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Abstract 
Following gastrulation, the three primary germ layers develop into the major organs in a 
process known as organogenesis. Single-cell RNA sequencing has enabled the profiling of 
the gene expression dynamics of these cell fate decisions, yet a comprehensive map of the 5 
interplay between transcription factors and cis-regulatory elements is lacking, as are the 
underlying gene regulatory networks. Here we generate a multi-omics atlas of mouse early 
organogenesis by simultaneously profiling gene expression and chromatin accessibility from 
tens of thousands of single cells. We develop a computational method to leverage the multi-
modal readouts to predict transcription factor binding events in cis-regulatory elements, which 10 
we then use to infer gene regulatory networks that underpin lineage commitment events. 
Finally, we show that these models can be used to generate in silico predictions of the effect 
of transcription factor perturbations. We validate this experimentally by showing that Brachyury 
is essential for the differentiation of neuromesodermal progenitors to somitic mesoderm fate 
by priming cis-regulatory elements. 15 
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Introduction 25 

In mammals, specification of the basic body plan occurs during gastrulation, when the 
pluripotent epiblast is patterned to give rise to the three primary germ layers. Subsequently, 
these progenitors generate all major organ systems in a process known as organogenesis 
(Arnold and Robertson, 2009; Bardot and Hadjantonakis, 2020; Tam and Loebel, 2007). In 
the mouse, germ layer formation and early organogenesis have been profiled using a variety 30 
of genomics technologies, including single-cell RNA-sequencing (scRNA-seq), which led to 
the annotation of multiple cell types and the characterisation of differentiation trajectories (Cao 
et al., 2019; Ibarra-Soria et al., 2018; Pijuan-Sala et al., 2019). Some efforts to profile the 
epigenome during these stages have produced bulk chromatin accessibility using ATAC-seq 
and histone profiling with ChIP-seq at E7.5 (Xiang et al., 2020), single-nucleus (sn) chromatin 35 
accessibility maps at E8.25 with snATAC-seq (Pijuan-Sala et al., 2020) and single-cell 
transcriptome, nucleosome positioning and DNA methylation up to E7.5 with scNMT-seq 
(Argelaguet et al., 2019). These data demonstrate the dynamic remodelling that the 
epigenome undergoes during development. However, a comprehensive characterisation of 
the epigenome changes and the cis-regulatory elements involved in the transition from 40 
gastrulation to early organogenesis is still lacking, as well as an integration of this information 
with the transcriptome. Furthermore, the genomic positions and the target genes of the various 
transcription factors (TFs) that control these developmental trajectories have only been 
explored for a limited set of TFs and using in vitro systems. A catalogue of TF binding sites 
during mouse early organogenesis in vivo is lacking.  45 
 
Single-cell multimodal technologies have huge potential for the study of gene regulation (Chen 
et al., 2019; Clark et al., 2018; Luo et al., 2022; Ma et al., 2020; Zhu et al., 2019, 2021). In 
particular, the ability to link epigenomic with transcriptomic changes allows the inference of 
gene regulatory networks (GRNs)(Aibar et al., 2017; Davidson and Erwin, 2006; Kamimoto et 50 
al., 2020; Kartha et al., 2021; Materna and Davidson, 2007). GRNs are able to capture the 
interplay between TFs, cis-regulatory DNA sequences and the expression of target genes 
(Garcia-Alonso et al., 2019; Levine and Davidson, 2005; Stadhouders et al., 2018), and can 
hold predictive power of cell fate transitions and gene perturbations (Kamimoto et al., 2020). 
Methods that derive GRNs from single-cell genomics data have been developed (Aibar et al., 55 
2017; Fleck et al., 2021; Kamimoto et al., 2020; Kartha et al., 2021) and applied to the 
developing fly brain (Janssens et al., 2022) but similar analyses of mammalian development 
are lacking. In addition, GRN inference relies on accurate TF binding data, yet limited 
knowledge of TF binding exists for early embryonic development due to limitations in 
experimental methods such as ChIP-seq or CUT&RUN, which require large numbers of cells 60 
(Skene and Henikoff, 2017) and faithful antibodies. It is thus unrealistic to profile a large 
fraction of all TFs even in a single biological context (Lambert et al., 2018; Park, 2009). 
Instead, TF binding sites are typically inferred from the presence of a sequence motif within 
accessible chromatin (Castro-Mondragon et al., 2021; Schep et al., 2017; Weirauch et al., 
2014). This approach can be successful for some TFs that display non-redundant DNA motifs 65 
with high sequence specificity, but the presence of a TF motif does not guarantee the 
existence of an active binding site (Wang et al., 2012). Moreover, the use of DNA motifs as a 
proxy for TF binding is not well suited for the study of TFs that share similar DNA motifs, and 
also for TFs linked to short motifs. Thus, alternative methods for predicting TF binding sites 
are required. 70 
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Recent technological advances have enabled the simultaneous profiling of RNA expression 
and epigenetic modalities from single cells at high-throughput (Chen et al., 2019; Ma et al., 
2020; Zhu et al., 2019). This provides a unique opportunity to systematically decode the TF 
activities and the GRN structure that underpins cell fate transitions. Here, we perform snATAC-75 
seq and snRNA-seq from the same nuclei from a time course of mouse embryonic 
development from E7.5 to E8.75. We develop a computational method to leverage the multi-
modal readouts to predict TF binding events in cis-regulatory elements, which we then use to 
build GRNs that underlie cell fate transitions. Finally, we show that these models can be used 
to generate in silico predictions of the effect of TF perturbations. 80 
 

Results 
 
Simultaneous profiling of RNA expression and chromatin accessibility during 
mouse early organogenesis at single-cell resolution 85 
 
We employed the 10x Multiome technology to profile RNA expression and chromatin 
accessibility from single nuclei collected between E7.5 and E8.75 (Figure 1a). A total of 
61,781 cells passed quality control for both data modalities, with a median detection of 4,322 
genes expressed per cell and a median of 29,710 ATAC fragments per cell (Figure S1). Cell 90 
type assignments were made by mapping the RNA expression profiles to a reference atlas 
from similar stages (Pijuan-Sala et al., 2019) (Figure 1b-c, Figure S2). To evaluate the cell 
type assignments we performed multi-modal dimensionality reduction with MOFA+ 
(Argelaguet et al., 2020), revealing that both molecular layers contain sufficient information to 
distinguish cell type identities (Figure 1c). Similar results are obtained when applying 95 
dimensionality reduction to single data modalities. To further validate the measurements 
obtained from both data modalities, we compared the RNA expression and chromatin 
accessibility profiles with published data sets profiled with scRNA-seq (E7.5 to E8.5 
embryos)(Pijuan-Sala et al., 2019) and snATAC-seq (E8.25 embryos)(Pijuan-Sala et al., 
2020). Despite differences in the technology and in the molecular input (i.e. whole cell versus 100 
single nuclei in the case of RNA expression) we observe close agreements in both gene 
expression (Figure S3) and gene accessibility measurements (Figure S4).  
 
A catalogue of cis-regulatory elements 
 105 
To define open chromatin regions that represent putative cis-regulatory elements we 
performed peak calling on the snATAC-seq data using the ArchR pipeline (Granja et al., 2021). 
Briefly, peaks are defined by an iterative overlapping strategy where cells are aggregated by 
cell type into pseudo-bulk replicates. This approach has been shown to optimally preserve cell 
type-specific peaks (Granja et al., 2021). We obtained a total of 192,251 ATAC peaks, which 110 
we classified into four groups depending on their genomic location: Promoter (16.92%), Exonic 
(5.77%), Intronic (41.57%) and Intergenic (35.75%) (Figure S5). 81% of peaks display 
differential accessibility in at least one cell type comparison (Methods). 69% of peaks were 
assigned to genes based on genomic proximity (less than 50kb from the gene body), with an 
average of ~20 peaks linked to a gene and an average of ~2.3 genes associated to a peak. 115 
~35% of peak-to-gene associations displayed significant positive correlation with the RNA 
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expression levels of at least one of the proximal genes, whereas ~11% displayed a negative 
correlation (Figure S5). 
 
Molecular characterisation of lineage-specific cis-regulatory elements 120 
 
Next, we sought to characterise the transcriptomic and epigenetic variability of lineage-
defining genes. We used the pairwise differential RNA expression results between cell types 
to define cell type-specific upregulated marker genes (Figure 1d left, Methods). Then, we 
quantified the average RNA expression and chromatin accessibility (at promoter regions) for 125 
each class of marker genes and each cell type (Figure 1e right, Figure S6). As a positive 
control, we performed the same quantification for a set of canonical housekeeping genes, 
which are constitutively expressed and have an open chromatin profile. As a negative control, 
we included a set of olfactory receptors genes, which are not expressed until later in 
development and display a closed chromatin profile (Figure 1e left, Figure S6). In marker 130 
genes, we observe the highest levels of expression and chromatin accessibility in the cell 
types that they mark, as expected. In all other cell types expression of these marker genes is 
still detected but at reduced levels. Promoter accessibility is also lower for marker genes in 
the cell types that they mark, however the differences are much less pronounced than for gene 
expression (Figure 1e). This suggests that promoter accessibility may have a limited function 135 
in driving differences in gene expression across cell types. Then, we asked whether cis-
regulatory elements that are distal to promoter regions (Intronic and Intergenic peak sets) also 
display the same behaviour. We defined cell type-specific marker peaks by performing 
pairwise differential accessibility analysis (Figure 1d right, Methods), and then compared the 
average chromatin accessibility at promoter regions of marker genes versus marker peaks 140 
(Figure 1f). We find distal cis-regulatory elements to be more dynamic, with accessibility levels 
similar to promoters in the cell types where they become active, but much lower accessibility 
in the cell types where they are not active (Figure 1f). Consistent with previous reports 
(Argelaguet et al., 2019; Cusanovich et al., 2018), our results indicate a more prominent role 
of distal regulatory regions in cell fate decisions. A representative example is the Gata6 locus 145 
shown in (Figure 1g). This gene encodes a zinc finger transcription factor that is active in 
multiple cell types derived from lateral mesoderm (Morrisey et al., 1996). Consistently, this 
gene is expressed in multiple late mesodermal cell types, including Cardiomyocytes, 
Pharyngeal mesoderm and Allantois. However, the promoter region  is homogeneously open 
across all cell types, whereas three regulatory regions located within 50 kilobases of the gene 150 
body gain accessibility exclusively in the cell types where Gata6 is expressed. Other 
representative examples are shown in Figure S6. 
 
