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Im; membrane current 27 

Vm; membrane voltage 28 

orp; optimization of randomized model parameters 29 

PS; pattern search method  30 

BP; base point for searching minimum MSE in the Pattern Search 31 

NP; searching point in reference to BP in the Pattern Search 32 

MSE; mean square error between two different Vm records 33 

stp; step size to move NP 34 

x; subscript to represent membrane current such as INa, ICaL, IK1, Iha, IKr, IKur, IKs and IbNSC 35 

  36 
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1. Abstract 37 

Premature cardiac myocytes derived from human-induced pluripotent stem cells (hiPSC-CMs) show 38 

heterogeneous action potentials (APs), most probably because of different expression patterns of membrane 39 

ionic currents. We aim to develop a method of determining expression patterns of functional channels in terms 40 

of the whole-cell ionic conductances (Gx) using individual spontaneous AP configurations. However, it has 41 

been suggested that apparently identical AP configurations were obtained by different sets of ionic currents in 42 

a mathematical model of cardiac membrane excitation. If so, the inverse problem of Gx estimation might not be 43 

solved. We computationally tested the feasibility of the gradient-based optimization method. For realistic 44 

examination, conventional 'cell-specific models' were prepared by superimposing the model output of AP on 45 

each experimental AP record by the conventional manual adjustment of Gxs of the baseline model. Then, Gxs 46 

of 4 ~ 6 major ionic currents of the 'cell-specific models' were randomized within a range of ±5 ~ 15% and 47 

were used as initial parameter sets for the gradient-based automatic Gxs recovery by decreasing the mean 48 

square error (MSE) between the target and model output. When plotted all data points of MSE - Gx relation 49 

during the optimization, we found that the randomized population of Gxs progressively converged to the 50 

original value of the cell-specific model with decreasing MSE. To confirm the absence of any other local 51 

minimum in the global search space, we mapped the MSE by randomizing Gxs over a range of 0.1 ~ 10 times 52 

the control. No additional local minimum of MSE was obvious in the whole parameter space besides the global 53 

minimum of MSE at the default model parameter.  54 

 55 

2. Introduction 56 

During more than a half-century, the biophysical characteristics of ion transporting molecules 57 

(channels and ion exchangers) have been extensively analyzed, and biophysical models of each functional 58 

component have largely been detailed [1–4] (for human-induced pluripotent stem cells (hiPSC-CMs) see [5–59 

7]). In addition, various composite cell models, including the membrane excitation, cell contraction, and the 60 

homeostasis of the intracellular ionic composition, have been developed by integrating mathematical models at 61 

molecular levels into the cardiac cell models [8–11]. These models have already been quite useful in 62 
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visualizing individual currents underlying the action potential (AP) configuration under various experimental 63 

conditions in matured cardiac myocytes. However, the utility of these mathematical cell models has been 64 

limited because of the lack of extensive validation for the accuracy of the model output. This is the drawback 65 

of the subjective manual fitting used in almost all mathematical cardiac cell models so far published. A new 66 

challenge of such mechanistic models of cardiac membrane excitation might be an examination in a very 67 

different paradigm to assess if the large but continuous variety of cardiac AP configurations, for example, 68 

those recorded in the hiPSC-CMs, can be reconstructed by applying the automatic parameter optimization 69 

method to the human cardiac cell models.  70 

 The automatic parameter optimization technique has been used to determine parameters objectively in 71 

a wide range of various biological models (in cardiac electrophysiology; [12–15], in the systems 72 

pharmacology; [16–20]). Because of this utility, a large variety of improvements have been made in the area of 73 

information technology [21,22].  However, in electrophysiology, it has been suggested that different 74 

combinations of model parameters can produce APs, which are very similar[23–25] (see also [13]). It has been 75 

considered that the determination of current density at high fidelity and accuracy requires additional 76 

improvements to the optimization method in the cardiac cell model because of complex interactions among 77 

ionic currents underlying the membrane excitation (see [26], for review; [23]).  78 

The final goal of our study is to develop an objective and accurate method of determining the current 79 

profile (that is, the expression level of functional ionic currents) underlying individual AP configurations. As a 80 

case study, we select a large variety of AP configurations in the hiPSC-CMs, which are difficult to classify into 81 

the conventional nodal-, atrial- or ventricular-types. Nevertheless, it has been clarified that the molecular 82 

bases of the ion channels expressed in the hiPSC-CMs well correspond to those in the adult cardiac 83 

myocytes (GSE154580 GEO Accession viewer (nih.gov)). Thus, we use the human ventricular cell model 84 

(hVC model, [11]) for the baseline model.  In the present study, we computationally examine the feasibility of 85 

the basic gradient-based optimization method, pattern search (PS) algorithm [21,27,28] in the model of cardiac 86 

AP generation. We prepared a given AP configuration using each 'cell specific model', which was prepared by 87 

the conventional manual fitting of the hVC model to the respective experimental recordings. To assess the 88 
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accuracy of the PS method of parameter optimization, this AP waveform generated by the cell-specific model 89 

was used as a target of the optimization. Then, the initial set of parameters for the optimization was prepared 90 

by uniform randomization centered around the model's default values. The PS algorithm should return the 91 

original parameters by decreasing the error function (MSE) between the modified model output and target AP 92 

waveforms. The accuracy of optimization was definitely judged by recovering of the original values of each 93 

ionic current amplitude as the MSE progressively decreased toward zero.  94 

 95 

3. Materials and Methods 96 

3.1. The baseline model of hiPSC-CM membrane excitation 97 

The baseline model of hiPSC-CMs was essentially the same as the human ventricular cell model (hVC 98 

model), which has been fully described in references [10,11] and shares many comparable characteristics with 99 

other human models so far published [8,9]. The model structure of the hVC model consists of the cell 100 

membrane with a number of ionic channel species and a few ion transporters, the sarcoplasmic reticulum 101 

equipped with the Ca2+ pump (SERCA), and the refined Ca2+ releasing units coupled with the L-type Ca2+ 102 

channels on the cell membrane at the nano-scale dyadic space, the contractile fibers, and the cytosolic three 103 

Ca2+ diffusion spaces containing several Ca2+-binding proteins (Fig S1). All model equations and abbreviations 104 

are in Supplemental Materials. 105 

The source code of the present hiPSC-CM model was written in VB.Net and is available from our e-106 

