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Biological motor control is versatile and efficient. Muscles are
flexible and undergo continuous changes, requiring distributed
adaptive control mechanisms. How proprioception solves this
problem in the brain is unknown. The canonical role of propri-
oception is representing the body state, yet we hypothesize that
the proprioceptive system can decode high-level, multi-feature
actions. To test this theory, we pursue a task-driven modeling
approach.We generated a large synthetic dataset of human arm
trajectories tracing the alphabet in 3D space and use a mus-
culoskeletal model plus modeled muscle spindle inputs to ex-
tract muscle activity. We then contrast two tasks, one char-
acter trajectory-decoding and another action recognition task
that allows training of hierarchical models to decode position, or
classify the character identity from the spindle firing patterns.
Artificial neural networks could robustly solve these tasks, and
the networks’ units show tuning properties akin to neurons in
the primate somatosensory cortex and the brainstem. Remark-
ably, only the action-recognition trained, and not the trajec-
tory decoding trained, models possess directional selective units
(which are also uniformly distributed), as in the primate brain.
Taken together, our model is the first to link tuning properties
in the proprioceptive system at multiple levels to the behavioral
level. We find that action-recognition, rather than the canonical
trajectory-decoding hypothesis, better explains what is known
about the proprioceptive system.

Proprioception | Goal-driven modeling | Handwritten character
recognition | Deep neural networks | Musculoskeletal models | So-
matosensory cortex | S1 | Cuneate Nucleus

Introduction

Proprioception is a critical component of our ability to per-
form complex movements, localize our body in space, and
adapt to environmental changes (1–3). Our movements are
generated by a large number of muscles and are sensed via
a diverse set of receptors, most importantly muscle spindles,
which carry highly multiplexed information (2, 4). For in-
stance, arm movements are sensed via distributed and in-
dividually ambiguous activity patterns of muscle spindles,
which depend on relative joint configurations rather than the

absolute hand position (5, 6). Interpreting this high dimen-
sional input (around 50 muscles for a human arm) of dis-
tributed information at the relevant behavioral level poses a
challenging decoding problem for the central nervous sys-
tem (6, 7). Proprioceptive information from the receptors un-
dergoes several processing steps before reaching somatosen-
sory cortex (3, 8, 9) - from the spindles that synapse in
Clarke’s nucleus, to the brainstem, thalamus (3, 10), and fi-
nally to somatosensory cortex (S1). In cortex, a number of
tuning properties have been observed, such as responsiveness
to varied combinations of joints and muscle lengths (11, 12),
sensitivity to different loads and angles (13), and broad and
uni-modal tuning for movement direction during arm move-
ments (14). The proprioceptive information in S1 is then hy-
pothesized to serve as the basis of a wide variety of tasks,
via its connections to motor cortex and higher somatosensory
processing regions (1–3, 15, 16).

One key role of proprioception is to sense the state of the
body—i.e., posture. This information subserves many other
functions, from balance to motor learning. Thus, to gain in-
sights into the computations of the proprioceptive system, we
quantitatively compare two different goals in a task-driven
fashion: a trajectory-decoding task, and an action recogni-
tion task (Figure 1). The trajectory-decoding task represents
the canonical view of proprioception (9, 17). Alternatively,
the role of the proprioceptive system could be to infer actions
(i.e., complex sequences of postures). Our hypothesis is mo-
tivated by the observation that action segmentation would be
an efficient way to represent complex behavior, and it could
directly drive the “action map” in motor cortex (18).

Large-scale datasets like ImageNet (19) that present a chal-
lenging visual object-recognition task, have allowed the
training of deep neural networks whose representations
closely resemble tuning properties of single neurons in the
ventral pathway of primates (20–26). This goal-driven mod-
elling approach (23, 27, 28) has since successfully been ap-
plied to other sensory modalities such as touch (29, 30), ther-
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Figure 1. Contrasting spindle-based tasks to study proprioception: Proprioceptive inputs that correspond to the tracing of individual letters were
simulated using a musculoskeletal model of a human arm. This scalable, large-scale dataset can then be used to train deep neural networks models
of the proprioceptive pathway to either classify the character (Action Recognition Task, ART) or to localize the hand (Trajectory Decoding Task, TDT)
based on the input muscle spindle firing rates. These models can be analyzed, compared and contrasted to what is known about the proprioceptive
system in primates.

mosensation (31) and audition (32). However, unlike for vi-
sion and audition, where large annotated datasets of raw im-
ages or sound are readily available, data of relevant proprio-
ceptive stimuli (as well as task goals) are not.

To create a large-scale passive movement dataset, we started
from human motion data for drawing different Latin charac-
ters (33). Next, a musculoskeletal model of the human up-
per limb (34) is employed to generate muscle length config-
urations corresponding to drawing the pen-tip trajectories in
multiple horizontal and vertical planes. These are ultimately
converted into proprioceptive inputs using models of spin-
dle Ia and II models (35, 36). We then used the tasks to
train families of neural networks to either decode the full tra-
jectory of the hand-written characters, or classify the char-
acters, both purely from the estimated spindle firing rates.
Through an extensive hyper-parameter search we found neu-
ral networks for various architectures that optimally solve the
task. We then analyzed those models and found that models
trained on the action recognition, but not the trajectory decod-
ing task more closely resemble what is known about tuning
properties in the proprioceptive pathway. Collectively, we
present a framework for studying the proprioceptive pathway
using goal-driven modeling by synthesizing datasets of mus-
cle (spindle) activities in order to test new theories of coding.

Results
Spindle-based biomechanical character recognition task.

To model the proprioceptive system we designed two real-
world proprioceptive tasks. The objective is to either classify
or reconstruct Latin alphabet characters based on the propri-
oceptive inputs that arise when the arm is passively moved
(Figure 1). In this way, we effectively computationally isolate
proprioception from active movement—a challenge in exper-
imental work. To create this we used a dataset of pen-tip
trajectories for the 20 characters that can be handwritten in a
single stroke (thus excluding f, i, j, k, t and x, which are multi-
stroke) (33, 37). Then we generated one million end-effector

(hand) trajectories by scaling, rotating, shearing, translating
and varying the speed of each original trajectory (Figure 2A-
C; Table 1).

To translate end-effector trajectories into 3D arm movements
we computed the joint-angle trajectories through inverse
kinematics using a constrained optimization approach (Fig-
ure 2D-E and methods). We iteratively constrain the solution
space by choosing joint angles in vicinity of the previous con-
figuration in order to eliminate redundancy. To cover a large
3D workspace we placed the characters in multiple horizon-
tal (26) and vertical (18) planes and calculated corresponding
joint-angle trajectories (starting points are illustrated in Fig-
ure 2D). A human upper-limb model in OpenSim (34) was
then used to compute equilibrium muscle lengths for 25 mus-
cles in the upper arm that lead to the corresponding joint an-
gle trajectory (Figure 2F, Suppl. Video). We did not include
hand muscles for simplicity, therefore the location of the end-
effector is taken to be the hand location.

Based on these simulations, we generated proprioceptive in-
puts as muscle length and muscle velocity, which approx-
imate receptor inputs during passive movement (see Meth-
ods). From this set, we selected a subset of two hundred thou-
sand examples with smooth, non-jerky joint angle and mus-
cle length changes, while making sure that the set is balanced
in terms of the number of examples per class (see Methods).
Since not all characters take the same amount of time to write,
we padded the movements with static postures correspond-
ing to the starting and ending postures of the movement and
randomized the initiation of the movement in order to main-
tain ambiguity about when the writing begins. At the end of
this process each sample consists of simulated propriocep-
tive inputs from each of the 25 muscles over a period of 4.8
seconds, simulated at 66.7 Hz. The dataset was split into a
training, validation, and test set with a 72-8-20 ratio.

Recognizing characters from muscle activity is challenging.

We reasoned that several factors complicate the recognition
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Figure 2. The proprioceptive character recognition dataset generation. (A) Multiple example pen-tip trajectories for five of the 20 letters are shown.
(B) Same trajectories as in A, plotted as time courses of Cartesian coordinates. (C) Creating (hand) end-effector trajectories from pen-tip trajectories.
(left) An example trajectory of character ’a’ resized to fit in a 10cm x 10cm grid, linearly interpolated from the true trajectory while maintaining true velocity
profile. (right) This trajectory is further transformed by scaling, rotating and varying its speed. (D) Candidate starting points to write the character in
space. (left) A 2-link 4 degree of freedom (DoF) model human arm is used to randomly select several candidate starting points in the workspace of the
arm (right), such that written characters are all strictly reachable by the arm. (E) (left to right and down) Given a sample trajectory in C and a starting
point in the arm’s work-space, the trajectory is then drawn on either a vertical or horizontal plane that passes through the starting point. We then apply
inverse kinematics to solve for the joint angles required to produce the traced trajectory. (F) (left to right): The joint angles obtained in E are used to
drive a musculoskeletal model of the human arm in OpenSim, to obtain equilibrium muscle fiber-length trajectories of 25 relevant upper arm muscles.
These muscle fiber-lengths and their instantaneous velocities together form the proprioceptive inputs.

of a specific character. Firstly, the end-effector position is
only present as a distributed pattern of muscle activity. Sec-
ondly, the same character will give rise to widely different
proprioceptive inputs depending on different arm configura-
tions.

