuration v is given by a linear-nonlinear transformation (as defined by the properties of the cumulant
generating function): 〈

hµ|v
〉

=
∂Γµ(Iµ(v))

∂I
= Γ′µ(wµ

T v) (9)

Throughout the manuscript, we use this definition to compute HU activity hµ(t) =
〈
hµ|v(t)

〉
(e.g., in Figure 4).

7.0.5.2 From features to data

Conversely, given a hidden layer configuration h, a visible unit vi receives the input Ii(h) =
∑
µ wi,µhµ ≡ wi

T h
and the conditional distribution factorizes as:

P(v|h) =
∏

i

P(vi|h) ∝
∏

i

exp
((

gi + Ii(h)
)
vi

)
(10)
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and the average sampled vi activity is given by:

〈vi|h〉 = σ(wi
T h + gi) (11)

Where σ(x) = 1/(1 + e−x) is the logistic function. Hence, a sampled visible layer configuration v is obtained by
a weighted combination of the HU activity followed by Bernoulli sampling. RBMs are generative models, in480

the sense that they can generate new, artificial data using Equations 8 and 10. Figure 2B illustrates this Markov
Chain Monte Carlo (MCMC) process, by recursively sampling from P(h|v) and P(v|h), which converges at
equilibrium to P(v,h).

7.0.5.3 Marginal distributions

The marginal distribution P(v) has a closed-form expression because of the factorized conditional distribution
of Equation 9 (Tubiana et al., 2019a,b):

P(v) =

∫ M∏
µ=1

dhµ · P(v,h) =
1
Z

exp

 N∑
i=1

givi +

M∑
µ=1

Γµ(Iµ(v))

 (12)

For a quadratic potentialUµ(h) =
γµh2

µ

2 +θµhµ, the cumulant generating function would also be quadratic and P(v)485

would reduce to a Hopfield model, i.e., a pairwise model with an interaction matrix Ji j =
∑
µ

wiµw jµ

γµ
(Tubiana

et al., 2019a). Otherwise, Γµ is not quadratic, yielding high-order effective interaction terms between visible
units and allowing RBMs to express more complex distributions. Importantly, the number of parameters re-
mains limited, controlled by M and does not scale as N2 (unlike pairwise models).

490

7.0.5.4 Choice of HU potential

The choice of HU potential determines three related properties: the HU conditional distribution P(h|v), the
transfer function of the HUs and the parametric form of the marginal distribution P(v). Hereafter we use the
double-Rectified Linear Unit (dReLU) potential:

Uµ(h) =
1
2
γµ,+h2

+ +
1
2
γµ,−h2

− + θµ,+h+ + θµ,−h−, where h+ = max(h, 0), h− = min(h, 0) (13)

Varying the parameters {γµ,+, γµ,−, θµ,+, θµ,−} allows the potential to take a variety of shapes, including quadratic
potentials (γµ,+ = γµ,−, θµ,+ = θµ,−) and double-well potentials (Tubiana et al., 2019b). The associated cumulant
generating function Γ(I) is non-quadratic in general, and depending on the parameters, the transfer function
can be linear, ReLU-like (asymmetric slope and thresholding) or logistic-like (strong local slopes for binarizing495

inputs). Closed-form expressions of Γ are detailed in (Tubiana et al., 2019b,a), and its derivatives are also
detailed in (Tubiana, 2018, p49-50). Note that the dReLU potential Uµ and distribution P(v) are invariant to
the sign swap transformation γµ,+, θµ,+ ⇐⇒ γµ,−, θµ,− and wiµ ⇐⇒ −wiµ ∀ i, µ (leading to hµ ⇐⇒ −hµ). For
visual clarity, we perform this sign swap transformation after training on all HUs with predominantly negative
weights (defined by

∑
i wi,µ < 0). Subsequently all HUs are positively activated if the group of neurons to which500

it connects is strongly active.

7.0.5.5 RBM training

The RBM is trained by maximizing the average log-likelihood of the empirical data configurationsL =
〈
log P(v)

〉
data,

using stochastic gradient descent methods. The gradient update steps are derived by calculating the derivative
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of L, using Equation 12, with respect to the model parameters (Tubiana et al., 2019a):

∂L

∂gi
= 〈vi〉data − 〈vi〉model

∂L

∂wiµ
=

〈
vihµ

〉
data
−

〈
vihµ

〉
model

∂L

∂θµ,±
= −

〈
h±µ

〉
data

+
〈
h±µ

〉
model

∂L

∂γµ,±
= −

1
2

〈
h±2
µ

〉
data

+
1
2

〈
h±2
µ

〉
model

(14)

Each gradient of L is thus the difference between a data statistic 〈 fk〉data and a model statistic 〈 fk〉model. Hence
the model learns to match these statistics to the training data. Importantly, model statistics 〈 fk〉model cannot
be evaluated exactly due to the exponentially large number of data configurations (e.g., 2N visible configura-505

tions). Therefore they are approximated by computing the statistics of model-generated data using the MCMC
sampling scheme defined with Equations 8 and 10. MCMC sampling of a Boltzmann distribution in such high-
dimensional space is in general very challenging owing to the exponentially long time to reach equilibrium. We
use the persistent contrastive divergence approximation (Tieleman, 2008) and discuss its validity below.

7.0.6 Compositional Restricted Boltzmann Machine510

In the previous sections we have described the general properties of RBMs. We now motivate the specific
RBM model choices that we have implemented, such as the dReLU potential and sparsity regularization, by
discussing their impact on the properties of RBM-generated data.