Heart website (http://www.eheartsim.com/en/downloads/). 107 

 108 

 The kinetics of the ionic currents in the baseline model were readjusted according to new 109 

experimental measurements if available in the hiPSC-CMs [29] (Fig S2). In the present study, the net 110 

membrane current (Itot_cell) is calculated as the sum of nine ion channel currents and two ion transporters (INaK 111 

and INCX) (Eq 1). 112 

𝐼௧௢௧_௖௘௟௟ = 𝐼ே௔ + 𝐼஼௔௅ + 𝐼௛௔ + 𝐼௄ଵ + 𝐼௄௥ + 𝐼௄௦ + 𝐼௄௨௥ + 𝐼௄௧௢ + 𝐼௕ேௌ஼ + 𝐼ே௔௄ + 𝐼ே஼௑ 𝐸𝑞  1 113 

 114 
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The membrane excitation of the model is generated by charging and discharging the membrane 115 

capacitance (Cm) by the net ionic current (Itot_cell) across the cell membrane (Eq 2). The driving force for the 116 

ionic current is given by the potential difference between Vm and the equilibrium potential (Ex) (Eq 3). The net 117 

electrical conductance of the channel is changed by the dynamic changes in the open probability (pO) of the 118 

channel, which is mostly Vm-dependent through the Vm-dependent rate constants (𝛼, 𝛽) of the opening and 119 

closing conformation changes of the channel (Eqs 4 and 5).  120 

𝑑𝑉௠

𝑑𝑡
= −

𝐼௧௢௧_௖௘௟௟

𝐶௠
= −

∑ 𝐼௫

𝐶௠
 Eq 2 121 

𝐼௫ = 𝐺̅௫ ⋅ 𝑝𝑂 ⋅ (𝑉௠ − 𝐸௫) Eq 3 122 

𝑑𝑝𝑂

𝑑𝑡
= 𝛼 ⋅ (1 − 𝑝𝑂) − 𝛽 ⋅ 𝑝𝑂 Eq 4 123 

[𝛼 𝛽]் = 𝒇(𝑉௠) Eq 5 124 

The exchange of 3Na+ / 2K+ by the Na/K pump and the 3Na+ / 1Ca2+ exchange by the NCX also 125 

generate sizeable fractions of membrane ionic current, INaK, and INCX, respectively. We excluded background 126 

currents of much smaller amplitude, such as IKACh, IKATP, ILCCa and ICab, from the parameter optimization and 127 

adjusted only the non-selective background cation current (IbNSC) of significant amplitude for the sake of 128 

simplicity [30–32]. The IbNSC is re-defined in the present study as a time-independent net current, which 129 

remained after blocking all time-dependent currents. 130 

 131 

3.2. The computational parameter optimization 132 

The whole cell conductance Gx of a given current system (x) is modified by multiplying the limiting 133 

conductance 𝐺̅௫  (Eq 3) of the baseline model by a scaling factor sfx (Eq 6) and are used for the parameter 134 

optimization. 135 

𝐺௫ = 𝐺̅௫ ⋅ 𝑠𝑓௫ Eq 6 136 

The mean square error (MSE) function (Eq 7) was used in the parameter optimization, where Vm,a 137 

represents adaptive Vm (the model output) generated by adjusting sfxs of the baseline model. The target Vm,t 138 

represents the AP of the intact baseline model.  139 
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𝑀𝑆𝐸 =
∑൫𝑉௠,௔ − 𝑉௠,௧൯

ଶ

𝑁
 Eq 7 140 

The MSE was stabilized by obtaining a quasi-stable rhythm of spontaneous APs through continuous 141 

numerical integration of the model, usually 30 ~ 100 spontaneous cycles were calculated for a new set of sfxs. 142 

The MSE was calculated within a time window. The width of this time window was adjusted according to the 143 

AP phase of interest. N is the number of digitized Vm points with a time interval of 0.1 ms. 144 

In the usual parameter optimization, the Vm,a is generated by modifying the baseline model for 145 

comparison with the experimental record (Vm,t = Vm,rec). However, to evaluate the identifiability of the 146 

parameter optimization, a simple approach was taken in the present study. Namely, we used the manually 147 

adjusted 'cell-specific' model for the target (Vm,t), which was nearly identical to Vm,rec. More importantly, the 148 

'cell-specific' Vm is totally free from extra-fluctuations (noise), which were observed in almost all AP 149 

recordings in hiPSC-CMs.  In the optimization process, the initial value of each optimization parameter was 150 

prepared by randomizing the sfxs of the cell-specific model by ±5~15% at the beginning of each run of PS 151 

(Vm,orp) in Eq 8 and the PS runs of several hundred were repeated. Thus, the error function is, 152 

𝑀𝑆𝐸 =
∑൫𝑉௠,௢௥௣ − 𝑉௠,௧൯

ଶ

𝑁
 Eq 8 153 

We call this optimization method 'orp test' in the present study. 154 

The advantage of using a manually adjusted cell model for the optimization target is that the accuracy 155 

of parameter optimization is proved by recovering all sfx = 1 independently from the randomized initial 156 

parameter set. Note the same approach was used in [23] in evaluating the accuracy of the parameter 157 

optimization by applying the genetic algorithm (GA) to the TNNP model of the human ventricular cell [33].  158 

 The optimization of using the randomized initial model parameters were repeated for more than 200 159 

runs. Thus, the orp test might be classified in a 'multi-run optimization'. The distribution of the sfx data points 160 

obtained during all test runs was plotted in a single sfx-MSE coordinate to examine the convergence of 161 

individual sfxs with the progress of the orp test. 162 

 163 
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3.3. The pattern search method for the optimization 164 

For a system showing the relatively simple gradient of MSE along the parameter axis, the gradient-165 

based optimization methods are more efficient in general than the stochastic methods for this kind of objective 166 

function. We used one of the basic gradient-based optimization methods, the PS algorithm. The computer 167 

program code of the pattern search [34] is simple (see Supplemental Materials) and does not require 168 

derivatives of the objective function. We implemented the code into a homemade program for data analysis (in 169 

VB) to improve the method for better resolution and to save computation time. 170 

 The primary PS method uses a base and new points [27]. In brief, sfx is coded with symbols BPx and 171 

NPx in the computer program, representing a base point (BPx) and a new searching point (NPx), respectively. 172 

Namely, MSE is calculated on each movement of NPx by adding or subtracting a given step size (stp) to the 173 

BPx, and the search direction is decided by the smaller MSE. Then, the whole mathematical model is 174 

numerically integrated (Eqs 2, 3, 4, and 5) using NPx to reconstruct the time course of AP (Vm,a). This 175 

adjustment is conducted sequentially for each of the 4~6 selected currents in a single cycle of optimization. 176 

The cycle is repeated until no improvement in MSE is gained by a new set of NPxs. Then, the BPx set is 177 

renewed by the new set of NPx for the subsequent series of optimization. Simultaneously, the stp is reduced by 178 

a given reduction factor (redFct of 1/4). The individual PS run is continued until the new stp becomes smaller 179 

than the critical stp (crtstp), which is set to 2~10 × 10ିହ in the present study. 180 

 181 

3.4. Selection of ionic currents for the optimization  182 

When we get a new experimental record of AP, we do not start the analysis with an automatic 183 

optimization of Gx but first adjust the baseline model by conducting the conventional manual fitting. The nine 184 

ionic currents in Eq 1 in the baseline model are adjusted bit by bit to superimpose the simulated AP on the 185 

experimental one. During this step, it is important to pay attention to the influences of each sfx adjustment on 186 

the simulated AP configuration on the computer display. Thereby, one may find several key current 187 

components which should be used in the automatic parameter optimization. Usually, currents showing a 188 
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relatively large magnitude of Gx were selected for the automatic optimization according to Eq 2, while those 189 

which scarcely modified the simulated AP were left as default values in the baseline model.    190 