An in silico ChIP-seq library for mouse organogenesis 
 155 
Cell fate decisions are molecularly driven by changes in gene regulatory networks (GRN) 
orchestrated by the interaction between transcription factors (TFs) and their target genes 
(Levine and Davidson, 2005). Nevertheless, limited knowledge of TF binding exists for early 
embryonic development. First, experimental methods such as ChIP-seq or CUT&RUN require 
large numbers of cells to accurately profile TF binding events making it challenging to apply 160 
to embryos (Skene and Henikoff, 2017). Second, the success of the experiments depend on 
properties of available antibodies and on the properties of the TF itself, making it unrealistic to 
profile even a fraction of all transcription factors in the genome(Lambert et al., 2018; Park, 
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2009). Current methods for ATAC-seq data analysis link TFs to regulatory regions by the 
presence of TF motifs (Castro-Mondragon et al., 2021; Schep et al., 2017; Weirauch et al., 165 
2014). This approach can be successful for some TFs that display non-redundant DNA motifs 
with high sequence specificity, but it has important shortcomings. First, the presence of a TF 
motif does not guarantee the existence of an active binding site (Wang et al., 2012). Second, 
a large fraction of TFs belong to families that share the same motif, even when having different 
functions and expression patterns. Representative examples are the GATA, HOX and the FOX 170 
family of transcription factors (Figure S7). As a result of these issues, it is extremely 
challenging to link TFs to regulatory elements when exclusively using a combination of 
genomic and epigenomic information. This can be illustrated by the large number of TF motifs 
that are contained within each ATAC peak (Figure S7). Here, we developed a novel 
computational approach that integrates genomic, epigenomic and transcriptomic information 175 
to predict functional TF binding events. 
 
Intuitively, we consider an ATAC peak i to be a putative binding site for TF j if it contains the j 
motif and its chromatin accessibility is correlated with the RNA expression of the TF (Figure 
2a). We combine three metrics (motif score, average chromatin accessibility and correlation) 180 
to devise a quantitative in silico binding score for each combination of TF and ATAC peak 
(Methods). Note that our approach is unsupervised and does not require ChIP-seq data as 
input. This stands in contrast with other approaches that have been proposed to predict TF 
binding from multi-omics data, which employ supervised models that require labelled training 
data from ChIP-seq experiments (Avsec et al., 2021; Karimzadeh and Hoffman, 2019). We 185 
will refer to this approach as in silico ChIP-seq. As expected, the number of predicted binding 
sites for each TF is a function of the minimum score threshold, which ranges from 0 to 1 after 
scaling (Figure 2b). Notably, the incorporation of RNA expression massively reduces the 
amount of predicted binding sites for each TF as well as the amount of TFs that can be linked 
to each regulatory element (Figure 2c-d).  190 
 
To validate the in silico ChIP-seq library, we used publicly available ChIP-seq experiments for 
a set of TFs that are known to play key roles during mouse gastrulation and early 
organogenesis, and defined this as the ground truth for TF binding events. Due to the limited 
availability of in vivo ChIP-seq datasets, we had to rely on in vitro models that more closely 195 
resemble the gastrulating embryo (Supplementary Table 1). Yet, we observe remarkable 
agreement between the in silico TF binding scores and the observed ChIP-seq signal (Figure 
2d-e). Worse agreement is obtained when excluding the transcriptomic information from the 
model (Figure 2d). Representative examples of TF binding predictions are shown alongside 
ChIP-seq data in Figure 2f-g. Interestingly, for all TFs we benchmarked, the consistency with 200 
ChIP-seq measurements exclusively holds true for ATAC peaks that are positively correlated 
with TF expression (Figure S8), which is consistent with these TFs acting as chromatin 
activators. Our approach also predicts repressive interactions with chromatin (not to be 
confused with transcriptional repression of target genes, as we will discuss below). Chromatin 
repressors are known to be important for gene regulation, and they generally involve the 205 
recruitment of chromatin remodelers, including  histone modifiers, to turn chromatin from an 
open to a closed state (Berest et al., 2019; Gaston and Jayaraman, 2003; Iurlaro et al., 2021; 
Janssens et al., 2022; Lambert et al., 2018). However, insufficient ChIP-seq data exists for 
chromatin repressors in the context of embryonic development, thus limiting our benchmark. 
In consequence, we only consider activatory links between TFs and regulatory regions for 210 
downstream analyses. 
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Generation of a catalogue of cell type-specific transcription factor activities 
 
The most popular method to quantify TF activities per cell using snATAC-seq data is 215 
chromVAR (Schep et al., 2017). Briefly, this method computes, for each cell (or pseudo-bulk 
cell type) and TF motif, a z-score that measures the difference between the total number of 
fragments that map to motif-containing peaks and the expected number of fragments. 
While useful when only having access to chromatin accessibility data, chromVAR scores are 
often not representative of true TF activities, mainly because accessible DNA motifs are not 220 
always good proxies for actual TF binding events. This can be illustrated with the Fox family 
of transcription factors, which all share a similar DNA motif, but nevertheless have different 
roles during mouse gastrulation: whereas Foxb1 is a pioneer TF in the ectodermal lineage 
(Labosky et al., 1997), Foxc1 is active in the mesodermal lineage (Wilm et al., 2004). Their 
distinct roles are evidenced by the RNA expression profiles in our data set and their mapping 225 
to different spatial locations in the embryo (Lohoff et al., 2022) (Methods, Figure 3a). Yet, 
due to their motif similarity, the chromVAR scores of these two TFs are indistinguishable 
(Figure 3a). Here, we modified the chromVAR algorithm to use the predicted TF binding sites 
from the in silico ChIP-seq library (instead of all ATAC peaks that contain the TF motif). We 
find that this yields TF activity scores that are more consistent with the RNA expression 230 
patterns of the corresponding TFs (Figure 3b). For clarity, we will refer to this approach as 
chromVAR-Multiome.  
 
Next, we used the chromVAR-Multiome scores to perform pairwise differential analysis 
between cell types and parse the results to quantify TF activities for each combination of TF 235 
and cell type (Methods) (Figure 3c-d). Reassuringly, using this approach we recover 
canonical TF markers for a variety of cell types (Figure 3e), including Foxa2 and Sox17 for 
endodermal cell types; Mesp11/2 and Mixl1 for the Primitive Streak and mesodermal cell 
types; Sox2 and Rfx4 for ectodermal cell types; Tbx5 and Nkx2-5 for Cardiomyocytes; Runx1 
and Tal1 for Blood progenitors and Erythroids. Notably, the resolution of the data enables us 240 
to provide quantifications of TF activities for cell types that are challenging to study due the 
low cell numbers and difficult cell isolation, including Primordial Germ Cells (PGCs) and Neural 
crest cells (Figure 3f). For the Neural crest, we recover many TFs that have been previously 
associated with Neural crest identity in different species: Pax7, Foxd3, Tfap2a, Tfap2b, Sox10, 
Sox5, Ets1, Nr2f1 and Mef2c (Figure S9, Supplementary Table 2). For example, Tfap2a has 245 
been shown to be essential for Neural crest specification in Xenopus embryos (de Crozé et 
al., 2011). In mice, disruption of the Tfap2a gene results in craniofacial malformations and 
embryonic lethality(Schorle et al., 1996). In humans, missense mutations in the corresponding 
orthologous gene results in branchio-oculo-facial syndrome, which is also characterised by 
craniofacial abnormalities (Milunsky et al., 2008).  For PGCs we also recover TFs described 250 
to be important for PGC specification in mice, including Prdm1 (also called Blimp-1), Esrrb 
and Pou5f1 (also called Oct4) (Figure S9, Supplementary Table 2). For example, Blimp-1 
has been shown to be essential for the repression of the somatic programme upon PGC 
specification(Ohinata et al., 2005). In addition, we also predict several TFs with unknown roles 
in PGC formation that could be suitable candidates for further characterisation, including Ybx2, 255 
Bbx and Klf8 (Figure S9). 
 
