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26 Abstract

27 Within predictive processing learning is construed as Bayesian model updating with the degree 

28 of certainty for different existing hypotheses changing in light of new evidence. Bayesian model 

29 updating, however, cannot explain how new hypotheses are added to a model. Model revision, 

30 unlike model updating, makes structural changes to a generative model by altering its causal 

31 connections or adding or removing hypotheses. Whilst model updating and model revision have 

32 recently been formally differentiated, they have not been empirically distinguished. The aim of 

33 this research was to empirically differentiate between model updating and revision on the basis 

34 of how they affect prediction errors and predictions over time. To study this, participants took 

35 part in a within-subject computer-based learning experiment with two phases: updating and 

36 revision. In the updating phase, participants had to predict the relationship between cues and 

37 target stimuli and in the revision phase, they had to correctly predict a change in the said 

38 relationship. Based on previous research, phasic pupil dilation was taken as a proxy for 

39 prediction error. During model updating, we expected that the prediction errors over trials 

40 would be gradually decreasing as a reflection of the continuous integration of new evidence. 

41 During model revision, in contrast, prediction errors over trials were expected to show an abrupt 

42 decrease following the successful integration of a new hypothesis within the existing model. 

43 The opposite results were expected for predictions. Our results show that the learning dynamics 

44 as reflected in pupil and accuracy data are indeed qualitatively different between the revision 

45 and the updating phase, however in the opposite direction as expected. Participants were 

46 learning more gradually in the revision phase compared to the updating phase. This could imply 

47 that participants first built multiple models from scratch in the updating phase and updated them 

48 in the revision phase.
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49 Introduction

50 Imagine you recently moved from one desert city in Australia to another. In your old 

51 neighbourhood all front yards were brown due to severe drought. However, in your new 

52 neighbourhood, to your surprise, all the front yards appear to be green. You wonder how this is 

53 possible since both cities have the same climate. You come up with potential reasons for this 

54 and decide that probably the new neighbourhood has just experienced a period of heavy rain. It 

55 is not until a week later that you see your neighbour changing their lawn for a new one. Now, 

56 you realise that all the front yards in this town have artificial green lawns. At that moment you 

57 add a new hypothesis to your model that you did not possess before. 

58 What challenge does the example above pose? We make sense of the world through models 

59 and use them for generating hypotheses about what the causes of sensory evidence are (Clark, 

60 2016; Kwisthout et al., 2017). When a model fails to adequately predict the sensory evidence, 

61 it needs to be adjusted. In the case above, a new hypothesis needs to be added to account for 

62 the new observation. How does this happen? What mechanism allows for the integration of new 

63 hypotheses into an existing model? This question has been one of the central questions in 

64 cognitive science, but it still remains unanswered. 

65 Here, we address this long-standing question within a predictive-processing framework, a 

66 popular and influential theoretical framework in computational cognitive neuroscience (e.g., 

67 Friston et al., 2009; Friston et al., 2016; Friston et al., 2017; Clark, 2013; 2016; Hohwy, 2013). 

68 The predictive-processing framework aims to become a unifying framework for understanding 

69 the entirety of human cognition and behaviour from visual processing (Rao & Ballard, 1999; 

70 Edwards et al., 2017; Petro & Muckli, 2016) to mentalizing (Kilner et al., 2007; Koster-Hale & 

71 Saxe, 2013). According to the theory, the brain embodies a hierarchical generative model that 

72 “aim[s] to capture the statistical structure of some set of observed inputs by tracking (one might 
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73 say, by schematically recapitulating) the causal matrix responsible for that very structure” 

74 (Clark, 2013, p. 2). Based on this hierarchical model, the brain generates top-down predictions, 

75 which are compared to the incoming sensory signals. The difference between the predicted and 

76 the actual sensory input, i.e., the prediction error, is computed. From a predictive-processing 

77 perspective, minimising reducible prediction error is the primary goal of computations in the 

78 brain and occurs mainly as a result of learning (Friston et al., 2016; Smith et al., 2020; 

79 Fitzgerald, 2015; Clark, 2016; Zenon, 2019).

80 Existing theories of learning in predictive-processing make use of Bayesian models of 

81 cognition. As a natural consequence of using the Bayesian framework, most research on 

82 learning has focused on one specific form of learning, Bayesian model updating, which explains 

83 how model hypotheses are updated in the light of new evidence using Bayes’ rule (da Costa et 

84 al., 2020; Friston et al., 2016; Smith et al., 2020). In other words, every time new sensory 

85 evidence comes in, hypotheses in the learner’s model gain and lose probability (Kruschke, 

86 2014; Perfors et al., 2011; Gopnik & Tenenbaum, 2007; Tenenbaum et al., 2006). Learning 

87 accounts within the Bayesian framework are well suited for explaining updating of hypotheses 

88 and selection among these existing hypotheses. However, they assume that the entire set of 

89 relevant hypotheses and the mechanism for comparing hypotheses are predefined. Learning 

90 under this view is reduced to choosing among existing hypotheses, whereas the process of 

91 generating novel hypotheses is neglected (Perfors, 2012). Unless one assumes that learners are 

92 equipped from the start with the complete set of hypotheses that they will ever consider, one 

93 needs to account for how novel hypotheses are added to an existing model (Gentner & Hoyos, 

94 2017; Schulz, 2012; Christie & Gentner, 2010). Bayesian updating, however, does not account 

95 for this creative aspect of learning (Perfors, 2012; Gentner & Hoyos, 2017; Schulz, 2012; Xu, 

96 2019; Christie & Gentner, 2010; Kwisthout et al., 2017). Kwisthout and colleagues (2017) 

97 proposed that learning of novel hypotheses should be computationally differentiated from 
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98 Bayesian model updating and coined the term “model revision” for this alternative learning 

99 mechanism. Model revision, unlike model updating, changes the structure of a generative model 

100 by altering its causal connections or by adding and removing hypotheses (Kwisthout et al., 

101 2017). Similarly, Heald et al. (2022) have recently presented a theory for sensorimotor learning, 

102 called contextual inference, that differentiates between the adaptation of behaviour based on 

103 updating of existing and creation of new motor memories and adaptation due to changes in the 

104 relative weighting of these motor memories.