 191 

3.5. Principal component analysis of the cell-specific models 192 

 When the orp test is conducted with p elements, it is possible to record the final point BP where the 193 

MSE is improved in the p-dimensional space. Suppose we represent the matrix when n data points are acquired 194 

as an n x p matrix X. In that case, we obtain a vector space based on the unit vector that maximizes the 195 

variance (first principal component: PC1) and the p-dimensional unit vector orthogonal to it (loadings vector 196 

𝒘(௞) = ൫𝑤ଵ, 𝑤ଶ ⋯ , 𝑤௣൯. It is possible to convert each row, 𝒙(௜) of the data matrix X into a vector of principal 197 

component scores, 𝒕(௜). The transformation is defined by 198 

𝒕௞(௜) = 𝒙(௜) ∙ 𝒘(௞)   𝑓𝑜𝑟   𝑖 =  1,2, ⋯ , 𝑛    𝑘 = 1,2, ⋯ , 𝑝 Eq 9 199 

In order to maximize variance, the first weight vector w ((1)) corresponding to the first principal 200 

component thus has to satisfy, 201 

𝒘(ଵ) = arg 𝑚𝑎𝑥
𝒘

ቊ
𝒘்𝑿்𝑿𝒘

𝒘்𝒘
ቋ Eq 10 202 

The k-th component can be found by subtracting the first (k-1)-th principal components from X 203 

𝑿௞
෢ = 𝑿 − ෍ 𝑿𝒘(௦)

௞ିଵ

௦ୀଵ
𝒘(௦)

்  Eq 11 204 

Then the weight vector is given as a vector such that the variance of the principal component scores is 205 

maximized for the new data matrix. 206 

𝒘(௞) = arg 𝑚𝑎𝑥
𝒘

൝
𝒘்𝑿෡𝒌

்
𝑿෡௞𝒘

𝒘்𝒘
ൡ Eq 12 207 

 208 

3.6. Membrane excitation and its cooperativity with intracellular ionic dynamics 209 

When any of Gxs is modified, the intracellular ion concentrations ([ion]i) change, although the 210 

variation is largely compensated for with time in intact cells through modification of the activities of both 211 

3Na+/2K+ pump (NaK) and 3Na+/1Ca2+ exchange (NCX). In the present study, we imitated this long-term 212 
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physiological homeostasis of [ion]i by introducing empirical Eqs 13 and 14. These equations induced 'negative 213 

feedback' to the capacity (maxINaK and maxINCX) of these ion transporters. Namely, each correcting factor (crfx) 214 

was continuously scaled to modify the limiting activity of the transporters to keep the [Na+]i or the total 215 

amount of Ca within the cell (Catot) equal to their pre-set level (stdNai, stdCatot) with an appropriate delay 216 

(coefficients 0.3 and 0.008 in Eqs 13 and 14, respectively).  217 

For the control of [Na+]i, 218 

∆𝑐𝑟𝑓ே௔௄ = −(𝑠𝑡𝑑𝑁𝑎௜ − 𝑁𝑎௜) × 0.3, 𝑠𝑡𝑑𝑁𝑎௜ = 6.1𝑚𝑀,

𝐼ே௔௄ = (𝑐𝑟𝑓ே௔௄ ⋅ 𝑚𝑎𝑥𝐼ே௔௄) ⋅ 𝜈𝑐𝑦𝑐ே௔௄  Eq 13
 219 

For the control of Catot, 220 

∆𝑐𝑟𝑓ே஼௑ = −(𝑠𝑡𝑑𝐶𝑎௧௢௧ − 𝐶𝑎௧௢௧) × 0.008, 𝑠𝑡𝑑𝐶𝑎௧௢௧ = 79𝑎𝑚𝑜𝑙,

𝐼ே஼௑ = (𝑐𝑟𝑓ே஼௑ ⋅ 𝑚𝑎𝑥𝐼ே஼௑) ⋅ (𝑘ଵ ⋅ 𝐸ଵே௔ ⋅ 𝐸ଵே஼௑ − 𝑘ଶ ⋅ 𝐸ଶே௔ ⋅ 𝐸ଶே௔஼௔) Eq 14
 221 

The Catot is given by [Ca]i included in the cytosolic three Ca-spaces jnc, iz, and blk, and in the 222 

sarcoplasmic reticulum SRup and SRrl in the free or bound forms, respectively. 223 

𝐶𝑎௧௢௧ = [𝐶𝑎௧௢௧]௝௡௖ ⋅ 𝑣𝑜𝑙௝௡௖ + [𝐶𝑎௧௢௧]௜௭ ⋅ 𝑣𝑜𝑙௜௭ + [𝐶𝑎௧௢௧]௕௟௞ ⋅ 𝑣𝑜𝑙௕௟௞ + [𝐶𝑎௧௢௧]ௌோ௨௣ ⋅ 𝑣𝑜𝑙ௌோ௨௣ + [𝐶𝑎௧௢௧]ௌோ௥௟ ⋅ 𝑣𝑜𝑙ௌோ௥௟  Eq 15 224 

Here, the vol is the volume of the cellular Ca compartment (see more detail, [11]).  225 

 226 

4. Results 227 

4.1. Mapping the magnitude of MSE over the nine global parameter space 228 

Parameter identifiability has been one of the central issues in the parameter optimization of biological 229 

models [14,20]. For confirmation of the identifiability of a unique set of solutions using the parameter 230 

optimization method, mapping of the MSE distribution is required over an enlarged parameter space defined 231 

by the sfx of the nine ionic currents of the baseline model. The randomization of sfx ranged from 1/10 to ~ 10 232 

times the default values, and the calculation was performed for ~5,000,000 sets, as shown in Fig 1, where 233 

magnitudes of 𝑙𝑜𝑔(𝑀𝑆𝐸) were plotted against each sfx on the abscissa.  234 
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 The data points of MSE at a given sfx include all variable combinations of the other eight sfxs. The 235 

algorithm of the PS method searches for a parameter set, which gives the minimum MSE at a given stp through 236 

the process of optimization. Although drawing a clear envelope curve by connecting the minimum MSEs at 237 

each sfx was difficult because of the insufficient number of data points in these graphs (Fig 1), an approximate 238 

envelope of the minimum MSEs may indicate a single global minimum of MSE located at the control sfx 239 

equals one, as typically exemplified by IKr- and 240 

IbNSC-MSE relations. On both sides of the 241 

minimum, steep slopes of MSE/sfx are evident 242 

in all graphs. Outside this limited sfx -MSE area, 243 

the global envelope showed a gentle and 244 

monotonic upward slope toward the limit on the 245 

right side. No local minimum was observed in 246 

all of the sfx -MSE diagrams except the central 247 

sharp depression. It was concluded that the 248 

theoretical model of cardiac membrane 249 

excitation (hVC model) has only a single central 250 

sharp depression corresponding to the control 251 

model parameter. 252 

Fig 1. Distribution of MSE calculated between the target and the simulated APs modified by randomizing the sfx of 9 ionic 253 
currents in the coordinates of MSE-sfx.  254 
All MSE data points were plotted on the logarithmic ordinate against the linear sfx.  A total of 5,141,382 points were calculated in 255 
cell model No.86 over the range of 1/10 ~ 10 times the default sfx. Since the configuration of Vm records were largely unrealistic 256 
at sfx > 3, MSE points were cut out over sfx > 3.0.  To demonstrate the sharp decrease in MSE, the data points were densely 257 
populated near the default sfx. 258 

