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ABSTRACT

Microbial natural products are specialized metabolites that have long been a rich source of
human therapeutics. While the chemical diversity encoded in the genomes of microbes is
believed to be large, the productivity of this modality has waned as traditional
fermentation-based discovery methods have been plagued by high-rates of rediscovery,
inefficient scaling, and incompatibility with target-based drug discovery. Here, we demonstrate a
scalable discovery platform that couples dramatically improved assembly of deep-sequenced
metagenomic samples with highly efficient, target-focused, in silico search strategies and
synthetic biology to discover multiple novel inhibitors of human methionine aminopeptidase-1
(HsMetAP1), a validated oncology target. For one of these novel inhibitors, metapeptin B, we
demonstrate sub-micromolar potency, strong selectivity for HsMetAP1 over HsMetAP2 and
leverage natural congeners to rapidly elucidate key SAR elements. Our “next-gen” discovery
platform overcomes many of the challenges constraining traditional methods, implies the
existence of vast, untapped chemical diversity in nature, and demonstrates
computationally-enabled precision discovery of modulators of human proteins of interest.

INTRODUCTION

Small molecule natural products (NPs) are specialized metabolites encoded in the genomes of
bacteria, fungi, and plants. They have long been a rich source of human therapeutics. For
example, over half of all small molecule drugs on the market are derived from NPs, including
65% of oncology drugs and 71% of anti-infectives (Newman and Cragg, 2020) (Stratton et al.,
2015). Examples include Kyprolis (cancer), Rapamune (immune modulation), Zocor
(cardiovascular) and Cubicin (infectious disease).

The outsized role NPs play in therapeutics can be attributed to the fact that these molecules
have been evolutionarily selected to modulate critical cellular pathways and proteins (Chevrette
et al., 2020). NPs are often exceptions to Lipinski’s Rule-of-5 indicating that natural selection
has evolved bioactive molecules with drug-like properties that are otherwise difficult to conceive
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(Doak et al., 2014). Additionally, the larger size and complexity of NPs — which generally contain
more chiral centers and SP3 carbon atoms than synthetic small molecules — translate into rich,
three-dimensional structures that occupy chemical space distinct from the simpler synthetic
small molecules (Stone et al., 2022). Critically, this chemical space is otherwise difficult to
explore, even with large-library technologies such as DELs, phage-display, or Al-guided drug
design (Lenci et al., 2021) (Pitt and Nims, 2019) (Thomas et al., 2022).

Importantly, NPs beneficial chemistry does not come at the expense of the ability to cross cell
membranes and enter cells (Salvador-Reyes and Luesch, 2015). Many of the most important
undrugged cancer targets are intracellular and are thus effectively unreachable by monoclonal
antibodies and other emerging modalities (Behan et al., 2019). Indeed, small molecules
(including NPs) are largely unique in offering reliable delivery to diverse organs, oral
administration, and competitive manufacturing (Chhabra, 2021). Innovation within the small
molecule space is thus critical to address many of our most important drug targets.

Despite their track record of success, the pace of NP discovery has slowed dramatically. Over
the last three decades, the maijority of pharmaceutical companies have exited this modality, as
the traditional fermentation-based approaches for NP discovery have been plagued by high
rates of rediscovery of known compounds and inefficient scaling, resulting in lowered return on
investment (Atanasov et al., 2021) (Li et al., 2019). A central limitation driving this trend is that
only ~1% of microbes are readily cultured in the lab and, therefore, amenable to
fermentation-based discovery (Rappé and Giovannoni, 2003) (Handelsman et al., 1998). Of
these, only a small portion express molecules under any given fermentation condition, making
robust screening protocols extremely challenging.

Metagenomics, which involves the capture of environmental DNA (eDNA) paired with
heterologous expression systems, offers a potentially powerful alternative to traditional
fermentation-based discovery by providing direct access to uncultured (and unstudied) diversity
(Katz et al., 2016)) (Stevenson et al., 2019). In practice, however, efforts toward
metagenomics-based NP discovery have met with relatively limited success. While congeners
of already known NP scaffolds have been discovered from metagenomes (Stevenson et al.,
2021) (Peek et al., 2018) (Owen et al., 2015) (Chang et al., 2013), de novo scaffolds with novel
bioactivities of interest have remained elusive outside of a few examples (Wang et al., 2022).
These efforts have been hindered by two main challenges: difficulty of obtaining good
metagenomic sequence assemblies and a lack of computational approaches to efficiently
identify desirable biosynthetic gene clusters (BGCs).

The immense size and complexity of soil metagenomic environments, which are estimated to
contain 10%-10° unique phylotypes per gram of soil, limit the efficacy of shotgun sequencing
approaches. Short-read technologies, like lllumina, do not generate sequence assemblies that
are large enough to be broadly useful for the discovery of natural-product encodingBGCs which
can range in size from 10 to 100+kb (Xu et al., 2022). Long-read technologies, on the other
hand, still lack the throughput to provide sufficient coverage of very complex samples and/or
suffer from high error rates (Delahaye and Nicolas, 2021) (Tedersoo et al., 2021). Hybrid
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sequencing strategies have improved the quality of metagenomic assemblies from soil but are
still insufficient for broad BGC discovery (Xu et al., 2022).

Even with higher-quality sequence information, one needs a strategy to identify the small
number of BGCs encoding NPs with therapeutic value out of the multitude of BGCs that can be
found in the metagenome. While BGCs and their constituent genes can be bioinformatically
annotated, there has been limited success in developing computational approaches that can
accurately predict the structure of the encoded small molecule NP. The ideal would be a
bioinformatic strategy that can leverage DNA sequence alone to down-select and prioritize the
BGCs with high-value therapeutic potential.

In this paper, we present an end-to-end metagenomic NP discovery platform that enables the
targeted discovery of novel NPs that can modulate a specific human protein target of interest.
We demonstrate the power of this approach by leveraging this platform for targeted discovery of
novel NP inhibitors of human methionine aminopeptidase-1 (HsMetAP1), a key translational
regulator with strong associations across a wide range of solid tumor cancers (Frottin et al.,
2016) (Behan et al., 2019). We detail our efforts to sequence and catalog metagenomic soll
diversity on a scale that enables unprecedented access to the massive biosynthetic potential
encoded in the soil microbiome, including a metagenomics database that contains >1.4Tb of
assembled sequences from contigs greater than 10kb in length and >6.8M predicted BGCs
across six different soil samples. To identify BGCs in this vast collection with potential
therapeutic value, we utilized a bioinformatic strategy leveraging the presence of self-resistance
enzymes (SREs) to identify 35 BGCs in the database that are predicted to encode distinct,
novel NP inhibitors of HsMetAP1, including two that were selected for further analysis.
Downstream technologies for heterologous expression, untargeted discovery of novel
metabolites, and computational approaches to assign observed bioactivity to specific
metabolites enabled the production, identification, and isolation of encoded molecules that
validate our functional predictions, resulting in the discovery of a novel cyclic depsipeptide
inhibitor of HsMetAP1, which we call metapeptin B.

RESULTS

Sequencing of large-insert cosmid metagenomic libraries enables access to massive
metagenomic diversity including millions of novel BGCs

Soils are among the richest ecological sources of microbial diversity (Curtis et al., 2002) (Rappé
and Giovannoni, 2003). The repertoire of yet undiscovered microbial NPs that exist within this
environment is vast (Gavriilidou et al., 2022). However, the immense size and complexity of the
soil metagenomes have severely limited the efficacy of shotgun metagenomic sequencing
strategies. The complexity makes it computationally challenging to assemble short-read data to
sufficient lengths for BGC discovery (e.g., >10kb), while the diversity and the lack of population
uniformity make it difficult to obtain sufficient coverage using long-read technologies to capture
sequence information from less abundant species (Tedersoo et al., 2021). To assess the state of
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the art in soil metagenome sequencing, we analyzed the top five most deeply sequenced soll
metagenomes, as measured by assembled size, generated by the Joint Genome Institute (JGI)
of the U.S. Department of Energy (https://img.jgi.doe.gov/cgi-bin/m/main.cqgi). These datasets
range from 73.0Gb to 22.5Gb of assembled sequence; however, on average, only 3.7%
(1.2%-5.6% range) of the assembled sequence in these datasets are found on contigs >10kb,
indicating that the vast majority of these data are not useful for BGC discovery (Figure 1a).