Interestingly, visualisation of TF activities across all cell types reveals that (1) cell types are 
defined by a combinatorial activity of multiple TFs and (2) most TFs are active across multiple 
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cell types (Figure 3g). The first observation can be illustrated with the Neural crest: Of the 260 
canonical TFs shown in Figure 3f, none are uniquely active in the Neural crest, with the 
exception of Dlx2 and Sox10 (Figure 3h). The second observation sometimes arises from the 
hierarchical nature of lineage specification (such as Pax7 being active in multiple ectodermal-
derived cell types, Foxa2 in all endodermal-derived cell types and Tal1 in all cell types that are 
linked to blood formation). However, in other cases we observe the same TF active in cell 265 
types from different germ layer origins, thus suggesting widespread pleiotropic activity where 
TFs define cellular identities via combinatorial context-dependent activity (Reiter et al., 2017; 
Spitz and Furlong, 2012). Representative examples are Sox9, active in the Neural crest, Brain, 
Definitive endoderm,  and Notochord; Tfap2c, active in the Neural crest, ExE ectoderm and 
PGCs; and Ets1, active in Neural crest, Endothelium and Blood Progenitors (Figure 3h). 270 
  
 
Mapping the transcription factor regulatory network that underlies 
differentiation of neuromesodermal progenitors 
 275 
In the previous section, we used the in silico ChIP-seq library and the chromVAR-Multiome 
algorithm to generate a catalogue of TF activities linked to discrete cellular identities. For 
simplicity, we ignored interactions between TFs. Next, we sought to quantify interactions 
between TFs by inferring gene regulatory networks (GRNs) and connecting them to 
continuous cell fate transitions.  280 
 
We employed a multi-step algorithm to infer GRNs (Methods, Figure S10). First, we subset 
cells of interest and infer metacells (Persad et al., 2022), with the goal of achieving a resolution 
that retains the cellular heterogeneity while overcoming the sparsity issues of single-cell data. 
Second, we used the in silico ChIP-seq library to link TFs to cis-regulatory elements (ATAC 285 
peaks). Third, we linked cis-regulatory elements to potential target genes by genomic proximity 
(here a maximum distance of 50kb), which is a reasonable approximation in the absence of 
3D chromatin contact information (Janssens et al., 2022; Kamal et al., 2021). This results in a 
directed network where each parent node corresponds to a TF, and each child node 
corresponds to a target gene. Finally, following the approach of (Kamimoto et al., 2020), we 290 
estimated the weights of the edges by fitting a linear regression model of the expression of a 
target gene as a function of the parent TF’s expression. Importantly, while our benchmark of 
the in silico ChIP-seq does not support the inclusion of repressive links between TFs and 
ATAC peaks, evidence exists that TFs can repress the expression of target genes (Gaston 
and Jayaraman, 2003; Liang et al., 2017). Thus, in the GRN model we allowed for negative 295 
associations between TF expression and target gene expression. 
 
We applied this methodology to study the complex gene regulatory network that determines 
differentiation of Neuromesodermal progenitors (NMPs)(Gouti et al., 2017). Briefly, NMPs are 
a population of bipotent stem cells that fuel axial elongation by simultaneously giving rise to 300 
Spinal cord cells, an ectodermal cell type, as well as posterior somites, a mesodermal cell type 
(Sambasivan and Steventon, 2020) (Figure 4a). Notably, these cell fate transitions occur 
when most of the cells in the embryo are already committed to one of the germ 
layers(Sambasivan and Steventon, 2020). Molecularly, NMPs are characterised by the 
counterbalanced co-expression of the mesodermal factor Brachyury and the neural factor 305 
Sox2 (Henrique et al., 2015), but studies have suggested that these are just two players of a 
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complex regulatory landscape, thus calling for more complex GRN models (Gouti et al., 2017). 
Here we applied the GRN methodology described above to study the NMP differentiation 
trajectory (Figure 4a, Methods). For ease of interpretation and visualisation, we restricted the 
target genes to be other TFs. Besides Sox2 and Brachyury, the network consisted of 40 310 
additional TFs with with 379 activatory associations and 48 repressive associations (Figure 
4b), Notably, we find that Cdx and Hox TFs display the highest centrality of the network by 
establishing an activatory self-regulatory loop that sustains NMP identity (Figure 4c,d). This 
observation agrees with studies that showed that all three Cdx genes contribute additively to 
axial elongation and the development of posterior embryonic structures, with the most 315 
important one being Cdx2 (Chawengsaksophak et al., 2004; van Rooijen et al., 2012). To 
further validate the predicted interaction between Cdx and Hox genes, we used ChIP-seq data 
for Cdx2 profiled in Epiblast Stem Cells exposed to Wnt and Fgf signalling, which induces 
posterior axis elongation and generates cells that resemble NMPs (Amin et al., 2016). 
Consistent with our inferred GRN, we find widespread binding of Cdx2 within the Hoxb cluster 320 
of genes (Figure 4e). Notably, this interaction between Cdx and Hox genes also agrees with 
in vitro studies that described the upregulation of posterior Hox genes in NMP-like cells upon 
induction of Cdx factors (Amin et al., 2016; Neijts et al., 2016). In addition to its role as 
transcriptional activator of Hox genes, we also find that Cdx2 displays a pleiotropic role by 
repressing TFs that direct the transition to Somitic mesoderm (Foxc2, Brachyury, Meox1) and 325 
Spinal cord (Pax6) (Figure 4f and Figure S11). 
 
Brachyury controls the differentiation of Neuromesodermal progenitors to 
Somitic mesoderm by priming cis-regulatory elements 
 330 
Our results above indicate that Cdx and Hox factors sustain the bipotent NMP identity but can 
also act as a fate switch by repressing TFs that direct the transition to Somitic mesoderm, 
most notably Brachyury. Similar to Cdx2 null mutants, Brachyury null embryos generate the 
first set of anterior somites, but axial elongation is impaired (Martin, 2016). Previous studies 
have shown that Brachyury is required for the transition from NMPs to posterior Somitic 335 
mesoderm (Guibentif et al., 2021). To validate whether this role of Brachyury is captured by 
our models trained on the reference data set, we first visualised the chromatin accessibility 
dynamics of cis-regulatory elements that are putative Brachyury binding sites, as inferred from 
the in silico ChIP-seq library applied to NMP differentiation. We find that these cis-regulatory 
elements increase in accessibility when transitioning from NMP to Somitic mesoderm, but not 340 
to Spinal cord. Interestingly, some of these binding sites are linked to mesodermal genes that 
become expressed in the Somitic mesoderm, including Tbx6, Mesp1 and Fgf4 (Figure S12). 
This behaviour is suggestive of epigenetic priming, whereby the chromatin of cis-regulatory 
elements becomes accessible before transcription of the target gene (Argelaguet et al., 2019; 
Ma et al., 2020). Next, we employed the GRN of NMP differentiation to perform an in silico 345 
knock out of Brachyury using the CellOracle framework (Kamimoto et al., 2020) (Methods). 
We find that the in silico knock-out of Brachyury disrupts the transition from NMP to Somitic 
mesoderm (Figure 4g). Although this result was expected based on previous findings 
(Guibentif et al., 2021), it demonstrates how GRNs inferred from unperturbed single-cell multi-
omics data have the potential to provide functional insights into cell fate transitions (Kartha et 350 
al., 2021). 
 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 15, 2022. ; https://doi.org/10.1101/2022.06.15.496239doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.15.496239
http://creativecommons.org/licenses/by/4.0/


 

To validate our predictions, we generated Brachyury KO embryos by direct delivery of 
CRISPR/cas9 as a ribonucleoprotein (RNP) complex via electroporation, targeting exon 3 of 
the Brachyury (T) gene in zygotes at one-cell stage (Methods, Figure 5a). Control embryos 355 
received Cas9 protein only. Embryos were transferred into pseudopregnant females and 
collected at E8.5 for 10x Multiome sequencing. In total, we obtained 6,797 cells from 3 
embryos at E8.5 with a wildtype (WT) background and 6,572 cells from 7 embryos with a 
Brachyury KO background. Cell types were again annotated by mapping the RNA expression 
to the transcriptomic atlas (Figure 5b). Consistent with our predictions and the results of (Gouti 360 
et al., 2017; Guibentif et al., 2021), we observe a relative underrepresentation of (posterior) 
somitic mesoderm and allantois cells in the Brachyury KO embryos, together with a relative 
overrepresentation of NMP cells (Figure 5c). No significant difference is observed in the 
abundance of Spinal cord cells, suggesting that the neural differentiation capacity of NMPs is 
not affected in the absence of Brachyury. Notably, we also observe defects in the 365 
Erythropoiesis trajectory (Figure 5c), suggesting pleiotropic effects of Brachyury across 
multiple developmental trajectories(Bruce and Winklbauer, 2020). To further explore the effect 
of the Brachyury KO in NMPs, we mapped the cells onto the NMP differentiation trajectory 
reconstructed from the transcriptomic reference atlas (Pijuan-Sala et al., 2019) (Figure 5d). 
Again, we find that WT cells map across the entire trajectory, but Brachyury KO cells map only 370 
onto the transition between NMP and Spinal cord. Additionally, RNA velocity analysis of these 
cells shows that WT NMP cells transition towards both Spinal cord and Somitic mesoderm 
fates, whereas in the Brachyury KO only the Spinal cord displays a coherent differentiation 
trajectory (Figure 5e).  
 375 
Next, we performed differential accessibility analysis between WT and Brachyury KO NMP 
cells (Methods) finding that most of the differentially accessible (DA) peaks are more closed 
in Brachyury KO cells (Figure 5f). This set of DA peaks display enrichment for the T-box motif 
and a higher in silico TF binding score for Brachyury than non DA peaks (Figure 5g-h), hence 
suggesting that this set of regulatory regions are directly regulated by Brachyury. Consistent 380 
with our predictions of Brachyury target sites above, we find that the set of DA peaks in NMPs 
are markers of Somitic mesoderm in the reference atlas (Figure 5i), again consistent with a 
potential role of a Brachyury-driven epigenetic priming in NMPs. More generally, our results 
hint that the dysregulation of individual cis-regulatory elements can be predicted, to some 
extent, using only the reference data set. A representative example is shown in Figure 5j, 385 
which shows a cis-regulatory region that corresponds to a Brachyury binding site located 
upstream of Mesp1, a gene that is not expressed in NMPs but becomes expressed in the 
Somitic mesoderm (Figure S12). This cis-regulatory element becomes partially open in WT 
NMP cells, but not in Brachyury KO NMP cells, and attains its highest accessibility levels in 
WT Somitic mesoderm cells, while becoming closed in Spinal cord cells. Similar patterns can 390 
be observed for the cis-regulatory elements linked to Tbx6 and Fgf4 (Figure S13).  
 
