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I. SUPPLEMENTARY METHODS of such methods.

i. ClnCNV input data normalization 3. Normalized signals should not only tell if
coverage was increased or decreased but

also indicate the exact copy number. In
essence, the property that the read depth
in one copy of a particular region should

We decided to develop a data normalization
procedure, aiming for the following goals:

1. We want to reduce the level of noise in

data as much as possible without introduc-
ing unnecessary complexity since sophisti-
cated methods for normalization may be
computationally expensive, and it may be-
come a limiting factor for the usage of our
method.

. Estimation of parameters has to be statisti-
cally robust. In other words — tolerate as
many outlying values as possible since the
read depth data is predisposed to have
many artefacts even after carefully per-
formed library preparation and sequenc-
ing. As a consequence, we had to avoid
complex statistical models with the estima-
tion of many parameters since it is techni-
cally challenging to control the robustness
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be twice smaller than the number of reads
sequenced from 2 copies should be pre-
served. Thus, methods such as Singular
Value Decomposition (SVD) were inappli-
cable due to the fact that they “rotate”
space of basis vectors, and distances there
become hardly interpretable.

. Usually, most of the genetic material re-

mains copy-number state equal to the
ploidy state (e.g., normally nearly all the
genomic material in human autosomes is
diploid), so it is not possible to directly
estimate parameters for statistical mod-
els for each copy-number due to lack of
data points for estimation. Having prop-
erty 3), we can estimate mean levels of
normalized read depth for different copy-
number statuses having only data from
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samples that have the normal number of
copies, but we also need to estimate the
variance in coverage depth for all the dif-
ferent copy-number models. We assume
that read depth follows the Poisson distri-
bution and uses square root transforma-
tion where possible since it stabilizes the
variance |[Anscombe et al., 1948].

Q1

. During recent decades, the cost of sequenc-
ing dropped significantly, and it is much
more common to have large cohorts of
samples sequenced. Thus, we assume that
the number of samples used for normal-
ization is large. However, an important
consideration is that even if a large co-
hort of samples were sequenced within
the same sequencing facility and using
the same procedure, it might happen that
samples will still be affected by different
batch effects. Therefore, one of the goals
of normalization is to determine the most
similar samples at first and then perform
normalization within the cohorts stratified
according to the sources of potential bias
(typically, these sources are not observed).
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Figure 1: Main steps of within-sample normalization
used in ClinCNV.

Using a restricted set of transformations for
data normalization provides an opportunity

to infer the expected amount of coverage in-
crease. Variance stabilization transformation
helps to infer variance in coverage without es-
timation of variance for statistical models of
all copy numbers — we may estimate variance
for the “majority of the samples” first and then
assume that the coverage generated from dif-
ferent copies of the segment will have the same
variance.

Homozygous deletions should be treated dif-
ferently from other copy-number states in sta-
tistical modelling. The variability of the num-
ber of reads in homozygously deleted regions
is not driven by the underlying amount of
DNA, but the mapping process, which leads to
non-zero read coverage even for missing parts
of the genome. However, the inference of the
statistical model for coverage in homozygously
deleted regions is not straightforward, so we
typically assume the mean level of expected
coverage equal to 0 and variance equal to the
variance of normalized coverage estimated for
other copy-number states. We exclude data
points that are closer to 0 than to the level of
coverage expected for one-copy (heterozygous)
deletions when we perform copy-number poly-
morphisms calling.

ClinCNYV utilizes coverage depth values mea-
sured within windows (tiles) from the pre-
specified set of intervals, which may be regions
of enrichment and off-target regions for tar-
geted sequencing such as TPS or WES or ap-
proximately uniform binning across the whole
reference genome for WGS. Reads with low
mappability (5 or less) usually are not counted
(however, they have to be included in case the
detection of variants within repetitive regions
is preferred over the low level of stochastic
noise). To correct for GC bias, we divide GC
content into bins of similar GC content and
use medians of coverages in such bins for nor-
malization. Tolerance of GC content equality
depends on the number of regions - by default,
we round all the GC content up to 2 signifi-
cant digits, but if less than 95% of the regions
have at least 50 data points per GC value, we
relax the tolerance value. The first steps of
normalization are depicted on fig.