105 Building on the theoretical argument that model updating and model revision are 

106 computationally distinct, the aim of this study was to investigate whether these two learning 

107 mechanisms can be empirically distinguished. To investigate this, we created an experiment 

108 with two phases: an updating and a revision phase. In the updating phase, participants had to 

109 learn the relationship between cues and a target stimulus. We induced the need for model 

110 updating through a change in this relationship and examined whether the two experimental 

111 phases would lead to two distinct patterns of learning. More specifically, we hypothesised that 

112 the change in prediction error over time would follow distinct trajectories in the model updating 

113 and model revision phases. In the model updating phase, the prediction error should gradually 

114 decrease due to gradual updating of the probability distribution of existing model hypotheses. 

115 In the model revision phase, prediction error should abruptly decrease once a new model 

116 hypothesis has been added to the model (see section Hypotheses for a more detailed 

117 description). 

118 Whilst prediction error cannot be measured directly, it has been assessed indirectly, for instance 

119 using EEG (Sambrook et al., 2018; Brydevall et al., 2018; Maier et al, 2019) or pupillometry 

120 (Preuschoff et al., 2011; Nassar et al., 2013; Browning et al., 2015; O’Reilly et al., 2013; 

121 Colizoli et al., 2018; Lawson et al., 2017). In this study, we examined pupil dilation as a proxy 

122 for so-called cognitive prediction error (den Ouden et al., 2012). 
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123 We hypothesised that prediction-error dynamics resulting from model updating and model 

124 revision should also be reflected in participants’ predictions of the upcoming target stimuli. 

125 Prediction error minimisation is the result of learning more adequate models of the world 

126 (Clark, 2013; 2016; Hohwy, 2013), reflected in the fact that predictions gradually become more 

127 correct over time. We thus expected that in the model updating phase, predictions would only 

128 gradually become better, whereas in the model revision phase, predictions should show a more 

129 instantaneous change from incorrect to correct. Our initial idea was to study model updating 

130 and model revision based on their prediction error minimisation dynamics. However, the 

131 results we obtained were unexpected and, therefore, in addition to investigating prediction error 

132 minimisation dynamics, we also performed an exploratory behavioural analysis focusing on 

133 predictions based on button presses.

134 Method

135 Participants

136 Participants were recruited using Radboud University’s online recruitment system. The only 

137 restriction for participation was a minimum age of 16 years. Thirty-three healthy adults with 

138 normal or corrected-to-normal vision participated in our study. One participant was excluded 

139 for not following the instructions properly. Two participants were excluded due to equipment 

140 malfunction. The final sample consisted of 30 participants (9 males, 21 females, mean age = 

141 23.3, range: 19 – 42 years). The Ethical Committee of the Social Sciences Faculty at Radboud 

142 University approved the study, and all participants gave written informed consent. Participants 

143 received 15 euros for participating in the experiment. 
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144 Task and procedure 

145 Participants carried out a computer-based two-alternative forced-choice (2AFC) task on the 

146 expected orientation (left vs. right) of Gabor patches (Fig 1A). All participants took part in two 

147 consecutive phases of the task, first the updating and then the revision phase. The entire 

148 experiment took 1.5 hours and had three breaks (two short breaks halfway each phase and one 

149 longer break between the two phases). After each break, recalibration of the eye-tracker took 

150 place (see below). At the beginning of the experiment, participants were told that they would 

151 be presented with auditory and visual cues. The instructions were to use the cues to predict the 

152 orientation of the target stimulus in each trial. Before the start of the experiment, participants 

153 were presented with an example trial. They indicated their prediction by pressing either the 

154 right or left button on a button box for left or right orientation, respectively. Participants were 

155 instructed to press the button as soon as they thought they knew which target orientation would 

156 appear. At the end of the updating phase, participants were told that the cue-target rule would 

157 change (i.e., the model revision phase) but not what the change would be. In the revision phase, 

158 participants were similarly instructed to continue to use the cues to predict the orientation of 

159 the target stimulus. The ‘model revision’ was a reversal of the cue-target contingencies in the 

160 revision phase only for the trials which contained an auditory tone. Each phase (updating and 

161 revision) of the experiment consisted of 200 trials (400 trials in total).

162 All participants were seated approximately 50 cm from the screen with their chin in a chin rest. 

163 Stimuli were isoluminant and the environmental illumination was the same for all participants. 

164 Stimuli were presented on a computer screen with the spatial resolution of 1920 × 1080 pixels. 

165 One trial lasted approximately nine seconds. Each trial consisted of a fixation period, a cue 

166 period, a response window followed by a delay period, and a target period. For all periods, 

167 except for the target period, a vertically oriented Gabor patch was presented. The target stimulus 
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168 was a Gabor patch oriented to the left or to the right, with a special frequency of 0.033 and 

169 opacity 0.5. Each trial started with a fixation cross on the vertical Gabor patch, which was 

170 shown on the screen for 1500 ms. Afterward, the visual cue, which was either a square or a 

171 diamond, was presented in the middle of the screen for 1000 ms. In 50% of the trials the visual 

172 cue was paired with an auditory cue (i.e., tone “C”), which was presented for 300 ms. In the 

173 other 50% of the trials, the auditory cue was absent. During the subsequent interval, the fixation 

174 cross and the vertically oriented Gabor patch were presented, and participants were asked to 

175 indicate their prediction about the upcoming orientation of the target by pressing a button. There 

176 was no maximum response window. After a button had been pressed, a delay period started 

177 with the vertical Gabor patch on the screen for additional 3000 ms. After the delay period, the 

178 target stimulus (the Gabor patch tilted either left or right) was shown for 3000 ms. The durations 

179 of the response period and target window were chosen in order to avoid contamination of the 

180 pupil dilation response to a previous event. As our dependent measure was the pupil dilation 

181 response to the target stimulus, the response window was sufficiently long to ensure that the 

182 pupil response would not be contaminated by the motion response of the button press (Colizoli 

183 et al., 2018). It is important to note that the target Gabor patch served as trial-by-trial feedback 

184 on the accuracy of participants’ cue-target predictions. The prediction error in this context is 

185 therefore the difference between the expected orientation of the target and the target’s actual 

186 orientation. 

187 The design contained probabilistic cue-target mappings to introduce uncertainty in the 

188 predictions, thus simulating uncertainty that is inherent to perception in the real world. The 

189 visual and auditory cues predicted whether the target Gabor patch was tilted to the right or to 

190 the left with either an 80% or 20% probability (Fig 1B). In the updating phase, only the visual 

191 cue had predictive value for learning the cue-target probabilities (i.e., the auditory tone did not 

192 predict the target). In the revision phase, the visual cue-target mappings were reversed only for 
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193 trials in which an auditory cue was presented. Cue-target mappings were counterbalanced 

194 between participants. Note that we define mapping 1 (M1) to correspond to the 80% visual cue-

195 target pairs in the updating phase and mapping 2 (M2) to correspond to the 20% visual cue-

196 target pairs in the updating phase. 