 259 

4.2. The prompt necessity for a method of parameter optimization as indicated by hiPSC-CM APs 260 

Fig 2 illustrates records of spontaneous APs (red traces) obtained in 12 experiments in the sequence of 261 

MDP (See Supplemental Materials for detail). All experimental records were superimposed with the simulated 262 

AP traces (black traces) obtained by the conventional manual fitting. In most cases, MSE of 1~6 mV2 263 
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remained (Eq 7) at the end of the manual fitting. This extra component of MSE might be largely attributed to 264 

slow fluctuations of Vm of unknown origin in experimental recordings because the non-specific random 265 

fluctuations were quite different from the exponential gating kinetics of ion channels calculated in 266 

mathematical models. This extra-noise seriously interfered with the assessment of the accuracy of the 267 

parameter optimization of Gx in the present study. Thus, APs produced by the manual adjustment ('cell 268 

specific model') was used as the target AP, which were completely free from the extra noise when examining 269 

the feasibility of the parameter optimization algorithm. 270 

A comparison of AP configurations between these hiPSC-CMs clearly indicated that the classification 271 

of these APs into atrial-, ventricular- and nodal-types was virtually impractical, as described in [7]. On the 272 

other hand, if provided with the individual models fitted by an objective parameter optimizing tools using the 273 

baseline model (black trace), the results should be fairly straightforward not only in estimating the functional 274 

expression level of ion channels but also in clarifying the role of each current system or the ionic mechanisms 275 

in generating the AP configuration in a quantitative manner. Thus, the objective parameter optimization of the 276 

mathematical model is a vital requirement in cardiac electrophysiology. 277 
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 278 

 279 

Fig 2.  The manual fitting of variable AP configurations in 12 different hiPSC-CMs.  280 
Each panel shows the experimental record (red) superimposed by the model output (black) of the baseline model adjusted by the 281 
conventional manual fitting.  At the top of each pair of AP records, the experimental cell number is presented.  The extra 282 
fluctuations are obvious during the AP plateau in Cells 78, 08 and 01, while in Cells 15 and 74 during SDD. The length of 283 
abscissa is markedly different to illustrate the interval between two successive peaks of AP. 284 

 285 

Table 1. AP metrics and MSE calculated after the manual fitting of varying AP configurations in 12 different hiPSC-CMs in Fig 286 
2. 287 

 Table 1 indicates the AP metrics; the cycle length (CL), the peak potential of the plateau (OS), the maximum diastolic potential 288 
(MDP), and the AP duration measured at -20 mV in addition to the MSE between individual experimental record and the model 289 
output fitted by manual fitting. The CL, MDP and AP were very variable among different AP recordings of cells shown in Fig 2.  290 
The cells were arranged by the sequence of MDP.  291 

 CL 
(ms) 

OS 
(mV) 

MDP 
(ms) 

APD(ms) 
at -20mV 

MSE 
 (mV2) 

Cell 78 983.8 29.6 -87.4 271.7 5.8443 
Cell 86 1326.0 29.7 -85.0 289.2 4.0554 
Cell 01 887.4 31.2 -82.2 435.0 3.9330 
Cell 91 1058.0 33.0 -80.4 308.6 7.2156 
Cell 08 551.4 32.0 -79.5 287.6 1.4043 
Cell 11 695.0 25.3 -77.6 243.5 2.6683 
Cell 02 603.9 26.4 -74.9 173.4 1.0412 
Cell 74 622.8 18.5 -74.8 157.0 2.2589 
Cell 10 564.3 23.0 -73.7 220.9 3.2194 
Cell 38 425.4 24.2 -66.8 123.4 3.6626 
Cell 15 239.5 13.8 -66.1 57.1 2.8607 
Cell 12 458.6 19.7 -61.5 119.0 1.3514 

 292 

Table 1 indicates the AP metrics; the cycle length (CL), the peak potential of the plateau (OS), the 293 

maximum diastolic potential (MDP), and the AP duration measured at -20 mV in addition to the MSE between 294 

individual experimental record and the model output fitted by manual fitting. The CL, MDP and AP were very 295 

variable among different AP recordings of cells shown in Fig 2. The cells were arranged by the sequence of 296 

MDP.  297 

The experimental study using the hiPSC-CMs was approved by the Kyoto University ethics review 298 

board (G259) and conformed to the principles of the Declaration of Helsinki. 299 

 300 
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4.3. Feasibility of the PS algorithm for parameter optimization of membrane excitation models 301 

The automatic parameter optimization was applied to the model of cardiac membrane excitation in a limited 302 

number of studies (for review, see [23,26,35,36]) using various optimization methods, such as genetic 303 

algorithms. To the best of our knowledge, the principle PS algorithm has not been successfully applied to the 304 

detailed mathematic models of cardiac membrane excitation composed of both ionic channel and ion 305 

transporters models, except for the pioneering work in [12], which applied more general gradient-based 306 

optimization method to the simple ventricular cell model of Beeler and Reuter (BR model)[37].    307 

 Fig 3 shows a typical successful run of the new PS method in a hiPSC-CM, which showed an MDP 308 

of ~-85 mV. The PS parameter optimization was started after randomizing the sfxs of the major six currents, 309 

IKr, ICaL, INa, Iha, IK1 and IbNSC, in the manual fit model within a range of +15% around the default values 310 

(normalized magnitude of 1). Fig 3A-1~3 compares the simulated Vm,orp (black) with the target Vm,t (red) at the 311 

repeat number N=1, 50 and 1167, respectively (Eq 8). The OS, APD as well as the CL of spontaneous AP 312 

were markedly different at the first cycle of AP reconstruction (Fig 3A-1). These deviations were largely 313 

decreased at the PS cycle (Fig 3A-2 Vm, at N = 50), and became invisible in the final result (Fig 3A-3, N = 314 

1167).  The final individual current flow of nine current components are demonstrated in the lower panel of 315 