To test these hypotheses, we first visualized the data at the
level of proprioceptive inputs by using t-distributed stochastic
neighbor embedding (t-SNE, 38). This illustrated that char-
acter identity was indeed entangled (Figure 3A). Then, we
trained pairwise support vector machine (SVM) classifiers as
baseline models for character recognition. Here, the influ-
ence of the specific geometry of each character is notable.
On average the pairwise accuracy is 86.6± 12.5 (mean ±
S.D., N = 190 pairs, Figure 3B). As expected, similar look-
ing characters were harder to distinguish at the level of the
proprioceptive input—i.e. “e” and “y” were easily distin-
guishable but “m” and “w” were not (Figure 3B).

To quantify the separability between all characters we used
a one-against-one strategy with the trained pairwise classi-
fiers (39). The performance of this multi-class decoder was

poor regardless of whether the input was end-effector coor-
dinates, joint angles, normalized muscle lengths, or propri-
oceptive inputs (Figure 3C). Taken together, these analyses
highlight that it is difficult to extract the character class from
those representations. Collectively, we demonstrated that the
action recognition task is challenging as illustrated by t-SNE
embedding (Figure 3A) and quantified by SVMs (Figure 3B,
C). In contrast, as expected, accurately decoding the end-
effector position (by linear regression) from the propriocep-
tive input is much simpler, with an average decoding error of
1.72cm, in a 3D workspace approximately 90x90x120cm3

(Figure 3C).

Neural networks models of proprioception.

We explore the ability of three types of artificial neural net-
work models (ANNs) to solve the proprioceptive character
recognition and decoding tasks. ANNs are powerful mod-
els for both their performance and for elucidating neural rep-
resentations and computations (23, 40). An ANN consists
of layers of simplified units (“neurons”) whose connectivity
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Figure 3. Quantifying action recognition and decoding task performance. (A) t-SNE embedding of the end-effector coordinates (left) and pro-
prioceptive inputs (right). (B) Classification performance for all pairs of characters with binary SVMs trained on proprioceptive inputs. Chance level
accuracy=50%. The pairwise accuracy is 86.6± 12.5% (mean±S.D., N = 190 pairs). Subset of data is also illustrated as circular graph, edge color
denotes the classification accuracy. For clarity, only pairs with performance less than 70% are shown, which corresponds to the bottom 12% of all
pairs. (C) Performance of baseline models: Multi-class SVM performance computed using a one-vs-one strategy for different types of input/kinematic
representations on the action recognition task (left). Performance of ordinary least-squares linear regression on the trajectory decoding task (right).
Note there is no point for end-effector coordinates as this is trivial. (D) Neural networks are trained on two tasks - proprioceptive action recognition and
trajectory decoding based on proprioceptive inputs. We tested three neural network architecture families. Each model is comprised of one or more
processing layers as shown here. Processing of spatial and temporal information takes place through a series of 1-D or 2-D convolutional layers or a
recurrent LSTM layer. (E) Performance of neural network models on the tasks: test performance of the 50 networks of each type is plotted against the
number of layers of processing in the networks for the action recognition (left) and trajectory decoding (center) tasks separately, and against each other
(right). Note we jittered the number of layers for visibility, but per model it is discrete.
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patterns mimic the hierarchical, integrative properties of bi-
ological neurons and anatomical pathways (23, 27, 41). As
candidate models we parameterized a (spatio)temporal con-
volutional neural network, a spatial-temporal convolutional
network (both TCNs, 42), and a recurrent neural network
(a long short-term memory (LSTM) model, 43), which im-
pose different inductive priors on the computations. We refer
to these three types as spatial-temporal, spatiotemporal and
LSTM networks (Figure 3D).

Importantly, the different models differ in the way they in-
tegrate spatial and temporal information along the hierarchy.
These two types of information can be processed either se-
quentially, as is the case for the spatial-temporal network type
that contains layers with one-dimensional filters that first in-
tegrate information across the different muscles, followed by
an equal number of layers that integrate only in the tempo-
ral direction or simultaneously, using two-dimensional ker-
nels, as they are in the spatiotemporal network. In the LSTM
networks, spatial information was integrated similarly to the

B

Spatial-Temporal

Layer 1 Layer 82 3 4 5 6 7

Action 
Recogntion

Trajectory 
Decoding

A CAction 
Recogntion

Trajectory 
Decoding

Task 
Comparison

Proprioceptive Inputs Spatial-Temporal

CKA Score

1

2

3

4

5

M
od

el
 I

n
st

an
ti
at

io
n

10 Representational Dissimilarity
0 0100 100

2

4

1

3

5

D
ec

od
in

g
 E

rr
o
r 

(c
m

)

E

2

4

6

8

1

C
K
A
 S

co
re

Task ComparisonFD
Spatial-Temporal
Spatiotemporal

LSTM

Trained

Control

L1 L2 L3 L4 L5 L6 L7 L8Sp. L1 L2 L3 L4 L5 L6 L7 L8Sp. L1 L2 L3 L4 L5 L6 L7 L8Sp.

Figure 4. Low-dimensional embedding of network layers reveals structure. (A) Similarity in representations (CKA) between the trained and the
control models for each of the five instantiations of the best performing spatial-temporal models (left and center). CKA between models trained on
recognition vs decoding (right). (B) t-distributed stochastic neighbor embedding (t-SNE) for each layer of one instantiation of the best performing spatial-
temporal model trained on both tasks. Each data point is a random stimulus sample (N = 2,000, 50 per stimulus). (C) Representational Dissimilarity
Matrices (RDM). Character level representation are calculated through percentile representational dissimilarity matrices for proprioceptive inputs (left)
and final layer features (right) of one instantiation of the best performing spatio-temporal model trained on recognition task. (D) Similarity in stimulus
representations between representational dissimilarity matrices of an Oracle (ideal observer) and each layer for the five instantiations of the ART-trained
models and their controls. (E) Decoding error (in cm) along the hierarchy for each model type trained on the decoding task. (F) CKA between models
trained on recognition vs decoding for the five instantiations of all network types (right).
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spatial-temporal networks, before entering the LSTM layer.

Candidate models for each class can be created by varying
hyper-parameters such as the number of layers, number and
size of spatial and temporal filters, type of regularization and
response normalization, among others (see Table 2, Meth-
ods). As a first step to restrict the number of models, we
performed a hyper-parameter architecture search by selecting
models according to their performance on the proprioceptive
tasks. We should emphasize that our ANNs are simultane-
ously integrating proprioceptive inputs and time, unlike stan-
dard feed-forward CNN-models of the visual pathway that
just operate on images (23). TCNs have been shown to be
excellent for time-series modeling (44), and therefore natu-
rally describe neurons along a sensory pathway that integrate
spatio-temporal inputs.

Architecture search & representational changes.

To find models that could solve the proprioceptive tasks, we
performed an architecture search and trained 150 models (50
models per type). Notably, we trained the same model (as
specified by architectural parameters) on both tasks by modi-
fying the output and the loss function used to train the model.
All networks were trained using the Adam optimizer (45) un-
til performance on the validation set saturated. After training,
all models were evaluated on a unseen test set (Figure S1A).

Models of all three types achieved excellent performance on
the action recognition task (ART) (Figure 3E; multi-class ac-
curacy of 98.86%± 0.04, Mean ± SEM for the best spatial-
temporal model, 97.93%± 0.03 for the best spatiotemporal
model, and 99.56%±0.04 for the best LSTM model, N = 5
randomly initialized models). The parameters of the best per-
forming architectures are displayed in Table 2. The same
models could also accurately solve the trajectory decoding
task (TDT) (Figure 3E; with decoding errors of only 0.22 cm
±0.005, Mean ± SEM for the best spatial-temporal model,
0.13 cm ±0.003 for the best spatiotemporal model, and 0.05
cm ±0.01 for the best LSTM model, N = 5 randomly ini-
tialized models). Of the hyper-parameters considered, the
depth of the networks influenced performance the most (Fig-
ures 3E, S1B). Further, the performance on the two tasks
were related: models performing well on one task tend to
perform well on the other 3E.

Having found models that robustly solve the ART and TDT,
we sought to analyze their properties. We created five pre-
training (control) and post-training (trained) pairs of models
for the best-performing model architecture for further analy-
sis. We will refer to those as “instantiations”. As expected,
the randomly initialized models performed at chance level
(5%) on the ART.

How did the population activity change across the layers af-
ter learning the tasks? Initially, we focus on the best spatial-
temporal model and then show that our analysis extends to
the other model types. We compared the representations
across different layers for each trained model to its random
initialization by linear Centered Kernel Alignment (CKA, see

Methods). This analysis revealed that for all instantiations
the representations remained similar between the trained and
control models for the first few layers and then deviate in the
middle to final layers of the network (Figure 4A). Further-
more, trained models not only differed from the random ini-
tialization, but also across tasks, and the divergence appeared
earlier (Figure 4A). Therefore, we found that both learning
and the task substantially change the representations. Next,
we aimed to understand how the tasks are solved, i.e., how
the different stimuli are transformed across the hierarchy.