Directed graphical models, e.g., PCA, ICA, sparse dictionaries or variational autoencoders, prescribe a pri-515

ori statistical constraints for their data representations, such as orthogonality/independence or specific marginal
distributions such as Gaussian/sparse distributions. In contrast, the statistical properties of the representation of
the data learned by RBMs are unknown a priori by construction (because of the maximum entropy principle).
Instead, they emerge from the structure of the weight matrix, the potentials and the recursive back-and-forth
sampling procedure described above. We have therefore previously studied the properties of typical samples of520

RBM with random weights as a function of the visible and hidden unit potentials and properties of the weight
matrix using statistical mechanics tools (Tubiana & Monasson, 2017; Tubiana et al., 2019a). We have identified
the three following typical behaviors, or phases.

In the ferromagnetic phase, a typical sample from P(v,h) has a single strongly activated HU (m(t) ∼ 1,525

where m(t) is the number of activated HUs at time t), whereas the others are not or merely weakly activated.
The corresponding active visible units vi are defined by the weight vector wµ? associated to the active HU hµ?
(see Equation 10).

In the spin-glass phase, a typical sample does not have any relatively strongly activated HUs, but instead530

many moderately activated ones (m(t) ∼ M). They interfere in a complex fashion to produce different visible
unit configurations and there is no clear correspondence between the weight matrix and a typical data configu-
ration.

Finally, in the compositional phase, a typical sample from P(v,h) has a small number of strongly activated535

HUs (1 � m(t) � M) whereas the others are weak or silent. Their weights are linearly combined through
Equation 10 to produce the corresponding visible layer configuration. The compositional phase is desirable
because, firstly, there exists a simple link between the weight matrix and typical data configurations (they are
obtained by combining a few weights), which facilitates interpretation of biological systems (Tubiana et al.,
2019b). Secondly, the corresponding neural activity distribution is rich, as different choices of HU subsets yield540

a combinatorial diversity of visible layer configurations. Moreover, the modular nature of the compositional
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phase facilitates the assembly organization of neural dynamics, as motivated in the Introduction.

A set of sufficient conditions for the emergence of the compositional phase are (Tubiana & Monasson,
2017):545

1. The HUs are unbounded and real-valued with a ReLU-like transfer function.
2. The weight matrix W is sparse.
3. The columns wµ of the weight matrix have similar norm. (If a weight column associated to one HU is

much larger than the others, visible configurations are solely aligned to it according to Equation 10.)

The first condition is satisfied by the dReLU potential (but not by quadratic potentials or binary-valued550

HUs). The second condition is enforced in practice by adding a L1 sparse penalty term λ ·
∑

iµ |wiµ| to the log-
likelihood cost function. In our experiments, the optimal sparsity parameter λ was determined to be λ = 0.02
by cross-validation (Figure S1). The final condition is achieved by enforcing that Var(hµ) = 1 and

〈
hµ

〉
∼ 0 ∀ µ.

This is done by an appropriate reparameterization of the HU potential of Equation 13 and a batch-norm–like
procedure, described in detail in (Tubiana, 2018). This normalization promotes homogeneity among HU im-555

portance, preventing some units from being disconnected or others from dominating. In addition, ensuring that
hµ = O(1) irrespective of the visible layer size (as opposed to e.g., 1

2 (γ+ + γ−) = 1 which yields hµ ∼
√

N)
avoids the problem of ill-conditioned Hessians that was previously described by Hinton (2012).

To emphasise the departure from the classic RBM formulation in this study, we name our model composi-560

tional RBM (cRBM).

7.0.7 Algorithmic Implementation
In the previous sections we have described the cRBM model in full mathematical detail. The corresponding

algorithmic implementation was adapted from (Tubiana et al., 2019b). In addition, we have made several major
implementation and algorithmic changes to accommodate the large data size of the zebrafish neural recordings.565

We provide the code open-source, and describe the code improvements and hyperparameter settings in this
section. The following improvements were made, leading to a substantial reduction of computation time:

• Python 3 and numba (Lam et al., 2015) were used to compile custom functions, enabling SIMD vector-
ization and multicore parallelism.

• The sampling of P(hµ|Iµ) and evaluating its cumulant generating function Γµ and various moments re-570

quires repeated and costly evaluation of error functions erf and related functions (Tubiana, 2018, p49-50).
Fast numerical approximations of these functions were implemented based on (Abramowitz et al., 1988,
p299).

• The number of memory allocation operations was minimized.

• The optimization algorithm was changed from stochastic gradient ascent to RMSprop (i.e., ADAM with-575

out momentum) with learning rate 5 · 10−4 to 5 · 10−3, β1 = 0, β2 = 0.999, ε = 10−6, see Kingma &
Ba (2014) for a definition of the parameters. Compared to the original stochastic gradient ascent, the
adaptive learning rates of RMSprop/ADAM yield larger updates for the weights attached to neurons with
very sparse activity, resulting in substantially faster convergence.

7.0.7.1 Hyperparameter settings580

The following hyperparameters were used in the experiments of this manuscript:

• Number of hidden unit M: 200. This value was determined by cross-validation (Figure S1) on one data
set (example fish #3). Because this cross-validation procedure was computationally expensive, the same
value was used for all other data sets, except for 3 data sets which used M = 100 because their N ≈ 1

2 N#3.

• Sparse regularization penalty λ: 0.02 (determined by cross-validation).585
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• Batch size: 100, 200 or 400. Larger batch sizes yield longer training time but more stable training; batch
size was increased if training failed to converge.