To enable metagenomic BGC discovery, we hypothesized that we could generate higher quality
assemblies of soil metagenomes by first partitioning the initial sample into smaller,
lower-complexity DNA sub-pools. The resulting reduction in size and complexity would make the
sub-pools more amenable to shotgun sequencing and the higher-quality assemblies from each
DNA sub-pool could then be joined to give a higher resolution view into the overall soil
metagenome. To this purpose, we built large-insert (35-40kb) cosmid libraries from soil eDNA.
The libraries were arrayed as sub-pools of 6,000-25,000 cosmids each, thus reducing the
complexity of the sequence assembly challenge from a mixture of 10*-10® microbial genomes in
the initial eDNA sample to roughly 50-250 genome equivalents per sub-pool (Figure 1b). In this
paper, we describe 6 metagenomic libraries constructed from soil samples collected from across
the United States and containing ~12-20M cosmids clones each (Figure S1).

Each sub-pool was sequenced to an average coverage of 25x using Illlumina short-read
sequencing technology. Raw reads were assembled using standard bioinformatic pipelines and
assembled contigs were annotated and ingested into a scalable, custom database for further
analysis. On average, we generated ~444Gb of assembled sequence per library with an
average of ~229Gb (~51%) of data contained on contigs >10kb (Figure 1a). In comparison to
the 5 largest soil metagenomic JGI datasets, on average, we generated 11.6X the amount of
assembled sequence per library with >140X more assembled data contained on contigs >10kb,
demonstrating the utility of our approach to increase the quality of the assembled sequence.
Merging contigs across sub-pools can further improve assembly quality, work not discussed
here. In total, across the six libraries, we generated ~2.7Tb of assembled sequence, of which
~1.4Tb is on assemblies >10kb.

In order to assess the relative diversity found in each library, we annotated open reading frames
in each library using Prodigal and compared the protein content (de-replicated at 90% amino
acid identity) of the six libraries to each other as well as to the UniRef90 dataset. On average,
each complete library contained 151M protein coding sequences, which is approximately the
size of the most recent release of the UniRef90 dataset (release 2022_02). We saw <0.6%
overlap between any of the libraries with UniRef90, consistent with the idea that the vast
majority of soil microbial diversity has never been cultured and would not be found in public
databases populated primarily with cultured organisms (Figure 1c). Strikingly, we saw only a
2.4% average overlap across all pairwise combinations of metagenomic libraries suggesting
that the microbial diversity in each soil sample was largely orthogonal to the other samples. In
total, across the six libraries, we annotated 901.3M open reading frames (de-replicated at 90%
amino acid identity by library).
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We used antiSMASH (Blin et al., 2019) to predict a total of >6.8M BGCs in the six sequenced
libraries (Figure 1d). Of these, NRPS systems represent the most common class (~2.5M),
followed by terpenes (~1.3M), RiPP’s (~1.2M), and polyketides (~1.1M). While these numbers
represent non-deduplicated BGC counts, we anticipate that, ultimately, these data contain
millions of distinct and novel BGCs based on the low protein coding sequence overlap within our
own libraries as well as with public sequence. To our knowledge, this is the single largest
database of BGCs in the world and it continues to grow. For comparison, a recent analysis of
~170,000 genomes in NCBI RefSeq database and ~47,000 metagenome assembled genomes
from various sources identified a total of ~1.2M non-deduplicated BGCs (Gauvriilidou et al.,
2022).

A resistance gene-based search strategy can be used to rapidly search metagenomic
diversity for BGCs encoding predicted bioactivities of interest

Our database of 6.8M BGCs provides access to a vast and untapped universe of novel
chemistry and bioactivity. The challenge, then, becomes one of prioritization. How can one
identify the small fraction of BGCs within this database that encode for molecules with the
potential to have meaningful therapeutic activity?

An attractive approach to address this challenge is to leverage the presence of self-resistance
enzymes (SREs) found within some BGCs (Tran et al., 2019) (Culp et al., 2022). An SRE often
encodes for a variant copy of the essential enzyme targeted by the NP encoded by the BGC.
This variant copy provides resistance to the toxic effects of the NP and enables the host to
survive the production of these molecules. For example, within the BGC encoding for the
proteasome inhibitor salinosporamide is an SRE encoding for a variant of the beta-subunit of
the proteasome that is resistant to the effects of salinosporamide (Kale et al., 2011). For the
purposes of genome-mining, the presence of an SRE within a novel BGC serves as a strong
predictor for the function of the encoded NP and could be used to specifically identify inhibitors
of a desired protein target. However, the utility of this approach has been limited by the relative
rarity of SREs within characterized BGCs and the modest sizes of existing BGC databases..

To assess the efficacy of mining our metagenomic database with an SRE-based strategy, we
selected human methionine aminopeptidase type 1 (HsMetAP1) as a protein target of interest.
HsMetAP1 cleaves the N-terminal methionine residues of nascent peptides and plays an
important role in protein regulation. It has also been identified as a target for potential antitumor
compounds (Frottin et al., 2016) (Behan et al., 2019), and there is one example of a bacterial
NP inhibitor of HsMetAP1, bengamide, that is encoded by a BGC that contains a methionine
peptidase SRE (White et al., 2017). To identify novel BGCs from the metagenome that encode
HsMetAP1 inhibitors, we searched a subset of our metagenomic database (~1.2M BGCs) for
BGCs that contain a gene encoding a methionine aminopeptidase within the predicted
boundaries of the cluster. The resulting BGCs were de-replicated and computationally prioritized
(Figure 2a). In total, we identified 35 BGCs that met our criteria. These BGCs spanned a broad
range of molecular classes, sizes, and predicted taxonomies (Table S1). Notably, none of the
identified BGCs resemble any characterized biosynthetic systems found in the MiBIG database
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(Kautsar et al., 2019) including that for bengamide, highlighting the novelty of metagenomic
diversity.

Heterologous expression of BGCs containing putative MetAP1 resistance genes
produced lysates with predicted inhibitory bioactivity

In order to assess the accuracy of these bioinformatic predictions, we selected two of these
biosynthetic pathways for heterologous expression studies The first BGC, ZYM301, contains
two predicted biosynthetic genes encoding for an NRPS (mtpB) and a methyltransferase
(mtpD), a transporter gene (mtpC), two genes of unknown function (mtpA and mipE), and the
methionine aminopeptidase putative resistance gene (mipF) (Figure 2b; Table S2). The domain
structure of the NRPS (mipB) is made up of three modules predicted by antiSMASH to
incorporate N-methyl-L-tyrosine, N-methyl-L-threonine, and N-methyl-L-valine, followed by a
thioesterase domain. The second BGC, ZYM302, contains a single-module PKS (orf8), an
NRPS-like gene (orf25), a varied set of thirteen biosynthetic genes, two transporters, seven
regulators and the methionine aminopeptidase putative resistance gene (orf22) (Figure 2b;
Table S3). Very little can be predicted about the building blocks used in the biosynthesis of the
ZYM302 metabolites, however analysis of the PKS and NRPS-like genes allow for some
predictions. The single module PKS (orf8) is predicted to produce and incorporate
6-methylsalicylic acid based on its sequence similarity to ChiB1 in the chlorothricin gene cluster
(51% ID) (Shao et al., 2006). The NRPS-like gene consists of an adenylation and thiolation
domain predicted by antiSMASH to incorporate phenylalanine.

Cosmids containing the complete ZYM301 and ZYM302 BGCs were isolated from our eDNA
libraries and the BGCs were subsequently subcloned into expression vectors. These
BGC-containing vectors, as well as an empty vector control, were conjugated into the host
strain, Streptomyces albus J1074. The resulting exconjugates were fermented in mO42 media
and crude organic extracts were screened for HsMetAP1 inhibitory activity using an established
colorimetric assay. We detected novel HsMetAP1 inhibitory activity in both sets of extracts,
consistent with our expectation that the putative resistance genes identified by our bioinformatic
search can be used to predict the biological activity of NPs encoded by novel BGCs encoded in
the metagenome (Figure 3a).

Identification of novel metabolites encoded by ZYM301 and ZYM302

LC-MS/MS analysis of the active extracts confirmed the presence of clone-specific metabolites
in both S.albus:ZYM301 and S.albus:ZYM302. For S.albus:ZYM301, differential analysis yielded
a list of 20 features in positive ionization mode that were detected in the S.albus:ZYM301
samples, but not in the empty vector control (Figure 3b). Molecular networking analysis
demonstrated that 19 of these features form a network based on the similarity of their MS/MS
spectral patterns (Figure S2). Further manual analysis and grouping of features that were
in-source fragments or adducts of the same compound, yielded a final list of 12 novel
compounds. These 12 compounds consist of one major species (m/z 867.5217), which we call
metapeptin A, and 11 relatively minor species that include metapeptin B-E, all eluting between
3.5 and 4.4 min (Table 1).
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Singly- and doubly-charged ions were detected for all compounds in full scan mode.
Data-dependent MS2 spectra were triggered for nine of the 12 compounds (Figure S3). All
compounds had a common fragment of m/z 164.1082, suggesting a fragment with composition
C,oH4sNO derived from an N-methylated tyrosine residue. The range of molecular weights
between 834 and 898 Da indicated that more than one of each amino acid building block was
incorporated into the molecule. A series of three compounds had differences of m/z 14.015,
suggesting differential methylation patterns of the same scaffold. No matches to known
compounds were found after dereplication against publicly available mass spectral databases.
Searches against an in-house mass spectral database of previously observed features in this
heterologous host also yielded no matches.