197

198

199 Figure 1. Experimental design and hypotheses (A) Behavioural task. Participants performed a 2AFC task on the expected 

200 orientation (left/right) of upcoming Gabor patches while pupil dilation was recorded. Each trial consisted of a fixation period, 

201 a cue period, a response window followed by a delay period, and finally a target period. The decision interval ranged from 

202 onset of the cue to the participant’s response. The target interval ranged from target onset into the subsequent inter-trial interval 

203 (3 s). The target served as feedback on the accuracy of participants’ predictions in the decision interval. (B) The participants 

204 had to learn cue-target contingencies in order to accurately predict the orientation of the upcoming Gabor patch (target). 

205 Mapping 1 (M1) was defined as the visual cue-target pairs that occurred in 80% of trials in the updating phase; Mapping 2 

206 (M2) was defined as the visual cue-target pairs that occurred in 20% of trials in the updating phase. Mappings were 

207 counterbalanced between participants. At the start of the revision phase, the frequencies (80% vs. 20%) of the cue-target 

208 mappings were reversed for trials containing the auditory tone cue only. (C) Main hypotheses for the dynamics of prediction 

209 errors and accuracy over the course of the 2AFC task. The first 200 trials of the task represent the updating phase in which a 

210 gradual increase in accuracy and a gradual decrease in the absolute value of prediction errors were expected (represented by 

211 exponential curves). Within the revision phase (the last 200 trials), an abrupt increase in accuracy and an abrupt decrease in 

212 prediction errors were expected (represented by sigmoidal curves).

213 Hypotheses

214 Main hypotheses

215 We hypothesised that in the updating phase, participants would be gradually learning the 

216 probabilistic relationship between the cues and the Gabor patch orientation (target). New 

217 sensory evidence, in this case the target-stimulus presentation, should deviate less from 

218 expectations as evidence is accumulated over trials and thus generate smaller prediction errors 

219 for the high frequency trials (i.e., their absolute values). We thus expected that in the updating 
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220 phase, the prediction errors would show a gradual decrease over time, illustrated by an 

221 exponential curve. At the beginning of the revision phase, participants were instructed that 

222 something would change during this revision phase. We expected that participants would 

223 discover the new rule by integrating the now meaningful tone into their predictive models. The 

224 new hypothesis should account for observations that were previously generating high prediction 

225 errors. After an initial increase (compared to the ending point in the updating phase) in 

226 prediction errors in the revision phase, an integration of a new hypothesis should lead to an 

227 abrupt decrease in prediction errors (i.e., an “aha” moment), illustrated by sigmoidal curves. 

228 Fig 1C (bottom) illustrates the expected prediction error during the 2AFC task. We expected a 

229 similar dynamic for the tone and no tone trials in the updating and revision phase, however, it 

230 could be that the learning curves for these trial types differed during revision due to the change 

231 in contingency. Therefore, we investigated the tone and no-tone trials separately.

232 Exploratory hypotheses 

233 While prediction errors reflect the deviation between expectations and feedback presentation, 

234 the behavioural responses (i.e., button presses) are supposed to reflect the predictions 

235 themselves. The experimental manipulation should affect accuracy data in a similar way to 

236 prediction errors but in the opposite direction. We hypothesised that in the updating phase, the 

237 accuracy of predictions should increase gradually and then plateau, while in the revision phase, 

238 accuracy should initially decrease then abruptly plateau again as soon as the change in the cue-

239 target contingency is learned.

240 Estimating prediction errors from pupil dilation

241 Under constant luminance conditions, pupils dilate more when an error is made as compared 

242 with a correct response (e.g., Braem et al., 2015). Recently, it was shown that pupil dilation 

243 furthermore reflected an interaction between response accuracy and task difficulty in a 2AFC 
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244 motion-discrimination task with reward-coupled feedback, indicating its potential for 

245 investigating reward prediction errors (Colizoli et al., 2018). In this previous work, the effect 

246 of response accuracy (errors vs. correct trials) in the feedback-locked pupil dilation was larger 

247 for hard trials as compared with easy trials on average. Following these results, we investigated 

248 whether target-locked pupil dilation could be used as a measure of prediction errors in the 

249 current study. 

250 Data acquisition and analyses 

251 Data acquisition and pre-processing 

252 Changes in pupil dilation were recorded using an SMI RED500 eye-tracker (SensoMotoric 

253 Instruments, Teltow/Berlin, Germany) with a sampling rate of 500 Hz. We analysed the pupil 

254 dilation data of the right eye for each participant. The timing of blinks and saccade events was 

255 not saved in the output of the eye-tracker; therefore, we did not attempt to categorize separate 

256 blink and saccade events for pre-processing purposes. Pre-processing was applied to the entire 

257 pupil dilation time series of each participant and consisted of: i) interpolation around missing 

258 samples (0.15 s before and after each missing period), ii) interpolation around blinks or saccade 

259 events based on spikes in the temporal derivative of the pupil time series (0.15 s before and 

260 after each blink or saccade period), iii) band-pass filtering (third-order Butterworth, passband: 

261 0.01–6 Hz), iv) removing responses to nuisance events using multiple linear regression (missing 

262 periods and blink or saccade events were all categorized together as a single ‘nuisance’ event 

263 type; responses were estimated by deconvolution, [Knapen et al., 2016]), and v) the residuals 

264 of the nuisance regression were transformed to percent signal change with respect to the 

265 temporal mean of the time series.

266 For each trial, intervals corresponding to the onset of the cue were extracted from each 

267 participant’s pupil dilation time series (cue-locked and target-locked, respectively). The cue-
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268 locked and target-locked intervals were baseline-corrected separately for each trial. The 

269 baseline pupil was defined as the mean pupil in the time window -0.5 to 0 seconds with respect 

270 to the cue or target for the cue-locked and target-locked intervals, respectively. The cue-locked 

271 pupil response was analysed for data quality purposes, while the target-locked pupil response 

272 was the main dependent variable of interest.