To illustrate the geometry of the ANN representations and
how the different characters are disentangled across the hier-
archy we used t-SNE to visualize the structure. For the ART,
the different characters remain entangled in the representa-
tions throughout most of the processing hierarchy before sep-
arating in the final layers (spatial-temporal model: Figure 4B
and for the other model classes S2A). To quantify this, we
computed representational dissimilarity matrices (RDM; see
Methods). We found that different instances for the same
characters were not represented similarly at the level of pro-
prioceptive inputs, but at at the level of the last convolutional
layer for the trained models (Figure 4C and for other model
classes S2B). To quantify how the characters are represented
across the hierarchy, we computed the similarity to an Ora-
cle’s RDM, where an Oracle (or ideal observer) would have a
block structure, with dissimilarity 0 for all stimuli of the same
class and 1 (100th percentile) otherwise (Figure S2B). We
found for all model instantiations similarity only increased
towards the last layers (Figure 4D). This finding corroborates
the visual impression gained via t-SNE that different charac-
ters are disentangled near the end of the processing hierarchy
(Figures 4B, S2A, C).

How is the TDT solved across the hierarchy? In contrast to
the ART trained models, as expected, representations of char-
acters remained entangled throughout (Figure 4B, S2A). We
found that the end-effector position can be decoded across
the hierarchy (Figure 4E). This result is expected, as even
from the proprioceptive input a linear readout achieves good
performance (Figure 3C). Finally, we quantified CKA scores
across the different architecture classes and found that with
increasing depth the representations diverge between the two
tasks (Figures 4F, S2C). Collectively, this suggests that char-
acters are not immediately separable in ART-models, but the
end-effector can be well decoded in TDT-models throughout
the architecture.

Single unit tuning properties.

To gain insight into why ART- and TDT-trained models differ
in their representations, we examined single unit tuning prop-
erties. In the primate these have been well described (3, 14),
thus present as an ideal comparison point. Specifically, we
analyzed the units for end-effector position, speed, direction,
velocity, and acceleration tuning. We performed these anal-
yses by relating variables (such as movement direction) to
the activity of single units during the continuous movement
(see Methods). Units with a test-R2 > 0.2 were considered
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Figure 5. Analysis of single unit tuning properties for spatial-temporal models. (A) Polar scatter plots showing the activation of units (radius r) as
a function of end-effector direction as represented by the angle θ for directionally tuned units in different layers of the top-performing spatial temporal
model trained on the action recognition task. Directions correspond to that of the end-effector while tracing characters in the model workspace. The
activation strengths of one (velocity-dependent) muscle spindle, one unit in layer 3, 5 and 8 of the are shown. (B) Similar to A, except that now radius
describes velocity, and color represents activation strength. The contours are determined following linear interpolation, with gaps filled in by neighbor
interpolation, and results smoothed using a Gaussian filter. Examples of one muscle spindle, one unit in layer 3, 5 and 8 are shown. (C) For each layer
of one trained instantiation, the units are classified into types based on their tuning. A unit was classified as belonging to a particular type if its tuning
had a test R2 > 0.2. Tested features were direction tuning, speed tuning, velocity tuning, Cartesian and polar position tuning, acceleration tuning, and
label tuning (14/3890 scores excluded for ART-trained, 291/3890 for TDT-trained; see Methods). (D) The same plot but for the spatial-temporal model
of the same architecture but trained on the trajectory decoding task. (E) For an example instantiation, the distribution of test R2 scores for both the
ART and TDT trained models are shown, for five kinds of kinematic tuning for each layer: direction tuning, speed tuning, Cartesian position tuning, polar
position tuning, and label-specificity indicated by different shades and arranged left-right for each layer including spindles. The solid line connects the
90%-quantiles of two of the tuning curve types, direction tuning (dark) and position tuning (light). Tuning scores were excluded if they were equal to 1,
indicating a constant neuron, or less than −0.1, indicating an improper fit (8 scores excluded; see Methods). (F) The means of 90%-quantiles over all
five model instantiations of models trained on ART and TDT are shown for direction tuning (dark) and position tuning (light). 95%-confidence intervals
are shown over instantiations (N = 5).

“tuned” to that feature (this is a conservative value in com-
parison to experimental studies, e.g., 0.07 for (14)).

Given the precedence in the literature, we focused on di-
rection tuning in all horizontal planes. We fit directional
tuning curves to the units with respect to the instantaneous
movement direction. As illustrated in examples, the ART
spatial-temporal model (as well as proprioceptive inputs), di-
rectional tuning can be observed for the typical units shown
(Figure 5A, B). Spindle afferents are known to be tuned to
motion, i.e. velocity and direction (46). We verified the tun-

ing of the spindles and found that the spindle component,
tuned for muscle length, is primarily tuned for position (me-
dian R2 = 0.40, N = 25) rather than kinematics (median di-
rectionR2 = 0.0031, median velocityR2 = 0.0026,N = 25),
whereas the spindle component tuned for changes in mus-
cle length were primarily tuned for kinematics (median di-
rection R2 = 0.55, velocity R2 = 0.81, N = 25), and only
poorly tuned for position (median R2 = 0.34, N = 25). For
the ART model, direction selectivity was prominent in mid-
dle layers 1-6 before decreasing by layer 8, and a fractions
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of units exhibited tuning to other kinematic variables with
R2 > 0.2 (Figures 5C, S3A,B).

In contrast, for the TDT model, no directional tuning was ob-
served, but positional tuning (Figure 5D). These observations
are further corroborated when comparing the distributions of
tuning properties (Figure 5E) and 90%-quantiles for all the
instantiations (Figure 5F). The difference in median tuning
score between the two differently trained groups of models
across the five model instantiations becomes significant start-
ing in the first layer for both direction (layer 1 t(4) = 13.07,
p=0.0002; layer 2 t(4) = 15.79, p=0.0001; layer 3 t(4) =
39.74, p=2.65e-06; layer 4 t(4) = 5.24, p=5.24e-06; layer 5
t(4) = 35.76, p=3.65e-06; layer 6 t(4) = 12.97, p=0.0002;
layer 7 t(4) = 3.605, p=0.017; t(4) = 19.35, p=4.21e-05)
and position (layer 1 t(4) = −11.21, p=0.0004; layer 2
t(4) =−28.59, p=8.91e-06; layer 3 t(4) =−21.27, p=2.89e-
05; layer 4 t(4) =−13.91, p=0.0002; layer 5 t(4) =−18.55,
p=4.97e-05; layer 6 t(4) = −61.59, p=4.16e-07; layer 7
t(4) =−24.08, p=1.77e-05; t(4) =−25.80, p=1.34e-05).

Given that the ART models are trained to recognize charac-
ters, we asked if single units are well tuned for specific char-
acters. To test this we trained an SVM to classify characters
from the single unit activations. Even in the final layer (be-
fore the readout) of the spatial-temporal model, the median
classification performance over the five model instantiations
as measured by the normalized area under the ROC curve-
based selectivity index for single units was 0.212± 0.005
(mean ± SEM, N = 5 instantiations), and was never higher
than 0.41 for any individual unit across all model instanti-
ations (see Methods). Thus, even in the final layer there are
effectively no single-character specific units. Of course, com-
bining the different units of the final fully connected layer
gives a high fidelity readout of the character and allows the
model to achieve high classification accuracy. Thus, charac-
ter identity is represented in a distributed way. In contrast,
and as expected, character identity is poorly encoded in sin-
gle cells for the TDT model (Figure 5D,F).

These main results also hold for the other architecture classes.
In spatiotemporal models, in which both spatial and tempo-
ral processing occurs between all layers, we observe a mono-
tonic decrease in the directional tuning across the four lay-
ers for the ART task and a quick decay for the TDT task
(Figure 6 A, B). Speed and acceleration tuning are present in
the ART, but not in the TDT models (Figure S3B, C). Con-
versely, we find that positional coding is stable for TDT mod-
els and not the ART models. The same results hold true for
LSTM model (Figures 6 C, D, S3E, F). The differences in
directional and Cartesian positional tuning were statistically
significant for all layers according to a paired t-test with 4
degrees of freedom for both model types. Thus, for all archi-
tecture classes we find that strong direction selective tuning
is present in early layers of models trained with the ART task,
but not the TDT task.

Our results so far suggests that the primate proprioceptive
pathway is more consistent with the action recognition hy-
pothesis, but to corroborate this, we also assessed decoding

performance, which measures representational information.
For all architecture types movement direction and speed can
be better decoded from ART than from TDT trained models
(Figure S4A,C,E). In contrast, for all architectures, position
can be better decoded for TDT than for ART trained mod-
els (Figure S4B,D,F). These results are consistent with the
single-cell encoding results, and again lend support for the
proprioceptive systems involvement in action representation.

So far, we have directly compared TDT and ART mod-
els. This does not address task-training as such. Namely,
we found directional selective units in ART-models and
positional-selective units in TDT-models, but how do those
models compare to randomly initialized models (controls)?
Remarkably, directional selectivity is similar for ART and
control models (Figure S5). In contrast to controls, ART-
trained models harbor less positional tuned units. The situa-
tion is reversed for TDT-trained models – those models gain
positionally tuned units and lose directionally selective units
during task training (Figure S6). Consistent with those en-
coding results, position can be worse and direction and speed
similarly decoded from ART-models than from controls, re-
spectively (Figure S7). Conversely, direction and speed can
be worse and position better decoded from TDT-models than
controls (Figure S7).

Uniformity and coding invariance.