bioRxiv e June 2022

We also noticed that for TPS and WES the
lengths of the targeted regions are also a source
of additional biases due to an uneven density
of enrichment probes required to cover regions
of different lengths. For example, using probes
of uniform length X, we may expect all the col-
lapsed (which means obtained as the overlap
between all the targets in a particular part of
the genome) regions with length less than or
equal to X covered with just one probe, but
for regions of length slightly more than X and
less than 2X at least two probes are required
which leads to increase of coverage in such re-
gions. We correct such bias prior to GC content
correction using locally estimated scatterplot
smoothing (LOESS) using log2(length) as a pre-
dictor, which leads to up to 3% decrease in the
individual sample’s coverage standard devia-
tion. This effect disappears for large regions
or for coverage windows that are equally long
across the genome. We filter out collapsed re-
gions smaller than 50 bp since they often cause
outlying coverage values.

Another strategy for target length induced
bias in TPS and WES samples is binning col-
lapsed regions into smaller overlapping win-
dows. Due to the availability of enrichment
probes and their intended targets for Agilent
SureSelect Human All Exon enrichment kit
(up to version 6) and several hundreds of
non-tumor samples, we were able to investi-
gate major sources of biases in sequencing re-
sults. As expected, we have observed peaks of
coverage located at the centres of enrichment
probes. We were also able to infer a strategy
applied to the design of whole-exome enrich-
ment kits produced by Agilent, and we have
found that enrichment probes are designed in
such a way that the difference between probes
is equal to 80 base pairs while the length of
probes is equal to 120 base pairs. A similar
discovery was made by [Parrish et al., 2017]
where the performance of ExomeDepth tool
[Plagnol et al., 2012] was the best using the
coverages summarized in windows of the size
of 120 base pairs which is equal to the used
enrichment probes’ length. We have tried
to divide targeted enrichment regions accord-

ingly and analyzed several hundreds of sam-
ples. For each consecutive pair of windows
we divided read coverage into three parts: cov-
erage from non-overlapping part of the left
window, coverage from the overlapping part
and coverage from the non-overlapping part
of the right window. We calculated cover-
ages for non-overlapping parts and divided
the coverage from the overlapping parts pro-
portionally to the coverage of non-overlapping
windows’ parts. We concluded that the nor-
malizations such as GC-content normalization
worked more efficiently after such binning and
larger parts of the enriched regions became
available for the analysis with ClinCNV (since
we filter out all windows with less than 50 re-
gions with exactly the same GC). However, the
results of subsequent CNV calling and the man-
ual examination of detected variants that are lo-
cated within the borders of the collapsed target
regions showed that most of the CNVs detected
were not supported by other evidence such as
the presence of split-reads or wrong paired
reads orientation. The absence of such alterna-
tive evidence, as well as the unexpectedly high
number of homozygous deletions detected, in-
dicated that the vast majority of findings are
most likely false positives caused by technical
issues of library preparation and sequencing.
Thus, we were not able to conclude that such a
strategy improves the results sufficiently. Since
the binning procedure creates an additional
step in the bioinformatics pipeline, which is
quite a time consuming, we used the previ-
ously described strategy for length induced
bias correction.

In order to be able to work with sex chro-
mosomes, we infer the sampled individual’s
gender during the first steps of our algorithm,
calculating medians of X and Y chromosomes’
coverage and running k-means with two ex-
pected components centred at (1,0) and (0.5,
0.5) and assign sex as “female” or “male” for
samples from these 2 clusters, respectively.



bioRxiv e June 2022

i.1 Removing batch effects via clustering

Batch effects in read coverage depth data
may be removed using several statistical tech-
niques, such as SVD [Krumm et al., 2012] or
PCA [Fromer et al., 2012], but it is relatively
difficult to control the robustness of such meth-
ods in different types of data. In particular,
a few short CNVs or a small number of bad
quality samples can not affect most of the batch
effect correction techniques, but if a large frac-
tion of a genome is altered by CNVs due to the
presence of aneuploidies, many short CNVs
or a significant amount of noisy samples — all
such factors may have a dramatic effect on
batch effect removal efficiency. Instead, we pro-
pose a clustering method for the separation of
sub-groups of samples with similar patterns
of technical variation and performing analysis
within groups of similar samples.