Fig 3A-3 (Im). 316 
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317 

Fig 3. Results of the successful optimization in a cell (Cell86).  318 

(A-1) Target AP (Vm,t, red) and AP generated by randomized initial sfxs (Vm,orp, black). (A-2) Vm,t (red) and Vm,orp (black) 319 

generated after 50 cycles of adjusting BP. (A-3) Vm: Vm,t (red) and Vm,orp (black) generated by the final sfxs. Im: corresponding 320 

time courses of each current for the finalized AP shown in A-3 Vm. (B-1) Changes in sfxs vs. log(MSE) during a successful 321 

optimization process of PS. (B-2) log(MSE) of all BP points during the search process in PS.  The initial values of sfxs are 322 

plotted by corresponding colors at the top of each sfx-log(MSE) graph. 323 

  324 

The time course of decreasing 𝑙𝑜𝑔(𝑀𝑆𝐸) evoked by the multi-run PS optimization is plotted for each 325 

sfx in Fig 3B-1 every time of resetting the set of base points. Fig 3B-2 shows all of the 𝑙𝑜𝑔(𝑀𝑆𝐸) obtained at 326 

every adjustment by stepping individual BP points. The movement of all sfxs were synchronized to decrease 327 

𝑙𝑜𝑔(𝑀𝑆𝐸) from ~2.4 to 1 during the initial 180 cycles of decreasing 𝑙𝑜𝑔(𝑀𝑆𝐸), but the search directions of 328 

BP were quite variable. The detailed adjustment of sfxs below 𝑙𝑜𝑔(𝑀𝑆𝐸) < 0 was driven by adjusting IKr, ICaL 329 

and IbNSC in this cell. The values of sfKr, sfCaL and sfNa approached the correct value of 1, while those for Iha, IK1 330 

and IbNSC remained deviated from the unit by less than 10% of the value. The explanation for the deviation of 331 

these three sfxs from the unit will be examined in the next section of the Results. 332 

 333 

 334 
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4.4. The six-parameter orp test successfully determined the conductance parameters of membrane 335 

excitation models 336 

In individual runs, the PS optimization was frequently interrupted at intermediate levels during the 337 

progress of optimization and the probability of reaching 𝑙𝑜𝑔(𝑀𝑆𝐸), for example, below -2, rapidly decreased 338 

with increasing extent of the randomization of the initial set of parameters. Moreover, the complementary 339 

relations between several ionic currents in determining dVm/dt might have hampered the parameter 340 

optimization. These facts indicate the requirement of statistical measures to improve the accuracy of the PS 341 

method.  Fig 4 shows the results of orp tests, in which the optimization shown in Fig 3 was repeated several 342 

hundred times, and all results were plotted in a common coordinate of 𝑙𝑜𝑔(𝑀𝑆𝐸) and individual sfxs.  The 343 

population of sfx correctly converged at a single peak point very close to 1 with increasing negativity of 344 

𝑙𝑜𝑔(𝑀𝑆𝐸) for sfKr, sfCaL, and sfNa, while sfha, sfK1, and sfbNSC showed obvious variance. Nevertheless, they also 345 

showed a clear trend toward convergence to 1 in the average. 346 

 347 

348 
Fig 4.  Convergence of sfx in the orp test for Cell86.  349 
The ordinate is the log(MSE) and the abscissa is the normalized amplitude of sfx; x stands for Kr, CaL, Na, ha, K1, and bNSC. 350 
Black points were obtained in the progress of optimization, and red ones are the final points in 829 runs of PS optimization. 351 

 352 

Table 2 summarizes the mean of sfx determined for the top 20 runs of the PS parameter optimization in 353 

each of the 12 cells illustrated in Fig 2.  The [Na+]i as well as Catot was well controlled to the reference levels 354 

(stdNai, and stdCatot in Eqs 16 and 17) of 6.1 mM and 79 amol, respectively, at the end of the parameter 355 

optimization to ensure the constant [Na+]i as well as Catot. The mean of final 𝑙𝑜𝑔(𝑀𝑆𝐸)  =  −2.74 indicates 356 

that the MSE was reduced by five orders of magnitude from the initial level just after the randomization by the 357 

orp test, like in the successful example shown in Fig 3B. The mean of individual sfxs were very close to 1 with 358 
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a minimum standard error (SE) of mean, which were less than 1% of the mean, even for IK1, IbNSC and Iha, 359 

which showed weak convergence against 𝑙𝑜𝑔(𝑀𝑆𝐸). These results well validate the accuracy of the parameter 360 

optimization using the multi-run PS method in all of 12 cell-specific models, which showed the large variety of 361 

spontaneous AP recorded in the hiPSC-CMs. 362 

 363 

Table 2. Measurements of sfxs (mean + SE, n = 20), [Na+]i, mM and Catot in amol in the 12 cells. 364 

The top 20 results obtained in the multi-run orp method were analyzed in each cell.  Grand average (Ave) and 365 
SE are listed at the bottom rows. 366 

 367 

4.5. Complementary relationship among IK1, Iha and IbNSC  368 

Fig 5A illustrates the distribution of sfxs amplitude in the top 20 data points, where the final sfxs in 369 

individual runs were connected with lines for each run of PS in Cell 86 (Fig 2). The values of standard error 370 

(SE) of mean were quite small in the sfKr and sfCaL, less than 1%. In contrast, sfha, sfK1 and sfbNSC showed 371 

evidently larger deviations. This finding is interesting since the former currents are mainly involved in 372 

determining the AP configuration and the latter group mainly in driving the relatively long-lasting SDD of 373 

approximately 1 sec in duration. 374 

Cell 

No. 

log(MSE) sfKr sfK1 sfCaL sfbNSC sfha sfNa sfKur [Na+]i(mM) Catot(amol) 

78 -2.48321 1.00005 1.00157 1.00037 0.99460 1.00060 1.00134  6.10550 78.99979 

91 -2.42008 0.99952 1.00644 1.00063 1.00280 1.00470 1.00068  6.09977 79.00044 

86 -2.80257 1.00166 1.01394 1.00142 1.02670 1.00253 1.00702  6.09466 79.00008 

01 -2.79709 0.99871 1.00157 0.99756 0.99692 1.00054 0.99779  6.08973 78.99984 

08 -3.07432 0.00094 0.99982 1.00088 1.00041 0.99968 0.99985  6.12201 79.00056 

11 -2.67641 1.00186 1.00686 1.00129 0.99768 1.00253 1.01028  6.10385 78.99995 

10 -1.70278 1.00322 1.01081 1.00424 1.00396  0.99883  6.10968 79.00018 

02 -2.35441 1.00161 1.02038 1.00341 0.99815 1.01324 1.00954  6.10184 79.00004 

74 -2.43399 1.00126 1.01838 1.00308 0.99898 1.00004 1.00435  6.10118 79.99979 

38 -3.01883 1.00075  1.00106 1.00061  0.98866 1.00151 6.10530 78.99969 

15 -3.85992 1.00003  0.99894 0.99996  1.00015 0.98653 6.09902 79.00022 

12 -3.33037 0.99978  1.00030 0.99990 0.97587  1.00188 6.10012 79.00007 

           

Ave -2.74617 0.99992 1.00886 1.00110 1.001723 0.99997 1.001681 0.99664 6.10272 79.08339 