We compared population coding properties to further elu-
cidate the similarity to S1. We measured the distribu-
tions of preferred directions and whether coding properties
are invariant across different workspaces (reaching planes).
Prud’homme and Kalaska found a relatively uniform distri-
bution of preferred directions in primate S1 during a cen-
ter out reaching 2D manipulandum-based task (Figure 7A
from (14)). In contrast, most velocity tuned spindle afferents
have preferred directions located along one major axis point-
ing frontally and slightly away from the body (Figure 7B).
Qualitatively, it appears that the ART trained model had more
uniformly distributed preferred directions in the middle lay-
ers compared to control models with randomly initialized
weights (Figure 7C).

To quantify uniformity we calculated the total absolute devi-
ation (TAD) from uniformity in the distribution of preferred
directions. The results indicate that the distribution of pre-
ferred directions becomes more uniform in middle layers for
all instantiations of the different model architectures (Fig-
ure 7D), and that this difference is statistically significant
for the spatial-temporal model beginning in layer 3 (layer 3
t(4) =−3.41, p=0.027; layer 4 t(4) =−8.12, p=0.001; layer
5 t(4) = −4.08, p=0.015; layer 6 t(4) = −5.55, p=0.005).
This analysis revealed that while randomly initialized models
also have directionally selective units, those units are less uni-
formly distributed than in models trained with the ART task.
Importantly, TDT trained modules have almost no direction-
ally selective units, further corroborating that ART models
are more consistent with Prud’homme and Kalaska’s find-
ings (14).
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Figure 6. Analysis of single unit tuning properties for spatiotemporal and LSTM models. (A) For an example instantiation of the top-performing
spatiotemporal model, the distribution of testR2 scores for both the trained and control model are shown, for five kinds of kinematic tuning for each layer:
direction tuning, speed tuning, Cartesian position tuning, polar position tuning, and label-specificity. The solid line connects the 90%-quantiles of two of
the tuning curve types, direction tuning (dark) and position tuning (light). (0/2330 scores excluded summed over all layers for ART-trained, 129/2330 for
TDT; see Methods). (B) The means of 90%-quantiles over all five model instantiations of models trained on action recognition and trajectory decoding
are shown for direction tuning (dark) and position tuning (light). 95%-confidence intervals are shown over instantiations (N = 5). (C) The same plot as
in (A) but for the top-performing LSTM model (0/6530 scores excluded for ART-trained, 1024/6530 for TDT; see Methods). (D) The same plot as B, for
the LSTM model.

Lastly, we could directly test if preferred tuning directions
(of tuned units) were maintained across different planes due
to the fact that we created trajectories in multiple vertical and
horizontal planes. We hypothesized that for the trained net-
works preferred orientations would be more preserved across
planes compared to controls. In order to examine how an
individual unit’s preferred direction changed across different
planes, directional tuning curve models were fit in each hori-
zontal/vertical plane separately (examples in Figure S9A, B).
To measure the representational invariance, we took the mean
absolute deviation (MAD) of the preferred tuning direction
for directionally tuned units (R2 > 0.2) across planes (see
Methods) and averaged over all planes (Figures 7E, S9A).
For the spatial-temporal model across vertical workspaces,
layers 3-6 were indeed more invariant in their preferred direc-
tions (layer 3: t(4)= -11.38, p=0.0003; layer 4: t(4) = -10.23,
p=0.0005; layer 5: t(4) = -12.17, p=0.002; layer 6: t(4) = -
13.18, p=0.0002; Figure 7E; variation in preferred direction
illustrated for layer 5 in Figure S9D for trained model and
in Figure S9E for controls). The difference in invariance for
the horizontal planes was likewise statistically significant for
layers 4-6 (Figure S9A). The difference in invariance here
might only become statistically significant one layer later
because the spindles are already more invariant in the hor-
izontal planes (MAD: 0.225± 2.78e− 17, mean± SEM ,
N = 25; Figure S9B) than the vertical workspaces (MAD:
0.439±5e−17, mean ± SEM, N = 16; Figure S9C), mean-
ing that it takes a greater amount of invariance in the trained
networks for differences with the control networks to become

statistically apparent. For the spatiotemporal and LSTM
models, the relatively slower increase in invariance in the hor-
izontal direction is exaggerated even more. For the LSTM
model, the neuron tuning does not become stronger for the
horizontal planes until the recurrent laye. The spatiotemporal
trained models even begin by being less invariant in the hori-
zontal planes before the difference evens out in layer 3r (Fig-
ureS9A).

Discussion
Task-Driven Modeling of Proprioception.

For various anatomical and experimental reasons, recording
proprioceptive activity during natural movements is techni-
cally challenging (3, 47). Furthermore, “presenting" par-
ticular proprioceptive-only stimuli is difficult, which poses
substantial challenges for systems identification approaches.
This highlights the importance of developing accurate, nor-
mative models that can explain neural representations across
the proprioceptive pathway, as has been successfully done
in the visual system (20–26). To tackle this, we combined
human movement data, biomechanical modeling, as well as
deep learning to provide a blueprint for studying the proprio-
ceptive pathway.

We presented a task-driven approach to study the proprio-
ceptive system based on our hypothesis that proprioception
can be understood normatively as having to solve action-
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Figure 7. Distribution of preferred directions and invariance of representation across workspaces. (A) Adopted from (14); distribution of preferred
directions in primate S1. (B) Distribution of preferred directions for spindle input. (C) Distribution of preferred directions for one spatial-temporal model
instantiation (all units with R2 > 0.2 are included). Bottom: the corresponding control. For visibility all histograms are scaled to the same size and the
colors indicate the number of tuned neurons. (D) For quantifying uniformity, we calculated the total absolute deviation from the corresponding uniform
distribution over the bins in the histogram (red line in inset) for the spatial-temporal model (left), the spatiotemporal model (middle), and the LSTM model
(right). Normalized absolute deviation from uniform distribution for preferred directions per instantiation are shown (N = 5, faint lines) for trained and
control models as well as mean and 95%-confidence intervals over instantiations (solid line; N = 5). Note that there is no data for layers 7 and 8 of
the trained spatial-temporal model, layer 8 of the untrained spatial-temporal model, and layer 4 of the spatiotemporal model as they have no direction
selective units (R2 > 0.2). (E) For quantifying invariance we calculated mean absolute deviation in preferred orientation for units from the central plane
to each other vertical plane (for units with R2 > 0.2). Results are shown for each instantiation (N = 5, faint lines) for trained and control models plus
mean (solid) and 95%-confidence intervals over instantiations (N = 5). Note that there is no data for layer 4 of the trained spatiotemporal model, as it
have no direction selective units (R2 > 0.2).

recognition from receptor inputs. We created a passive char-
acter recognition task for a simulated human biomechanical
arm paired with a muscle spindle model and found that deep
neural networks can be trained to accurately solve the ac-
tion recognition task. Inferring the character from passive
arm traces was chosen as it is a type of task that humans can
easily perform and because it covers a wide range of natural
movements of the arm. The perception is also likely fast, so
that feed-forward processing is a good approximation (while
we also find similar results with recurrent models). Addi-
tionally, character recognition is an influential task for study-
ing ANNs, for instance MNIST (42, 48). Moreover, when
writing movements were imposed onto the ankle with a fixed
knee joint, the movement trajectory could be decoded from a
few spindles using a population vector model, suggesting that

spindle information is accurate enough for decoding (49).
Lastly, while the underlying movements are natural and of
ethological importance for humans, the task itself is only a
small subset of human upper-limb function. Thus, it posed
an interesting question whether such a task would be suffi-
cient to induce representations similar to biological neurons.

We put forth a normative model of the proprioceptive sys-
tem, which is experimentally testable. This builds on our
earlier preprint (50) of this work, which only considered ac-
tion recognition and used a different receptor model (51) that
used changes in the length of the muscles. Here, we also in-
clude positional sensing and an additional tasks to directly
test our hypothesis of action coding vs. the canonical view
of proprioception. We confirm that in ART-trained models,
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but not in randomly initialized models, the intermediate rep-
resentations contain directionally selective neurons that are
uniformly distributed (50). Furthermore, we had predicted
that earlier layers and in particular muscle spindles, have a
biased, bidirectionally tuned distribution. This distribution
was later found experimentally for single units in the cuneate
nucleus (52). Here we still, robustly find this result but with
different spindle models (35, 36). However, these PD distri-
bution result does not hold when the identical architectures
are trained with the trajectory decoding task. In those models
directionally tuned neurons do not emerge, in fact they are
“unlearned" in comparison to random initializations for TDT
(Figure S6).

The distribution of preferred directions becomes more uni-
form over the course of the processing hierarchy (Figure 6
and 7), similar to the distribution of preferred tuning in so-
matosensory cortex (14). This does not occur in the random-
ized controls, which instead maintained an input distribution
centered on the primary axis of preferred directions of the
muscular tuning curves. Furthermore, the task-trained mod-
els make a prediction about the distribution of preferred di-
rections along the proprioceptive pathway. For instance, we
predict that in the brainstem - i.e. cuneate nucleus - pre-
ferred directions are aligned along major axes inherited from
muscle spindles that correspond to biomechanical constraints
(consistant with Versteeg et al. (52)). A key element of ro-
bust object recognition is invariance to task-irrelevant vari-
ables (23, 53). In our computational study, we could probe
many different workspaces (26 horizontal and 18 vertical) to
reveal that training on the character recognition task makes
directional tuning more invariant (Figure 7E). This together
with our observation that directional tuning is simply inher-
ited from muscle spindles, highlights the importance of sam-
pling the movement space well, as also emphasized by pio-
neering experimental studies (54). We also note that the pre-
dictions depend on the musculoskelatal model and the move-
ment statistics. In fact, we predict that e.g., distributions of
tuning and invariances might be different in mice, a species

that has a different body orientation from primates. This will
be explored in future studies.