For coverage normalization for CNV calling
in parent-child trios, the desired property is
to analyze all three samples within the same
cluster. In the vast majority of cases, this re-
quirement is automatically satisfied since trios
are usually prepared and sequenced at the
same time; however, in practice, there were
some exceptions. To correct the clustering of
such samples, i.e., to force all 3 related samples
from the trio to end up in the same cluster,
we choose median coverage value for each ge-
nomic region from these 3 samples, add small
random noise and assign such coverage pro-
files to all the samples from the trio. This re-
placement of actual coverage values with the
median-smoothed profile across the trio is used
for clustering only.

An important parameter that has to be se-
lected for each dataset separately is the min-
imum number of samples inside each cluster.
Clustering into smaller groups of highly sim-
ilar samples is better for batch effect removal,
but the decrease in sample size increases errors
in the statistical estimation of parameters. We
would recommend choosing one-third of the
total amount of samples and increase/decrease
this value for more fine-tuning using plots pro-
duced by ClinCNV (fig. [2), as guidelines. For

relatively small datasets (less than 60 samples),
we would recommend to completely skip the
clustering step.

Before clustering, we try to remove the po-
tential impact of polymorphic regions. Since
a large part of the human genome experi-
enced copy-number changes in polymorphic
regions, which are not representative for es-
timation of technical variability patterns, and
low-variability regions are not informative for
the estimations, we filter out all the regions
with variability in top or bottom 20%. Then we
smooth coverage profiles using the rolling me-
dian (the default length of the rolling median
is five regions). Some samples may have a sig-
nificant amount of outliers which are typically
very short (1-3 consecutive regions), and their
effect is minimized after the smoothing.

The matrix of distances between smoothed
coverage profiles is calculated next. By de-
fault, Manhattan distance is used; however, for
very large datasets (more than 1000 samples),
correlation-based distance showed better and
easier separation between samples of different
coverage patterns.

Next, we perform isometric multidimen-
sional scaling (MDS, [Venables et al., 2002])
mapping of smoothed coverage profiles. We
use three components for mapping since it
provided better results and faster convergence
compared to two-component MDS. For the last
step — clustering — we use simple hierarchical
clustering (Ward method). We calculate the ma-
trix of Euclidean distances between coordinates
of MDS-mapped coverage profiles of samples
and perform hierarchical clustering, increasing
the number of clusters by one at each iteration,
starting from 2. When less than 80% of samples
are clustered into subgroups of pre-specified
minimum size (which means that more than
20% of samples are clustered into clusters of a
smaller size than the pre-specified threshold),
we stop increasing the number of clusters. We
keep only clusters bigger than the minimum
size and assign samples from smaller clusters
to the closest large sub-groups.

Summing up, 1) we cluster all the samples
according to the similarity between their cover-
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(a) Clustering of germline WES samples from CLL
study (results of CN'V’s calling in this cohort are
described in the next part of the thesis). Outlying

camnlea dn not form conavate emall cluctere

A o

(b) Clustering of panel sequenced samples. Visually
we can identify 4 clusters, but amount of samples
in 2 of them is small. In order to keep statisti-
cal parameters estimations accurate, we separate
samples into 2 big clusters.