273

274 The temporal window of interest was independently defined as 1 to 2 seconds after the target 

275 onset based on the pupil’s canonical impulse response function (Knapen et al., 2016). For each 

276 trial, a single value for the target-locked pupil response was computed as the mean pupil dilation 

277 within this temporal window of interest. The event-locked and baseline-corrected scalar value 

278 representing pupil dilation on each trial is referred to as the phasic pupil response in the 

279 literature. Note that the pre-trial baseline pupil dilation is expected to reflect tonic fluctuations 

280 in arousal in contrast to the task-evoked (or phasic) pupil responses investigated in the current 

281 study (Murphy, O’Connell et al., 2014; Murphy, Vandekerckhove et al., 2014).  

282 Trials were excluded if the reaction time (RT) was three standard deviations above the 

283 participant’s mean RT or lower than 100 ms (minimal time needed for the preparation of a 

284 motor response; Dahan et al., 2019; Siegelman et al., 2019). 

285 Confirmatory analyses

286 Behaviour: We expected that, on average, participants would learn the cue-target contingencies 

287 in both phases of the task, which would be reflected in higher accuracy and faster responses for 

288 high frequency trials as compared with low frequency trials. The effect of the visual cue-target 

289 mapping condition was expected to interact with the auditory cue condition and task phase, 

290 reflecting the reversal of the visual cue-target contingencies in the revision phase during the 

291 tone trials only. These hypotheses were tested in two 3-way repeated measures ANOVAs, 
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292 separately for accuracy (as percentage of correct trials) and RT with factors: cue-target mapping 

293 (M1 vs. M2), auditory cue (tone vs. no tone), and phase (updating vs. revision). 

294

295 Evoked pupil response: The analysis of the evoked pupil response due to the cue presentation 

296 served as a quality-control check on the goodness of the data acquisition. The visual and/or 

297 auditory cues indicated to the participants that they should make a button press based on their 

298 choice. A button press in the response phase was expected to evoke a canonical pupil impulse 

299 response which should be reflected in the mean cue-locked pupil response. In addition, we 

300 expected to see larger pupil dilation on average during tone trials as compared with no tone 

301 trials in the cue-locked pupil response, as auditory cues are known to be arousing (e.g., Liao et 

302 al., 2016). The cue-locked effect of tone was expected to return to baseline before the target 

303 was presented on screen. We expected to see larger pupil dilation on average during errors as 

304 compared with correct trials in the evoked target-locked pupil response. 

305

306 Phasic pupil response: Following from the hypothesised pattern of behavioural results, we 

307 expected to see an interaction between cue-target mapping, auditory cue, and task phase in the 

308 target-locked phasic pupil response in the average phasic pupil response (this was tested with a 

309 3-way repeated measures ANOVA as described above for behaviour). In the updating phase, 

310 the average pupil dilation for the M2 mapping was expected to be larger as compared with the 

311 M1 mapping, because low frequency trials (M2 in updating) should contain more errors overall. 

312 The direction of the mapping effect was expected to reverse in the revision phase for tone trials 

313 only.

314 Curve fits on target-locked pupil data: To test our main hypothesis concerning prediction 

315 error dynamics across the updating and revision phases, we assessed whether the time course 

316 of the target-locked pupil dilation showed the difference in the range parameter, , of the 
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317 sigmoid curve fits. The target-locked pupil dilation is taken as a proxy of prediction errors 

318 within two phases of the experiment. The logic is that sensory evidence for the cue-target 

319 continencies is accumulated as the task progresses over time, and learning should be evident in 

320 a reduction in prediction error magnitude as a function of trial order. The sigmoid function used 

321 for the curve fits on target-locked pupil responses is given in Equation 1.

322    𝑓(𝑥) = 𝑎0 + 𝐺∫𝑥
―∞

1

 2𝜋
𝑒

―(𝑥―)2

2
2                                         (Equation 1)

323 We fit four parameters, , , a0 and G, of the above sigmoid function to the target-locked pupil 

324 dilation across the high-frequency trials (80%) for the tone condition only, comparing the 

325 updating and revision phases of the experiment. We differentiated between the high-frequency 

326 as compared with low-frequency trials, in order to fit only a single direction of the (expected) 

327 signed prediction errors (Colizoli et al., 2018; see den Ouden et al., 2012). The starting point of 

328 the curve is reflected in the a0 parameter. The inflection point of the curve is reflected in the  

329 parameter. The gain parameter, G, allowed for negative scaling of the curves given the nature 

330 of the pupil signal as dependent variable (i.e., percent signal change). The range parameter, , 

331 reflects the range over where the curve rises. A larger  parameter is associated with a larger 

332 range over which the transition (i.e., from f(x) = a0 to f(x) = 1) takes place. We placed linear 

333 constraints on the curve fits so that  could not exceed three times the value of . We bound 

334 both  and  so they could not exceed the number of trials in each phase of the experiment 

335 (range between 1 and 200 trials). The parameters were furthermore not constrained or bounded. 

336 The parameters were determined by minimising the ordinary least squares cost function.

337 Our main hypothesis was that learning would extend across more trials in the updating phase 

338 as compared with in the revision phase, reflecting the difference between model updating and 

339 model revision processes. Therefore, we expected that the  would be higher for the high 
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340 frequency tone trials in the updating phase as compared with the high frequency tone trials in 

341 the revision phase (note that the cue-target mappings were flipped for tone trials in the revision 

342 phase; see Fig 1C). We furthermore expected the sign of the G to be negative in both phases, 

343 indicating a decreasing trend. A larger value of  together with a negative gain parameter, G, 

344 thus reflects a more gradual reduction of prediction errors across trials. This analysis enables 

345 us to examine whether pupil dilation depended on the experimental phase and if it scaled with 

346 our hypotheses in Figure 1C. Descriptive statistics for all free parameters are presented in 

347 Supplementary Table 1. 

348 Finally, in the Supplementary Materials we describe the prediction errors as the 4-way 

349 interaction between accuracy, cue-target mapping, auditory cue, and phase in the target-locked 

350 pupil dilation. 

351 Exploratory analyses 

352 Psychometric curve fits on accuracy data: To test the hypothesis concerning the dynamics 

353 of the target-orientation predictions, we assessed whether the range parameter, , of the 

354 psychometric curve fits differed between the updating and revision phases. In a psychometric 

355 curve, accuracy is plotted against signal intensity (May & Solomon, 2013). We explored the 

356 resulting psychometric curves when the number of trials completed over time was taken as a 

357 proxy for signal intensity. The sigmoid function used for the psychometric curve fits is given 

358 in Equation 2. 