Conclusion 
We have generated a single-cell multi-omic atlas of mouse early organogenesis by 
simultaneously profiling RNA expression and chromatin accessibility between E7.5 and E8.75, 395 
spanning late gastrulation and early organogenesis. Taking advantage of the simultaneous 
profiling of TF expression and cognate motif accessibility, we developed a novel tool to 
quantitatively predict TF binding events in cis-regulatory elements, which we used to quantify 
celltype-specific TF activities and infer gene regulatory networks that underlie cell fate 
transitions. We show that these computational models trained on unperturbed data can be 400 
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used to predict the effect of transcription factor perturbations. We validate this experimentally 
by showing that Brachyury is essential for the differentiation of neuromesodermal progenitors 
to somitic mesoderm fate by priming cis-regulatory elements. 
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Methods 450 

RNA data processing  
Raw sequencing files were processed with CellRanger arc 2.0.0 using default arguments. 
Reads were mapped to the mm10-2020-A-2.0.0 genome and counted with GRCm38.92 
annotation. Low-quality cells were filtered based on the distribution of QC metrics. Cells were 
required to have a minimum of 2000 UMIs per cell, a maximum of 40% mitochondrial reads 455 
and a maximum of 20% ribosomal reads. The resulting count matrix was stored using a 
SingleCellExperiment (Amezquita et al., 2019)  (v 1.14.1) object. Normalisation and log 
transformation was performed using scran (Lun et al., 2016) (v1.20.1) and scuttle (McCarthy 
et al., 2017)(v1.2.1). Doublet detection was performed using the hybrid approach in the scds 
(v1.8.0) package. 460 
  
ATAC data processing 
We used the ArchR package (Granja et al., 2021)(v1.0.1) for preprocessing of ATAC data. 
Briefly, arrow files were created from the ATAC fragment files. Cells were required to have a 
minimum of 3500 fragments per cell, a minimum TSS enrichment of 9, and a maximum 465 
blacklist ratio of 0.05. Pseudo-bulk replicates were obtained per cell type and peak calling was 
performed using macs2 (Zhang et al., 2008) (v2.2.7.1) using the cell type identified from the 
RNA expression as a group. A consensus peak set was obtained by an iterative overlapping 
strategy which is better at preserving cell type-specific peaks. Motif annotations were extracted 
from the CISBP (Weirauch et al., 2014)  (v2) and JASPAR 2000 database (Castro-Mondragon 470 
et al., 2021). Motif matches for each peak were obtained using motifmatchr  (v1.14.1), with a 
minimum motif width of 7 and a maximum q-value of 1e-4. Bigwig files were exported for each 
cell type for visualisation on the IGV browser (Robinson et al., 2011) (v2.11.0). 
 
Velocity analysis 475 
Spliced and unspliced count matrices were extracted using velocyto (La Manno et al., 
2018)(v0.17.17). Velocity analysis was performed using scVelo (Bergen et al., 2020) (v0.2.1)  
in dynamical mode. 
  
Metacell inference 480 
When exploring continuous trajectories we summarised the data into metacells with the goal 
of achieving a resolution that retains the heterogeneity while overcoming the sparsity issues 
of single-cell data. We identified metacells (i.e. groups of cells that represent singular cell-
states from single-cell data) using SEACells (Persad et al., 2022). Following the method 
guidelines, metacells were computed separately for each sample using approximately one 485 
metacell for every seventy-five cells. Following metacell identification, we regenerated gene 
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expression and chromatin accessibility count matrices summarised at the metacell level. 
Sample-specific count matrices were then concatenated and normalised using log-
transformed counts per million. 
  490 
In silico ChIP-seq library 
The in silico ChIP-seq library is a computational approach to link TFs to cis-regulatory 
elements in the form of ATAC peaks. Intuitively, we consider an ATAC peak i to be a putative 
binding site for TF j if i contains the j motif and its chromatin accessibility correlates with the 
RNA expression of j. Formally, we calculate the in silico TF binding score for ATAC peak i and 495 
TF j with the following equation: 

!!" 	= 	$!" 	%&'%(!(*!"+!) 
where $!" is the correlation between the chromatin accessibility of peak i and the RNA 
expression of TF j. *!" is the motif score for TF i in peak j, and +! is the maximum chromatin 
accessibility of peak j (across cell types). Note that the TF binding score ranges from -1 to 1 500 
due to the minmax normalisation, which is applied across all TFs and peaks. A negative in 

silico TF binding score value denotes a repressive event, where the chromatin accessibility of 
ATAC  peak i is negatively regulated by TF j. In contrast, a positive value denotes an activatory 
event, where the chromatin accessibility of peak i is positively regulated by TF j. Although the 
TF in silico score is continuous, some analysis require a binarised association between TFs 505 
and cis-regulatory elements, including GRN inference. In this case the in silico TF binding 
score can be modulated as a hyperparameter. Small values will lead to many predicted TF 
binding events, a high false positive rate and a low true positive rate. Large values will lead to 
fewer predicted TF binding events, but a low false positive rate and a high true positive rate. 
We performed grid search and found that values between 0.10 and 0.30 provide reasonable 510 
trade-offs between the number of predicted TF binding events and the accuracy of the 
predictions in our benchmark. 
 
Quantification of transcription factor activities per cell type using chromVAR-Multiome 
TF activities were calculated using the chromVAR algorithm (Schep et al., 2017). The method 515 
takes as input the ATAC peak matrix and a set of position-specific weight matrices (PWMs) 
encoding TF sequence affinities. Here we used the JASPAR (2022)(Castro-Mondragon et al., 
2021) and CISBP (v2.0)(Weirauch et al., 2014) databases. Briefly, for each TF motif contained 
within an ATAC peak and each cell (or cell type, when calculated at the pseudo-bulk level), 
chromVAR calculates a z-score that measures the difference between the total number of 520 
fragments that map to motif-containing peaks and the expected number of fragments (based 
on the average of all cells). Importantly, the normalisation and scaling that chromVAR applies 
is aimed at mitigating technical biases between cells (Tn5 tagmentation efficiency, PCR 
amplification, etc.) and features (GC content, mean accessibility, etc.). While useful when only 
having access to scATA-seq data, chromVAR z-scores are often not representative of true TF 525 
activities, mainly because DNA motifs are not always good proxies for actual TF binding. Here 
we modified the input to the chromVAR algorithm: instead of using all ATAC peaks with the 
presence of the TF motif, we selected putative binding sites with an in silico TF binding score 
higher than 0.15.  
 530 
Dimensionality reduction using MOFA 
We generated a multi-modal latent embedding using MOFA+ (Argelaguet et al., 2020). Briefly, 
the method takes as input multiple data modalities and performs multi-view matrix factorisation 
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to generate a set of latent factors that can be used for a variety of downstream tasks. Here we 
used as input to MOFA the RNA expression and ATAC peak matrix. Feature selection was 535 
performed to enrich for highly variable features (3,000 genes and 25,000 ATAC peaks). 
Optionally, one can also use as input latent variables that result from linear dimensionality 
reduction (Principal Component Analysis in the case of the RNA expression and Latent 
Semantic Indexing in the case of ATAC peaks). This leads to a significant increase in speed 
and also mitigates challenges linked to class imbalance (i.e. the two views having many 540 
different features). We ran MOFA with a fixed set of 30 factors, which we subsequently used 
as input to the UMAP algorithm(McInnes et al., 2018) to generate a (non-linear) two-
dimensional embedding that is suitable for visualisation. 
 
TF marker scores 545 
We used the chromVAR-Multiome values to define TF marker scores for each combination of 
cell type and TF. We adopted a similar algorithm as used for the definition of marker genes in 
Seurat (FindMarkers function) and scran (findMarkers function). First, we performed 
differential analysis between each pair of cell types using a t-test. Then, for each TF i and cell 
type j we counted the number of significant differential comparisons between cell type j and 550 
all other cell types different from j. Instead of aggregating the p-values and fold changes, as 
done in Seurat and scran, we adopt a more intuitive metric and define the TF marker score as 
the fraction of differential comparisons. Intuitively, the higher the score of TF i in cell type j the 
more active that TF i is in cell type j when comparing the chromVAR-Multiome values to the 
other cell types. The maximum TF marker score value is 1, when all differential comparisons 555 
are significant. When defining the catalogue of TF activities per cell type (Figure 3f), we set a 
minimum TF marker score of 0.75. 
 
Gene accessibility scores 
Here we quantified promoter accessibility by adding all reads that map to the region that is 560 
500bp upstream and 100bp downstream of the transcription start site (TSS). TSS annotations 
are obtained from the BioMart database using the Bioconductor GenomicFeatures package 
(v1.48.1). Note that here we disabled ArchR’s default gene accessibility model, which 
incorporates information from cis-regulatory elements that are located near the TSS. Although 
this approach is more predictive of changes in gene expression, it is problematic when applied 565 
to genomic regions with high gene density, as cis-regulatory elements cannot be confidently 
linked to genes.  
 