Figure 2: Examples of clustering of similar samples.

age profiles, 2) all the output clusters are larger
than a pre-specified size (i.e., outlying samples
do not form separate small clusters), so we
control sample size for statistical estimation of
various parameters. We run normalization and
calling within the groups inferred with this
procedure separately.

ii. Graphical depiction of how algo-
rithm works

The graphical example of how the algorithm
finds one CNV is shown in fig. 3| The actual
number of states is bigger (normally from copy-
number 0 to copy-number 8) or, for common
CNVs, the states may be “there is a common
CNV site, modelled with normal mixture” or
“there are just several outliers”.

ii.1 Quality metrics, produced by ClinCNV

As an output quality value, ClinCNV provides
the log-likelihood score for the variant. How-
ever, since we always perform multi-sample
calling, it is possible to provide additional qual-
ity parameters, such as a number of samples
that may also have CNV at this position (log-
likelihood is bigger than 1, not to be confused
with the actual allele frequency of a variant —
may indicate both presence of CNVs and nois-
iness of the region), g-value (FDR-corrected
p-value, obtained from t-test), log-likelihood
per 1 KB and log-likelihood per data point
(these are usually the same for WGS samples
with coverage depths pre-calculated in 1KB
windows, but they differ for WES or WGS
with different window size), and others. These
and other quality metrics are used for making
a classification of variants into True Positives
and False Positives using the Random Forest
method.

II. SUPPLEMENTARY RESULTS

i. Common CNVs regions

The length of the CNV database, generated
from a rare CNV detection algorithm and
our in-house WGS cohort (280 samples), was
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find a Maximum Subarray Sum = 90 in the second
2nd Step:
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3rd Step: Divide genomic region in 3 parts:

and continue

0-7, 8-12, 12-13

Figure 3: Toy example on finding one CNV with the help of matrix of likelihoods.

equal to 73.323kbps. The one detected with
common CNVs detection algorithm, and a
large cluster of similar samples from Pan-
cancer analysis of whole genomes (PCAWG)
cohort [Campbell et al., 2017] was equal to
97.256kbps. The intersection between common
CNVs regions between 2 datasets was equal to
42.455kbps. Such a large difference may be ex-
plained by several reasons: 1) common CNVs
detection algorithm has the power to detect
some common CNVs which are smaller than
1kbps while rare CNVs detection algorithm is
unlikely to find them due to large variance, 2)
frequency of common CNVs in our cohort was
set equal to 2% while for PCAWG cohort we
had 2.5%, 3) due to random fluctuations and
the fact that PCAWG cohort included people of
different ancestries while our in-house cohort
was recruited in Germany the actual content of
common CNVs could change, 4) both datasets
included some “false-positive” common CNVs
due to the potential batch effects of sequencing
and these batch effects could be different.

In general, for clinical diagnostics, we would
recommend using the database of “common”
CNVs obtained from our in-house samples. Ul-

timately, we are interested not in the fact that
this CNV is common in the studied population
but in how many times the algorithm detected
it so we can exclude both common CNVs and
artefacts of sequencing. Regions of common
CNVs with high allele frequency (more than
75% of samples have copy-number different
from 2) have to be analysed with a common
CNV detection algorithm - they are almost un-
detectable by rare CNV detection methods.

However, if the goal of the research is to cor-
relate common CNVs with the phenotype, we
would recommend using the genotyping using
the common CNVs detection algorithm. Even
the data has to be prepared differently for these
approaches: for the rare CNVs detection, one
may want to keep reads with low mappability
so they may indicate problems with paralogous
genes, while for common CNVs detection, they
have to be filtered out for accurate genotyping.
A rare CNVs detection algorithm may tolerate
the presence of batch effects in small parts of
the samples, while common CNVs have to be
detected in the cohort of highly similar sam-
ples.
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ii. PCAWG supplementary results

ii.1 CNVs and separation of samples of dif-
ferent ancestries

A scientific question we wanted to answer is
if the frequency of CNVs is different for some
particular predisposition genes and some spe-
cific cancer types compared to other types of
cancer, e.g., it is well known that BRCA1/2
deletion in the germline is a risk factor for
breast adenocarcinoma development. To do so,
we had to separate the populational effect on
CNV frequencies from CNVs associated with
cancer type. We had ancestry information for
1762 samples (they were classified as “AFR”,
“ASI”, “EUR”), and 709 were marked either NA
or “Others”.
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Figure 4: First 2 principal components plot based on rare
CNVs detected by ClinCNV.