• Number of Monte Carlo chains: 100.

• Number of gradient updates: 2 · 105

• Number of Monte Carlo steps between each gradient update: 15.590

• Initial learning rate η: between 5 · 10−4 and 5 · 10−3. We used 5 · 10−3 by default and if weight divergence
was observed, the learning was reinitialized with a reduced learning rate. This occurred notably for
high-M and low-λ models during the cross-validation procedure of Figure S1.

• Learning rate annealing scheme: the learning rate geometrically decayed during training, starting after
25% of the gradient update steps, from its initial value η to a final value of 10−5.595

• Number of training data samples: 70% of frames of each recording (= 4086 training data samples on
average), see section 7.0.10.1 for details.

cRBM models of these zebrafish data sets could be estimated in approximately 8-12 hours using 16 CPU
threads (Intel Xeon Phi processor). The (λ,M)-cross-validation was therefore completed in three weeks using
two desktop computers.600

7.0.8 Validity of the Persistent Contrastive Divergence algorithm
Training RBM requires extensive MCMC sampling which is notoriously difficult for high-dimensional data

sets. We resolve this by using Persistent Contrastive Divergence (PCD) to approximate the gradients (Tieleman,
2008). In this section we discuss why this worked to successfully converge, despite the very large data size.

605

The typical number of Monte Carlo steps required to transition from one energy minimum to another through
an energy barrier ∆E follows the Arrhenius law, scaling as e∆E . In the thermodynamic limit (N → ∞), ∆E scales
as the system size N multiplied by the typical energy required to flip a single visible unit, corresponding here to
the inputs received from the hidden layer I. In contrast, for PCD only a limited number of MC steps (here, 15)
are applied between each gradient update. Three factors explain why reasonably successful convergence was610

achieved in the trainings presented here.

Firstly, the use of the L1 regularization limits the magnitude of the weights and therefore limits the input
scale I. Secondly, in the compositional phase, the energy barriers do not scale as the full system size N but
rather as the size of one assembly pN where p is the fraction of non-zero weights (Tubiana & Monasson, 2017).615

Indeed, transitioning from one energy minimum, characterized by a subset of strongly activated HUs, to an-
other minimum, characterized by another set of strongly activated HUs, is done by gradually morphing the first
set into the second (Roussel et al., 2021). Compared to a direct transition, such a path is favored because the
intermediate states are thermodynamically stable and energy barriers are smaller as each HU flip has an energy
cost ∼ pN. Lastly, throughout PCD training, MCMC sampling is not performed at thermal equilibrium and the620

model updates of the parameters of the distribution promote mixing (Tieleman & Hinton, 2009). This is seen
from Equation 14: the log-likelihood gradient is the difference between the gradient of the energy averaged over
the empirical data and the energy averaged over MCMC samples. Ascending the gradient amounts to pushing
down the energy of data configurations and pushing up the energy of MCMC samples, thereby promoting mix-
ing of the Markov chains.625

Overall, combining small learning rates (and large number of gradient updates), large regularization, large
number of Markov Chains and Monte Carlo steps has allowed convergence to be reached for the majority of
cRBM training sessions.
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7.0.9 Functional Connectivity Inference630

7.0.9.1 Effective connectivity matrix

In this section we present a derivation of the effective coupling matrix between neurons from the marginal
distribution P(v) using cRBMs. This is achieved by perturbing the activity of each neuron individually and
quantifying the effect on other neurons. We first define the local coupling Ji j between two neurons vi and v j for
a generic probability distribution P(v1, v2, .., vN), given a data configuration v:

Ji j(v) = log
(

P(vi = 1|v1, ..., vi−1, vi+1, v j = 1, ..., vN)
P(vi = 1|v1, ..., vi−1, vi+1, v j = 0, ..., vN)

)
− log

(
P(vi = 0|v1, ..., vi−1, vi+1, v j = 1, ..., vN)
P(vi = 0|v1, ..., vi−1, vi+1, v j = 0, ..., vN)

) (15)

In other words, Ji j is defined as the impact of the state of neuron j on neuron i in the context of activ-
ity pattern v. Hence, the effective connectivity matrix J mathematically defines the functional connections,
which can only be done using a probabilistic model P(v). A positive (negative) coupling Ji j indicates cor-
related (anti-correlated) collective behavior of neurons i, j. This effective coupling value is symmetric (be-635

cause of Bayes’ rule): Ji j(v) = J ji(v). For context, note that Ji j(v) is uniformly zero for an independent
model of the form P(v1, .., vN) =

∏
i Pi(vi), and that for a maximum entropy pairwise (Ising) model, with

P(v1, .., vN) = 1
Z exp

(∑
i givi +

∑
i< j Jising

i j viv j

)
, the Ji j(v) matrix exactly identifies with the coupling matrix Jising

i j ,
and does not depend on the data configuration v (so Ji j(v) = Ji j).