Pooling cells from the same cell type into pseudo-bulk replicates 
The sparsity of the single-cell data limits the statistical analysis, the visualisation strategies 570 
and overall the biological insights that can be extracted from the data (Squair et al., 2021). For 
some analysis that involve cell type comparisons (including differential analysis, peak calling 
or in silico ChIP-seq inference), we create “pseudo-bulk” replicates by aggregating reads from 
all cells that belong to the same cell type. The pseudo-bulk strategy is particularly important 
for snATAC-seq data, as ATAC peaks typically have very few reads per cell. For differential 575 
analysis between cell types, we follow the approach suggested in(Crowell et al., 2020) and 
create the same number of replicates per cell type by bootstrapping cells assigned to the same 
cell type. Besides reducing sparsity, this approach also helps address the problem of having 
a different number of samples per group when doing differential analysis at single-cell 
resolution, which often leads to p-values being systematically different depending on the 580 
number of samples per group. 
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Genome Browser visualisation 
We use the getGroupBW function in ArchR to group, summarise and export a bigwig file for 
each cell type. Briefly, the function calculates normalised accessibility values along the 585 
genome using 100bp tiles. We visualise the ATAC bigwig files as separate tracks in the IGV 
Browser (v2.11.0)(Thorvaldsdottir et al., 2013) 
 
Differential RNA expression and chromatin accessibility 
Following the guidelines from previous studies (Squair et al., 2021), we performed differential 590 
analysis using pseudo-bulk replicates for each cell type (and genotype, in the Brachyury KO 
study). For each group we derived 5 replicates by bootstrapping different subsets of cells at 
random. Each pseudo-bulk replicate contained 30% of the total number cells, with at least 25 
cells per replicate. Subsequently, read counts were aggregated for each group, followed by 
normalisation with log-transformed counts per million (CPMs). Note that this “pseudo-bulk-595 
with-replicates” approach yields the same number of samples per group, which facilitates 
differential analysis comparisons. Differential analysis was performed using the negative 
binomial model with a quasi-likelihood test implemented in edgeR (Robinson et al., 2010). 
Significant hits were called with a 1% FDR (Benjamini–Hochberg procedure) and a minimum 
log2 fold change of 1. Hits with small average expression values (log normalised counts <=2) 600 
were ignored, as this can lead to artificially large fold change values. 
  
Identification of marker genes in the reference atlas 
Cell type-specific marker genes and peaks were identified using the reference cells (i.e. the 
cells form the Brachyury KO study were not included). First, we performed differential analysis 605 
between each pair of cell types using the strategy outlined above. Then, for each cell type, we 
labelled as marker genes or as marker peaks those hits that are differentially 
expressed/accessible and upregulated in the cell type of interest in more than 85% of the 
comparisons. 
 610 
Mapping to a reference atlas and cell type assignment 
Cell types were assigned by mapping the RNA expression profiles to a reference atlas from 
the same stages (Pijuan-Sala et al., 2019). The mapping was performed by matching mutual 
nearest neighbours with the fastMNN algorithm (batchelor R package v1.8.1)(Haghverdi et al., 
2018). First, count matrices from both experiments were concatenated and normalised 615 
together using scran (v1.20.1). Highly variable genes were selected(Lun et al., 2016) from the 
resulting expression matrix and were used as input for Principal Component Analysis. A first 
round of batch correction was applied within the atlas cells to remove technical variability 
between samples. A second round of batch correction was applied to integrate query and atlas 
cells within a joint PCA space. Then, for each query cell we used the queryKNN function in 620 
BiocNeighbors to identify the 25 nearest neighbours from the atlas. Finally, a cell type was 
inferred for each query cell by majority voting among the atlas neighbour cells. 
Mapping to the spatial atlas and imputation of spatially-resolved ChromVAR-Multiome scores 
Mapping of the 10x Multiome cells to the spatially-resolved transcriptomic atlas was done 
using the same approach described above for the scRNA-seq reference atlas. This integration 625 
is however more challenging due to the sparsity of the seqFISH data set and the different 
nature of the size factors. Here we followed the strategy outlined in(Lohoff et al., 2022) and 
applied cosine normalisation on the log-normalised counts. For simplicity, we used as 
reference a single z-slice from a representative E8.5 embryo. 
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Finally, we used the mapping to impute spatially-resolved TF activities. We transferred the 630 
chromVAR-Multiome scores from the 10x Multiome cells onto the nearest neighbours of 
spatial atlas. Due to the noisy estimates in single-cell data and the presence of outliers, we 
performed kNN denoising before visualisation. 
 
Inference of the TF regulatory network underlying differentiation of Neuromesodermal 635 
progenitors. 
First, we selected metacells of the NMP differentiation trajectory. Note that we discourage the 
use of data at single cell resolution, as the sparsity of snATAC-seq makes it challenging to 
obtain reliable associations between the RNA expression of TFs (which are typically lowly 
expressed genes) and chromatin accessibility of cis-regulatory regions. Second, we used the 640 
in silico ChIP-seq methodology to link TFs with cis-regulatory elements. Third, we linked cis-
regulatory regions to nearby genes via a maximum genomic distance of 50kb. Note that this 
step results in a many-to-many mapping, where each gene can be linked to multiple cis-
regulatory regions, and each cis-regulatory region can be linked to many genes. Fourth, we 
built a linear regression model of target gene RNA expression as a function of the TF’s RNA 645 
expression. Finally, we visualise the GRN as a directed graph where nodes correspond to TFs 
and target genes (which can also be other TFs), where the edge width is given by the slope 
of the linear regression models.  
 
In silico TF perturbation with CellOracle 650 
Briefly, CellOracle leverages a gene regulatory network and a differentiation trajectory to 
predict shifts in cellular identities by simulating the effects of TF perturbations on the GRN 
configuration. It simulates gene expression values upon TF perturbation, which are then 
compared with the gene expression of local neighbourhoods to estimate transition probabilities 
between cell states. Finally, CellOracle creates a transition trajectory graph to project the 655 
predicted identity of these cells upon TF perturbation. Here we used the GRN inferred from 
the NMP differentiation trajectory as input, where target genes are constrained to also be TFs. 
Given the improved signal-to-noise ratio in the metacell representation, we disable the default 
kNN denoising step. 
 660 
Embryos and nuclear isolation 
C57BL/6Babr mice were bred and maintained by the Babraham Institute Biological Support 
Unit. All mouse experimentation was approved by the Babraham Institute Animal Welfare and 
Ethical Review Body. Animal husbandry and experimentation complied with existing European 
Union and United Kingdom Home Office legislation and local standards. 665 
 
Following dissection, embryos from the same stages were pooled to give sufficient cell 
numbers. Embryos were dissociated into single-cells using 200μl of TriplE Express for 10 
minutes at 37°C on a shaking incubator. 1ml of ice-cold 10% FBS in PBS was added to quench 
and cells were filtered using a 40μM Flowmi cell strainer. Following centrifugation at 300g for 670 
5 minutes, the supernatant was discarded and cells were resuspended in 50μl of PBS 
containing 0.04% BSA. Cells were counted and viability assessed using trypan blue staining 
on a Countess II instrument (Invitrogen). >95% of cells were negative for trypan blue indicating 
high sample quality.  
 675 
Nuclear isolation was carried out according to the low-cell input version of the 10X protocol for 
cell lines and PBMCs 
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(https://assets.ctfassets.net/an68im79xiti/6t5iwATCRaHB4VWOJm2Vgc/bdfd23cdc1d0a321
487c8b231a448103/CG000365_DemonstratedProtocol_NucleiIsolation_ATAC_GEX_Seque
ncing_RevB.pdf). Specifically, the 50μl cell suspension was transferred to a 0.2ml PCR tube 680 
and centrifuged at 300g for 5 minutes. After removing the supernatant, cells were resuspended 
in 50μl ice cold nuclear extraction (NE) buffer (10mM Tris pH 7.5, 10mM NaCl, 3mM MgCl2, 
1% BSA, 0.1% Tween, 1mM DTT, 1U/ul RNaseIn (Promega), 0.1% NP40, 0.01% Digitonin) 
and incubated on ice for 4 minutes. 50μl of wash buffer (identical to NE buffer but lacking 
NP40 and digitonin) was added and nuclei were centrifuged at 500g for 5 minutes at 4°C. After 685 
removing the supernatant, nuclei were washed once in 50μl of diluted nuclei buffer (10x 
Genomics), span down and finally resuspended in 7ul of dilute nuclei buffer (10x Genomics). 
1μl was used to assess quality using a microscope and count nuclei using a Countess II 
instrument. >99% of nuclei stained positive for trypan blue and the nuclei were found to have 
the expected morphology. Nuclei were diluted such that a maximum of 16,000 were taken 690 
forward for 10x Multiome library preparation. 
 
Brachyury gene targeting 
One-cell stage zygotes were obtained from C57BL/6Babr superovulated matings. 
CRISPR/Cas9 reagent   consisted of Cas9 protein (200ng/ul) and a sgRNA targeting exon 3 695 
of the Brachyury gene (120ng/ul, ACTCTCACGATGTGAATCCG), diluted in Opti-MEM I 
(Thermo Fisher). Control embryos received Cas9 but no gRNA. Super electroporator NEPA21 
and platinum plate electrodes 1mm gap (CUY501P1-1.5) were used for electroporation. Four 
repeats of poring pulses (40V, 3.5ms length and 50ms intervals) and five repeats of transfer 
pulses (7V, 50ms length, 50ms intervals) were applied to zygotes. Approximately 50 embryos 700 
were added to 5-6ul of CRISPR/Cas9mix per electroporation. Embryos were cultured 
overnight and only 2-cell stage embryos were transferred into pseudo-pregnant recipients, 
which were later harvested to obtain E8.5 embryos. In total this yielded 3 control embryos and 
7 Brachyury KO embryos which were pooled for processing. 
 705 
For genotyping embryonic yolk sacs were lysed using QuickExtract buffer prior to PCR 
amplification of a region spanning the predicted cut site (forward: 
GTAGGCAGTCACAGCTATGA, reverse: GGGTTTAATGGTGTATAGCG). The resulting 
amplicon was Sanger sequenced and the trace was analysed using Synthego ICE analysis 
producing a KO score of 93% (https://www.synthego.com/products/bioinformatics/crispr-710 
analysis)(Conant et al., 2022). 
 