As can be seen from the PCA plot in fig.
even for rare CNVs population stratification
exists, and since some cancers have been ana-
lyzed almost solely within one population, this
factor had to be accounted for. We decided to
impute the ancestry of these 709 samples even
if we had only rare CNVs. We divided 1762
samples with ancestry information available
into a train set (80%) and test set and trained a
random forest classifier, using the presence or

absence of CNVs as a predictor, and only CNVs

that occurred twice or more per studied cohort

were used. The classifier showed good accu-
racy on the test samples: only one sample out

of 352 from the test cohort was misclassified (a

sample with recorded Asian ancestry was clas-
sified as European ancestry sample). We have

applied trained classifiers to our 709 samples of
unknown ancestry and ended up with 126 sam-
ples recognized as African ancestry, 371 recog-
nized as Asian ancestry and 1974 as European
ancestry. We extracted the list of cancer predis-
position genes from [Whitworth et al., 2018].
56 genes out of 133 were altered in at least
one sample in our cohort. We tested propor-
tions using the Cochran-Mantel-Haenszel chi-
square test for each cancer type separately,
counting all other cancer types as a control
cohort. However, none of the results remained
significant after multiple test correction, even if
many genes were significantly enriched when
we used Fisher test without population-based
stratification. Thus, we can conclude that de-
spite the comparatively large number of sam-
ples, the power was not enough to detect any
kind of enrichment of germline CNVs in spe-
cific cancer predisposition genes.

Analyzing such a diverse cohort with a huge
shift in the number of patients of European
ancestry, we realized that the “common CNV”
term could not be applied to the pan-ancestry
studies, especially imbalanced. E.g., these are
the plots of lengths/numbers of CNVs per
sample from different populations (fig. 5) and
amount of genetic material varied was much
higher in non-European ancestry samples since
1) human genome hgl9 was based on, most
likely, European genomes, 2) common CNVs
that were excluded at the first step of ClinCNV
algorithm were detected in a sub-sample with
the vast majority of samples being of European
ancestry. More sequencing projects involving
non-European samples are required for a more
accurate analysis of large genomic variants.
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Figure 5: Overview of CNV's numbers detected in sam-
ples of different ancestries.

ii.2 CNVs detected by ClinCNV in cancer
predisposition genes (PCAWG cohort)

Cancer predisposition genes, affected by CNVs,
are presented in fig.[f] The largest number of
variants was observed in the genes ALK, CDH1
and EGFR. BRCA1 was affected only 3 times
and BRCA2 was not affected even once. DELLY
detected only one deletion in BRCA1, which
shows the usefulness of ClinCNV for CNV de-
tection even if the alternative PEM method is
applied.

ii.3 Comparison between NGS-based and
array-based detection: additional plots

Lengths and numbers of variants for arrays
and ClinCNV detected variants are provied in

fig.[7]and fig.

ii.4 Results of CNV calling in whole-exome
sequencing data of Chronic Lympho-
cytic Leukemia

We have tested CNV calling with ClinCNV in
WES data from 435 samples from the ICGC
Chronic Lymphocytic Leukemia (CLL) project.
The cohort data, including clinical and genomic
data, is fully described in [Puente et al., 2015].
Two panels were used for sequencing: Agi-
lent Sure Select v4 (51MB) and v5 (71MB). The
panels were not only different in size but also
the median coverage was substantially differ-
ent (fig.[9). Thus, we analyzed these datasets
of sizes 274 and 161 separately. Interestingly,
these two datasets produced different results
from a technical point of view. The median
coverage was lower than the coverage of WES
samples sequenced nowadays for clinical pur-
poses (80x-100x). However, these samples had
array data for the validation, and thus, we de-
cided to include them in benchmarking and
analysis.

Ontarget coverage across the cohorts

0.030
I
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Density

0.010
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0.000
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Figure 9: Median on-target coverage of samples from v4
cohort (red) and v5 cohort (blue).