Limitations and future directions.

Our model only encompasses proprioception and trained in a
supervised fashion. However, it is quite natural to interpret
the supervised feedback stemming from other senses. For in-
stance, the visual system could naturally provide information
of the hand localization or about the type of character.
Here we used different types of temporal convolutional and
recurrent network architectures. In future work it will be im-
portant to investigate emerging, perhaps more biologically-
relevant architectures to better understand how muscle spin-
dles are integrated in upstream circuits. While we used spin-
dle Ia and II models, it is known that multiple receptors,
namely cutaneous, joint, and muscle receptors play a role for
limb localization and kinesthesia (3, 55–58). For instance, a
recent simulation study by Kibleur et al. highlighted the com-
plex spatio-temporal structure of proprioceptive information
at the level of the cervical spinal cord (47). Furthermore, due
to fusimotor drive receptor activity can be modulated by other
modalities, e.g., vision (59). In the future, models for other
afferents, golgi tendon organ incl. the fusimotor drive as well
as cutaneous receptors can be added, to study their role in the
context of various tasks (40).

Conclusions.

We proposed action recognition from peripheral inputs as an
objective to study proprioception. We developed task-driven
models of the proprioceptive system and showed that diverse
preferred tuning directions and invariance across 3D space
emerges in neural networks emerges in such systems – this
emergence was not found for models trained on representing
the state of the body. Due to their hierarchical nature, the net-
work models provide not only a description of neurons pre-
viously found in physiology studies, they make predictions
about coding properties, such as the biased distribution of di-
rection tuning in subcortical areas.
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Methods
Proprioceptive Character Trajectories: Dataset and
Tasks.

The character trajectories dataset.

The movement data for our task was obtained from the
UCI Machine Learning Repository character trajectories
dataset (33, 37). In brief, the dataset contains 2,858 pen-tip
trajectories for 20 single-stroke characters (excluding f, i, j, k,
t and x, which were multi-stroke in this dataset) in the Latin
alphabet, written by a single person on an Intuos 3 Wacom
digitization tablet providing pen-tip position and pressure in-
formation at 200 Hz. The size of the characters was such that
they all approximately fit within a 1× 1 cm grid. Since we
aimed to study the proprioception of the whole arm, we first
interpolated the trajectories to lie within a 10× 10 cm grid
and discarded the pen-tip pressure information. Trajectories
were interpolated linearly while maintaining the velocity pro-
files of the original trajectories. Empirically, we found that
on average it takes 3 times longer to write a character in the
10× 10 cm grid than in the small 1× 1 one. Therefore, the
time interval between samples was increased from 5ms (200
Hz) to 15ms (66.7 Hz) when interpolating trajectories. The
resulting 2,858 character trajectories served as the basis for
our end-effector trajectories.

Computing joint angles and muscle length trajectories.

Using these end-effector trajectories, we sought to generate
realistic proprioceptive inputs while passively executing such
movements. For this purpose, we used an open-source mus-
culoskeletal model of the human upper limb, the upper ex-
tremity dynamic model by Saul et al. (34, 60). The model
includes 50 Hill-type muscle-tendon actuators crossing the
shoulder, elbow, forearm and wrist. While the kinematic
foundations of the model enable it with 15 degrees of free-
dom (DoF), 8 DoF were eliminated by enforcing the hand
to form a grip posture. We further eliminated 3 DoF by dis-
abling the model to have elbow rotation, wrist flexion and
rotation. The four remaining DoF are elbow flexion (θef),
shoulder rotation (θsr), shoulder elevation i.e, thoracohumeral
angle (θse) and elevation plane of the shoulder (θsep).

The first step in extracting the spindle activations involved
computing the joint angles for the 4 DoF from the end-
effector trajectories using constrained inverse kinematics. We
built a 2-link 4 DoF arm with arm-lengths corresponding to
those of the upper extremity dynamic model (60). To deter-
mine the joint-angle trajectories, we first define the forward
kinematics equations that convert a given joint-angle config-
uration of the arm to its end-effector position. For a given
joint-angle configuration of the arm q = [θef,θsr,θse,θsep]T ,
the end-effector position e ∈ R3 in an absolute frame of ref-
erence {S} centered on the shoulder is given by

e =RS(RLe0 + l0) =: F (q), (1)

with position of the end-effector (hand) e0 and elbow l0
when the arm is at rest and rotation matrices

RS =RY (θse)RZ(θsep)RY (−θse)RY (θsr), (2)
RL =RX(θef). (3)

Thereby,RS is the rotation matrix at the shoulder joint,RL is
the rotation matrix at the elbow obtained by combinations of
intrinsic rotations around the X, Y and Z axes which are de-
fined according to the upper extremity dynamic model (60),
treating the joint angles as Euler angles and RX ,RY ,RZ -
the three basic rotation matrices.

Given the forward kinematics equations, the joint-angles
q for an end-effector position e can be obtained by itera-
tively solving a constrained inverse kinematics problem for
all times t= 0 . . .T :

minimize ‖q(t)−q(t−1)‖
subject to ‖F (q(t))−e(t)‖= 0,

θmin ≤ θ ≤ θmax ∀ θ ∈ {θef,θsr,θse,θsep},
(4)

Where q(−1) is a natural pose in the center of the workspace
(see Figure 2D) and each q(t) is a posture pointing to e(t),
while being close to the previous posture q(t−1). Thereby,
{θmin,θmax} define the limits for each joint-angle. For a given
end-effector trajectory e(t), joint-angle trajectories are thus
computed from the previous time point in order to generate
smooth movements in joint space. This approach is inspired
by D’Souza et al. (61).

Finally, for a given joint trajectory q(t) we passively moved
the arm through the joint-angle trajectories in the OpenSim
3.3 simulation environment (62, 63), computing at each time
point the equilibrium muscle lengths m(t) ∈ R25, since the
actuation of the 4 DoFs is achieved by 25 muscles. For
simplicity, we computed equilibrium muscle configurations
given joint angles as an approximation to passive movement.

Proprioceptive inputs.

While several mechanoreceptors provide proprioceptive in-
formation, including joint receptors, Golgi tendon organs and
skin stretch receptors, the muscle spindles are regarded as the
most important for conveying position and movement related
information (2, 51, 64, 65). Here we are inspired by Dim-
itriou and Edin’s recordings from human spindles (35, 36).
They found that both Ia and II units are well predicted by
combinations (for parameters k1 . . .k5) of muscle length l,
muscle velocity l′, acceleration l′′ and EMG:

k1+k2 · l+k3 · l′+k4 · l′′+k5 ·EMG (5)

As we model passive movement, the associated EMG activity
is negligible. To simplify the aggregate information flowing
from one muscle (via multiple Ia and II spindles), we con-
sider a more generic/functional representation of propriocep-
tive information as consisting of muscle length and velocity
signals, which are approximately conveyed by muscle spin-
dles during passive movements. Therefore, in addition to the
equilibrium muscle lengths m(t), we input muscle velocity
v(t) signal obtained by taking the first derivative. Taken to-
gether, {m(t),v(t)} form the proprioceptive inputs to train
models of the proprioceptive system.
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Type of variation Levels of variation

Scaling [0.7x, 1x, 1.3x]
Rotation [-π/6, -π/12, 0, π/12, π/6]
Shearing [-π/6, -π/12, 0, π/12, π/6]
Translation Grid with a spacing of 3cm
Speed [0.8x, 1x, 1.2x, 1.4x]
Plane of writing [Horizontal (26), Vertical (18)]

Table 1. Variable range for the utilized data augmentation applied to the
original pen-tip trajectory dataset. Furthermore, the character trajecto-
ries are translated to start at various starting points throughout the arm’s
workspace. Overall yielding movements in 26 horizontal and 18 vertical
planes.

A scalable proprioceptive character trajectories dataset.

We move our arms in various configurations and write at
varying speeds. Thus, several axes of variation were added
to each (original) trajectory by (1) applying affine transfor-
mations such as scaling, rotation and shear, (2) modifying
the speed at which the character is written, (3) writing the
character at several different locations (chosen from a grid of
candidate starting points) in the 3D workspace of the arm,
and (4) writing the characters on either transverse (horizon-
tal) or frontal (vertical) planes of which there were 26 and
18 respectively, placed at a spatial distance of 3cm from each
other (see Table 1 for parameter ranges). We first generated
a dataset of end-effector trajectories of 1 million samples by
generating variants of each original trajectory, by scaling, ro-
tating, shearing, translating and varying its speed. For each
end-effector trajectory, we compute the joint-angle trajectory
by performing inverse kinematics. Subsequently, we simu-
late the muscle length and muscle velocity trajectories. Since
different characters take different amount of time to be writ-
ten, we pad the movements with static postures correspond-
ing to the starting and ending postures of the movement,
and jitter the beginning of the writing to maintain ambigu-
ity about when the writing begins.