10x Multiome library preparation and sequencing 
Libraries were prepared using the 10x Genomics Chromium and sequenced on a Novaseq 
6000 instrument (Illumina) using the recommended read-lengths. This yielded medians of 720 715 
million RNA-seq reads and 481 million ATAC reads per sample. We recovered a median of 
7,700 cells per sample prior to quality control.  
 
 
ChIP-seq data processing 720 
ChIP-seq data for TFs Cdx2, Foxa2, Gata1, Gata4, Tal1 and Tbx5 was obtained from the 
Gene Expression Omnibus.  Due to the limited availability of in vivo ChIP-seq datasets, we 
used in vitro models that more closely resemble the gastrulating embryo (Supplementary 
Table 1). Reads were trimmed using Trim Galore (v0.4.5) and mapped to M. musculus 
GRCm38 using Bowtie2 (Langmead and Salzberg, 2012) (v2.3.2). Bigwig files were generated 725 
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for genome browser visualisation using samtools (v1.13)(Li et al., 2009) and bamCoverage 
(v3.5.1)(Ramírez et al., 2016). Peak calling was performed using macs2 (v2.2.7.1)(Zhang et 
al., 2008) with the “--broad and --broad-cutff 0.1” arguments. 
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Figure 1: Simultaneous profiling of RNA expression and chromatin accessibility from single cells during mouse early organo-
genesis
(a) Schematic display of the experimental design. Mouse embryos are dissociated into single cells then lysed to extract nuclei which are

processed for simultaneous snATAC and snRNA-seq from the same cell using the 10x Multiome protocol.
(b) Partition-based graph abstraction (PAGA) (Wolf et al., 2019) of the reference atlas (Pijuan-Sala et al., 2019), where each node

corresponds to a different cell type. Cell types are coloured as per (Pijuan-Sala et al., 2019).
(c) Multi-modal dimensionality reduction using MOFA, followed by UMAP (Argelaguet et al., 2020). Cells are coloured by cell type (top,

see (b) for key) and stage (bottom).
(d) Number of marker genes (left) and marker peaks (right) per cell type. See (b) for cell type colour key.
(e) RNA expression and promoter chromatin accessibility values of different gene sets quantified separately for each cell type. The left

panel shows olfactory receptors (negative control, non-expressed genes with closed chromatin) and housekeeping genes (positive
control, highly expressed genes with open chromatin). The right panel shows different gene sets of cell type marker genes. Each dot
corresponds to a pseudobulk cell type, coloured as in (b). Note that RNA expression and chromatin accessibility values are quantified
as an average across all genes from each gene set.

(f) Chromatin accessibility values of cell type marker genes (x-axis) and marker distal ATAC peaks from the same cell type (y-axis).
Each panel shows gene and peak sets for different cell types. The diagonal line shows the values where both promoter and peak
chromatin accessibility values are identical. Quantification of chromatin accessibility is done as in (e).

(g) Genome browser snapshot of the Gata6 locus. Each track displays pseudobulk ATAC-seq signal for a given cell type. Note the
dynamic patterns of distal regulatory regions both upstream and downstream of the gene, compared to the uniformly open promoter
region.
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Figure 2: In silico ChIP-seq: leveraging multi-modal information to perform accurate prediction of transcription factor binding
sites.
(a) Schematic of the in silico ChIP-seq methodology. Consider two different TFs (Pacmans), each one with different DNA binding

preferences encoded in the form of different position-specific weight matrices; and three cis-regulatory elements represented as
ATAC peaks (grey boxes), each one containing different instances of the TF motifs. Each row displays a different cell (or metacell or
cell type, depending on the level of data aggregation). Each cell type is associated with different values of TF RNA expression (see
changes in Pacman abundance) and chromatin accessibility of the cis-regulatory elements (see changes in the density histogram).
The in silico ChIP-seq model exploits the correlation between TF RNA expression and the chromatin accessibility of the ATAC peaks
that contain at least one instance of its TF motif to derive a quantitative TF binding score. In the schematic Peak A contains the TF 1
motif, and its accessibility correlates with the RNA expression of TF 1, thus leading to a high TF binding score. Peak B also contains
the TF 1 motif, but its accessibility correlates poorly with the TF’s RNA expression, which leads to a non-zero but low TF binding
score. Peak C does not contain the TF 1 motif, which leads to a zero TF binding score.

(b) Left: the number of predicted binding sites for 6 representative TFs as a function of the minimum in silico TF binding score. Dashed
line indicates the minimum score used in subsequent analyses. Right: Bar plots showing the number of predicted binding sites in the
in silico ChIP-seq model when incorporating the RNA expression (orange) versus just using ATAC information (green).

(c) A representative instance of an ATAC peak highlighting the large number of TF motifs contained within a 600bp locus. Shown are the
positions of all TF motifs within the ATAC peak (x-axis) against the in silico ChIP-seq score (y-axis). Note that only a subset of TF
motif instances display high in silico ChIP-seq score. The dashed line indicates the cutoff used to determine a putative binding site,
as in (b).

(d) Comparison of in silico TF binding scores (x-axis) versus experimental ChIP-seq signal (y-axis), using the same 6 TFs as in (b).
Orange line displays scores derived from the in silico ChIP-seq model, whereas the green line displays scores derived when just
using ATAC-seq information (i.e. omitting the TF RNA expression from the model). Scores were binned from 0 to 1 in intervals of
0.1,and each dot corresponds to the average value across all cis-regulatory regions from the interval. ChIP-seq datasets are all
derived from publicly available data sets that most closely resemble mouse embryos at the gastrulation and organogenesis stage
(Supplementary Table 1).

(e) Receiver Operating Characteristic (ROC) curves comparing the predicted TF binding sites vs the real TF binding sites (inferred from
peak calling on the experimental ChIP-seq data).

(f) Genome browser snapshot of a locus containing (f) Foxa2 or (g) Tal1 predicted binding sites. Each track displays pseudobulk ATAC-
seq signal for a given celltype. The experimental ChIP-seq values are shown in the bottom, together with the in silico TF binding
scores for the ATAC peaks that have a TF binding score higher than 0.20 (same threshold as in (b)).
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Figure 3: A catalogue of cell type-specific transcription factor activities reveals widespread pleiotropic activity.
(a) Comparison of chromVAR and chromVAR-Multiome for quantification of transcription factor activity. (Left) Scatter plots show the

correlation between the TF’s RNA expression and the chromatin activity of target regions, quantified at the pseudobulk level using
chromVAR. Each dot corresponds to a different cell type. (Right) Spatially-resolved TF RNA expression (imputed values from Lohoff
et al, 2021, coloured in green) and TF chromatin activity (coloured in purple). Note that spatially-resolved TF chromatin activity values
are inferred by mapping the 10x Multiome cells onto the spatial transcriptomic data (Methods).

(b) Same as (a), but TF activities quantified using chromVAR-Multiome.
(c) Barplot displaying the number of TF markers per cell type. TF markers are inferred using the TF activity scores, which results from

performing differential analysis with the chromVAR-Multiome values (Methods). The higher the score for TF i in celltype j, the more
active this TF is predicted to be in cell type j, with a minimum score of 0 and a maximum score of 1.

(d) Heatmap displaying TF activity scores for each celltype (rows) and each TF (column).
(e) Left: polar plots displaying the celltype TF activity scores for three different TFs: Foxa2 (top), Tal1 (middle) and Rfx4 (bottom).

Right: PAGA representation of the transcriptomic atlas as in Figure 1b for the three same TFs, with each node coloured by the RNA
expression of the TF (green) and the corresponding chromVAR-Multiome score (purple).

(f) Dot plots displaying the TF activity scores for all TFs in Neural Crest cells (left) and PGCs (right). TFs with the highest TF activity
score are labelled and coloured to indicate whether a known function has been reported and in which species the evidence was
obtained (Supplementary Table 1).

(g) Stacked bar plots displaying the TF activity scores for all TFs across all cell types. Each column corresponds to a TF.
(h) as (e) but for TFs that display a pleiotropic effect (i.e. they are markers of very distinct cell types).
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Figure 4: Characterisation of the Transcription factor regulatory networks underlying Neuromesodermal progenitors.
(a) Force-atlas layout of the NMP differentiation trajectory. Each dot corresponds to a metacell, coloured by cell type identity.
(b) TF regulatory network inferred using the NMP trajectory. Each node corresponds to a TF, coloured by the cell type where the TF

displays the highest expression. Edges denote regulatory relationships. Red edges denote activatory relationships (the expression
of the parent node is positively correlated with the expression of the child node), whereas blue edges denote repressive relationships
(the expression of the parent node is negatively correlated with the expression of the child node). We refer the reader to Figure S10
for a schematic of the GRN inference procedure.

(c) Left: same force-atlas as (a) but highlighting each of the three cell types of the trajectory: Spinal cord (top), NMP (middle) or Somitic
mesoderm (bottom). Right: Same TF regulatory network as in (b), but nodes are coloured based on the average expression of the
TF in each of the three cell types of the trajectory: Spinal cord (top), NMP (middle) or Somitic mesoderm (bottom). For clarity, we
increased the transparency of edges.