For both datasets, the same rule was used
for QC filtering. We plot a density for the num-
ber of CNVs and choose a threshold using a
shoulder rule - if the number of CNVs is bell-
shaped, but at some point a “tail” starts to
form, we consider all samples with the number
of CNVs in this tail as QC failed. We used
100 as a threshold for the number of CNVs for
161 samples sequenced with v5 and 220 as a
threshold for the number of CNVs for 274 sam-
ples sequenced with v4 panel. So, the second
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Figure 6: Barplot of CNVs in cancer predisposition genes in the studied cohort. Red denotes deletions, blue - duplication.

cohort, sequenced around 2x deeper, provided
much more results, even if the panel was 20MB
smaller. 155 and 265 samples remained for
the germline calling. Variants with a g-value
bigger than 0.05 were filtered out.

Almost all the samples had array data, so
we performed the same intensity-based rank
testing of the CNV callset as described in the
previous section. As before, we have validated
CNV sites, not CNV calls (however, there were
many CNV sites that were represented by only
one CNV call, so in this case, it is the same).
Standard calling parameters were used (20 log-
likelihood score as a threshold, 1 region as
a minimum size of a CNV). “Sensitivity” is
always a relative value in our analysis. It means
a proportion of True Positive variants detected
regarding the overall number of True Positive
variants detected by ClinCNV. No gold standard
CNV callset was available.

ii.5 Results of CNV calling in 265 Agilent
SureSelect v4 Exomes

To check genotyping accuracy, we made a plot
of array intensities of confirmed CNVs, accord-
ing to ClinCNV’s genotype (fig.[I0). As can be
seen, copy-number 0 is not always lower than
copy-number 1, which highlights that homozy-
gous deletion signature (absence of coverage)
may be caused just by problems with hybridiza-
tion. Copy-numbers 5, 6 and 7 have not had

enough points for estimation.

Intensity

Figure 10: ClinCNV'’s determined genotype vs array in-
tensitiy for all variants with p-value less than
0.01.

At first, we provide the raw estimation of
FDR for different types of variants without any
additional filtering. It is calculated as two mul-
tiplied by the number of variants suitable for
evaluation, which had p-values bigger than 0.5,
divided by the total number of variants suit-
able for evaluation. Two types of FDR may
be assessed: FDR of the site and FDR of the
variants. The second metric is calculated in the
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Figure 7: Number and lengths of CNVs per sample de-
tected by array-based analysis

same way but takes into account the quantity
of the variants that occur at the same site. The
raw CNV site FDR was equal to 45.6% for dele-
tions and 44.0% for duplications. The FDR of
variants was estimated as 21.8% and 23.3% for
deletions and duplications, respectively. For
research purposes, FDR has to be decreased,
and thus, these variants have to be filtered.
We have trained two random forest classi-
fiers for deletions and duplications. Using 0.89
of random forest predicted probability as a
threshold for a “True” CNV class gave us a
Sensitivity of 0.591 and Specificity of 0.976 at
the test set. For duplications 0.93 threshold
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Figure 8: Number and lengths of CNVs per sample de-
tected by ClinCNV

was used, and Sensitivity of 0.574, Specificity
of 0.968 were obtained. False Discovery Rate
should be estimated twice as high as provided
numbers (thus, one minus Specificity, multi-
plied by two, so FDR is expected to be around
0.05 for both types of CNVs).

418 duplication sites and 459 deletion sites
were validated at approximately 0.05 FDR.

ii.6 Results of calling in 155 Agilent v5 se-
quenced samples

A plot of array intensities of confirmed CNVs,
according to ClinCNV’s genotype fig. [11] Inter-
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Figure 11: ClinCNV'’s determined genotype vs array in-
tensitiy for all variants with p-value less than
0.01.

estingly, quite a lot of variants were called copy-
number higher than 5. Nevertheless, none of
them were validated with arrays. Again, we
see that homozygously deleted regions do not
necessarily correspond to lower array inten-
sity. Thus, the absence of coverage in WES
should be considered not perfect evidence of a
homozygous deletion.

The raw CNV site FDR was equal to 44.5%
for deletions and 34.9% for duplications. The
FDR of variants was estimated as 21.3% and
23.5% for deletions and duplications, respec-
tively.