For S.albus:ZYM302, differential analysis yielded a list of 9 features in positive ionization mode
that were detected in the S.albus:ZYM302 samples, but not in the empty vector control (data not
shown). Dereplication against internal and external mass spectral databases yielded no
matches for these features. Apart from two features with identical masses (m/z 865.4912), but
different retention times, no obvious similarities in MS/MS fragmentation patterns were observed
for these 9 features. Bioactivity tracked with these two ions of interest in fractionation
experiments, but, due to low titers and compound instability, we chose to focus on ZYM301.

Orthogonal fractionation strategy efficiently identifies bioactive species within complex
mixtures

A major challenge in bioactive NP discovery is the unambiguous assignment of bioactivity to a
specific molecule within a complex mixture. As with the ZYM301 BGC, it is common for a newly
characterized strain and/or BGC to produce many novel or unknown metabolites. Rather than
attempt to purify each of the 12 novel molecules produced in S.albus:ZYM301, we opted for a
modified biochemometric strategy, similar to those developed by the Cech and Dorrestein
laboratories (Caesar et al., 2019) (Nothias et al., 2018). The goal of this approach is to
statistically link LC-MS/MS chemical metabolite profiles generated across a series of
chromatographically generated fractions with bioactivity measurements from the same fractions,
resulting in statistical correlations between specific metabolites and bioactivity. As a result of the
high sensitivity of the MS-analysis, these methods are particularly useful at discerning activity
associated with low titer metabolites that may be overlooked during purification due to coelution
with more abundant molecules which can result in incorrect assignment of bioactivity (Kellogg et
al., 2016).

We used three different types of fractionation in parallel rather than iterative rounds of bioactivity
guided analysis, which both accelerated the workflow as well as reduced the risk of
unsuccessful separation of novel metabolites during fractionation. An 8L fermentation of
S.albus:ZYM301 was extracted and fractionated using normal phase (silica), reverse phase
(C18), and size-exclusion (LH20) chromatography. An identically prepared set of fractions were
prepared from a 4L fermentation of an S. albus containing an empty vector control to serve as a
negative control within the bioassay. Each fractionation generated seven fractions for a total of
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21 experimental fractions across three types of columns, each of which were subjected to
bioassay and metabolomics analyses (Figure 4a).

We used a Partial Least Squares (PLS) Regression model to prioritize differentially expressed
compounds based on the selectivity ratio. The selectivity ratio measures the explained variance
versus residual variance and has been shown to be successful at identifying bioactive
compounds (Kellogg et al., 2016). By visualizing the selectivity ratios on the network plot for all
features in the fractions, we clearly see one connected component of features that have the
highest selectivity ratios (Figure 4b). Notably, the six differentially expressed features with the
highest selectivity ratios, including several in-source fragments, were associated specifically
with metapeptin B, one of the novel minor compounds produced in S.albus:ZYM301 (Figure 4c),
suggesting that most, if not all, of the observed bioactivity can be attributed to metapeptin B.

Metapeptin B is a novel cyclic depsipeptide that differs from metapeptin A by only a
single methylation

Given higher production titers, we first elucidated the structure of metapeptin A using a
combination of high-resolution electrospray ionization mass spectrometry (HRESIMS) and 1D
and 2D NMR data (Figure 5). HRESIMS analysis demonstrated an ion peak at m/z of 867.5217,
consistent with a molecular formula of C,sH;oNsO4o. The 'H NMR spectrum of metapeptin A has
signal distribution consistent with a typical peptide, containing a and (8 protons, aromatic proton
signals, as well as additional N-methyl signals. Extensive analysis of 2D NMR spectra, including
the correlation spectroscopy (COSY) and heteronuclear single quantum coherence (HSQC),
demonstrated the amino acid components as N,N-dimethyl tyrosine, N-methyl threonine and
N-methyl leucine, consistent with our bioinformatic prediction. Heteronuclear multiple bond
correlation (HMBC) spectra of metapeptin A established the linkage of amino acids, and
backbone of the 14-member ring of a cyclic peptide (Table S5, Figure S4). A detailed structural
elucidation is provided in the Supplementary Text.

The structure of metapeptin B was determined by tandem mass spectrometry (MS/MS) based
on comparative analysis of the HRMS/MS fragmentation data with metapeptin A (Figure 5,
Figure S5). The molecular formula of metapeptin B was established as C,sHgsNgO1o by
HRESIMS. Compared to metapeptin A, the Am/z = 14.0155 implicated the loss of a single CH,
group. In order to determine its location, we first analyzed the tandem mass spectrometry
spectrum of metapeptin A (protonated molecular ion of m/z 867) under optimized conditions.
Metapeptin A produced six main product ions at m/z 676.4280, 434.2649, 416.2544, 289.1547,
164.1070 and 126.0550. These ions and the fragmentation pathways were assigned (Figure
S5). Metapeptin B, under the identical mass spectrometry conditions, produced not only the
same product ions as metapeptin A, but also a series of pairing ions with Am/z = 14 pattern
(Figure S5). The fragment pair with m/z 164.1070 and 150.0913 suggested that the missing CH,
is associated with the N,N-dimethyl-Tyr moiety. While mass spectrometry was not able to further
confirm which carbon is missing, we propose that metapeptin B is an N-mono-methylated
congener of metapeptin A for two reasons. First, the first adenylation domain of the NRPS
(mtpB) is predicted to utilize tyrosine as a substrate by anitSMASH, making the incorporation of
N, N-dimethyl-hydroxyphenylglycine (HPG) highly unlikely. Second, an NRPS-embedded


https://www.zotero.org/google-docs/?uA0edl
https://doi.org/10.1101/2022.06.11.495772
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.11.495772; this version posted June 12, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

N-methyltransferase domain is known to be “leaky” and to produce demethylated shunt
products in addition to the mature products under culture conditions (Fukuda et al., 2004), or in
the absence of S-adenosyl-L-methionine (Billich and Zocher, 1987). Notably, the yield of
demethylated congeners of beauvericins, depsipeptides encoded by a dimodule NRPS, was
much lower than that of the fully methylated products (Fukuda et al., 2004) and this result
agrees with our observation that the yield of metapeptin B is ~22 fold lower than of metapeptin
A.

Metapeptin B is a sub-micromolar inhibitor of EcMetAP and is highly selective for
HsMetAP1 over HsMetAP2

To characterize their bioactivity, we ran the purified metapeptin A and metapeptin B material
through a set of enzyme inhibition assays. As predicted by our biochemometric analysis,
metapeptin B inhibits HsMetAP1 with an IC5, of ~50uM while metapeptin A shows no activity
even at the highest concentration tested (2mM) (Figure 6a-b), highlighting the importance of the
single methyl group difference between metapeptin A and B. Furthermore, metapeptin B, but not
metapeptin A, had inhibitory activity against the E. coli methionine aminopeptidase homolog,
EcMetAP, that was ~100-fold greater ( IC5,=~500nM) than that observed against HsMetAP1
(Figure 6¢-d), as might be expected for an inhibitor whose native target is the bacterial protein.

Notably, we saw no inhibition of the other methionine peptidase in the human genome,
HsMetAP2, by metapeptin B at 2mM (Figure 6e) indicating that unlike other known HsMetAP1
inhibitors such as bengamide (Garcia-Ruiz and Sarabia, 2014), metapeptin B is highly selective
for HsMetAP1 over HsMetAP2.

Asymmetric methylation of metapeptin B stabilizes the interaction of the cyclized dimer
with HsMetAP1

Availability of natural congeners at the point of discovery enables rapid SAR insights, and, in
this case, highlights the importance of both asymmetric methylation and macrocycle ring
formation. To investigate the latter, we designed and synthesized the singly methylated
tripeptide monomeric structure (NMe-Monomer) (Figure S6). The linear NMe-Monomer
demonstrated no detectable inhibition at 2mM, confirming the cyclization of metapeptin B is
critical for its target engagement, most likely due to conformational rigidity (Figure 7a).