(d) Genome browser snapshot of the Hoxb loci. Each track displays pseudobulk ATAC-seq signal for a given celltype. Shown in the
bottom is the in silico ChIP-seq predictions for Cdx2 and the experimental ChIP-seq signal for Cdx2 profiled in NMP-like cells.

(e) Eigenvalue centrality for each TF in the network.
(f) Regulatory connections between Cdx2 and downstream TFs. As in (b), nodes are coloured by the cell type where the TF displays

the highest expression.
(g) in silico knock-out of Brachyury using CellOracle (Kamimoto et al, 2021). Shown is the force-atlas layout of the NMP differentiation

trajectory. Each dot corresponds to a metacell, coloured by cell type identity. Arrows display the predicted changes in cell fate for
different parts of the trajectory when knocking out Brachyury and propagating the signal through the GRN (Methods).

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 15, 2022. ; https://doi.org/10.1101/2022.06.15.496239doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.15.496239
http://creativecommons.org/licenses/by/4.0/


j

g

i

h

fWT Brachyury KO Atlas

Cardiomyoc. (WT)

Cardiomyoc. (KO)

Brain (WT)

Brain (KO)

Neural crest (WT)

Neural crest (KO)

Spinal cord (WT)

Spinal cord (KO)

NMP (WT)

NMP (KO)

Somitic mes. (WT)

ATAC peaks

Refseq Genes

Brachyury 
(in silico)

Brachyury 
(ChIP-seq)

chr7:79,785,246-79,804,214

Mesp1

0.27 0.57 0.18

0

20

40

−� 0 �
Accessibility difference (%)

−l
og

10
(F

DR
)

WT
Brachyury KO
Atlas

Spinal cord

NMP

Somitic 
mesoderm

Caudal (pre-somitic)
mesoderm

d

S � 1e−1�

Spinal cord

NMP

Somitic 
mesoderm

ea

Spinal cord

NMP

WT cells 
(N=1,203)

Brachyury KO cells 
(1 1�1��)

−��� −2�� 2��
Diff. abundance (log2)

0.0

Somitic
mesoderm

NMP

Allantois
Erythroid3

Blood 
progenitors

Differential accessibility of ATAC peaks in NMPsb
Control (WT)

Brachyury

s

s

s
s

s

(���

Brachyury

s
s

s
s

s

Zygote electroporation
(only Cas9)

s

ss

ss

s Cas9
sgRNA targeting Brachyury 

AAA
AAA

RNA expr. Chromatin acc.

AAA
AAA

10x Multiome

RNA expr. Chromatin acc.

Brachyury KO(���
Zygote electroporation

(Cas9 + sgRNA) 10x Multiome

c

FA (Dim1)

FA
 (D

im
2)

UMAP1

U
M

AP
2

FA (Dim1)

FA
 (D

im
2)

RNA velocity

0

10

20

30

40

G
ut

Pa
ra

xia
l m

es
od

er
m

Ph
ar

yn
ge

al
 m

es
od

er
m

Ca
rd

io
m

yo
cy

te
s

Ex
E 

m
es

od
er

m
M

es
en

ch
ym

e
Ha

em
at

oe
nd

. p
ro

g.
En

do
th

el
iu

m
Bl

oo
d 

pr
og

en
ito

rs
Er

yt
hr

oi
d1

Er
yt

hr
oi

d2
NM

P
Ne

ur
al

 c
re

st
Br

ain
Sp

in
al

 c
or

d
Su

rfa
ce

 e
ct

od
er

m

−l
og

10
(p

.v
al

ue
)

0.0

0.1

0.2

0.3

0.4

in
 s

ilic
o 

C
hI

P−
se

q 
sF

oU
e

Peaks with the Brachyury motif

Non-differentially acc.
Differentially acc

1 1��

N=7449

Gata3

Tcf7l2
Tbx19

T (Brachyury)

2�

��

100

Caudal 
mesoderm

NMP

Notochord

Somitic
mesoderm ��

(�����)��� (−) �� (�)
Down in 

Brachyury KO
Up in 

Brachyury KO

Figure 5: Brachyury controls the transition from neuromesodermal progenitors to posterior somitic mesoderm by priming cis-
regulatory elements.
(a) Schematic showing the experimental design. We generated Brachyury KO embryos by electroporation of Cas9 protein and a single

guide RNA (sgRNA) targeting the Brachyury (T) gene into one-cell stage zygote (Methods). Control embryos received Cas9 but no
sgRNA. Embryos were transferred into pseudopregnant females and collected at E8.5 for 10x Multiome sequencing.

(b) Mapping cells to the reference atlas (Pijuan-Sala et al., 2019). Highlighted are cells in the reference dataset that are nearest
neighbours to wildtype cells (red) or Brachyury KO cells (blue) in this experiment.

(c) PAGA representation of the reference atlas (Pijuan-Sala et al. 2019), where each node corresponds to a cell type. Nodes are coloured
by differences in cell type abundance between Brachyury KO and WT control cells. Positive values indicate more abundance in the
Brachyury KO, negative values indicate less abundance in the Brachyury KO.

(d) Force-directed layout of the trajectory that connects Neuromesodermal Progenitor (NMP) cells to either Spinal cord or Somitic meso-
derm, inferred using the reference atlas (Pijuan-Sala et al., 2019). Left: each cell is coloured by cell type. Right: mapping cells to
the reference NMP trajectory. Highlighted are cells in the reference trajectory that are nearest neighbours to wildtype cells (red) or
Brachyury KO cells (blue) in this experiment.

(e) RNA velocity analysis of the NMP trajectory using scVelo (Bergen et al. 2020) on the 10x Multiome cells. Shown are WT cells (left)
and Brachyury KO cells (right). The arrow highlights the trajectory from NMP to Somitic mesoderm that is present in WT cells but
absent in Brachyury KO cells.

(f) Volcano plot displaying differential accessibility analysis of ATAC peaks between WT and Brachyury KO NMP cells. Coloured in red
are ATAC peaks that pass significance threshold (Methods).

(g) Polar plots display which cell types are marked by the differentially accessible ATAC peaks in NMP cells. Each observation cor-
responds to a differentially accessible ATAC peak. Most of these peaks are markers of posterior mesodermal cell types (Somitic
mesoderm and Caudal mesoderm).

(h) Shown is the in silico TF binding scores for Brachyury within ATAC peaks that contain the Brachyury motif. ATAC peaks are split based
on their differentially accessibility significance when comparing WT and Brachyury KO NMP cells. Note that the in silico ChIP-seq is
inferred using metacells from the NMP trajectory, instead of using all cells from the 10x Multiome reference.

(i) TF motif enrichment analysis in differentially accessible peaks per cell type (x-axis). The y-axis displays the FDR-adjusted p-values
of a Fisher exact test. Each dot corresponds to a different TF motif, coloured by the cell type where the differential accessibility
analysis is performed.

(j) Genome browser plot highlighting a Brachyury binding site within a differentially accessible ATAC peak between WT and Brachyury
KO NMP cells. The highlighted ATAC peak displays high ChIP-seq signal as well as high in silico TF binding score. Note that the
cis-regulatory region is located proximal to Mesp1, a gene that becomes expressed in Somitic mesoderm cells but not in NMP cells.
This is suggestive of a role of Brachyury in epigenetic priming of somitic mesoderm fate in NMP cells.
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Figure S1: Quality control statistics per sample.

(a) Boxplots displaying RNA-seq quality control (QC) metrics per cell: the number of expressed genes (left), the percentage of mitochon-
drial reads (middle) and the percentage of Ribosomal reads (right). Each box is a sample, coloured by embryonic stage.

(b) Barplots displaying the number of cells that pass RNA-seq QC for each sample. Bars are coloured by embryonic stage.
(c) Boxplots displaying ATAC-seq quality metrics per cell: the enrichment of reads in the Transcription Start Site (TSS) (Granja et al.,

2021) (left) and the number of fragments (right). Each box is a sample, coloured by embryonic stage.
(d) Barplots displaying the number of cells that pass ATAC-seq QC for each sample. Bars are coloured by embryonic stage.
(e) Histograms of QC statistics for ATAC-seq per sample. The left plot shows the number of fragments as a function of the distance from

the nearest gene’s TSS. The right plot shows the insert size distribution of ATAC-seq fragments.
(f) Venn diagram showing the overlap between cells that pass QC for the two modalities.
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Figure S2: Mapping to the reference atlas and cell type annotation.

(a) UMAP plot from the reference atlas (Pijuan-Sala et al., 2019). Dots are coloured by cell type (top) or embryonic stage (bottom).
(b) Same UMAP plot as in (a). Coloured in red are cells that represent matching nearest neighbours to cells from this study (Methods).

f corresponds to different stages.
(c) Bar plots displaying the number of cells for each cell type and sample. Each row corresponds to different stages.
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Figure S3: Comparison of the snRNA expression profiles from the 10x Multiome with existing scRNA-seq data from overlapping

stages.

(a) Volcano plot displays the results of correlation tests per gene (across cell types) between the reference dataset (Pijuan-Sala et al.,
2019) and this study. Correlations were computed at the cell type level after pseudobulk (i.e. each observation corresponds to a
different cell type). Only cell type marker genes (N=1493) were considered for this analysis.

(b) Bar plots display the results of correlation tests per cell type (across genes) between the reference data set (Pijuan-Sala et al., 2019)
and this study. As in (a), marker genes were considered for this analysis.

(c) Scatter plots show the RNA expression levels for three representative genes between the reference dataset (x-axis) and this study
(y-axis). Each dot corresponds to a different cell type. Line represents the linear regression fit. Shown in the top left corner is the
Pearson correlation coefficient.