We have trained two random forest classi-
fiers for deletions and duplications. Using 0.92
of random forest predicted probability as a
threshold for a “True” CNV class gave us Sen-
sitivity of 0.76 and Specificity of 0.938 at the
test set. For duplications, 0.6 was used as a
threshold, and a Sensitivity of 0.76, Specificity
of 0.94 were obtained, which gives a true false
discovery rate of around 12% for duplications.
Further increase of parameters did not pro-
vide us with a satisfactory FDR on the test set
(Sensitivity drops too fast). The most probable
reason for that is the small number of variants
for validation, so the random forest was not

able to extract true dependencies between vari-
ants” properties and the labels. Due to these
reasons, we decided to check if the FDR would
be stable if we selected another test/train sets,
and the FDR was approximately at the same
level.

401 duplication sites and 146 deletion sites
were validated at the above mentioned FDR.

ii.7 Comparison of the callsets
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(a) Length of CNV sites (v4, 5% FDR).
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(b) Length of CNV sites (v5, 12% FDR).
Figure 12: Overview of deletion and duplication site

length in 2 WES callsets. Deletions are
shown in red, duplications — in blue.

Since these 2 callsets could not be directly
merged, we provide the statistics separately. At

11
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first we show distribution of lengths at fig.

Since we have not performed polymorphic
regions filtering, we may expect many of the
variants to be copy-number polymorphisms
(occur more often than our pre-defined allele
frequency of 2.5%). The plots in fig. [13[shows
the frequencies of variants.fa

Analysis of recurrent CNVs in the germline
of CLL patients (fig. [14), showed that ERCC2
was duplicated four times and one time in the
independently analyzed datasets, as well as
PMS2 (two and one duplications). Multiple
deletions in PRSS1 (size plus three) were de-
tected in both datasets.

iii. Difference in performance be-
tween ExomeDepth and ClinCNV

The ExomeDepth callset was even more strange
since the author claims that he usually obtains
around two-thirds of detected variants as dele-
tions and we see the completely opposite situa-
tion in our dataset. However, no errors in the
code were found in the ExomeDepth pipeline
that we have used.

Such estimations of FDR may be inaccurate
due to the small number of events tested —
actually, we can not rely on the uniformity
of p-values distribution, only 5/7 duplica-
tions/deletions were bigger than 0.5 in Ex-
omeDepth dataset, and 11/5 was bigger than
0.5 in ClinCNV dataset, so differences in per-
formance may occur by chance. Due to the
large variability of FDR estimations, using
this comparatively small callset, we decided
to check the proportion of CNV sites that have
p-values less than 0.05 in our callsets. For dele-
tions, it was 0.81 for ExomeDepth and 0.77 for
ClinCNV, and 0.79 and 0.66 for duplications,
which is in line with the estimated FDRs.

The reference manual of ExomeDepth states
that it may miss common variants and is more
suitable for detecting variants that are pre-
sented in a single copy. We calculated the num-
ber of singletons detected by each tool. The
filtered callset from ClinCNV was used. 128
deletions from ClinCNV were singletons, while
only 68 of the ExomeDepth deletions were de-
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tected only once per cohort. The same number
of duplication sites — 55 — was represented in
more than 1 sample.

Surprisingly, many of the duplications, de-
tected by ExomeDepth, showed no or very
weak evidence in ClinCNV’s coverage track in
IGV, even very long ones (more than 50 exons).
The very weak evidence means the segment is
more likely to be normal (estimation closer to
copy-number two than to higher copies). Yet,
most of the checked duplication segments had
elevated coverage (indicating around 2.1-2.5
“copies”). It could occur if the duplications
were located in CNP regions which are not
diploid in the population. We have checked
and found out that 77 of ExomeDepth du-
plication sites were located in such regions
(have more than 50% intersect of the variant’s
length), but 62 ClinCNV duplication sites were
also located in such regions. Another expla-
nation was that these variants are located in
regions of low mappability, and reads with
mapping quality below five were filtered as
a preparatory step for coverage counting in
ClinCNV, while ExomeDepth uses reads with
mapping quality larger than 20 for the count-
ing of reads. It may also explain the fact that
ClinCNV detects more deletions at a similar
FDR level. However, several large duplications
detected by ExomeDepth were located in the
regions of good mappability and still showed
no evidence of duplication in particular sam-
ples visualized in IGV using ClinCNV’s cov-
erage track. Some duplications were located
outside of the targeted regions provided by the
manufacturer. ExomeDepth performs counting
using the set of exons, not the targeted panel;
thus, ExomeDepth has a signal in places where
we did not calculate the coverage.