640

However, in general, and for RBMs in particular, Ji j(v) depends on the data set v, and an overall coupling
matrix can be derived by taking its average over all data configurations:

Ji j = 〈Ji j(v)〉data (16)

Although Equation 16 has a closed-form solution for RBMs (by inserting Equation 12), a naive evaluation re-
quiresO(N3MT ) operations where T is the number of data samples. However, a fast and intuitive approximation
can be derived by performing a second order Taylor expansion of Γµ(Iµ):

Ji j =

M∑
µ=1

wiµw jµ

〈
Γ′′µ (v)

〉
data

=

M∑
µ=1

wiµw jµ〈Var
(
hµ|v

)
〉data (17)

Equation 17 is exact for quadratic potential and in general justified as the contribution of neurons i, j is small
compared to the scale of variation of Γµ, O(

√
pN) where p is the fraction of non-zero couplings. In conclusion,

we have mathematically derived the effective coupling between any two neurons i and j. Intuitively, two neurons
i, j are effectively connected if they are connected to the same HUs (Equation 17).

7.0.9.2 From inter-neuron to inter-region connectivity645

In the above section we have derived the inter-neuronal connectivity matrix J. This matrix is then aggregated
to an inter-regional connectivity matrix JR by taking the L1 norm of the corresponding J matrix block (i.e.,
JRkm =

∑
i∈Rk , j∈Rm

|Ji j|/(NRk · NRm ), where Rk is the set of neurons in region k).
Next, to derive the average connectivity matrix across multiple recordings, we used a weighted average of

the individual recordings, with a region-pair specific weight equal to the length of the recording multiplied by650

the sum of the number of neurons in both regions (also see Section 7.0.16). Compared to a naive average, this
weighted average accounts for the variable number of neurons per region between recordings.

7.0.9.3 Training cRBM models for connectivity estimates

Constructing the functional connectivity matrix of a cRBM does not require test data, but just the estimated
weight matrix W (as explained above). Therefore we trained new cRBMs using the entire recordings (100% of655
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data) to fully use the information available. cRBM training is stochastic, and to mitigate the possible variability
that could arise we trained 5 cRBMs for each recording. Then, to assess convergence, we selected all cRBMs
with 0.01 < std(w) < 0.1, where std denotes standard deviation, for further functional connectivity analysis
(yielding 23 cRBMs for 8 data sets in total). Connectivity estimates of multiple cRBM models per data sets
were averaged.660

7.0.9.4 Connectivity inference baselines

We considered four additional connectivity inference baseline methods:

• The covariance matrix.

• The Pearson correlation matrix.

• The sparse inverse covariance matrix inferred by graphical LASSO (Friedman et al., 2008) (as imple-665

mented in scikit-learn with default settings (Pedregosa et al., 2011)). Graphical LASSO is an efficient
method for inference of large scale connectivity. Unfortunately, the implementation available failed to
converge in reasonable time due to the high dimensionality of the data.

• The Ising model with pseudo-likelihood maximization (PLM) inference (Ravikumar et al., 2010).

Results obtained with the covariance and correlation matrices are presented in Figure S6. The connectivity670

matrices obtained by the PLM Ising model (not shown) correctly identified the diagonal entries of the region-
region matrix, but not the off-diagonal coefficients and had a weaker correlation with the structural connectivity
matrix than the covariance and correlation matrices (rS = 0.06 using 4 fish).

7.0.10 Optimizing the free parameters of cRBM
We set the free parameters λ (sparsity regularization parameter) and M (number of HUs) by cross-validating675

a large range of (λ,M) values for one data set (fish #3). This was done by training cRBMs on 70% of the data,
and evaluating model performance on the remaining test data, as detailed below. The resulting optimal values
could then be used for all data sets (where M was scaled with the number of neurons N). Importantly, the (λ,M)
parameters implicitly tune the average assembly size. Increasing the number of HUs and/or increasing the reg-
ularization strength decreases the average number of neurons per assembly (Tubiana et al., 2019a). Intuitively,680

assemblies that are too small do not have the capacity to capture high-order correlations, while assemblies
that are too large would fail to account for local co-activations. Hence, the (M, λ)-cross-validation effectively
identifies the optimal assembly sizes that fit the data statistics.

7.0.10.1 Train / test data split

We split up one recording (fish #3) into training data (70% of recording) and withheld test data (30% of record-685

ing) for the free parameter (λ,M) optimization procedure. This enabled us to assess whether the cRBMs learned
to model the data statistics (as described in the main text, Figures 2 and S1), while ensuring that the cRBMs had
not overfit to the specific training data configurations. Importantly, this assumes that the test data comes from
the same statistical distribution as the training data (while consisting of different data configurations). To ensure
this, we split up the recording of example fish #3 (used for parameter optimization) in training and test splits690

as follows (before training the cRBMs): We divided the recording of length T in 10 chronological segments of
equal length (so that segment 1 has time points {t ∈ [1, T

10 )} et cetera), with the rationale that by maintaining
temporal order within each segment we would later be able to conduct dynamic activity analysis. This yielded(

10
3

)
= 120 possible training/test splits of the neural data. We then evaluated the statistical similarity between the

training and test split of each combination, by assessing the mean neural activity 〈vi〉 and pairwise neural corre-695

lations 〈viv j〉 − 〈vi〉〈v j〉 statistics. We quantified the similarity between training and test statistics by calculating

the Root Mean Square Error (RMSE(x1, x2) =

√
1

Nx

∑Nx
n=1 (x1(n) − x2(n))2). The most similar split is defined by

the lowest RMSE, but to show that cRBM are not dependent on picking the best possible split, but rather on
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avoiding the bad splits, we then chose to use the split with the 10th-percentile ranking RMSE. We hope that this
aids future studies, where a potentially high number of possible splits prevents researchers from evaluating all700

possible splits, but a good split may nevertheless be found efficiently.