To gain further insight into metapeptin B SAR, molecular docking, MMGBSA energy
calculations, molecular dynamics, and pKa calculations were performed. All methods indicated
better binding for the asymmetric monomethyl metapeptin B. Induced-fit docking on HsMetAP1
(PDB:6LZC) found that the conformations of the A and B variants show differences in both the
methyl amine sites and a flipping of the methyl amide linkers (Figure 7b). As a result of these
differences, the MMGBSA energies show a significant separation, with metapeptin B having a
lower, more favorable level, largely due to a change in DDGs solvation energy. Additionally, the
strength of the overall dipole of the two conformations differ by 7.05D (metapeptin A) versus
7.34D (metapeptin B) resulting in stronger electrostatic interaction with the metal ions for
metapeptin B. Metapeptin B also has a favorable orientation pointing at the metal ions in the
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pocket (Figure S7). When we look at the effects of pKa, we find that the pKa of metapeptinA
(7.76) versus metapeptinB (7.46) implies that a larger fraction of metapeptin A will be positively
charged and have an unfavorable interaction with the two positively charged metal ions. Finally,
molecular dynamics simulations indicate a more stable binding for metapeptin B. An RMSD of
the length of the key hydrogen bond of the monomethyl amine of metapeptin B to H212
indicates a higher interaction strength, as quantified by the frequency of occurrences in the
molecular dynamics trajectory, compared to the dimethyl amine of metapeptin A (Figure 7c).

In summary, the combination of experimentation and cheminfomatic modeling based on the
naturally available congeners, enables rapid insight into key structure-activity relationships and
provides a foundation for the design of advanced analogs

Metapeptin B does not inhibit mtpF confirming self-resistance enzymes can be used to
predict the function of unknown BGCs and identify structurally novel inhibitors

Our bioinformatic search strategy is based on our ability to identify bonafide SREs. To confirm
that the putative SRE gene in the metapeptin BGC (mipF) functions as a resistance gene, we
tested the ability of metapeptin B to inhibit the activity of the methionine peptidase variant
encoded by mipF. Consistent with its predicted role in alleviating metapeptin B toxicity, we found
that metapeptin B had no effect on the activity of the methionine peptidase encoded by mipF at
the highest concentrations tested (200mM) (Figure 8)

DISCUSSION

A “next-gen” natural product discovery platform

In this paper we describe a de novo NP discovery platform that enables targeted discovery of
novel NP modulators of protein targets of interest. We leverage access to vast, high-quality
metagenomic data from soil microbiomes, bioinformatic and data science approaches to identify
novel BGCs predicted to encode molecules with the desired bioactivity, and synthetic biology
workflows to produce and characterize these novel molecules. By doing so, we are able to
surmount key challenges of traditional fermentation-based NP discovery and identify a vast
untapped source of advantaged chemistry. We also demonstrate how to access this diversity in
a highly targeted manner for precision drug discovery.

Novelty: Fermentation-based NP discovery has been plagued by high rates of rediscovery, in
large part due to the dependence on cultured strain collections and standard fermentation
processes that leave many BGCs silent (Tomm et al., 2019). We are able to bypass these
limitations by enabling unprecedented access to metagenomic diversity. Our approach to
capturing and sequencing soil microbiomes generates orders of magnitude more high-quality
sequence information (contigs >10kb) than standard shotgun sequencing. This, in turn, enables
the annotation of millions of BGCs that, importantly, come from diversity that is orthogonal to
widely-explored cultured diversity. We find that there is little overlap between our sequenced
metagenomic libraries and public databases (<0.6%), consistent with estimates that >99% of
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microbial diversity in soil is not easily cultured. Strikingly, there is also little overlap between our
six metagenomic samples as well (~2.4% between pairs of libraries), suggesting that we have
only begun to scratch the surface of metagenomic diversity (discussed more below). As such,
our data demonstrate that metagenomic diversity represents a very distinct and deep source of
novel NPs. Furthermore, with the sequence of metagenomic BGCs in hand, it becomes
straightforward to identify which metagenomic BGCs have high similarity to known BGCs and
may encode the same or similar molecules.

Indeed, in this paper, our in silico analysis predicted 35 novel BGCs as likely to encode
methionine peptidase inhibitors. These BGCs encode a broad range of biosynthetic classes
(e.g. NRPS, PKS, terpenes, ladderanes, etc.) (Table S1), and none have similarity to
characterized BGCs in the MiBIG database. Both ZYM301 (NRPS) and ZYM302 (NRPS-like)
demonstrated the predicted bioactivity and ZYM301 was found to encode metapeptin B, a novel
depsipeptide inhibitor. Taken together, these results demonstrate the power of this approach for
finding novel, chemically diverse bioactive molecules for a specific target protein of interest.

Target-focused and efficient: Fermentation-based NP discovery typically relies on libraries of
extracts that generally are not compatible with high-throughput, target-based assays favored at
most pharmaceutical companies (Atanasov et al., 2021). Mixed extracts pose issues around
liquid handling, assay interference, toxicity, background inhibition, and more (Henrich and
Beutler, 2013). Instead, these libraries of extracts are more often screened in phenotypic assays
with readouts such as cell death, cell morphology changes, or changes in gene expression
(Wilson et al., 2020). The challenge posed by phenotypic screening, however, is that the
observed effects are mediated through unknown mechanisms and require extensive
down-stream mechanistic studies before relevance to a particular protein target or pathway of
interest can be determined. For many pharmaceutical companies, which are increasingly
target-focused in their approach towards drug discovery, this level of effort before determining
relevance is unacceptable.

By leveraging a resistance-gene search strategy, we place validated targets at the center of our
approach. In this paper, we selected HsMetAP1, a key translational regulator with strong
associations across a wide range of solid tumor cancers, as our protein target of interest. Rather
than screening through thousands of fermentation extracts with assays subject to significant
false positive and false negative rates, we quickly down-selected from >1 million BGCs to 35
candidates in silico to construct ultra-enriched and highly compact libraries of advantaged
chemical matter that can then be subjected to sensitive analysis.

We believe a resistance-gene based search strategy will be applicable for a broad set of human
protein targets. First, there is abundant precedent for bacterial NPs being approved as
modulators of human therapeutic targets. Rapamune (based on rapamycin) and Kyprolis (based
on epoxomicin) are two well known examples. Indeed, when we applied our resistance gene
search approach to find proteasome inhibitors, we recovered the epoxomicin family, the
salinosporamide family, as well as putative novel inhibitors (data not shown). Second, this
approach does not appear to be particularly sensitive to evolutionary distance, perhaps
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reflecting the importance of the core biology carried out by deeply conserved protein families.
Methionine peptidases are approximately ~40% identical between humans and bacteria while
proteasome subunits are only ~30% conserved. Despite the relatively low sequence identity, in
both cases, we see conservation of protein function and pharmacological tractability. Lastly,
while this paper has focused on our bacterial metagenomic database, we have built a similar
fungal metagenomic database. We foresee that some targets that are less tractable with
bacterial NPs will be readily tractable with NPs that have evolved specifically to target
eukaryotic proteins.

Capabilities needed to successfully operate this “next-gen” platform

While this “next-gen” NP discovery approach is extremely attractive for the reasons just
discussed, it is important to note that in order to turn this workflow into a platform that can be
run repeatedly, successfully, and at scale requires the development of a broad and non-trivial
set of capabilities.

Metagenomic diversity: Access to large-scale, well-assembled metagenomic DNA is central to
our approach. Not only is improved assembly quality critical to enable BGC discovery
(described above), but significant database scale is required to leverage resistance genes as a
search strategy. In the case of the methionine peptidase family analyzed in this study, we
estimate that no more than 1 in 20,000-80,000 BGCs would meet our criteria for further
exploration. While this number will no doubt vary for other target families, it implies that millions
of BGCs are required to confidently pursue a drug discovery program around a given target
given their rarity. The converse is also informative. Only one bacterial NP inhibitor of HsMetAP1,
bengamide, was previously known from public databases. Our ability to identify 35 additional
novel BGCs encoding putative HsMetAP1 inhibitors (including two validated BGCs) suggests
that the field has only uncovered the tip of the iceberg of resistance gene-containing BGCs. To
discover more, however, will require significant investments to expand metagenomic diversity.