359                                    𝑓(𝑥) = 𝑎0 + (1 ― 𝑎0)∫𝑥
―∞

1

 2𝜋
𝑒

―(𝑥―)2

2
2                                (Equation 2)      

360 We fit three parameters, , , and a0, to the individual participant’s response accuracy across 

361 all trials for the tone condition only (i.e., the frequency conditions were not differentiated), 
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362 separately for the updating and revision phases of the experiment. We placed linear constraints 

363 on the curve fits so that  could not exceed three times the value of . We bound both  and  

364 so they could not exceed the number of trials in each phase of the experiment (range between 

365 1 and 200 trials). The starting point, a0, was bound between 0 and 1. The parameters were 

366 determined by minimising the negative log-likelihood cost function.

367 If our hypotheses about the difference between model revision and model updating are correct, 

368 then  should be higher for the tone trials in the updating phase as compared with the tone trials 

369 in the revision phase. Descriptive statistics for all free parameters are presented in 

370 Supplementary Table 1. 

371 Software

372 The prediction task was administered with Psychopy (version 1.81; Psychopy, 2018). The 

373 behavioural and pupil data were processed with custom software using Python (version 3.6; 

374 Python Software Foundation, 2016). The evoked pupil responses were statistically assessed 

375 with a cluster-level permutation test as part of the MNE-Python package (Gramfort et al., 2013). 

376 Repeated measures ANOVAs and Bayesian tests were carried out in JASP (version 0.13.1; 

377 JASP Team, 2020). All data and code are publicly available 

378 (https://github.com/colizoli/learning_environmental_contingencies).

379 Results

380 The current study aimed to compare prediction-error dynamics, quantified in terms of pupil 

381 dilation, during model updating and model revision. As predictions become more accurate over 

382 time, due to learning more adequate models of the world, prediction errors are minimised 

383 (Clark, 2013; 2016; Hohwy, 2013). Model revision, unlike model updating, changes the 

384 structure of a generative model by altering its causal connections or by adding and removing 
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385 hypotheses (Kwisthout et al., 2017). To test these hypotheses, participants performed a 2AFC 

386 task on the expected orientation (left vs. right) of an upcoming Gabor patch (target) task while 

387 pupil dilation was recorded (Fig 1A). The participants had to learn cue-target contingencies in 

388 order to accurately predict the orientation of the target. Cue-target contingencies changed at the 

389 start of the revision phase in the following way: the cue-target mapping was reversed but only 

390 for trials containing the auditory tone cue. The target served as feedback on the accuracy of 

391 participants’ predictions in the decision interval. 

392 Confirmatory analyses

393 We first evaluated whether participants performed the 2AFC task as expected. Main effects and 

394 interactions between the visual cue-target mapping condition (M1 vs. M2), task phase (updating 

395 vs. revision), and the presence of the auditory cue (tone vs. no tone) were assessed in three 

396 independent 3-way repeated measures ANOVAs on the dependent variables of mean accuracy 

397 (Fig 2A), RT (Fig 2B), and target-locked pupil dilation (Fig 2C) (see Fig 2 for the analysis of 

398 evoked pupil responses). The ANOVA results are presented in Table 1, and relevant post hoc 

399 comparisons are presented in Fig 2. At the mean group level, a significant 3-way interaction 

400 was obtained between visual cue-target mapping condition, auditory cue condition, and task 

401 phase for accuracy and target-locked pupil response, but not for RT. Participants accurately 

402 predicted the cue-target contingencies in both phases of the experiment, illustrated by the main 

403 effect of visual cue-target mapping condition in the updating phase and the mapping reversal in 

404 the revision phase for tone trials only (Fig 2A). As expected, the target-locked pupil response 

405 was larger for the M2 trials as compared with the M1 trials during the updating phase, and the 

406 presence of the auditory cue reversed the direction of the target-locked pupil response in the 

407 revision phase for the tone trials (Fig 2C). Supplementary Fig 1 illustrates how the behaviour 

408 and target-locked pupil dilation changed as a function of time (25 trials per bin). 
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409

410

411 Figure 2. Cue-target prediction task results. (A) Prediction accuracy, (B) mean RT, and (C) target-locked pupil dilation as 

412 a function of visual cue-target mapping condition (M1 vs. M2), the presence of the auditory cue (tone vs. no tone), and task 

413 phase (updating vs. revision). Results of the 3-way repeated measures ANOVAs are given in Table 1. Significance refers to 

414 post hoc t-tests: **p < .01, ***p < .001. Error bars, s.e.m. (N = 30). Note that the frequencies of the visual cue-target mappings 

415 change in the revision phase for the tone trials.  

416

417 Table 1. Results of the 3-way repeated measures ANOVAs on accuracy, RT, and target-locked pupil response. Factors 

418 of interest were cue-target mapping condition (levels: M1 vs. M2), auditory cue (levels: tone vs. no tone), and task phase 

419 (levels: updating vs. revision). Accuracy data were percentage of correct trials; RT was analysed in seconds. *p < .05, **p < 

420 .01, ***p < .001

Accuracy RT Pupil response

Effect F(1,29) p η²G F(1,29) p η²G F(1,29) p η²G

Mapping 301.22 < .001*** 0.68 < .01 0.964 < .01 21.17 < .001*** 0.05

Auditory cue 6.69 0.015* < .01 4.91 0.035* 0.01 3.67 0.065 0.01

Phase 0.01 0.939 < .01 0.14 0.711 < .01 0.69 0.414 < .01

Mapping * Auditory cue 226.34 < .001*** 0.65 0.16 0.694 < .01 6.79 0.014* 0.01

Mapping * Phase 201.03 < .001*** 0.61 0.39 0.535 < .01 20.10 < .001*** 0.04

Auditory cue * Phase 0.40 0.533 < .01 3.24 0.082 < .01 0.57 0.458 < .01

Mapping * Auditory cue * Phase 205.49 < .001*** 0.64 3.52 0.071 < .01 9.71 0.004** 0.02

421

422 The data quality of the pupil dilation measures was assessed with several checks based on 

423 previous literature before testing our hypotheses about the dynamics of prediction errors across 

424 the experimental phases. First, evoked pupil dilation was present in response to the (visual and 

425 auditory) cue onsets as expected in the decision phase, here reflecting both decision preparation 

426 as well as the upcoming motor output in the form of a button press (Colizoli et al., 2018; Urai 

427 et al., 2017) (Fig 3A). Furthermore, the temporal window (1 to 2 s) chosen for the phasic pupil 

428 analysis contained the peak of the group-level cue-locked evoked response as expected from 

429 the pupil’s canonical impulse response function (Fig 3A, grey box). Second, as expected, errors 

430 resulted in larger pupil dilation as compared with correct trials following the target presentation, 
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431 and this accuracy effect was significant within the temporal window of interest (Fig 3B, grey 

432 box). Third, the presence of the auditory cue during the decision interval (cue-locked) was 

433 associated with larger pupil dilation as compared with the absence of the tone (Fig 3C), likely 

434 reflecting a difference in phasic arousal state during tone trials (Zekveld et al., 2018). 