7.0.10.2 Assessment of data statistics

Please note that the loss function, the log-likelihood, is computationally intractable and therefore cannot be
readily used to monitor convergence or goodness-of-fit after training (Fischer & Igel, 2012). Moreover, approx-
imations of the log-likelihood based on annealed importance sampling were found to be unreliable due to the705

large system size. Instead, we assessed the following quantities.

Firstly, we evaluated 3 statistics that cRBMs are trained to optimize: the mean activity of neurons 〈vi〉, the
mean activity of HUs 〈hµ〉 and their pairwise interactions 〈vihµ〉. Additionally, second order statistics of pair-
wise neuron-neuron interactions 〈viv j〉, HU-HU interactions 〈hµhν〉 and the reconstruction quality were evalu-710

ated, which the cRBM was not constrained to fit. Data statistics were calculated on withheld test data (30% of
recording). Monitoring HU single and pairwise statistics 〈hµ〉 and 〈hµhν〉 served two purposes: (i) validation of
model convergence and (ii) assessing whether correlations between assemblies can be captured by this bipar-
tite model (i.e., without direct couplings between hidden units or an additional hidden layer). Model statistics
cannot be calculated exactly, because that would require one to sample all possible states P(v,h), and were715

therefore approximated by evaluating cRBM-generated data. Here, 300 Monte Carlo chains were each initiated
on random training data configurations and 50 configurations were sampled consecutively for each chain, with
20 sampling steps between saved configurations, after a burn-in period of 100 effective sampling configurations.

The 〈vihµ〉 statistic (Figure 2C) was corrected for the sparsity regularization, by adding the sparsity regular-720

ization parameter λ to 〈vihµ〉: 〈vihµ〉model = 〈vihµ〉model-generated data +λ · sign(wi,µ). Furthermore, (vi, hµ) pairs with
exactly wi,µ = 0 were excluded from analysis (5% of total for optimal cRBM in Figure 2C).

The pairwise neuron-neuron and HU-HU statistics (〈viv j〉, 〈hµhν〉) were corrected for their (trivially) ex-
pected correlation due to their mean activities (by subtraction of 〈vi〉〈v j〉 and 〈hµ〉〈hν〉 respectively), so that only725

true correlations were assessed.

Goodness of fit was quantified by computing the normalized Root Mean Square Error (nRMSE) for each
statistic (shown in Figure S1). The RMSE between two vectors x1, x2 of length Nx is defined as RMSE =√

1
Nx

∑Nx
n=1 (x1(n) − x2(n))2. Ordinary RMSE was normalized so that different statistics could be compared,730

where 1 corresponds to nRMSEshuffled, where both data and model statistics were randomly shuffled, and
0 corresponds to nRMSEoptimal which is the RMSE between the training data and test data (by nRMSE =

1 − RMSEordinary−RMSEshuffled

RMSEoptimal−RMSEshuffled
).

Additionally, we assessed the reconstruction quality of the test data. Here, the log-likelihood (LLH) between
the test data v and its reconstruction E(vrecon) = E (v|E (h|v)) ∈ [0, 1] was computed. Because vi ∈ {0, 1}, the
LLH is defined as

LLH(vi,E(vrecon)) =
1
T

T∑
t=1

log
(
E(vrecon)(t) ∗ vi(t) + (1 − E

(
vrecon)(t)

)
∗
(
1 − vi(t)

))
(18)

The resulting LLH was normalized (nLLH) such that 0 corresponds to an independent model (i.e., fitting neural735

activity with E(vrecon)(t) = 〈vi〉 ∀ t) and 1 to optimal performance (which is LLHoptimal = 0), by nLLH =
LLHordinary−LLHindependent

−LLHindependent
.
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7.0.10.3 Generalized Linear Model

We used logistic regression, a Generalized Linear Model (GLM), to quantify the reconstruction quality of a
fully connected model (i.e., with neuron-to-neuron connections, see Figure S2A). Logistic regression makes a740

probabilistic binary prediction (Bishop, 2006), hence allowing direct comparison to the probabilistic estimates
of neural activity by the cRBM. In logistic regression, for a neuron vi(t) at time t, the activity of all other neurons
v−i(t) at time t was used to predict v̂i(t) = P (vi(t) = 1) = 1

1+exp (−wi·v−i(t))
where wi is the estimated weight vector.

This was implemented with scikit-learn (Pedregosa et al., 2011), using L2 regularization. L2 regularization was
favored over L1 as it typically yields higher reconstruction performance; in the related context of protein contact745

map prediction, L2-regularized GLMs also better reconstructed contacts than L1-regularized GLMs (Morcos
et al., 2011). The parameter λGLM was optimized to λGLM = 1000 using cross-validation (Figure S2B). This is a
computationally intensive model to compute because of the large number of regressor neurons N −1. Therefore
we performed the cross-validation of Figure S2B on 2% of all neurons (=1050 neurons) and computed the final
distribution of Figure 2H on 10% of all neurons (=5252 neurons). GLMs were trained on the same train data as750

cRBMs, and evaluated on the same withheld test data as cRBMs (as described above).