Our results contrast sharply with the inherent limitations of strain collections. Indeed, our data
indicate we are far from saturating metagenomic diversity. In addition to the lack of overlap
between different metagenomic samples on a protein level, we only found the ZYM301 and
ZYM302 BGCs once in our metagenomic sequence data. We did not find the bacterial BGC
encoding bengamide at all, despite the amount of data we generated. Taken together, we have
detected no evidence of diminishing returns in terms of protein diversity, BGC diversity, and
presumably chemical diversity, and we do not anticipate being able to reach saturation for the
foreseeable future.

Data Infrastructure and Data Science: This approach requires sufficient data infrastructure to
not only capture and store enormous amounts of information, but to enable rapid search,
retrieval, and manipulation of the information as well. Well-conceived data architecture,
computational infrastructure, and efficient bioinformatic tools are critical, especially as the
amount of sequence information continues to increase.
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On the experimental side, data science approaches are imperative for prioritizing work on the
BGCs and molecules with the most promising activities. In the case of BGC selection, data
science will improve the accuracy of resistance gene identification and assessments of BGC
quality by leveraging experimental data and a range of criteria embedded in the sequence
information. Similarly, the application of data science to analytical data will improve the
sensitivity and accuracy of molecule detection and characterization as well as drive strategies to
increase titer.

Synthetic Biology: Lastly, heterologous expression of BGCs is required to access
metagenomic diversity. In this paper, we focused on two BGCs, ZYM301 and ZYM302, that
were conjugated into S. albus without promoter refactoring. Both expressed sufficiently to
confirm activity but only ZYM301 expression was adequate for isolation. ZYM302 illustrates the
importance of high titers to a robust discovery workflow. In this case, all experiments were done
in a single host (S. albus) with one media (mO42) and with modest process optimization
reserved for ZYM301. While optimization of these parameters can no doubt result in titer
improvements, reliance on fermentation optimization bears similarities to historical
pharmaceutical approaches and is operationally challenging to scale. In our experience,
synthetic biology - specifically high-throughput multi-edit genetic engineering of BGCs - is key to
controlled heterologous expression and enabling a robust metagenomic discovery workflow.

Relatedly, expression titers become exponentially more important as programs advance. As part
of this work, we have been developing a total synthesis of Metapeptin B (not shown). While this
is highly enabling for analog generation during lead identification, the efficiency of ring
cyclization is low, and would not support downstream lead optimization, preclinical development,
nor API supply. A semi-synthetic process based on fermenting a key intermediate will therefore
be required. In our experience, genome-wide host engineering (involving hundreds to tens of
thousands of edits) on top of intensive cluster engineering is required to achieve commercial
production economics. This is an important consideration for the success of our overall
approach.

Conclusion

NPs have provided some of the most important small molecule drugs in our pharmacopeia and
have impacted human health for decades and arguably millennia (Newman and Cragg, 2020)
Today, we are in an era of Al-enabled drug discovery (Chopra et al., 2022), using DELs and
other large-library formats to explorechemical space (Gironda-Martinez et al., 2021) and going
“beyond the rule-of-5” (Caron et al., 2020) to advance small molecule drug discovery. Our
“next-gen” approach to NP discovery allows us to tap into billions of years of evolution and thus
provides an orthogonal though complementary approach to expand chemical space and identify
advantaged starting points for drug discovery. Indeed, NPs can be powerful starting points to
enable Al-optimization (Begnini et al., 2021) (Bergner et al., 2019). Most importantly, we have
demonstrated two things. First, the universe of NPs that are relevant for targeted human drug
discovery is likely much larger than previously imagined. Second, by combining metagenomics,
data science and synthetic biology it is possible to do precision, data-driven, and scalable NP
drug discovery.


https://www.zotero.org/google-docs/?u8BiVm
https://www.zotero.org/google-docs/?BiwDaf
https://www.zotero.org/google-docs/?63qxgY
https://www.zotero.org/google-docs/?a7ptof
https://www.zotero.org/google-docs/?oEpfyO
https://www.zotero.org/google-docs/?Sy8k0l
https://doi.org/10.1101/2022.06.11.495772
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.11.495772; this version posted June 12, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

MATERIALS AND METHODS

eDNA libraries construction and sequencing

Soil eDNA libraries were constructed following a protocol adapted from the Brady protocol
(Brady, 2007). Briefly, eDNA was released from ~125¢g to 5009 of soil sifted through a 2mm
sieve by suspending it in an SDS detergent buffer and heating the mixture at 70°C for 2 hours.
After removing debris by centrifugation, DNA was extracted by alcohol or PEG precipitation and
further purified and size selected by field inversion gel electrophoresis. DNA in the 35-40kb
fraction was end-repaired and ligated into an appropriate library vector. Cosmid libraries were
constructed using MaxPlax™ Lambda Packaging Extracts (Lucigen Corp, Middleton, WI) as
sub-pools of between 6,000 and 25,000 cosmid clones. Each library was built out to contain ~20
million clones, with the exception of the Radiant library, which contained ~12 million clones.

Prior to preparing sequencing libraries the cosmid backbone was removed by digesting each
DNA sub-pool with an appropriate restriction enzyme and removing the small backbone
fragments. Purified insert sub-pools were then tagmented and barcoded using unique
combinations of lllumina i5 and i7 index primers. Final barcoded DNA libraries were size
selected and pooled at 1-4X 96-well plates per NovaSeq run, depending on the library
complexity.

Sequence Annotation

Following assembly, using metaSPAdes (Nurk et al., 2017), open reading frames (ORFs) were
called using Prodigal (Hyatt et al., 2010) and taxonomic classification for each contig was
assigned using Kaiju (Menzel et al., 2016). ORFs were further annotated with PFAM domains
using hmmer (Eddy, 1998) and PFAM-A database (Mistry et al., 2021). Biosynthetic gene
clusters were predicted on all contigs using antiSMASH v5 (Blin et al., 2019).

JGI analysis

To evaluate how Zymergen soil metagenomic libraries compare to the largest publicly available
soil metagenomic datasets, we looked to the Joint Genome Institute’s Integrated Microbial
Genomes & Microbiomes (IMG/M) database (https://img.jgi.doe.gov/cqgi-bin/m/main.cqgi). We
identified the 5 largest datasets in IMG/M based on the assembled genome size, corresponding
to IMG Genome IDs 3300050821, 3300043331, 3300042731, 3300043313, and 3300045391.
The assembly lengths of all contigs larger or equal to 10kb were extracted from the coverage
statistics file associated with each dataset and summed to yield the total assembly lengths
contained on contigs >10kb.

Library comparisons

To evaluate the overall novelty of sequence in the libraries, we first clustered each library
independently at 90% amino acid sequence using MMseqs2 algorithm (Steinegger and Séding,
2017), such that the clusters were composed of sequences containing at least 11 residues and
at least 80% overlap with the seed sequence of the cluster (i.e., the longest sequence in the
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cluster). Subsequently, the representative cluster outputs from individual libraries were
co-clustered together with the UniRef90 dataset (Release: 2020 01).

MetAP1 resistance gene search

To identify homologues of HsMetAP1, a BLASTp search was run against the Radiant and CA29
metagenomic libraries using the HsMetAP1 gene (P53582) as the query. To allow the search to
include distant homologues, a permissive cut off of e-value < 10 was chosen. The resulting hits
were narrowed down to those that share a contig with a BGC, as called by antiSMASH (Blin et
al. 2021). The BGCs closely associated with the MetAP1 homologues were run through
BigScape to group together similar clusters, allowing dereplication at a cutoff of 0.7
(Navarro-Munoz et al., 2020). Finally, the remaining BGCs were prioritized based on a number
of factors including the similarity of the putative resistance gene to HsMetAP1, the distance of
the putative resistance gene from the BGC, the presence of the resistance gene in an operon
with a biosynthetic gene, and the predicted completeness of the cluster. This resulted in a list of
35 “high quality” clusters that were candidates for producing a inhibitor for methionine
aminopeptidases.

Isolation of cosmids from eDNA libraries

To isolate cosmids containing BGCs of interest, primers specific to the clusters of interest were
designed to generate a 400-500kp amplicon. These primers were used to track the cosmids
through multiple rounds of serial dilutions by PCR. Briefly, a library well containing the cosmid of
interest was used to inoculate an overnight culture in LB supplemented with 100 ug/ml
carbenicillin. Using OD600nm, approximately 30 cells/well were inoculated in a 384-deep well
plate and grown overnight. Positive wells as assayed by PCR were then plated to single
colonies on LB (100 pug/ml carbenicillin) Q-trays to select for colony-PCR positive clones.
Isolated clones were sequence verified by lllumina NGS sequencing via tagmentation.