435 Importantly, the (unwanted) arousal effect related to the auditory tone was no longer present by 

436 the time the target was presented for the participants (Fig 3D). We note that all further pupil 

437 analyses used the (phasic) target-locked pupil dilation, averaged within the temporal window 

438 of interest (Fig 3B, D, grey boxes), as the dependent variable. In sum, the pupil data fit all the 

439 basic confirmatory hypotheses based on previous literature.  

440

441

442 Figure 3. Evoked pupil responses locked to the cue and target in the prediction task across both phases. All trials within 

443 the updating and revision phases of the prediction task were included in the evoked pupil response analysis. (A) Mean cue-

444 locked pupil responses in the prediction interval. Black bar indicates main effect of cue, p < 0.05 (cluster-based permutation 

445 test). (B) Evoked pupil responses for correct and error trials in the feedback interval (target-locked). Black bar indicates correct 

446 vs. error effect, p < 0.05 (cluster-based permutation test). (C) Evoked pupil responses for tone and no tone trials in 

447 the prediction interval (cue-locked) and (D) in the feedback interval (target-locked). Black bar indicates tone vs. no tone 

448 effect, p < 0.05 (cluster-based permutation test). In all panels: variability around the mean responses is illustrated as the 68% 

449 confidence interval (bootstrapped; N = 30); the grey box indicates the temporal window of interest (1–2 s) with respect to event 

450 onset for the phasic pupil responses. Note that the temporal window of interest was independently defined based on the pupil’s 

451 canonical impulse response function. 

452 Curve fits on target-locked pupil data: Finally, we tested the main hypothesis concerning 

453 prediction error dynamics reflected in pupil dilation across the updating and revision phases. 

454 Sigmoid curves were fit for each participant’s target-locked pupil response for the tone trials in 

455 the high-frequency condition only, separately per phase (updating vs. revision). Individual 

456 curve fits are shown in Supplementary Fig 2. Our main hypothesis was that  would be larger 

457 for the high-frequency tone trials in the updating phase as compared with the high-frequency 
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458 tone trials in the revision phase (i.e., the cue-target mappings were flipped for tone trials only 

459 in the revision phase). For the trials without an auditory cue, we did not have expectations about 

460 the difference in  between the updating and revision phases of the task. Therefore, we tested 

461 only tone trials for phase-dependent differences (updating vs. revision) of the mean  parameter 

462 (Fig 4B). To examine whether the  parameters differed, we used Bayesian Wilcoxon Signed-

463 Rank Test (Fig 4B, right column). Whilst differences between  parameters were obtained, they 

464 were not in accordance with our expectations, since  in the revision phase was larger as 

465 compared with the updating phase. 

466

467 Figure 4. Comparisons of  parameter of the curve fits on tone trials. For each participant, sigmoid curves were fit to the 

468 tone trials (i.e., trials with an auditory cue) and compared between the updating and revision phases of the experiment. (A) For 

469 accuracy data, all tone trials (i.e., the high- and low-frequency conditions) were used to fit the curves. (B) For the target-locked 

470 pupil response data, curves were fit to the high-frequency (80%) tone trials only. Note that the cue-target mappings (M1 and 

471 M2) which correspond to the high-frequency trials differ per phase depending on the presence of the auditory cue. Results of 

472 the Bayesian Wilcoxon Signed-Rank Test are shown for the accuracy and pupil data (right column). Error bars, s.e.m. (N = 

473 30). 

474 We also expected that the size of the prediction errors as measured with pupil dilation would 

475 decrease as a result of learning, reflected in a negative gain parameter (G) in our curve fits for 

476 both phases. In the updating phase, G was negative on average as expected (M = -4.1, SD = 

477 11.94), however, G was positive on average in the revision phase (M = 2.4, SD = 9.3), against 

478 our hypothesis of reduced prediction errors in both phases of the experiment. Furthermore, it 

479 was apparent that the sign of G was not consistent at the individual level (see Supplementary 

480 Fig 2).
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481 Exploratory analyses 

482 Given that the sizes of the  parameters obtained from the curve fits of pupil data were the 

483 opposite of what we had hypothesised, we decided to run an exploratory analysis on the 

484 behavioural data. We expected that these additional analyses would provide us with insight into 

485 what was going on during the task and would allow us to draw stronger conclusions.  

486 Psychometric curve fits on accuracy data: For accuracy data, psychometric curves were fit 

487 for each participant’s response accuracy for the tone trials only, separately per phase (updating 

488 vs. revision). Individual curve fits are shown in Supplementary Fig 3. As with pupil, our 

489 exploratory hypothesis was that  would be larger for the tone trials in the updating phase as 

490 compared with the tone trials in the revision phase (i.e., the cue-target mappings were flipped 

491 for tone trials only in the revision phase). For the trials without an auditory cue, we did not have 

492 expectations about the difference in  between the updating and revision phases of the task. 

493 Therefore, we tested only tone trials for phase-dependent differences (updating vs. revision) of 

494 the mean  parameter (Fig 4A). To examine whether the  parameters differed, we used a 

495 Bayesian Wilcoxon Signed-Rank Test (Fig 4A, right column). Whilst differences between the 

496  parameters were obtained, they were not in accordance with our expectations, since  in the 

497 revision phase was larger than in the updating phase.