The last possible explanation for such dis-
crepancy was in the nature of the data. Our
data come from sorted blood cells, and many
mosaic events may happen there. ClinCNV
was created in a way, so it does not call mo-
saic variants if it is not explicitly asked to. We
have compared the number of genes that are
typically rearranged in blood cells between
the callsets. ExomeDepth detected 18 CNV
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sites within HLA regions, ClinCNV detected
only 6. 2/7/3 sites affecting IGK/IGH/IGL
genes were detected by ClinCNV, 4/12/3 by Ex-
omeDepth, respectively. Overall, ExomeDepth
detected 37 variant sites in immunoglobulin
and major histocompatibility complex regions,
while ClinCNV detected 18. They were dele-
tion and duplication sites in approximately
equal proportion, so it cannot explain the large
advantage of ExomeDepth in duplications call-
ing.

A large amount of intersecting sites within
one dataset may occur due to the over-
segmentation and incorrect merging of the vari-
ants. ExomeDepth had 47 self-intersecting du-
plication sites within the dataset and 57 dele-
tion sites. Our callset had ten self-overlapping
deletion sites and 38 intersecting duplication
sites. Thus, we can hypothesize that ClinCNV
outperforms ExomeDepth in terms of break-
point resolution, but the numbers are not big
enough to explain the difference in calling fully.

It may be hypothesized that ExomeDepth
outperforms ClLnCNV due to the whole-
sample beta-binomial model fitting, which may
be more powerful. Using results of these 40
samples, but called with the whole cohort of
155 samples, does not confirm that, even if the
results actually improve (table [1).

iv. Overview of platforms and variant
length for shallow WGS analysis

ivl Decision Tree for WES samples (single-
tons)

For the interpretability reasons we put 2 de-
cision trees here (same analysis as in the last
chapter of the paper of in-house samples se-
quenced with ssHAEv6 and ssHAEvV7 enrich-
ment kits and also analysed with different Cy-
toScape arrays) in fig.

Features that were used for splits:

1. AverageLoglikPerTileCorrect -  log-
likelihood score, divided by the number
of enrichment regions from the bed file,
affected by CNV;

2. AverageNumOfMarkers — how many en-
richment regions are inside the CNV;

3. AverageLoglicPerTile - log-likelihood
score, divided by 1000 (score per length of
variant in kbs);

4. AverageLoglikScore — raw score of variant;

5. AverageQval — g-value of the variant.

Worth to mention that, even if the log-
likelihood score itself was not used in these
trees, it is actually still detected as the one
having the maximum importance via random

forest approach (fig. [17).
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FDR, sites | FDR, CNVs | # sites
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Figure 13: Overview of deletions and duplications fre-
quencies in 2 WES callsets. Vertical line
denotes 2.5% of allele frequency. Deletions
are shown in red, duplications — in blue.
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Figure 14: Overview of deletions and duplications in
cancer predisposition genes in 2 WES callsets,
affected by different CNV's: deletions (red)
and duplications (blue).
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y-axis, platform used for detection of variant
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(b) Decision tree for Deletions (singletons).

Figure 16: Decision trees for singleton CNVs in our co-
hort. Lower predicted value = higher chances
of the variant to be real. FDR may be esti-
mated as twice the number of values bigger
than 0.5 in particular bin.
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(b) Variable importance for Deletions.

Figure 17: Variance importance of Random Forest FDR
assignement approach.
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