Assembly of BGCs into heterologous expression vectors

For heterologous expression of ZYM301 and ZYM302 after isolating the cosmids containing the
BGCs, yeast homologous recombination was used to transfer the BGCs to integrative (pTARw)
expression vectors containing yeast replication origins and selection markers. Briefly, pTARw
were digested with I-Scel and Pacl to linearize and expose ends that have homology to cosmids
sequences flanking the eDNA encoding ZYM301 and ZYM302 respectively. These digested
vectors were co-transformed with the cosmids of interest into Saccharomyces cerevisiae
(BMAG4) using a standard LiAc/SS carrier DNA/PEG method (Gietz and Schiestl, 2007). DNA
from PCR-positive yeast colonies were isolated using the ChargeSwitch™ Plasmid Yeast Mini
Kit (Invitrogen) and electroporated into epi300 electrocompetent cells. DNA extracted from
positive colonies checked by cPCR was sequence verified by lllumina NGS sequencing via
tagmentation.
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Heterologous expression

Heterologous expression plasmids for ZYM301 and ZYM302 were transformed into Escherichia
coli S17.1 cells and transferred into Streptomyces albus via conjugation. Exconjugant colonies
that grow on Mannitol Soya (MS) agar plates with nalidixic acid (30 ug/ml) and apramycin (50
pg/ml) were restreaked to single colonies. Four colonies that passed colony PCR verification
were glycerol stocked and then used to inoculate triplicate 3mL seed cultures (starting
0D450=0.05) in Tryptic Soy Broth (TSB) + apramycin (50 ug/ml) along with appropriate vector
and media only controls. Seed cultures were grown for 3 days at 30°C and then diluted 1:10 in 4
different media (042, mO42, R5A and ISP4) for fermentation. After 7 days of incubation at 30°C
for 7 days the cultures were then extracted as described below for AC analysis.

MetAP1 enzymatic assay validation

The primary methionine aminopeptidase colorimetric activity assay is based on a commercial kit
(R&D Systems) and further developed and optimized as follows. The reaction occurs in two
steps: enzyme activation and product detection. Enzyme activation, each well contains a 25 uL
mixture of activation buffer: 50 mM HEPES, 0.1 mM CoClI2, 0.1 M NaCl, pH 7.5; 100 uM of
fluorogenic tripeptide substrate Methionine-Glycine-Proline-7-amido-methylcoumarin (R&D
Systems ES017); and 2 ug/mL of MetAP enzyme (R&D Systems 3537-ZN). Product detection,
each reaction well is supplemented with 25 uL of 2 ng/mL DPPIV/CD26 (serine exopeptidase
diluted in activation buffer).

The assay was performed at room temperature in an opaque 384-well polystyrene plate and
measured in a black, flat bottom, 384-well plate. The assay is initiated as MetAP is mixed with
the tripeptide substrate and incubated for 5 minutes.The initial reaction will result in the
cleavage of methionine, yielding a dipeptide product, Gly-Pro-AMC. MetAP is then inactivated
by heating the reaction to 100 °C for 5 min and cooled on ice for an additional 5 min. Detection
of the dipeptide product is carried out via two orthogonal methods; degradation of the dipeptide
product via DPPIV protease and targeted LC-MS analysis of the dipeptide product. Incubation of
the reaction mixture with a DPPIV solution at room temperature for 10 minutes results in the
hydrolysis of the dipeptide and release amido-methylcoumarin, which is measured at 380/460
nm excitation/emission on a Tecan Spark microplate reader. The release of AMC, measured via
fluorescence, corresponds to the activity of the MetAP under analysis. Alternatively, the
dipeptide-AMC product is measured via LC-MS, using a standard (Sigma Aldrich G2761) to
quantify MetAP activity. Both analysis methods have been proven to yield comparable signals,
validating either method as a tool characterizing enzyme activity.

MetAP1 enzymatic assay background controls

As is typical in enzyme kinetics, the initial rate of enzyme hydrolysis is used to measure enzyme
activity, with background hydrolysis being subtracting from the enzymatic output to observe
accurate MetAP activity. Background controls were vetted by removing key reagents from the
reaction mixture to ensure that activity was dependent on the expected agents (substrate,
enzyme, co-factors) and when any one was not present, enzyme activity above background was
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not observed. All MetAP enzymes tested tolerated up to 10% DMSO and 5 % Methanol without
significant enzyme inactivation.

Two additional controls were established to confirm that observed inhibition is specific to MetAP
and not the DPPIV protease used in the colorimetric readout. First, bioactive fractions/molecules
(including metapeptin B) were incubated with the dipeptide product and the DPPIV protease. In
all cases, the fractions/molecules showed no inhibition of the hydrolysis of the dipeptide by the
DPPIV protease and release of AMC, indicating that the observed inhibition is specific to MetAP.
Second, to address concerns about potential false positives with the colorimetric assay, LC-MS
analysis was also used to confirm the increase in the MetAP cleavage product, GP-AMC, in
positive control reactions.

Finally, S. albus fermentation extracts can have overlap in fluorescence with the AMC readout
used to measure activity in the colorimetric assay. To control for this potential interference, an
inhibitor control was established by incubating the test inhibitor in the activation buffer and
measuring its fluorescence. This value was then subtracted from the MetAP+inhibitor reaction to
determine the true impact of the inhibitor on enzyme activity. Conversely, S. albus extracts may
also cause non-specific inhibition at relatively high concentration within the assay. We
determined that 0.1-0.5 mg/ml was an acceptable range for the working concentration of
extracts/fractions that enable the detection of inhibition while maintaining relatively low
background fluorescence.

Sample Preparation for UPLC-MS/MS analysis

Three mL of fermentation broth was extracted twice with 3 mL ethyl acetate (HPLC grade,
Fischer) by shaking for 1 minute at 1000 rpm followed by sonication for 15 minutes. Samples
were centrifuged, and the organic layer was collected and pooled to yield 6 mL of extract. The
ethyl acetate was removed under reduced pressure in a Speedvac Savant (Thermo). Dry
samples were suspended in 120 uL methanol (LC-MS grade, Fisher) and transferred to HPLC
vials. A pooled sample for each medium was generated by combining 30 uL aliquots from
replicate samples of each medium type.

UPLC-MS(/MS) data acquisition

Samples were subjected to ultra performance liquid chromatography mass spectrometry on a
Q-Exactive Mass Spectrometer (Thermo Fisher) connected to a Vanquish Liquid
Chromatography system (Thermo Fisher). A gradient of water (mobile phase A) and acetonitrile
(mobile phase B), each containing 0.1% formic acid, was employed with a flow rate of 0.5
mL/min on a Zorbax Eclipse Plus C18 RRHD 2.1 x 50 mm, 1.8 ym column (Agilent), operated at
40C. The gradient started at 2% mobile phase B, holding for 1 min, followed by a linear gradient
to 100% mobile phase B over 7 minutes, and then held at 100% mobile phase B for 2 minutes,
returning to initial conditions over 0.1 min and holding for 0.9 min for a total run time of 11 min.
The mass spectrometer was operated at spray voltage: 3.6 kV, capillary temperature: 275,
sheath gas flow rate: 25, auxiliary gas flow rate: 10, S-lens RF level: 70. Full scan mass spectra
were acquired in positive and negative ionization mode from m/z 200-1500 at 70K resolution
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and ACG target of 3e°, and maximum ion fill time of 200 ms. Data-dependent MS2 spectra were
acquired in positive and negative ionization mode for pooled samples, collecting a full MS scan
from m/z 200-1500 at 70K resolution and ACG target of 3e®. The top five most abundant ions
per scan were selected for MS/MS with a resolution of 17.5K and ACG target of 1e°, and
stepped collision energies of 10, 20 and 40 NCE. Maximum ion fill time was 50 ms, dynamic
exclusion was 3 sec, and an isolation window of 1 m/z was used.

Untargeted Data analysis

Positive and negative ionization mode datasets were obtained by acquiring full scan mode data
of each sample, as well as data-dependent MS2 data of each pooled sample. Raw data were
exported to Compound Discoverer Software (v3.1, Thermo) for deconvolution, alignment and
annotation. Putative novel feature dereplication was performed against an in-house database of
previously acquired features, using a custom Python script which matched features within a
mass and retention time threshold of 5 ppm and 0.2 min, respectively. MS2 data were converted
to mzml format using Compound Discoverer and exported to Ometa Labs Flow Analysis
Platform. Molecular networking analysis was performed using the Classical Networking
workflow (see supplemental information for workflow parameters). MS2 spectra of related
compounds were grouped within the dataset according to similarity, and searched against
reference spectral libraries (GNPS, NIST, MoNa).