From this dataset of trajectories, we selected a subset of
trajectories such that the integral of joint-space jerk (third
derivative of movement) was less than 1 rad/s3 so as to ensure
that the arm movement is sufficiently smooth. Among these,
we picked the trajectories for which the integral of muscle-
space jerk was minimal, while making sure that the dataset is
balanced in terms of the number of examples per class, result-
ing in 200,000 samples. The final dataset consists of muscle
length and velocity trajectories from each of the 25 muscles
over a period of 320 time points, simulated at 66.7 Hz (i.e, 4.8
seconds). In other words, the dimensionality of the proprio-
ceptive inputs in our tasks is 25x320x2. The dataset was then
split into a training, validation and test set with a 72−8−20
ratio.

Action recognition and trajectory decoding tasks.

Having simulated a large scale dataset of proprioceptive char-
acter trajectories, we designed two tasks - (1) the action
recognition task (ART) to classify the identity of the char-
acter based on the proprioceptive inputs, and (2) the trajec-
tory decoding task (TDT) to decode the endeffector coordi-
nates (at each time step) from proprioceptive inputs. Baseline

models (SVMs for the ART and linear regression for TDT)
were first trained to investigate the difficulty of the task, fol-
lowed by a suite of deep neural networks that aim to model
the proprioceptive pathway.

Low dimensional embedding of population activity.

To visualize population activity (of kinematic or network rep-
resentations), we created low-dimensional embeddings of the
proprioceptive inputs (Figure 3A) as well as the the layers of
the neural network models, along time, and space/muscles
dimensions (Figure 4B and Figure S2A). To this end, we first
used Principal Components Analysis (PCA) to reduce the
space to 50 dimensions, typically retaining around 75−80%
of the variance. We then used t-distributed stochastic neigh-
bor embedding (t-SNE, 38) using sklearn (66) with a perplex-
ity of 40 for 300 iterations, to reduce these 50 dimensions
down to two for visualization.

Support vector machine (SVM) analysis for action recogni-
tion.

To establish a baseline performance for multi-class recog-
nition we used pairwise SVMs with the one-against-one
method (39). That is, we train

(20
2
)

pairwise (linear) SVM
classifiers (Figure 3C) and at test time implement a voting
strategy based on the confidences of each classifier to de-
termine the class identity. We trained SVMs for each in-
put modality (end-effector trajectories, joint angle trajecto-
ries, muscle fiber-length trajectories and proprioceptive in-
puts) to determine how the format affects performance. All
pairwise classifiers were trained using a hinge loss, and cross-
validation was performed with 9 regularization constants log-
arithmically spaced between 10−4 and 104.

Baseline linear regression model for trajectory decoding.
To establish how well one could decode endeffector coordi-
nates from the joint, muscle and proprioceptive inputs, we
trained linear regressors with ordinary least-squares loss us-
ing stochastic gradient descent until the validation loss sat-
urated (with a tolerance of 10−3). Inputs and outputs to the
model were first transformed using a standard scaler to center
(remove the mean) and scale to unit variance over each fea-
ture in order to train faster. At test time, the same scalers were
reused. Decoding error was determined as the squared error
(L-2 norm) of the predicted and true endeffector coordinates
in 3D.

Models of the proprioceptive system.

We trained two types of convolutional networks and one type
of recurrent network on the two tasks. Each model is char-
acterized by the layers used – convolutional and/or recurrent
– which specify how the spatial and temporal information in
the proprioceptive inputs is processed and integrated.

Each convolutional layer contains a set of convolutional fil-
ters of a given kernel size and stride, along with response nor-
malization and a point-wise non-linearity. The convolutional
filters can either be 1-dimensional, processing only spatial
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or temporal information or 2-dimensional, processing both
types of information simultaneously. For response normal-
ization we use layer normalization (67), a commonly used
normalization scheme to train deep neural networks, where
the response of a neuron is normalized by the response of
all neurons of that layer. As point-wise non-linearity we use
rectified linear units. Each recurrent layer contains a single
LSTM (long short-term memory) cell with a given number of
units that process the input one time step at a time.

Depending on what type of convolutional layers are used and
how they are arranged, we classify convolutional models into
two subtypes (1) spatial-temporal and (2) spatiotemporal net-
works. Spatial-temporal networks are formed by combining
multiple 1-dimensional spatial and temporal convolutional
layers. That is, the proprioceptive inputs from different mus-
cles are first combined to attain a condensed representation of
the ‘spatial’ information in the inputs, through a hierarchy of
spatial convolutional layers. This hierarchical arrangement
of the layers leads to increasingly larger receptive fields in
spatial (or temporal) dimension that typically (for most pa-
rameters) gives rise to a representation of the whole arm at
some point in the hierarchy. The temporal information is
then integrated using temporal convolutional layers. In the
spatiotemporal networks, multiple 2-d convolutional layers
where convolutional filters are applied simultaneously across
spatial and temporal dimensions are stacked together. The
LSTM models on the other hand are formed by combining
multiple 1-dimensional spatial convolutional layers and a sin-
gle LSTM layer at the end of a stack of spatial filters that re-
currently processes the temporal information. For each net-
work, the features at the final layer are mapped by a single
fully connected layer either onto a 20 dimensional (logits) or
a 3 dimensional output (end-effector coordinates).

For each specific network type the following hyper-
parameters were used: number of layers, number and size
of spatial and temporal filters and their corresponding stride
(see Table 2). Using this set of architectural parameters, 50
models of each type were randomly generated. Notably, we
trained the same model (as specified by the architecture) on
both tasks.

Network training and evaluation procedure.

The action-recognition trained models were trained by mini-
mizing the softmax cross entropy loss using the Adam Opti-
mizer (45) with an initial learning rate of 0.0005, batch size
of 256 and decay parameters (β1 and β2) of 0.9 and 0.999.
During training the performance was monitored on the left-
out validation set. When the validation error did not improve
for 5 consecutive epochs, we decreased the learning rate by
a factor of 4. After the second time the validation error sat-
urated, we ended the training and evaluated accuracy of the
networks on the test set. Overall we observe that the trained
networks generalized well to the test data, even though the
shallower networks tended to overfit S1A.

The TDT trained models on the other hand were trained to
minimize the mean squared error between predicted and true

trajectories. Hyperparameter settings for the optimizer, batch
size and early stopping procedure used during training re-
mained same across both tasks. Here, we observe that train
and test decoding errors were highly correlated, and thereby
achieve excellent generalization to test data S1A.

Comparison with controls.

For each of the three types of models, the architecture be-
longing to the best performing model on the ART (as identi-
fied via the hyper-parameter search) was chosen as the basis
of the analysis (Table 2). The resulting sizes of each layer’s
representation across the hierarchy are given in Table 3. For
each different model type, five sets of random weights were
initialized and saved. Then, each instantiation was trained on
both ART and TDT using the same training procedure as de-
scribed in the previous section, and the weights were saved
again after training. This gives a before and after structure for
each run that allows us to isolate the effect of task-training.

Population comparisons.

Centered Kernel Analysis.

In order to provide a population-level comparison between
the trained and control models (Figure 4A), we used Linear
Centered Kernel Analysis (CKA) for a high-level comparison
of each layers’ activation patterns (68). CKA is an alterna-
tive that extends Canonical Correlation Analysis (CCA) by
weighting activation patterns by the eigenvalues of the cor-
responding eigenvectors (68). As such, it maintains CCA’s
invariance to orthogonal transformations and isotropic scal-
ing, yet retains a greater sensitivity to similarities. Using this
analysis, we quantified the similarity of the activation of each
layer of the trained models with those of the respective con-
trols in response to identical stimuli comprising 50% of the
test set for each of the five model instantiations.

Representational similarity analysis.

Representational Similarity Analysis (RSA) is a tool to in-
vestigate population level representations among compet-
ing models (69). The basic building block of RSA is a
representational dissimilarity matrix (RDM). Given stim-
uli {s1,s2, . . . ,sn} and vectors of population responses
{r1, r2, . . . , rn}, the RDM is defined as:

RDMij = 1− cov(ri, rj)√
var(ri) ·var(rj)

. (6)

One of the main advantages of RDMs is that it characterizes
the geometry of stimulus representation in a way that is inde-
pendent of the dimensionality of the feature representations,
so we can easily compare between arbitrary representations
of a given stimulus set. Example RDMs for proprioceptive
inputs, as well as the final layer before the readout for the
best models of each type are shown in Figure 4C, S2B. Each
RDM is computed for a random sample of 4,000 character
trajectories (200 from each class) by using the correlation
distance between corresponding feature representations. To
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Hyper-parameters Spatial-Temporal Spatiotemporal LSTM

Num. Layers [1, 2, 3, 4] 4 + 4 4 3 + 1
Spatial Kernels (pL) [8, 16, 32, 64] [8,16,16,32] [8, 8, 32, 64] [8, 16, 16]
Temporal Kernels (pL) [8, 16, 32, 64] [32, 32, 64, 64] n/a n/a
Spatial Kernel Size [3, 5, 7, 9] 7 7 3
Temporal Kernel Size [3, 5, 7, 9] 2 n/a n/a
Spatial Stride [1, 2] 9 2 1
Temporal Stride [1, 2, 3] 3 n/a n/a
Num. Recurrent units [128, 256] n/a n/a 256

Table 2. Hyper-parameters for neural network architecture search. To form candidate networks, first a number of layers (per type) is chosen, ranging
from 2-8 (in multiples of 2) for spatial-temporal models and 1-4 for the spatiotemporal and LSTM ones. Next, a spatial and temporal kernel size per Layer
is picked where relevant, which remains unchanged throughout the network. For the spatiotemporal model, the kernel size is equal in both the spatial
and temporal directions in each layer. Then, for each layer, an associated number of kernels/feature maps is chosen such that it never decreases along
the hierarchy. Finally, a spatial and temporal stride is chosen. For the LSTM networks, the number of recurrent units is also chosen. All parameters are
randomized independently and 50 models are sampled per network type. Columns 2-4 Hyper-parameter values for the top-performing models in the
ART. The values given under the “spatial” rows count for both the spatial and temporal directions for the spatiotemporal model.