7.0.11 Regional occupancy
We determined the anatomical region labels of each neuron by registering our recordings to the ZBrain Atlas

(as described previously). This yields a matrix L of size NZBA × N, which elements are lr,i = 1 if neuron i is
embedded in region r and 0 if it is not. A cRBM neural assembly of HU µ is defined by its weight vector wµ (of755

size N). Because cRBMs converge to sparse solutions, most of the weight elements will be very close to 0. To
determine which anatomical regions are occupied by the assembly neurons with significantly nonzero weights,
we computed the dot product between the weight vector wµ and matrix L, leading to a weighted region label
vector (of size NZBA) for each HU. The matrix of all M weighted region label vectors is shown in Figure S4A
for cRBM and Figure S4B for PCA.760

The effective number of anatomical regions that one cRBM/PCA assembly is embedded in was then cal-
culated using the Participation Ratio (PR) of each HU/Principal Axis. PRs are used to estimate the effective
number of nonzero elements in a vector, without using a threshold (Tubiana & Monasson, 2017). The PR of a
vector x = (x1, .., xn) is defined by:

PR(x) =

(∑n
i=1 x2

i

)2∑n
i=1 x4

i

(19)

PR varies from 1
n when only 1 element of x is nonzero and n when all elements are equal. We therefore estimated

the effective number of regions by multiplying PR of the weighted region label vectors with the total number of
regions NZBA in Figure S4C.

7.0.12 Time constant calculation765

The dReLU potential Uµ of equation 13 can learn to take a variety of shapes, including a double-well
potential (Tubiana et al., 2019a). HUs generally converged to this shape, giving rise to bimodal HU activity
distributions (Figure 4D). We determined the positions of the two peaks per HU using Gaussian Mixture Models
fitted with two Gaussians. The bimodality transition point was then defined as the average between the two
peaks (which was approximately 0 for most HUs). To calculate the time constant of state changes between the770

two activity modes, we subtracted the bimodality transition point from each HU activity hµ individually. For
clarity, all dynamic activity traces shown (e.g., Figure 4) are thus bimodality transition point subtracted. The
time constant of an activity trace was then defined as the period of a (two-state) oscillation. A HU oscillation
is defined as a consecutive negative and positive activity interval (because the bimodality now occurs at 0). A
neuron oscillation is defined as a consecutive interspike-interval and spike-interval (which can last for multiple775

time steps, for example see Figure 1A, right panel).

7.0.13 Sorting of HUs
HUs were sorted by hierarchical clustering of the Pearson correlation matrix of their dynamic activity (Fig-

ure 4B). Hierarchical clustering was performed using the Ward variance minimization algorithm that defines
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the distance between clusters (Virtanen et al., 2020). This sorting of HUs (and thus assemblies) is maintained780

throughout the manuscript for the sake of consistency.

7.0.14 Validating that the cRBM is in the compositional phase
To validate that the cRBMs converged to the compositional phase (see section 7.0.6, compositional RBM

formulation), we calculated the effective number of active HUs per data configuration (i.e., time step) m(t) =

PR (h+(t)) · M where PR is the participation ratio (equation 19), M the number of HUs and h+ = h − hinactive,785

where hinactive is the inactive peak as calculated with the Gaussian Mixture Models (see section 7.0.12), because
PR assumes that inactive elements are approximately zero (Tubiana et al., 2019a). A cRBM is said to be in the
compositional phase if 1 � median(m) � M, which is true for all cRBMs (Figure S3).

7.0.15 Extensions of the structural connectivity matrix
The inter-region structural connectivity matrix was derived from the single cell zebrafish brain atlas (Kunst790

et al., 2019). We used the post-publication updated data set from (Kunst et al., 2019) (timestamp: 28 October
2019). The data set consists of N = 3098 neurons, each characterized by the 3D coordinates of the soma
center and of its neurites; there is no distinction between dendrites and axons. The brain is subdivided into
R = 72 regions and each neuron is duplicated by left/right hemisphere symmetry. We aim to estimate cr,r′ , the
average strength of the connection between two neurons belonging to regions r, r′ ∈ [1,R]. For each neuron795

n ∈ [1,N], we determine, using region masks, the region r(n) where its soma is located and the cumulative
length of the intersection between all its neurites and each region `n(r). Under the assumptions that (i) the
linear density of dendritic spines / axon presynaptic boutons is constant and (ii) the volumetric density of
neurons is identical throughout regions, Ln(r) is proportional to the volume Vr of region r times the average
(bidirectional) connection strength between neuron n and any neuron of region r. Aggregating over all neurons800

and symmetrizing, we obtain the following estimator for cr,r′ :

cr,r′ = Symmetrized
∑N

n=1 δr(n),r × `n(r′)

Vr′ ×
∑N

n=1 δr(n),r

 (20)

where δr(n),r = 1 if neuron n has its soma in region r and 0 if not. Using the same notations, the formula
previously used in (Kunst et al., 2019) is:

cr,r′ =

∑N
n=1 `n(r) + `n(r′)

N(Vr′ + Vr)

 (21)

Equation 20 differs from Equation 21 in three aspects:
1. It discriminates between direct and indirect connections. Previously, a structural connection between805

region r and region r′ was established if a neuron had neurites with either tips or its soma within both regions.
This may however result in indirect connections between r and r′, in cases where the neuron soma resides
in another region r′′. Here, we only account for direct connections, resulting in an overall slightly sparser
connectivity matrix.