Extraction Methodology for Orthogonal Fractionation

ZYM301: The 8 L of ZYM301 and 4 L of empty plasmid control were processed identically.
Bacterial cells were first removed via centrifugation (5000 RPM, 15 min) and discarded. The
clarified broth was extracted with a 5% (w/v) addition of activated HP20 resin, and allowed to
gently stir overnight. The resin was filtered from the aqueous broth, then extracted with
methanol (2 x 1 L), followed by acetone (2 x 1 L). The organic fractions were combined and
dried in vacuo, yielding a thick aqueous suspension. The aqueous layers were diluted to 500 mL
using distilled water, and then partitioned against an equal volume of ethyl acetate four times (4
x 500 mL). The ethyl acetate layer was dried over MgSO,, filtered, and finally dried in vacuo
yielding 522.18 mg of BGC extract, and 249.55 mg of control extract. These extracts were
reconstituted in methanol, and partitioned into three roughly equal aliquots for fractionation.

ZYM302: ZYM302 (2 L) and the corresponding empty vector control (2 L) were extracted
identically. Cells were removed via centrifugation (5000 RPM, 15 min) and discarded. Clarified
broth was extracted via liquid-liquid partition using an equal volume of a 4:1 mixture of ethyl
acetate and isopropanol (3 x 2 L). Organic layers were combined, and dried in vacuo yielding
thick brown oily residues for both ZYM302 and its corresponding empty vector control (3.585 g
and 1.571 g respectively). This material was partitioned into ~200 mg aliquots for further
processing.

Orthogonal Fractionation

Silica fractionation ZYM301: Flash chromatography was performed using a Biotage Selekt
automated chromatography system utilizing pre-packed Biotage Sfar HC Duo (10 g) silica
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columns. Both the empty vector control extract (79.35 mg), and the ZYM301 extract (173.21
mg) were fractionated identically. Material was fractionated using a flow rate of 40 mLmin™',
collecting 60 mL fractions (4 CV). Material was eluted using a three-solvent system, consisting
of hexanes (solvent A), ethyl acetate (solvent B), and methanol (solvent C). The column was
initiated with a linear increasing gradient from 30% to 100% solvent B in solvent A for 12 CVs
(F1-F3). This was followed by an isocratic elution using 100% solvent B for 4 CVs (F4). This
was followed by another linear increasing gradient from 10% to 80% solvent C in solvent B over
8 CVs (F5-F6). Finally, an 80% isocratic wash of solvent C in solvent B was performed, over 8
CVs. This generated another 2 fractions that were combined into a single final fraction (F7),
yielding 7 fractions in total for both extracts. Fractions were dried into pre-weighed vials using a
V10-touch evaporator (Biotage) coupled with a Gilson GX-271 Liquid Handler. Fractions were
used for both bioactivity assessment and MS-analysis without further purification. For
MS-analysis, samples were brought up to a concentration of 1 mgmL™', and 4 yL was injected
and run using the UPLC-MS/MS method previously described.

Silica fractionation ZYM302: Fractionations were carried out identically for both ZYM302 (204.8
mg) and empty vector control (201.1 mg). Fractionations and MS-analyses were carried out
using the same gradient, flow rate, drying procedure, and sample concentrations as previously
described for ZYM301. The only difference was 30 mL fractions were collected (2 CV each).
Using the same solvents and gradient for elution as described above, the fractions were
generated as follows, 12 CVs (F1-F6), 4 CVs (F7-F8), and 8 CVs (F9-F12). The final 8 CVs
were divided into 2 x 4 CV blocks (F13-F14), yielding 14 fractions total.

C18 Fractionation ZYM301: Flash chromatography was performed using a Biotage Selekt
automated chromatography system utilizing pre-packed Biotage Sfar C18 (12 g) columns. Both
the empty vector control extract (83.98 mg), and the ZYM301 extract (174.10 mg) were
fractionated identically. Material was eluted with a flow rate of 12 mLmin™ collecting 68 mL
fractions (4 CV). Material was eluted using a simple 2-solvent gradient system, consisting of
H,O (solvent A), methanol (solvent B). The column was first washed with 5% methanol in H,O
for 4 CV (F1), followed by a linear increasing gradient from 5% to 100% methanol over 20 CV
(F2-F6). An isocratic gradient of 100% methanol was then applied for 8 CV, and this wash was
combined into one fraction (F7), yielding 7 fractions in total. Fractions were dried into
pre-weighed vials using a V10-touch evaporator (Biotage®) coupled with a Gilson GX-271
Liquid Handler. Fractions were used for both bioactivity assessment and MS-analysis without
further purification. For MS-analysis, samples were brought up to a concentration of 1 mgmL™,
and 4 pL was injected and run using the UPLC-MS/MS method previously described.

C18 Fractionation ZYM302: Fractionations were carried out identically for both ZYM302 (208.5
mg) and empty vector control (200.8 mg). Fractionations and MS-analyses were carried out
using the same gradient, flow rate, drying procedure, and sample concentrations as ZYM301.
The only difference was 34 mL fractions were collected (2 CV each). Using the same solvents
and gradient for elution as described above, the fractions were generated as follows, 4 CVs
(F1-F2), and 20 CVs (F3-F12). The final 8 CVs were divided into 2 x 4 CV blocks (F13-F14),
yielding 14 fractions total.
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LH20 Size-Exclusion Fractionation ZYM301: Size-exclusion chromatography was performed
with a hand packed LH20 column (15.9 x 600 mm). Both the empty vector control extract (86.22
mg), and the ZYM301 extract (174.87 mg) were fractionated identically. Material was eluted
using 100% methanol, with a flow rate of ~0.5 mLmin™" collecting 4 mL fractions over 180 mL,
yielding 45 initial fractions. Due to mass limitations, fractions 1-10 were combined (F1), and then
every 4 fractions from 11-30 (F2-F5), and all remaining fractions (31-45) were combined (F7)
yielding 7 fractions in total. Fractions were dried using a Speedvac Vacuum Concentrator, and
used without further purification. For MS-analysis, samples were brought up to a concentration
of 1 mgmL", and 4 uL was injected and run using the UPLC-MS/MS method previously
described.

Orthogonal fractionation data analysis

The input features for the PLS analysis were all features from the gene cluster and empty vector
sample for which MS2 data was captured. Features that were more than 0.9 cosine similarity
were combined into a consensus spectrum. For each feature, the peak area was determined via
XIC integration with 0.2 tolerance on the retention time. Peak areas were then normalized to
sum to equal amounts for each fraction. For the union of all 38523 features across all 21
fractions (7 fractions for 3 different fractionation methods), the normalized peak areas were cast
into a feature matrix of dimension 21 x 38523. The corresponding bioactivity vector of dimension
21 was composed by taking the average inhibition percentage across the three replicates and
subtracting the inhibition observed in the same fraction for the empty vector.

A PLS analysis with two components and standard scaling was then run on the resulting feature
matrix and bioactivity matrix, and the selectivity ratios were calculated from the resulting PLS
vectors. Features with a differential expression ratio (measured by the sum of peak areas
across all fractions for the gene cluster sample versus empty vector control) less than 100 were
disregarded. The resulting selectivity ratios were tabled and plotted on top of a network plot for
all gene cluster and empty vector sample features by scaling the node size for each feature.
The network plot was run with a cosine similarity cutoff of 0.7, 8 matching peaks and a
maximum shift of 250.

Purification

After 7-day culture period, 180L worth culture flasks were combined and centrifuged (4,000 rpm
for 10 min). Mycelial portion was discarded. The supernatant was absorbed onto HP20 resin
(5%, wiv) for overnight overhead spinning. The resin was filtered and washed with water to
remove water soluble components. The resin was extracted in ethyl acetate (12L). The organic
phase was dried in vacuo to afford 70g of dried crude extract.

Crude extract was subjected to a size exclusion column packed with Sephadex LH-20 and

manually fractionated in methanol. The fractions were screened by LC-MS. Fractions containing
the compounds of interest were combined and subjected to preparative HPLC purifications. The
first round of HPLC was conducted on a C18 column (250 X 10 mm, phenomenex, CH;CN-H,0,
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0.1% FA, flow rate: 8ml/min), and the second round of HPLC was conducted on a phenyl hexyl
column (250 X 10 mm, phenomenex, CH;CN-H,0, 0.1%FA, flow rate: 8ml/min).

HPLC fractions containing the compounds were dried to yield metapeptin A (25mg) and
metapeptin B (1.8mg).