Layer Dimension Layer Dimension Layer Dimension

Input 25x320x2 Input 25x320x2 Input 25x320x2
SC0 13x320x8 STC0 13x160x8 SC0 25x320x8
SC1 7x320x16 STC1 7x80x8 SC1 25x320x16
SC2 4x320x16 STC2 4x40x32 SC2 25x320x16
SC3 2x320x32 STC3 2x20x64 R 256x320
TC0 2x107x32
TC1 2x36x32
TC2 2x12x64
TC3 2x4x64

Table 3. Size of representation at each layer for best performing archi-
tecture of each network type (spatial x temporal x filter dimensions).

compactly summarize how well a network disentangles the
stimuli we compare the RDM of each layer to the RDM of the
ideal observer, which has a RDM with perfect block structure
(with dissimilarity values 0 for all stimuli of the same class
and 1 (100 percentile) otherwise; see Figure S2B).

Single unit analysis.

Comparing the tuning curves.

To elucidate the emerging coding properties of single units,
we determined label specificity and fit tuning curves. Specif-
ically, we focused on kinematic properties such as direc-
tion, velocity, acceleration and position of the end-effector
for movements (Figure 5, 7). For computational tractability,
20,000 of the original trajectories were randomly selected for
the ART-trained S and ST models, and 4000 for TDT-trained
ones as well as for both kinds of LSTM models. Each time
point was treated as its own independent sample. In con-
volutional layers in which the hidden layers had a reduced
temporal dimensionality than the input, the input trace was
downsampled. Only those time points were kept that corre-
pond to the center of the receptive fields of the units in the
hidden layers.

A train-test split of 80− 20 was used. The tuning curves
were fit and tested jointly on all movements in planes with
a common orientation, vertical or horizontal. The analysis
was repeated for each of the five trained and control mod-
els. For each of the five different types of tuning curves (the
four biological ones and label specificity) and for each model

instantiation, distributions of test scores were computed (Fig-
ure 5, 7).

When plotting comparisons between different types of mod-
els (ART, TDT, and controls), the confidence interval for the
mean (CLM) using an α= 5% significance level based on the
t-statistic was displayed.

Label tuning (selectivity index).

The networks’ ability to solve the proprioceptive task poses
the question if individual neurons serve as character detec-
tors. To this end, SVMs were fit with linear kernels using
a one vs. rest strategy for multi-class classification based
on the firing rate of each node, resulting in linear decision
boundaries for each letter. Each individual SVM serves as a
binary classifier for the trajectory belonging to a certain char-
acter or not, based on that neuron’s firing rates. For each
SVM, auROC was calculated, giving a measure of how well
the label can be determined based on the firing rate of an in-
dividual node alone. The label specificity of that node was
then determined by taking the maximum over all characters.
Finally, the auROC score was normalized into a selectivity
index: 2((auROC)−0.5)).

Position, direction, velocity, & acceleration.

For the kinematic tuning curves the coefficient of determi-
nation R2 on the test set was used as the primary metric of
evaluation. These tuning curves were fitted using ordinary
least squares linear regression, with regularization proving
unnecessary due to the high number of data points and the
low number of parameters (2-3) in the models.

Position tuning.

Position
(
x
y

)
is initially defined with respect to the cen-

ter of the workspace. For trajectories in a horizontal plane
(workspace), a position vector was defined with respect to the

starting position
(
x0
y0

)
of each trace, ~ρt =

(
x−x0
y−y0

)
. This

was also represented in polar coordinates ~ρt =
(
ρt
φt

)
, where

φt ∈ (−π,π] is the angle measured with the counterclockwise
direction defined as positive between the position vector and
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the vector
(

1
0

)
, i.e. the vector extending away from the body,

and ρt = ||~ρt||=
√

(x−x0)2 +(y−y0)2. Positional tuning
of the neural activity N of node ν was evaluated by fitting
models both using Cartesian coordinates,

Nν(~ρt) = α1 xt+α2 yt+β (7)

as well as polar ones,

Nν(~ρt) = α ρt cos(φt−φPD)+β (8)

where φPD is a parameter representing a neuron’s preferred
direction for position. For trajectories in the vertical plane,
all definitions are equivalent, but with coordinates (y,z)T .

Direction.

In order to examine the strength of kinematic tuning, tuning
curves relating direction, velocity, and acceleration to neural
activity were fitted. Since all trajectories take place either in a
horizontal or vertical plane, the instantaneous velocity vector

at time t can be described in two components as ~vt =
(
ẋt
ẏt

)
,

or (y,z)T for trajectories in a vertical plane, or alternately in

polar coordinates, ~vt =
(
st
θt

)
, with θt ∈ (−π,π] representing

the angle between the velocity vector and the x-axis, and st =
||~vt||=

√
x2 +y2 representing the speed.

First, a tuning curve was fit that excludes the magnitude of
velocity but focuses on the instantaneous direction, putting
the angle of the polar representation of velocity θt in relation
to each neuron’s preferred direction θPD.

Nν(θt) = αcos(θt−θPD)+β (9)

To fit this model, 9 was re-expressed as a simple linear sum
using the cosine sum and difference formula cos(α+ β) =
cosαcosβ− sinαsinβ, a reformulation that eases the com-
putational burden of the analysis significantly (70). In this
formulation, the equation for directional tuning becomes:

Nν(θt) = α1 cosθt+α2 sinθt+β (10)

The preferred direction θPD is now contained in the in the
coefficients α1 = αcosθPD and α2 = αsinθPD.

The quality of fit of this type of tuning curve was visual-
ized using polar scatter plots in which the angle of the data
point corresponds to the angle θ in the polar representation
of velocity and the radius corresponds to the node’s activa-
tion. In the figures the direction of movement was defined
so that 0◦ (Y) corresponds to movement to the right of the
body and progressing counterclockwise, a movement straight
(“forward”) away from the body corresponds to 90◦ (X) (Fig-
ures 5A, B; 7A, B, C).

Speed.

Two linear models for activityN at a node ν for velocity were
fit.
The first is based on its magnitude, speed,

Nν(~vt) = α st+β (11)

Velocity. The second velocity-based tuning curve factors in
both directional and speed components:

Nν(~vt) = α st cos(θt−θPD)+β (12)

The quality of fit of this type of tuning curve was visualized
using polar filled contour plots in which the angle of the data
point corresponds to the angle θ in the polar representation of
velocity, the radius corresponds to the speed, and the node’s
activation is represented by the height. For the visualizations
(Figure 5B), to cover the whole range of angle and radius
given a finite number of samples, the activation was first lin-
early interpolated. Then, missing regions were filled in us-
ing nearest neighbor interpolation. Finally, the contour was
smoothed using a Gaussian filter.

Acceleration.

Acceleration is defined analogously to velocity by ~at =
(
ẍ
ÿ

)
and at = ‖~at‖=

√
ẍ2 + ÿ2. A simple linear relationship with

acceleration magnitude was tested:

Nν(~at) = α at+β (13)

In subsequent analyses, scores were excluded if they were
equal to 1 (indicating a dead neuron whose output was con-
stant) or if they were less than -0.1 (indicating a fit that did
not converge).

Classification of neurons into different types.

The neurons were classified as belonging to a certain type if
the corresponding kinematic model yielded a test-R2 > 0.2.
Seven different model types were evaluated:

1. Direction tuning
2. Velocity tuning
3. Direction & velocity tuning
4. Position (Cartesian)
5. Position (Polar)
6. Acceleration tuning
7. Label specificity

These were treated as distinct classes for the purposes of clas-
sification (Figure 5C).

Population Decoding Analysis.

We also performed population-level decoding analysis for the
kinematic tuning curve types (Figure S4, S8, S7). The same
data sets were used as for the single cell encoding analysis,
except with switched predictors and targets. The firing rates
of all neurons in a hidden layer at a single time point were
jointly used as predictors for the kinematic variable at the
center of the receptive field at the corresponding input layer.

This analysis was repeated for each of the following kine-
matic variables:
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1. Direction
2. Speed
3. X Position (Cartesian)
4. Y Position (Cartesian)

For each of these, the accuracy was evaluate using r2 score.
The encoding strength for X and Y position in Cartesian coor-
dinates was additionally jointly evaluated by calculating the
average distance between true and predicted points of the tra-
jectory. To prevent overfitting, ridge regularization was used
with a regularization strength of α= 1.

Distribution of Preferred Directions.