2. It is well-defined along the diagonal, i.e., for intra-region connections, whereas in Equation 21, each810

neurite would be counted as a self-connection.
3. The denominator corrects for non-uniform sampling of the traced neurons throughout regions. Note that

this issue only arose in the post-publication data set as non-uniform sampling was used to fill missing entries of
the matrix.

7.0.16 Specimen averaging of connectivity matrices815

The number of neurons in a particular brain region can vary across recordings from different specimen.
Since the entries of the connectivity matrix are expected to be more accurate for well-sampled regions, we
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computed the weighted average of region-to-region connections cr,r′ as follows:

〈
cr,r′

〉
=

∑
Fish F cF

r,r′ · w
F
r,r′∑

Fish F wF
r,r′

wF
r,r′ = T F

(
NF

Rr
+ NF

Rr′

)
2

(22)

Where T F is the recording length and NF
Rr

is the number of neurons in region r of fish F that were recorded.

7.0.17 Correlation analysis of connectivity matrices820

Pearson correlation was used to assess the similarity between cRBM functional connectivity matrices of
different individual animals (Figure 5). Spearman correlation was used to compare structural connectivity versus
functional connectivity (Figure 6), because these two metrics do not necessarily scale linearly. All correlation
analyses, and the Kilmogorov-Smirnov test of Figure S6C, performed on symmetric matrices excluded one
off-diagonal triangle (of symmetrical values) to avoid duplicates.825
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8 Supplementary Information

Abbreviation Full name Abbreviation Full name

th Thalamus left s Subpallium left
ts Torus semicircularis left mos2 MO stripe 2 left
t Tegmentum left MOS2 MO stripe 2 right
mos1 MO stripe 1 left vr Vagal region left
TH Thalamus right OE Olfactory epithelium right
TS Torus semicircularis right oe Olfactory epithelium left
T Tegmentum right VR Vagal region right
MOS1 MO stripe 1 right IO Inferior olive right
MOS5 MO stripe 5 right nx Vagus motor neurons left
mos4 MO stripe 4 left NX Vagus motor neurons right
MOS4 MO stripe 4 right io Inferior olive left
mos5 MO stripe 5 left tl Torus longitudinalis left
mon Medial octavolateral nucleus left TL Torus longitudinalis right
MON Medial octavolateral nucleus right TeO Tectum right
Ce Cerebellum right teo Tectum left
ce Cerebellum left OB Olfactory bulb right
MOS3 MO stripe 3 right ob Olfactory bulb left
mos3 MO stripe 3 left ha Habenula left
Pr Pretectum right Ha Habenula right
pr Pretectum left irf Intermediate reticular formation left
PT Posterior tuberculum right prf Posterior reticular formation left
pt Posterior tuberculum left r Raphe nucleus left
P Pallium right R Raphe nucleus right
p Pallium left iRF Intermediate reticular formation right
S Subpallium right pRF Posterior reticular formation right

Table S1: Table of abbreviations of mapzebrain atlas region names (used for interregional connectivity analyses).
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Figure S1: cRBM free parameter optimization by cross-validation
(A) Model performance, as quantified by the normalized RMSE (nRMSE, see Methods) of the mean neural activity 〈vi〉, as a function of
the sparsity regularization parameter λ (x-axis) and the number of HUs M (y-axis). cRBM models were evaluated after training converged
on withheld testing data. 1 − nRMSE values are shown to enable optimization by maximization in panel G. Values below 0 were set to 0
for panels A-F.
(B) Equivalent figure for the mean HU activity 〈hµ〉.
(C) Equivalent figure for average pairwise neuron-HU interactions 〈vihµ〉.
(D) Equivalent figure for average pairwise neuron-neuron interactions 〈viv j〉.
(E) Equivalent figure for average pairwise HU-HU interactions 〈hµhν〉.
(F) Equivalent figure for the reconstruction quality of the low-dimensional cRBM bottleneck, quantified by the median normalized LLH.
(G) The cRBM free parameters were optimized by maximizing the element-wise minimum of panels A-F. Using the element-wise minimum
to compare the six statistics ensures that the model performs performs well on all aspects. First, in order to compare panels A-E with panel F,
the values of panel F were scaled to 1 by dividing all elements of panel F by its maximum value (= 0.29). Next, for each (λ,M) combination
the minimum value was determined from all 6 evaluation criteria. These are shown in this panel, with the black arrow indicating the resulting
maximum of 0.83 at (λ = 0.02,M = 200).

Generalized Linear
Model (GLM)

neurons, N~104

Figure S2: Generalized Linear Model (GLM) parameter optimization
(A) Schematic of the pairwise GLM model. Connections were estimated with logistic regression and L2 sparsity regularization. (B) The
sparsity regularization parameter λGLM was optimized using cross-validation of 6 parameter configurations, using 1000 randomly sampled
neurons.
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Figure S3: cRBMs are in the compositional phase after convergence
(A) Distribution of m(t), the number of effective active HUs per time point t, calculated on the test data of example fish #3. m(t) is defined
as m(t) = PR (h+(t)) · M, where PR is the Participation Ratio (Equation 19). Median m(t) = 0.27 · M = 54.
(B) The distribution of median m(t)