SE 0.07065 0.00093 0.010000 0.00164 0.00430 0.00729 0.00544 0.00690 0.00017 0.000345 
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Thus, we analyzed the distribution of sfha, sfK1 and sfbNSC within the top 20 MSE. Fig 5B and C show 375 

the distribution of sfx points in the space of the three sfx dimensions. In Fig 5B, the 20 data points seemed to be 376 

dispersed randomly in the parameter space, but when the space was rotated to a specific angle, a linear 377 

distribution was observed as in Fig 5C, indicating that the points are distributed approximately on a plane 378 

surface in the 3D space. Using the multiple regression analysis, we could obtain an equation that fits the 20 379 

data points as follows (R2=0.872); 380 

0.762 ⋅ 𝑠𝑓௛௔  −  0.619 ⋅ 𝑠𝑓௄ଵ  +  0.191 ⋅ 𝑠𝑓௕ேௌ஼   =  0.333554 𝐸𝑞 16 381 

 382 

By replotting the data points in the 2D space with the abscissa for the sum of two inward-going 383 

currents (0.76 sfha + 0.19 sfbNSC) and the ordinate for the outward current 0.62 sfK1, we obtained a regression 384 

line as shown in Fig 5D. The close correlations among the three sfxs were indicated with a quite large R2 of 385 

0.941. This finding well confirms that the three currents have complementary relations with each other to give 386 

virtually identical configurations of spontaneous AP. In other words, 𝑙𝑜𝑔(𝑀𝑆𝐸) remains nearly constant as far 387 

as the composition of the currents satisfies the relationship given by Eq 16. 388 

 389 
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Fig 5. Distribution of sfx within the top 20 sets of sfxs obtained from the multi-run orp test in Cell86 in Fig 2. 390 
Data points of normalized sfx in each set were depicted in a different color. (A) amplitudes of each sfx (indicated on the abscissa) 391 
were plotted. (B) Three parameters, sfha, sfK1, and sfbNSC were plotted in the 3D plot. (C) A different solid angle view of the 3D 392 
plot showed a linear correlation; see text for the plot in (D) 393 

 394 

The complementary relationship was further examined by conducting the orp test after fixing one of 395 

the two factors, sfK1 or (sfha + sfbNSC), illustrated in Fig 5B. Fig 6A shows the 𝑙𝑜𝑔(𝑀𝑆𝐸) vs. sfK1 relation when 396 

the (sfha + sfbNSC) were fixed at the values obtained by the orp test. Indeed, the typical convergence of the sfK1 397 

was obtained. Alternatively, if the sfK1 was fixed, the convergence was obviously improved for both sfha and 398 

sfbNSC (Fig 6B-1, 2), but it was less sharp if compared to sfKr, sfCaL and sfNa (not shown, but refer to 399 

corresponding results in Fig 4A). This finding was further explained by plotting the relationship between the 400 

two inward currents, Iha and IbNSC, as illustrated in Fig 6C. The regression line for the data points was fitted by 401 

Eq 17 with R2 = 0.86, supporting the complemental relationship between the two inward currents, Iha and IbNSC.  402 

0.9736  ⋅  𝑠𝑓௕ேௌ஼ + 0.2281 ⋅  𝑠𝑓௛௔ = 1.2024 𝐸𝑞 17 403 

 404 

 The moderately high R2 indicates that the SDD is determined not only by the major Iha and IbNSC but 405 

also by other currents, such as IK1, IKr, the delayed component of INa (INaL) and ICaL, which were recorded 406 

during the SDD as demonstrated in Fig 3.  407 

Essentially the same results of complementary relationship among sfha, sfbNSC and sfK1 were obtained in 408 

Cell 91, which also showed the long-lasting SDD with the very negative MDP as in Cell 86, as shown in Fig 2 409 

and Table 2.  The regression relation for the data points was fitted by Eqs 18 and 19 with R2 = 0.656 and 410 

0.472, respectively. 411 

0.572 ⋅ 𝑠𝑓௛௔   −  0.132 ⋅ 𝑠𝑓௄ଵ  +  0.810 ⋅ 𝑠𝑓௕ேௌ஼   =  1.25891 𝐸𝑞 18 412 

0.9279 ⋅  𝑠𝑓௛௔ + 0.3706 ⋅  𝑠𝑓௕ேௌ஼ = 1.30025 𝐸𝑞 19  413 
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 414 

Fig 6. The complementary relations among sfK1, sfha and sfbNSC.  415 
(A) and (B) results of the multi-run orp test. A; the perfect convergence of sfK1 when sfha and sfbNSC were fixed. (B1) improved 416 
convergence of sfha and (B2) sfbNSC when sfK1 was fixed. In these two orp tests, sfx of other currents showed quite comparable 417 
convergence as in Fig 4A. (C) the correlation between sfha and sfbNSC. 418 

 419 

4.6. Principal components in the hiPSC-CM model 420 

The PS frequently got stuck during the progress of parameter optimization and failed to reach the 421 

global minimum in the present study (Figs 4 and 6). The major cause of this interruption may most probably be 422 

attributed to the fact that sfxs were used directly as the search vector of the PS. In principle, the algorithm of PS 423 

parameter optimization gives the best performance when the parameters search is conducted in orthogonal 424 

dimensions where each dimension does not affect the adjustment of other sfx [28]. To get deeper insights, we 425 

applied the principal component (PC) analysis to the set of 6 sfxs selected in the baseline model. We performed 426 

PC analysis on the data points recorded in the vicinity of the minima (using the top 20 data). 427 

As illustrated in Fig 7, each of the 6 PCs was not composed of a single sfx but mostly included 428 

multiple sfx sub-components. This finding indicates the inter-parameter interactions during the process of 429 

parameter optimization. For example, the changes in sfK1 or sfbNSC simultaneously affect PCNo.1, 3, 6 or 1, 2, 3 430 

PCs, respectively. Both sfCaL and sfKr affect PCNo.4, 5. It might be concluded that the frequent interruptions of 431 

PS parameter optimization are most probably caused by the sporadic appearance of the local minima of MSE 432 

through interactions among sfxs. 433 
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 434 

Fig 7.  PC1~6 to describe distribution of the 6 sfxs. PC analysis was performed on the data population of the top 200 runs of the 435 
orp test as in Fig 4, which showed good optimization results (Cell 86). Each magnitude of 6 PCs was normalized to give a unit 436 
magnitude. Note each PC is composed of multiple components of ionic current, which are indicated in the Index with 437 
corresponding colors.  438 

 439 

 440 

 441 

5. Discussion 442 

 New findings in the present study are listed below.    443 

(1) Mapping the MSE distribution over the enlarged parameter space was conducted by randomizing 444 

the Gxs of the baseline model. It was confirmed that the baseline model has only a single sharp 445 

depression of MSE at the default Gxs (Fig 1). 446 

(2) The preliminary cell-specific models were firstly prepared by the conventional manual tuning of 447 

Gxs to superimpose the model output on each of twelve experimental AP recordings (Fig 2). 448 