498 Discussion 

499 Our research was motivated by the observation that learning in the predictive-processing 

500 framework is often reduced to Bayesian model updating (Perfors, 2012; Schulz, 2012; Gentner 

501 & Hoyos, 2017). We argued that existing accounts of learning in the predictive-processing 

502 framework currently lack a crucial component: a constructive learning mechanism that accounts 

503 for changing models structurally when new hypotheses need to be learnt. Kwisthout and 
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504 colleagues (2017) proposed that model revision is a learning mechanism that is distinct from 

505 Bayesian model updating and accounts for such a structural change in generative models. 

506 Similarly, Heald and colleagues (2022) have recently presented a theory for sensorimotor 

507 learning, called contextual inference, that differentiates between the adaptation of behaviour 

508 based on updating of existing and creation of new motor memories and adaptation due to 

509 changes in the relative weighting of these motor memories. Building on this, we investigated 

510 whether we could empirically distinguish between Bayesian model updating and model 

511 revision. We expected to be able to differentiate between the two mechanisms based on their 

512 prediction error dynamics, which we assumed to be reflected in pupil dilation (Preuschoff et 

513 al., 2011; Browning et al., 2015; O’Reilly et al., 2013; Colizoli et al., 2018; Lawson et al., 

514 2017). After obtaining unexpected results based on pupil data, we formed additional, 

515 exploratory hypotheses based on the prediction dynamics reflected in accuracy. To investigate 

516 our question, we created a within-subject computer-based experiment with two phases (the 

517 updating and the revision phase). In the updating phase, participants had to learn and predict 

518 the probabilistic relationship between the cues and a target stimulus, and in the revision phase, 

519 a change occurred to what had been learnt previously. 

520

521 To test whether participants performed the task as expected, we performed some basic quality 

522 controls on behavioural and pupil data. Behavioural data showed that participants on average 

523 correctly predicted the cue-target contingencies in both experimental phases. This was reflected 

524 in the cue-target mapping effect for tone and no tone trials in the updating phase, and a reversed 

525 effect of cue-target mapping effect was observed in the revision phase for tone trials (when the 

526 mapping switched) only. As expected, a similar pattern was also observed in pupil data. 

527 Before turning to the main research question, the quality of the pupil measures was checked 

528 and compared to effects observed in previous literature. Decision preparation and the 
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529 preparation of the motor response were reflected in the evoked pupil response to the visual and 

530 auditory cue onsets replicating previous work (Colizoli et al., 2018; Urai et al., 2017). We also 

531 observed the peak of the group-level cue-locked evoked response around 1.5 seconds, which is 

532 in line with previous findings (e.g., Mathôt, 2018). Furthermore, erroneous responses resulted 

533 in larger pupil dilation as compared to correct responses, an effect that has also been previously 

534 reported (Braem et al., 2015). Finally, we found a well-known auditory effect on pupil 

535 responses with pupil responses being bigger on trials with a tone compared to trials without a 

536 tone (e.g., Liao et al., 2016). 

537 Given that participants understood and correctly performed the task, we turn to the results 

538 related to our main hypotheses. Multiple studies (Friston et al., 2016; Smith et al., 2020; 

539 Fitzgerald, 2015; Clark, 2016; Zenon, 2019) have shown that prediction error decreases as a 

540 result of learning. Building on this we hypothesised that in the updating and the revision phase, 

541 different temporal dynamics in prediction error decrease would be observed. We hypothesised 

542 that in the updating phase participants would be gradually learning the probabilistic relationship 

543 between the cues and the target orientation, leading to model updating. As a result of model 

544 updating, participants should become better at predicting future sensory input. New sensory 

545 observations should thus yield prediction errors that are smaller than the preceding ones, and 

546 the degree to which the model needs to be updated should decrease over time. In other words, 

547 we expected prediction error to decrease gradually over time. In the revision phase the rules 

548 switched for the tone trials, which should initially lead to an increase in prediction error. When 

549 the change in rules is learned, a new hypothesis is added to a learner’s model, resulting in model 

550 revision. An integration of a new hypothesis should lead to an abrupt decrease in prediction 

551 errors (i.e., an “aha” moment). Whilst prediction errors reflect the deviation between 

552 expectations and target-feedback presentation, the behavioural responses (i.e., button presses) 
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553 are supposed to reflect the predictions themselves. Thus, we expected to find a similar pattern 

554 of responses in accuracy data as in prediction errors but in the opposite direction. 

555 Curve fitting revealed significant differences between the phases of the task in pupil and 

556 accuracy data as reflected in the  parameter. However, the difference was in the opposite 

557 direction as expected; the  was significantly smaller in the updating phase compared to the 

558 revision phase, in accuracy and pupil data. These results suggest that the participants were 

559 learning more gradually in the revision phase compared to the updating phase of the experiment, 

560 contrary to our expectations. 

561 One possible interpretation of these results is that our experimental manipulation induced model 

562 revision in the updating phase and model updating in the revision phase. It might have been that 

563 in the updating phase participants built multiple internal models, that they thought could capture 

564 the structure of the task, from scratch. As they were learning the task they were alternating 

565 between these models and upon the realisation of the rule participants settled for the correct 

566 model, resulting in a rapid decrease in prediction error and accuracy as the data in the updating 

567 phase shows. We assumed we prevented participants from learning models from scratch in the 

568 updating phase by providing them with detailed instructions and pictorial representation of the 

569 stimuli resented in the task, before the task started. By that, we thought, we equipped 

570 participants with a crude model that would contain hypotheses about all the relevant variables 

571 of the task. However, in light of the current results we believe that our instructions did not result 

572 in the construction of a simple model that participants could use as a baseline upon entering the 

573 task. 

574 At the beginning of the revision phase, participants expected for the rules of the task to change. 

575 All the experimental variables (e.g., target, visual cues) in the revision phase were the same as 

576 in the updating phase, possibly signalling to the participants that one of the models that they 
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577 had already constructed in the updating phase could be suitable for explaining the change in the 

578 revision phase. If this was the case, then participants in the revision phase merely reused a 

579 correct, existing model, and started gradually updating that model rather than adding a new 

580 hypothesis (based on a new experimental variable) to a model they had built in the updating 

581 phase. 

582 We could possibly have avoided participants building models from scratch in the updating 

583 phase had we ran a computerised familiarisation phase with all the relevant experimental 

584 variables with the participants prior to the experiment. This would make sure that participants 

585 have constructed crude models of the task before the experiment started and that they could 

586 then use and update in the update phase. Additionally, to make sure that participants in the 

587 revision phase were not just reusing one of the models they had constructed in the updating 

588 phase but instead build on an existing model, we could have introduced a new experimental 

589 variable in the revision phase that was present in the familiarisation but not in the updating 

590 phase. In that case, participants would have to add a new hypothesis to a model (instantiating 

591 model revision) constructed in the updating phase, if they were to successfully learn the new 

592 rule in the revision phase. 