(d) Scatter plots show the RNA expression levels for three representative cell types between the reference dataset (x-axis) and this
study (y-axis). Each dot corresponds to a different gene. Line represents the linear regression fit. Shown in the top left corner is the
Pearson correlation coefficient.
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Figure S4: Comparison of the 10x Multiome chromatin accessibility data with existing scATAC-seq data from E8.25.

(a) Volcano plot displays the results of correlation tests per gene (across cell types) between the reference dataset (Pijuan-Sala et al.,
2020) and this study. Correlations were computed at the cell type level after pseudobulk (i.e. each observation corresponds to a
different cell type). Chromatin accessibility gene scores for marker genes were considered for this analysis (Methods).

(b) Bar plots display the results of correlation tests per cell type (across genes) between the reference data set (Pijuan-Sala et al., 2020)
and this study. As in (a), marker genes were considered for this analysis.

(c) Scatter plots show the chromatin accessibility levels for three representative genes between the reference dataset (x-axis) and this
study (y-axis). Each dot corresponds to a different cell type. Line represents the linear regression fit. Shown in the top left corner is
the Pearson correlation coefficient.

(d) Scatter plots show the chromatin accessibility levels for three representative cell types between the reference dataset (x-axis) and
this study (y-axis). Each dot corresponds to a different gene. Line represents the linear regression fit. Shown in the top left corner is
the Pearson correlation coefficient.
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Figure S5: Identification of cis-regulatory elements.

(a) Scatter plot showing the relationship between the ATAC peak score cutoff (x-axis) and the corresponding number of ATAC peak calls
(y-axis). Dashed line indicates the cutoff used in subsequent analyses.

(b) Boxplots showing the mean chromatin accessibility across all cells for peaks overlapping different genomic contexts. Inset: pie chart
showing the percentage of peaks overlapping each genomic context.

(c) Histogram showing the number of ATAC peaks linked to each gene (maximum genomic distance of 50kb).
(d) Line plot showing the the number of genes linked to each peak.
(e) Barplot showing the percentage of ATAC peaks whose accessibility correlates with expression of at least one linked gene (q-

value¡0.01 and a minimum absolute correlation of 0.25). Positive correlates are coloured in blue whereas negative correlations
are coloured in red.

(f) Histogram displaying the distribution of Pearson correlation coefficients between ATAC peak accessibility and RNA expression (quan-
tified at the pseudobulk level across cell types).

(g) Genome browser plot of a representative genomic locus that contains ATAC peaks that display variability in chromatin accessibility
across cell types as well as peaks that are relatively homogeneous across cell types. Note that highly variable ATAC typically map to
intergenic or intronic regions, whereas homogeneous ATAC peaks are found in promoter regions.
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Figure S6: Representative examples of RNA expression and chromatin accessibility values for different gene sets.

(a) RNA expression and promoter chromatin accessibility values of different genes quantified for each cell type. The first row shows
examples of housekeeping genes (positive control, highly expressed genes with open chromatin). The second row shows examples
of naive pluripotency genes. The third row shows examples of olfactory receptors (negative control, non-expressed genes with closed
chromatin). The fourth row shows examples of cell type marker genes.

(b) Genome browser snapshots displaying the Actb loci (housekeeping gene) and the Olfr1416 loci (olfactory receptor). Each track
displays pseudobulk ATAC-seq signal for a given celltype.
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Figure S7: Transcription Factor motif similarities poses challenges for studying gene regulation.

(a) Heatmap showing the similarity between motif sequences for FOX (top) and GATA motifs (bottom). The similarity score is a nor-
malised version of the sum of column correlations proposed in (Pietrokovski 1996). A score of 1 is expected for two identical motifs,
whereas a score of 0 is expected for unrelated motifs.

(b) Representative examples of FOX (top) and GATA (bottom) transcription factor motifs to illustrate the similarity between motifs from
the same TF family.

(c) Number of TF motifs per peak as a function of the minimum TF motif score cutoff.
(d) Location of motifs within a representative ATAC peak. Each dot represents a TF motif match within the genomic sequence. The

x-axis displays the position of the match and the y-axis displays the TF motif score.
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Figure S8: Negative in silico TF binding scores that represent repressive interactions with chromatin display low consistency

with ChIP-seq data.

(a) Number of predicted binding sites (y-axis) as a function of the in silico TF binding score (x-axis), split by the sign of the correlation
between RNA expression and ATAC peak accessibility.

(b) Experimental ChIP-seq signal (y-axis) as a function of the in silico TF binding score (x-axis), split by the sign of the correlation
between RNA expression and ATAC peak accessibility.

(c) Representative genome browser snapshot showing a locus with predicted Foxa2 binding sites. Each track displays pseudobulk ATAC-
seq signal for a given cell type. The bottom tracks display ChIP-seq for Foxa2 binding (as a validation) and the in silico predicted
binding sites for Foxa2.
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Figure S9: Overview of Transcription Factor activities for Neural Crest and Primordial Germ Cells markers.

Each row shows the TF activities that result from performing differential analysis of the chromVAR-Multiome values (Methods). The higher
the score for TF i in celltype j, the more active TF i is predicted to be in cell type j, with a minimum score of 0 and a maximum score of
1. Each panel shows: Transcription Factor (TF) of interest, alongside its DNA motif (left). Polar plots displaying the TF activity scores for
each cell type (Middle). PAGA representation of cell types (as in Figure 1b) with each node coloured by the gene expression level (green)
and chromVAR-Multiome score (purple) (Right). TF markers for Neural Crest are shown in the first column and TF markers for Primordial
Germ cells (PGCs) are shown in the second column.
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Figure S10: Schematic of the methodology for Gene Regulatory Network (GRN) inference.

(a) The first step is to select metacells of interest. We discourage the use of single cell resolution, as the sparsity of scATAC-seq makes
it virtually impossible to obtain reliable association estimates between the RNA expression of Transcription Factors (TFs, which are
typically lowly expressed genes) and chromatin accessibility of cis-regulatory regions.

(b) The second step is to use the in silico ChIP-seq methodology to link TFs with cis-regulatory elements. This is the same diagram as
shown in Figure 2a. Note that the in silico ChIP-seq results will vary depending on the metacells that are used as input.

(c) The third step is to link cis-regulatory regions that are predicted to be bound by TFs to nearby genes via genomic distance. Note that
this is a many-to-many mapping, where each gene can be linked to multiple cis-regulatory regions, and each cis-regulatory region
can be linked to many genes.

(d) The fourth step is to build a predictive model of target gene RNA expression as a function of the TF’s RNA expression. Although
some GRN inference methods have used non-linear regression models, here we use linear regression models, as they provide more
stable, interpretable and generalisable estimates.

(e) The final step is to visualise the GRN as directed graph and perform quantitative analysis on the network. Red notes represent TFs,
whereas blue nodes represent target genes. The edge width is given by the slope of the linear models.
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Figure S11: Examples of repressive interactions between Cdx2 and TFs that specify Spinal cord and Somitic mesoderm fate.

(a) Force-atlas layout of the NMP differentiation trajectory. Each dot corresponds to a metacell, coloured by the RNA expression of Cdx2,
Foxc2, Pax6 and T, respectively.

(b) Genome browser snapshot of different loci that code for genes associated with Somitic mesoderm fate (Foxc2 and T) and Spinal
cord fate (Pax6). Each track displays pseudobulk ATAC-seq signal for a given celltype. Shown in the bottom is the in silico ChIP-seq
predictions for Cdx2 and the experimental ChIP-seq signal for Cdx2 profiled in NMP-like cells (Amin et al. 2016). Highlighted are
Cdx2 binding sites near Foxc2.
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Figure S12: Representative examples of cis-regulatory elements targeted by Brachyury that prime NMP cells towards Somitic

mesoderm.

(a) Force-atlas layout of the NMP differentiation trajectory. Each dot corresponds to a metacell, coloured by the RNA expression of
Mesp1, Fgf4 and Tbx6, respectively.

(b) Genome browser snapshot of different loci that code for genes associated with Somitic mesoderm fate (Foxc2 and T) and Spinal cord
(Pax6) fate. Each track displays pseudobulk ATAC-seq signal for a given celltype. Shown in the bottom are the in silico ChIP-seq
predictions for Cdx2 and the experimental ChIP-seq signal for Cdx2 profiled in NMP-like cells (Amin et al. 2016). Highlighted are
Cdx2 binding sites near Foxc2.

(c) Force-atlas layout of the NMP differentiation trajectory. Each dot corresponds to a metacell, coloured by the chromatin accessibility
of cis-regulatory regions linked to Mesp1, Fgf4, Pax6 and Tbx6, respectively.
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Figure S13: Representative examples of cis-regulatory elements that display impaired epigenetic priming in Brachyury KO NMP

cells.

(a) Genome browser snapshot of two loci that code for genes associated with Somitic mesoderm fate: Fgf4(top) and Tbx6 (bottom).
Each track displays pseudobulk ATAC-seq signal for a given celltype. Shown in the bottom are the in silico ChIP-seq predictions
for Brachyury and the experimental ChIP-seq signal for Brachyury profiled in Embryoid Bodies (Tosic et al 2019). Highlighted are
cis-regulatory elements bound by Brachyury that are differentially accessible in WT and KO NMP cells.

(b) Bar plots display the chromatin accessibility of cis-regulatory regions per cell type and genotype, quantified at the pseudobulk level
with replicates (Methods). Each dot corresponds to a pseudobulk replicate. Error bars display the standard deviation across repli-
cates. Shown on top of the NMP bar plots is the p-value of a t-test comparing the mean accessibility between WT and KO NMP
pseudobulk replicates.
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