Higher order features of the models were also evaluated and
compared between the trained models and their controls. The
first property was the distribution of preferred directions fit
for all horizontal planes in each layer. If a neuron’s direction-
only tuning yields a test-R2 > 0.2, its preferred direction was
included in the distribution. Within a layer, the preferred di-
rection of all neurons was binned into 18 equidistant intervals
(Figure 7B,C) in order to enable a direct comparison with
the findings by Prud’homme and Kalaska (14). They found
that the preferred direction of tuning curves was relatively
evenly spread in S1 (Figure 7A); our analysis showed that
this was not the case for muscle spindles (Figure 7B). Thus,
we formed the hypothesis that the preferred directions in the
trained networks was more uniform in the trained networks
than in the random ones. For quantification, absolute devia-
tion from uniformity was used as a metric. To calculate this
metric, the deviation from the mean height of a bin in the cir-
cular histograms was calculated for each angular bin. Then,
the absolute value of this deviation was summed over all bins.
We then normalize the result by the number of significantly
directionally tuned neurons in a layer, and compare the result
for the trained and control networks (Figure 7D).

Preferred direction invariance.

We also hypothesized that the representation in the trained
network would be more invariant across different horizon-
tal and vertical planes, respectively. To test this, directional
tuning curves were fit for each individual plane. A central
plane was chosen as a basis of comparison (plane at z = 0
for the horizontal planes and at x= 30 for vertical). Changes
in preferred direction of neurons are shown for spindles (Fig-
ure S9A), as well as for neurons of layer 5 of one instantia-
tion of the trained and control spatial-temporal model (Fig-
ure S9B). Generalization was then evaluated as follows: for
neurons with R2 > 0.2, the average deviation of the neurons’
preferred directions over all different planes from those in the
central plane was summed up and normalized by the number
of planes and neurons, yielding a total measure for the neu-
rons’ consistency in preferred direction in any given layer
(vertical: Figure 7F; horizontal: Figure 7E). If a plane had
fewer than three directionally tuned neurons, its results were
excluded.

Statistical Testing.

To test whether differences were statistically significant be-
tween trained and control models paired t-tests were used
with a pre-set significance level of α= 0.05.

Software.

We used the scientific Python stack (python.org): Numpy,
Pandas, Matplotlib, SciPy (71) and scikit-learn (66). Open-
Sim (34, 62, 63) was used for biomechanics simulations and
Tensorflow was used for constructing and training the neural
network models (72).

Code and data:

Code and data will be shared upon publication.
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Figure S1. Network Performance. (A) Training vs. test performance for all networks. Shallower networks tend to overfit more. (B) Performance of
networks is plotted against the all parameters of the networks. Note: parameters of the final (fully connected) layer are not counted.
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Figure S2. Extended analysis of network models. (A) t-distributed stochastic neighbor embedding (t-SNE) embedding for each layer of the best
spatiotemporal and LSTM model. Each data point is a random stimulus sample (N=4,000, 200 per character). (B) Representational Dissimilarity
Matrices (RDM) of an ideal observer "Oracle", which by definition has low dissimilarity for different samples of the same character and high dissimilarity
for different samples of different characters. Character level representation are calculated through percentile representational dissimilarity matrices for
proprioceptive inputs and final layer features of one instantiation of the best performing spatiotemporal and LSTM model trained on recognition task.(C)
CKA between models trained on recognition vs decoding for all network types (N = 50 per network type).
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Figure S3. Kinematic tuning of single neurons. (A) For an example spatial-temporal model instantiation, the distribution of testR2 scores for both the
ART- and TDT-trained models are shown, for direction, speed, velocity, acceleration, and labels. (8/3890 scores excluded over all layers for ART-trained,
284/3890 for TDT-trained; see Methods). (B) The individual traces (faint) as well as the means (dark) of 90%-quantiles over all five model instantiations
of models trained on action recognition and trajectory decoding are shown for direction tuning (solid line) and acceleration tuning (dashed line). (C, D)
Same as A,B but for the spatiotemporal model. (0/2330 scores excluded for ART-trained, 132/2330 for TDT; see Methods). (E, F) Same as A,B but for
the LSTM model.(4/6530 scores excluded for ART-trained, 1024/6530 for TDT-trained; see Methods).
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Figure S4. Population decoding analysis of ART vs. TDT models. (A) Population decoding of speed (light) and direction (dark ) for spatial-temporal
models for the ART- and TDT-trained models. The faint line shows the R2 score for an individual model; the dark one the mean over all instantiations
(N = 5). (B) Population decoding of endeffector position (X and Y coordinates) for spatial temporal models. The faint line shows the R2 score for
an individual model; the dark one the mean over all instantiations (N = 5). (C) Same as A but for spatiotemporal models. (D) Same as B but for
spatiotemporal models. (E) Same as A but for LSTM models. (F) Same as B but for LSTM models.
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Figure S5. Analysis of single unit tuning properties for ART-trained models and controls (A) For an example instantiation of the top-performing
spatial-temporal model, the distribution of test R2 scores for both the trained and control model are shown, for five kinds of kinematic tuning for each
layer: direction tuning, speed tuning, Cartesian position tuning, polar position tuning, and label-specificity. The solid line connects the 90%-quantiles
of two of the tuning curve types, direction tuning (dark) and position tuning (light). (8/3890 scores excluded summed over all layers for ART-trained,
294/3890 for controls; see Methods). (B) The means of 90%-quantiles over all five model instantiations of models trained on action recognition and
trajectory decoding are shown for direction tuning (dark) and position tuning (light). 95%-confidence intervals are shown over instantiations (N = 5).
(C) The same plot as in (A) but for the top-performing spatiotemporal model (133/2330 scores excluded for ART-trained, 60/2330 for the control; see
Methods). (D) The same plot as B, for the spatiotemporal model. (E) The same plot as in (A) but for the top-performing LSTM model (4/6530 scores
excluded for ART-trained, 328/6530 for the control; see Methods). (F) The same plot as B, for the LSTM model.
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Figure S6. Analysis of single unit tuning properties for TDT-trained models and controls (A) For an example instantiation of the top-performing
spatial-temporal model, the distribution of test R2 scores for both the trained and control model are shown, for five kinds of kinematic tuning for each
layer: direction tuning, speed tuning, Cartesian position tuning, polar position tuning, and label-specificity. The solid line connects the 90%-quantiles
of two of the tuning curve types, direction tuning (dark) and position tuning (light). (287/3890 scores excluded summed over all layers for TDT-trained,
369/3890 for controls; see Methods). (B) The means of 90%-quantiles over all five model instantiations of models trained on action recognition and
trajectory decoding are shown for direction tuning (dark) and position tuning (light). 95%-confidence intervals are shown over instantiations (N = 5).
(C) The same plot as in (A) but for the top-performing spatiotemporal model (133/2330 scores excluded for TDT-trained, 60/2330 for the control; see
Methods). (D) The same plot as B, for the spatiotemporal model. (E) The same plot as in (A) but for the top-performing LSTM model (1024/6530 scores
excluded for TDT-trained, 328/6530 for the control; see Methods). (F) The same plot as B, for the LSTM model.

24 | bioRχiv Sandbrink, Mamidanna et al. et al. | DeepProprioception

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 15, 2022. ; https://doi.org/10.1101/2020.05.06.081372doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.06.081372
http://creativecommons.org/licenses/by-nc/4.0/


A

B

Figure S7. Analysis of population decoding for ART-trained and control models. (A) Population decoding of speed (light) and direction (dark ) for
the ART-trained and control for spatial-temporal models (left), spatiotemporal (middle) and LSTM (right) models. The faint line shows the R2 score for
an individual model; the dark one the mean over all instantiations (N = 5). (B) Population decoding of endeffector position (X and Y coordinates) for
spatial temporal models. The faint line shows the R2 score for an individual model; the dark one the mean over all instantiations (N = 5).
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Figure S8. Analysis of population decoding for TDT-trained and control models. (A) Population decoding of speed (light) and direction (dark ) for
the TDT-trained and control for spatial-temporal models (left), spatiotemporal (middle) and LSTM (right) models. The faint line shows the R2 score for
an individual model; the dark one the mean over all instantiations (N = 5). (B) Population decoding of endeffector position (X and Y coordinates) for
spatial-temporal models (left), spatiotemporal (middle) and LSTM (right) models. The faint line shows the R2 score for an individual model; the dark
one the mean over all instantiations (N = 5).
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Figure S9. Invariance of preferred orientations. (A) For quantifying invariance we calculated mean absolute deviation in preferred orientation for
units from a central plane at z = 0 to each other horizontal plane (for units with R2 > 0.2). Results are shown for each instantiation (N = 5, faint lines)
for trained and control models plus mean (solid) and 95%-confidence intervals over instantiations (N = 5) for the spatial-temporal (left), spatiotemporal
(right), and LSTM (right) networks. Note that there is no data for layer 4 of the trained spatiotemporal model, as it has no direction selective units
(R2 > 0.2). (B) Deviation in preferred direction for individual spindles (N=25). The preferred directions are fit for each plane and displayed in relation to
a central horizontal (left) and vertical plane (right). Individual gray lines are for all units (spindles) with R2 > 0.2, the thick red line marks the mean. (C)
Same as B, but for direction tuning in vertical planes for units in layer 5 of one instantiation of the best spatial-temporal model for the trained (left) and
control model (right). Individual gray lines are for units with R2 > 0.2, and the red line is the plane-wise mean. (D) Same as in B but for layer 5 of the
trained spatial-temporal network. (E) Same as in D but for layer 5 of the corresponding control network.
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Figure S10. Supplementary Video Video depicts the OpenSim model being passively moved to match the human-drawn character ”a” for three
different variants; drawn vertically (left, right) and horizontally (middle).
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