593 Our results also revealed that the gain parameter, G, which indicates the direction of the  

594 parameter, was negative in the updating phase as expected and positive in the revision phase 

595 contrary to our expectations. This suggests that pupil dilation and hence prediction error was 

596 on average decreasing in the updating phase and increasing in the revision phase. These results 

597 are unexpected, because, according to existing literature, prediction error is decreasing as a 

598 result of learning (Friston et al., 2016; Smith et al., 2020; Fitzgerald, 2015; Clark, 2016; Zenon, 

599 2019) and so should pupil dilation (Kayhan, 2019). However, a look at the individual level pupil 

600 data (see supplementary Fig 2) reveals large variability in the sign of the  parameter for both 
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601 phases, potentially suggesting individual differences in the size of pupil dilation over time. This 

602 suggestion is in line with recent findings of substantial inter- and intra-individual variation in 

603 the size of pupil dilation over trials (Sybley et al., 2020). More specifically, the study shows 

604 that in a simple digit-span memory task pupil dilation was consistently increasing over trials 

605 for some participants and for others it was decreasing. There were also participants for whom 

606 the trend was changing throughout the task. Another factor that could explain why pupil dilation 

607 was increasing in the revision phase is that participants in this phase were more fatigued than 

608 in the updating phase at the beginning of the experiment. As a consequence, they had to exert 

609 more effort to maintain concentrated on the task and process the change in the task rules. 

610 Increased cognitive effort would result in increasing pupil dilation as has been shown many 

611 times before (for review see van der Wel & van Steenbergen, 2018; Hyönä et al., 1995; Porter 

612 et al., 2007). 

613 All in all, our data shows that there exists a qualitative difference between model updating and 

614 model revision, following the initial theoretical proposal from Kwisthout and colleagues 

615 (2017). However, model updating seemed to have occurred in the model revision phase and 

616 model revision in the model updating phase of the experiment for reasons described above. 

617 Future studies should therefore make sure to induce experimental manipulations that have the 

618 initially intended effect. Alternatively, future studies might investigate empirically the 

619 interpretation of the current results: that participants construct multiple models at the beginning 

620 and later choose among them and update them. Lastly, our study is one of the few that studied 

621 how the change in prediction error, as captured by pupil dilation, over time (for a few exceptions 

622 see Kayhan, 2019; Koenig et al., 2017). Therefore, little is known about how pupil dynamics 

623 and hence prediction errors change over extended periods of time and whether individual 

624 differences exist in this process. More studies should thus examine pupil dilation and hence 

625 prediction error in such a manner in the future. 
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767 Supplementary material 
768 Supplementary Figure 1. Cue-target prediction task results as a function of trial bin. Prediction accuracy (top row), mean 

769 RT (middle row), and target-locked pupil dilation (bottom row) as a function of visual cue-target mapping condition (M1 vs. 

770 M2), the presence of the auditory cue (tone vs. no tone), and consecutive trial bin. Trial bins 1-8 correspond to the updating 

771 phase, and trial bins 9-16 correspond to the revision phase (25 trials per bin).

772
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773 Supplementary Figure 2. Curve fits for the target-locked pupil response (single-trial). Individual curves were fit on the 

774 target-locked pupil response data for the high-frequency tone trials (i.e., the auditory cue and 80% frequency condition) 

775 separately for each phase (updating vs. revision). 

776

777 Supplementary Figure 3. Psychometric curve fits for accuracy (single trial). Individual psychometric curves were fit on 

778 the response accuracy data for the tone trials (auditory cue condition) separately for each phase (updating vs. revision). 

779

780 Supplementary Table 1. Descriptive statistics on free parameters from curve fits for the accuracy and pupil data.

Accuracy

   a0

Updating Revision Updating Revision Updating Revision

Valid 30 30 30 30 30 30

Missing 0 0 0 0 0 0

Median 191.29 400 1 132.437 0.711 0.649

Mean 187.996 389.102 17.737 108.104 0.69 0.617

Std. Deviation 13.053 22.626 26.1 36.207 0.08 0.108

Minimum 156.964 323.083 1 41.918 0.492 0.351

Maximum 200 400 66.667 133.333 0.779 0.77

Pupil response

  a0 G

Updating Revision Updating Revision Updating Revision Updating Revision

Valid 30 30 30 30 30 30 30 30

Missing 0 0 0 0 0 0 0 0

Median 130.827 246.795 0.099 1.766 -1.269 -0.365 -2.522 1.036

Mean 122.354 262.328 0.612 10.772 0.767 -1.99 -4.136 2.397

Std. Deviation 63.868 60.348 1.656 19.487 9.846 8.267 11.938 9.307

Minimum 0.747 186.918 1.369e -5 8.487e -4 -5.082 -43.248 -51.324 -7.209

Maximum 198.993 457.277 7.008 69.092 51.521 6.503 8.48 45.274

781

782

783 Prediction error in pupil dilation explored as the 4-way interaction between accuracy, 

784 cue-target mapping, auditory cue, and phase
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785 If the full scope of the prediction error space was measurable in the target-locked pupil dilation, 

786 a 4-way interaction between the factors: accuracy (error vs. correct), and cue-target mapping 

787 (M1 vs. M2), auditory cue (tone vs. no tone), and phase (updating vs. revision). For instance, a 

788 correct response on a low frequency (20%) trial may reflect a wrong button press on the part of 

789 the participant but will elicit a substantial prediction error due to the unexpected outcome once 

790 the contingencies are learned. The size of the two-way interaction term defined by the factors 

791 accuracy and cue-target mapping should change over time in accordance with the auditory-cue 

792 rules in the updating and revision phases, representing the deviation between expectation and 

793 outcome in the form of the target orientation. 

794 However, we did not proceed with analysis due to too many missing cases across the 16 

795 conditions determined by the 4-way interaction (max. 14/30). These missing cases were due to 

796 the rare occurrence of certain conditions, such as correct and low frequency trials. Therefore, 

797 we could not make any inference on the potential dynamics of this 4-way interaction in the 

798 current task design. 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 17, 2022. ; https://doi.org/10.1101/2022.06.15.496278doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.15.496278
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 17, 2022. ; https://doi.org/10.1101/2022.06.15.496278doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.15.496278
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 17, 2022. ; https://doi.org/10.1101/2022.06.15.496278doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.15.496278
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 17, 2022. ; https://doi.org/10.1101/2022.06.15.496278doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.15.496278
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 17, 2022. ; https://doi.org/10.1101/2022.06.15.496278doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.15.496278
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 17, 2022. ; https://doi.org/10.1101/2022.06.15.496278doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.15.496278
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 17, 2022. ; https://doi.org/10.1101/2022.06.15.496278doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.15.496278
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 17, 2022. ; https://doi.org/10.1101/2022.06.15.496278doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.15.496278
http://creativecommons.org/licenses/by/4.0/