Thereby, the parameter search space was restricted to a relatively small space to facilitate 449 

parameter optimization. 450 

(3) The sfxs of 4 ~ 6 Gx parameters were initially assigned random values from a uniform distribution 451 

ranging between ±10% of default values. The MSE was calculated between the randomized 452 

model output and the intact model AP as the target of optimization (Fig 3).  453 

(4) Plotting parameter sfx in a common sfx - MSE coordinates during each run of several hundred runs 454 

of optimization (Fig 4), we found that the sfx distribution of IKr, ICaL, and INa converged sharply to 455 
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a single point with decreasing MSE, which exactly equaled the default ones.  On the other hand, 456 

estimates of sfK1, sfha and sfbNSC deviated slightly within a limited range around the default values 457 

in cells showing long-lasting SDD (Fig 4). 458 

(5) For statistical evaluation, the mean±SE of sfx in the top 20 estimates of MSE was calculated in 459 

individual cells (Table 2). The results of the parameter optimization in the 12 cells definitely 460 

indicated that the means of sfxs were very close to 1.00, with the SE less than 0.01 for all Gxs.  461 

(6) A complementary relationship was found between sfK1, sfha and sfbNSC in determining the gentle 462 

slope of long-lasting SDD in two representative cells (Fig 5). Supporting this view, the sfK1 clearly 463 

focused on the unit provided that sfha and sfbNSC were fixed and vice versa (Fig 6).  464 

(7) The six search vectors of sfx of the presented model could be replaced by the same number of 465 

theoretical PCs, and each PC was mostly composed of multiple sfxs (Fig 7). This finding 466 

definitely supports the view [12] that the complex interactions among Ixs might interrupt the 467 

progress of the parameter optimization when sfxs were used as the search vector instead of using 468 

theoretical orthogonal ones.  469 

 470 

The use of an initial randomized set of parameters was crucial in examining if an optimization method 471 

can determine unique estimates independent from the initial set of parameters, as used in the GA-based method 472 

for determining the Gxs of the mathematical cardiac cell model [23]. The findings listed above well confirmed 473 

the feasibility of the PS method. Most probably, the PS method is applicable to variable mathematical models 474 

of other cell functions as well. See [26] for a more systematic review of the parameter optimization in the 475 

cardiac model development. 476 

It has been suggested that different combinations of parameters may generate simple outputs that are 477 

very similar [12,23–25].  In the present study, this notion may be explained at least in part by the 478 

complementary relationship, for example, between the IK1, Iha and IbNSC in determining dVm/dt of SDD, which 479 

is a function of the total current (Eq 2, Figs 5 and 6). The gradient-based optimization method relies on the 480 

precise variation in the time course of dVm/dt induced by the time-dependent changes in individual sfxs (Eq 2). 481 
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Therefore, the MSE was calculated over the whole time course of the spontaneous APs. Note, we did not use 482 

the AP metrics, which reflect only indirectly the kinetic properties of individual currents. Even with this 483 

measure of calculating the MSE, the time-dependent changes in  𝑝𝑂 (Eq 3) might be relatively small between 484 

two major currents, IK1 and Iha, in comparison to IbNSC, which has no Vm-dependent gate during the SDD as 485 

shown in the current profile Fig 3A-3. We assume that the gradient-based optimization method will be able to 486 

determine different contributions of individual currents if the optimization is conducted only within a selected 487 

time window of SDD. If MSE is calculated over multiple phases of the spontaneous AP, the influence of a 488 

particular phase on the MSE should be diluted. In our preliminary parameter optimization, this problem was 489 

partly solved by using a weighted sum for different phases of the spontaneous AP in summing up the MSE. 490 

 The small amplitude of a given current might be an additional factor in the weak convergence of sfx 491 

observed in the diagram of sfx - MSE in the orp test of optimization.  If the current amplitude was much 492 

smaller in reference to the sum of all currents in determining dVm/dt (Eq 2), the resolution of the PS method 493 

would get lower. Sarkar et al. [24] demonstrated that the model output, for example, the AP plateau phase were 494 

almost superimposable when the different ratio of GKr and GpK were used in reconstructing the model output 495 

(Figure 1 in [24]). They described that the AP metrics used for comparisons, such as APD, OS and APA 496 

seemed quite similar. It should be noted, however, that the results were obtained by applying different 497 

combinations of sfx to the same TNNP model [33]. This means that the relative amplitudes of IKr and IpK in the 498 

TNNP model were much smaller than the major ICaL during the AP plateau, even though IKr and IpK have 499 

totally different gating kinetics. Thus, the results of parameter optimization should be model-dependent. The 500 

same arguments will also be applied to the use of FR guinea pig model [38] in the study by Groenendaal et al. 501 

[23].    502 

The gradient-based parameter optimization method was applied to the cardiac model of membrane 503 

excitation in [12], which analyzed the classic BR model [37]. The whole cell current in the BR model was 504 

composed of a minimum number of ionic currents, a background IK1, and three time-dependent currents; INa, Is, 505 

and Ix1, which were dissected from the voltage clamp experiments by applying the sucrose gap method to the 506 

multicellular preparation of ventricular tissue.  The gatings of the latter three currents were formulated 507 

according to the Hodgkin-Huxley type gating kinetics, which was quite simple if compared with the recent 508 
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detailed description of the ionic currents. They described that the parameter optimization was difficult if the 509 

AP configuration was used as the target of the parameter optimization, and they used the time course of the 510 

whole cell current as of the target of parameter optimization. However, the number of parameters was quite 511 

large, 63 in total, including limiting conductances and the gating kinetics. They suggested the feasibility of the 512 

parameter optimization method will be improved if provided with additional experimental data.  513 

In the modern mathematical cardiac cell models, most ionic currents were identified by the whole-cell 514 

voltage clamp and single channel recordings in dissociated single myocyte [39] using the patch clamp 515 

technique [40] and by identifying their molecular basis of membrane protein. It has been clarified that the 516 

molecular basis of the ion channels expressed in the hiPSC-CMs is mostly identical to those in the adult 517 

cardiac myocytes rather than in the fetal heart (GSE154580 GEO Accession viewer (nih.gov)). Moreover, the 518 

gating kinetics have been much detailed to characterize the ionic currents within the cell model. In principle, 519 

the detailed characterization of individual currents should facilitate the identifiability of the model parameter 520 

but should not necessarily interfere with parameter optimization. We consider that the manual fitting of the 521 

model parameters to the AP recording by using a priori knowledge of biophysical mechanisms should largely 522 

facilitate the subsequent automatic parameter optimization. It might also be noted that the ionic currents left at 523 

the default values work as a kind of constraint to improve the identifiability of the target parameters.   524 

After validating the automatic parameter optimization method, the final goal of our study is to find the 525 

principle of ionic mechanisms, which are applicable to the full range of variations of spontaneous AP records 526 

in both hiPSC-CMs and matured cardiomyocytes. For this purpose, we will apply the multi-run PS method to 527 

the experimental AP recordings using the initial parameter sets obtained by the conventional manual fit. The 528 

protocol of measuring the Gxs will be the same as used in the present study except for the use of experimental 529 