Metapeptin A, white, amorphous powder, (+)-HR-ESIMS m/z = 867.5224, [M + H]" (calcd for
C46H71 N6010+, 8675226)

Metapeptin B, white, amorphous powder, (+)-HR-ESIMS m/z = 853.5069, [M + H]* (calcd for
C4sHggN6O40", 853.5070)

NMR

All NMR spectra were recorded on a Bruker AVANCE at 900 MHz ("H NMR) and 226 MHz
("*C NMR). NMR spectra were analyzed using Mestrenova 9.0.1.

Monomer synthesis

The NMe-Monomer was designed with all natural (L) stereochemistry based upon bioinformatic
prediction from the encoded BGC analysis. The molecule was synthesized in 8 steps as
illustrated in Figure S6. Detailed synthetic procedures and characterization are available upon
request.

Molecular modeling

Most simulations were carried out with Schrodinger’s Small Molecule Drug Discovery Suite
version 2022-1. Glide docking was done with the XP precision level with post-docking
minimization and applying strain correction terms. MM-GBSA calculations used the VSGB
solvation model with OPLS4 force field. Induced-fit docking was completed with the Extended
Sampling protocol generating up to 80 poses, residues within 15 A of the binding site were
refined, and the docking was done with SP precision. Jaguar was used for the pKa calculations
using B3LYP-D3 level of theory and the 6-31G** basis set. Maestro was used for computing
dipoles and making the docking poses picture. The dipole result was a property calculated by
QikProp. Desmond was used for the molecular dynamics simulations using the NPT ensemble
class at a temperature of 300 K for 25ns. PDB ID 6LZC was used for the HsMetAP1 protein.
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Figure 1. Metagenomic libraries contain vast, orthogonal diversity. A) Total assembly lengths for the 6 soil
metagenomic libraries described in this paper and the 5 largest soil metagenomics datasets from JGI. Percentages
indicate the fraction of assembled sequence contained on contigs >10kb. Libraries described in this paper contain,
on average, 11.6X more total assembled sequence and 140X assembled sequence on contigs >10kb. B) Schematic
diagram for generating reduced-complexity metagenomic libraries. eDNA cosmid library containing ~35-40kb of
eDNA/cosmid is generated via A phage transfection as sub-pools containing 6-25K clones. Barcoded sequencing
libraries are generated and sequence is assembled by sub-pool to generate long assemblies. C) Pairwise
comparison of overlap between protein coding sequences in metagenomic libraries clustered at 90% aa identity as
well as UniRef90 (in bold). D) NRP, terpene, RiPP, and polyketide clusters are the most common major biosynthetic
gene classes represented in the metagenomic libraries (non-deduplicated data).
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Figure 2. Identification of BGCs containing putative MetAP resistance genes. A) A flowchart showing the
generalized workflow for identifying clusters that will produce inhibitors of target genes of interest. B) ZYM301
(metapeptin) and ZYM302 gene clusters. ZYM302 is displayed over two lines for clarity, split in the 65 bp
intergenic region between orf18 and orf19. Genes are colored based on the predicted function assigned by gene
identity and antiSMASH (Tables S2-S3), with the methionine aminopeptidase target genes called out in yellow.
The domain organization of PKS and NRPS-like genes are shown above the genes, labeled as adenylation (A),
methyltransferase (MT), thiolation (T), condensation (C), thioesterase (TE), ketosynthase (KS), acyltransferase
(AT), dehydratase (DH), ketoreductase (KR), or acyl carrier protein (ACP).
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Figure 3. Crude extracts from S.albus:ZYM301 and S.albus:ZYM302 inhibit HsMetAP1. A) Crude extracts (0.5mg/ml)
from S. albus:ZYM301, S. albus:ZYM302, S. albus empty vector control (EV) and Bengamide B control (100 uM) were
incubated with HsMetAP1 and tripeptide substrate for 20 minutes and assayed for methionine peptidase activity. Controls
included a DMSO vehicle control (+enzyme) and reactions that did not contain hsMetAP1 (-enzyme). Observed Inhibitory
activity were separately validated via LC-MS. Error bars represent the standard deviation of the mean, n=3. **Statistical
significance assessed via Dunnett’s, p-value (<0.001). B) Total lon Chromatograms of a representative S. albus:ZYM301
and empty vector control sample highlighting the region where novel features were detected (above), and Extracted lon
Chromatograms of Metapeptin A and B (below).
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Table 1. Novel compounds identified by untargeted LC-MS/MS analysis.

Calculated Retention

Metapeptin Observed m/z Molecular Weight time
901.4738 [M+H]™, 451.2436 [M+H]" 900.466 3.58

C 839.4909 [M+H]", 420.2483 [M+H]" 838.4831 3.92
853.5067 [M+H]™, 427.2600 [M+H]* 852.4989 3.95

889.5046 [M+H]*!, 445.2537 [M+H]"2 888.4963 3.97

A 867.5217 [M+H]", 434.2649 [M+H]*? 866.5139 3.98
885.5313 [M+H]", 443.2696 [M+H]"? 884.5235 4.01

855.4876 [M+H]™, 428.2474 [M+H]" 854.4798 4.06

E 883.5175 [M+H]", 442.2617 [M+H]* 882.5097 4.09
899.5128 [M+H]*, 450.2625 [M+H]*? 898.5049 4.16

D 851.5274 [M+H]*!, 426.0726 [M+H]** 850.5195 4.20
869.5346 [M+H]*, 435.2707 [M+H]*? 868.5268 4.20

835.5323 [M+H]™, 418.2700 [M+H]*? 834.5244 4.40
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Figure 4. Biochemometric strategy indicate metapeptin B is largely responsible for observed bioactivity. A)
Bioactivity assays of the 21 fractions generated using C18, Silica and LH20 size exclusion chromatography columns.
Significant inhibition by S.albus:ZYM301 fractions are outlined in a dotted box. B) A molecular network of all the
features detected with MS2 data across 21 fractions, and a magnified view on the connected component that contains
the compounds with the highest selectivity ratio. The node size indicates the selectivity ratio and the pie chart
indicates the fractionation method it was observed in (green: Silica, red: C18, blue: LH20). C) Top 10 differentially
expressed features sorted by selectivity ratio and the compounds with which they are associated.
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Figure 5. Structures of metapeptin A and B. The red circle highlights the single methyl difference between the two
molecules.
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Figure 6: Metapeptin B inhibits HsMetAP1 and EcMetAP, but not HsMetAP2. Metapeptin A and metapeptin B
(100 pM) were incubated with A) HsMetAP1, C) E. coli MetAP (EcMetAP), E) HsMetAP2 and tripeptide substrate
for 20 minutes and assayed for methionine peptidase activity. Controls included a DMSO vehicle control
(+enzyme) and reactions that did not contain enzyme (-enzyme). Error bars represent the standard deviation of
the mean, n=3. B) Dose response curve of Metapeptin B (0.5 uM — 500 pM) against hsMetAP1. Non-linear
regression (variable slope) analysis used to fit the curve. Error bars represent the standard deviation of the mean,
n=9. Statistical significance assessed via ANOVA, p-value (<0.001). D) Dose response curve of Metapeptin B
(100 nM — 5000 nM) against EcMetAP1. Non-linear regression (variable slope) analysis used to fit the curve.
Error bars represent the standard deviation of the mean, n=9. Statistical significance assessed via ANOVA,
p-value (<0.001).
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Figure 7. SAR demonstrate the importance of the cyclization and asymmetric methylation of metapeptin B for its
interaction with HsMetAP1. A) Metapeptin B and the NMe-Monomer linear tripeptide (100uM), were incubated with
HsMetAP1 and tripeptide substrate for 20 minutes and assayed for methionine peptidase activity. Controls included a DMSO
vehicle control (+enzyme) and reactions that did not contain enzyme (-enzyme). No inhibition was observed with
NMe-Monomer, highlighting the importance of cyclization of metapeptin B for bioactivity. B-C) Three different molecular
simulations (docking, MMGBSA, molecular dynamics) support stronger binding for metapeptin B. B) Induced fit docking
shows conformational differences resulting in better docking score and MMGBSA energies (more negative is more favorable)
including a large DDGs solvation change. C) Lower RMSD for distance to binding pocket residues for metapeptin B indicates

more stable binding.
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Figure 8: Methionine peptidase encoded by the putative resistance gene in metapeptin cluster (mtpF) is
not inhibited by metapeptinB. Metapeptin B was incubated with the methionine peptidase encoded by mipF
and tripeptide substrate for 20 minutes and assayed for methionine peptidase activity. Controls included a DMSO
vehicle control (+enzyme) and reactions that did not contain enzyme (-enzyme). Error bars represent the

standard deviation of the mean, n=3.
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