M values of the entire recordings of all cRBMs used for the connectivity analyses. The average median(m)
M

across all cRBMs is 0.26. The compositional phase is characterized by 1 � m(t) � M which occurs for all cRBMs. The three phases are
indicated. Here, the ferromagnetic phase upper bound was manually set at 5%, and the spin-glass phase lower bound was determined by
computing the PR of normally distributed activity (with mean and standard deviation of the test data of example fish #3 of panel A).
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Figure S4: cRBM assemblies are sparse and spatially localized
(A) For each neural assembly (y-axis), the occupancy of ZBrain Atlas (Randlett et al., 2015) brain regions (x-axis, sorted alphabetically)
was determined, by quantifying the number of anatomical regions that each HU connects to (i.e., the overlap between cRBM assemblies
and anatomical regions, see Methods). ZBrain atlas regions that were not imaged were excluded, yielding NZBA = 206 regions in total.
Occupancy was defined as the dot product between the binary ZBrain-label matrix (size NZBA × N, where 1 indicates that a neuron is
embedded in an anatomical region, and 0 vice versa) and the cRBM weight matrix (size N × M), and was normalized to 100% for each
assembly to account for different assembly sizes. Assemblies were sorted by their dynamics (Figure 4B, Methods). ZBrain Atlas regions
are abbreviated by: Diencephalon (Di), Ganglia (Ga), Mesencephalon (Me), Rhombencephalon (Rh), Spinal Cord (SC) and Telencephalon
(Te).
(B) Equivalent figure for Principal Axes of PCA (i.e., the PCA Eigenvectors). Principal Axes were sorted by Eigenvalue. Panels A and B
share the same color scale (right).
(C) Distributions of the effective number of ZBrain Atlas regions per assembly (Principal Axis) of the occupancy metric of panel A (B) for
cRBM (PCA) respectively. The effective number of regions was determined by calculating the Participation Ratio per assembly (Principal
Axis), multiplied with the total number of regions NZBA (see Methods). cRBM assemblies occupy a median of 3 regions (interquartile
range: 2 to 6 regions), while PCA assemblies occupy a median of 160 regions (interquartile range: 140 to 168 regions).
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Figure S5: Functional connectivity matrices of all fish
8 panels (A-H) showing the individual cRBM functional connectivity matrices of all zebrafish recordings. Panels B, C and D correspond
to Figures 5A-C. All matrices share the same log10 color scale (bottom right). Regions that contained less than 5 neurons were left blank,
for each fish individually.
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Figure S6: cRBM functional connectivity compared to baseline methods
(A) Average functional connectivity matrix of the covariance baseline method (see Methods) in log10 scale.
(B) Average functional connectivity matrix of the Pearson correlations baseline method (see Methods) in log10 scale.
(C, D) Equivalent figure to Figure 6C for functional connections as determined by the covariance (C) and correlations (D) between neurons
(see Methods). The Spearman correlation coefficient between functional and structural connections for covariance is rS = 0.18 and for
correlation rS = 0.26.
(E-F) Equivalent figure to Figure 6D for functional connections as determined by the covariance (E) and correlations (F) between neurons.
Non-zero and zero distributions are significantly different (all P values P < 10−15, two-sided Kolmogorov-Smirnov tests).
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Song, S., Sjöström, P. J., Reigl, M., Nelson, S., & Chklovskii, D. B. (2005). Highly nonrandom features of
synaptic connectivity in local cortical circuits. PLoS Biology, 3, e68.

Tavoni, G., Ferrari, U., Battaglia, F. P., Cocco, S., & Monasson, R. (2017). Functional coupling networks
inferred from prefrontal cortex activity show experience-related effective plasticity. Network Neuroscience,965

1, 275–301.

Tieleman, T. (2008). Training restricted boltzmann machines using approximations to the likelihood gradient.
In Proceedings of the 25th international conference on Machine learning (pp. 1064–1071).

Tieleman, T., & Hinton, G. (2009). Using fast weights to improve persistent contrastive divergence. In Pro-
ceedings of the 26th annual international conference on machine learning (pp. 1033–1040).970

Triplett, M. A., Avitan, L., & Goodhill, G. J. (2018). Emergence of spontaneous assembly activity in developing
neural networks without afferent input. PLoS computational biology, 14, e1006421.

Triplett, M. A., Pujic, Z., Sun, B., Avitan, L., & Goodhill, G. J. (2020). Model-based decoupling of evoked and
spontaneous neural activity in calcium imaging data. PLoS computational biology, 16, e1008330.

Tubiana, J. (2018). Restricted Boltzmann machines: from compositional representations to protein sequence975

analysis. Ph.D. thesis PSL Research University.

Tubiana, J., Cocco, S., & Monasson, R. (2019a). Learning compositional representations of interacting systems
with restricted boltzmann machines: Comparative study of lattice proteins. Neural computation, 31, 1671–
1717.

Tubiana, J., Cocco, S., & Monasson, R. (2019b). Learning protein constitutive motifs from sequence data. Elife,980

8, e39397.

Tubiana, J., & Monasson, R. (2017). Emergence of compositional representations in restricted boltzmann
machines. Physical review letters, 118, 138301.

37

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2022. ; https://doi.org/10.1101/2021.11.09.467900doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.09.467900
http://creativecommons.org/licenses/by-nc-nd/4.0/


Tubiana, J., Wolf, S., Panier, T., & Debregeas, G. (2020). Blind deconvolution for spike inference from fluores-
cence recordings. Journal of neuroscience methods, 342, 108763.985

Vanwalleghem, G. C., Ahrens, M. B., & Scott, E. K. (2018). Integrative whole-brain neuroscience in larval
zebrafish. Current opinion in neurobiology, 50, 136–145.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson,
P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson,
A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde,990
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