AP recordings in place of the output of the 'cell-specific model'. In our preliminary analysis, the magnitude of 530 

individual model parameters obtained by the manual tuning was corrected by less than ~15% by the objective 531 

parameter optimization. Finally, the ionic mechanisms underlying the SDD of variable time courses will be 532 

analyzed in a quantitative manner, for example, by using the lead potential analysis [41], which explains 533 

changes in Vm in terms of Gx of individual currents.        534 

 535 
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Limitations 536 

In general, obvious limitations of the mathematical models of cardiac membrane excitation so far 537 

published are caused by a shortage of functional components inherent in intact cells. For example, the [ATP]i 538 

controlled by energy metabolism is a vital factor in maintaining the physiological function of ion channels as 539 

well as the active transport Na+/K+ pump [42]. Moreover, the followings are still not implemented in most 540 

models; the modulation of the ion channel activity through phosphorylation of the channel proteins, detailed 541 

modulation of the channel by the [Ca2+]i, the alterations of ion channel activity by PIP2 [43,44] and by the 542 

tension of the cell membrane through the cell volume change [45–48]. The detailed Ca2+ dynamics of the 543 

[Ca2+]i are still not implemented in most of the cardiac cell models; such as the Ca2+ release from SR activated 544 

through the coupling of a few L-type Ca2+ channels with a cluster of RyRs at the dyadic junction [49], the Ca2+ 545 

diffusion influenced by the Ca2+-binding proteins [50]. To simulate the Ca2+-binding to troponin during the 546 

development of the contraction, it is necessary to include a dynamic model of contracting fibers [51–54]. 547 

These limitations should be thoroughly considered when pathophysiological phenomena, such as 548 

arrhythmogenesis are concerned. The scope of the present study is limited to the AP configurations of hiPSC-549 

CMs, which were assumed to be 'healthy' with respect to the above concerns; for example, [ATP]i , [Na+]i and 550 

Catot were kept constant, and the standard contraction model was implemented as in the hVC model.  551 

  The parameter optimization presented in this study could be achieved in a practical way by limiting 552 

the number of unknown parameters. We determined only Gxs based on the assumption that ion channel 553 

kinetics are preserved as the same in the hiPSC-CMs as in the matured myocytes. Usually, 4~6 ionic currents 554 

were selected for the optimization. We found that the orp method could be performed simultaneously for all 555 

nine ionic currents described in Eq 1. However, the computation time was radically prolonged, and the 556 

resolution was not as high as obtained by using the modest number of parameters. We consider that the 557 

determination of the limited number of Gxs is quite relevant to solving physiological problems in terms of 558 

detailed model equations for each current system.  559 

 560 
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Although INCX and INaK contribute sizeable fractions of the whole-cell outward and inward currents, 561 

respectively (Fig 3A-3), we excluded the scaling factors, sfNaK and sfNCX from the parameter optimization for 562 

the sake of simplicity. Instead, the possible drift of the intracellular ion concentrations was virtually fixed 563 

during the repetitive adjustment of ionic fluxes by varying sfx as shown in Table 2. The introduction of the 564 

empirical equations (Eqs 13 and 14) was quite useful to adjust the [Na+]i and Catot (Table 2) so that the time 565 

course as well as magnitude of INCX remained almost constant during the parameter optimization.  When 566 

influences of varying [Na+]i and/or Catot are examined under various experimental conditions in future, the 567 

reference levels of [Na+]i and/or Catot (stdNai and stdCatot in Eqs 13 and 14) might be replaced by 568 

experimental measurements.  569 

The parameter optimization method was not applied to several ionic currents. For example, it was 570 

difficult to determine the kinetics of T-type Ca2+ channel (ICaT ; CaV 3.1) and excluded in the present study. A 571 

very fast opening and inactivation rates described in [55] suggest a complete inactivation of ICaT over the 572 

voltage range of SDD, while a sizeable magnitude of window current described in [56] suggests a much larger 573 

contribution to SDD. The kinetics of ICaT  still remain to be clarified in experimental examinations. The 574 

sustained inward current, Ist, is recently attributed most probably to the CaV 1.3 [57], which is activated at a 575 

more negative potential range than the activation of ICaL (CaV 1.2) [58,59]. The IbNSC was used to represent net 576 

background conductance in the present study. However, several components of the background conductance 577 

have been identified on the level of molecular basis in matured myocytes (see for review TRPM4, [60]). 578 

Experimental measurements of the current magnitude for each component are also awaited.  579 

Gábor and Banga indicated that the multi-run method had shown good performance in certain cases, 580 

especially when high-quality first-order information is used and the parameter search space is restricted to a 581 

relatively small domain [16] (see also [19]). Indeed, the manual fitting of the parameters (Fig 1) was required 582 

to utilize the presented multi-run PS method over the restricted search space. One of the major difficulties in 583 

the manual fitting of individual Gxs arose during the SDD, where IKr, IK1, IbNSC, and Iha, in addition to INaK and 584 

INCX constitute the whole-cell current (Fig 3A-3). Close inspection of the current components (Fig 3A-3), 585 

however, suggests hints of how to do with the manual fit. The transient peak of IKr dominates the current 586 

profile during the final repolarization phase from -20 to -60 mV in all 12 hiPSC-CMs [61], since ICaL and IKs 587 
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rapidly deactivated before repolarizing to this voltage range. The INaK and INCX are well controlled by the 588 

extrinsic regulation in Eqs 13 and 14. Thus, the manual fitting of sfKr is firstly applied to determine sfKr. The 589 

MDP more negative than -70 mV is adjusted by the sum of time-dependent (IKr + IK1) and the time-590 

independent IbNSC. Then, IKr is deactivated when depolarization becomes obvious after the MDP, and gradual 591 

activation of Iha and the depolarization-dependent blocking of IK1 by the intracellular substances [62] take the 592 

major role in promoting the initial linear phase of SDD. Thus, the amplitude of sfK1 and sfbNSC might be 593 

approximated during the initial half of SDD. The late half of SDD, including the foot of AP, namely the 594 

exponential time course of depolarization toward the rapid rising phase of AP, is mainly determined by the 595 

subthreshold Vm-dependent activation of INa (after MDP more negative than -70 mV) and/or ICaL (after MDP 596 

less negative than -65 mV).  Thus, the sfNa and sfCaL are roughly determined by fitting the foot of AP and the 597 

timing of the rapid rising phase of AP. The plateau time course of AP is determined by sfCaL and the factor of 598 

Ca2+-mediated inactivation of ICaL (the parameter KL, [4]). Since the kinetics of outward currents, IKur, IKto 599 

(endo-type), and IKs are quite different from that of IKr, the plateau configuration is determined bit by bit by 600 

adjusting these currents. We failed to observe the phase 1 rapid and transient repolarization in the hiPSC-CMs 601 

(Fig 2), which is the typical sign of the absence of epicardial-type IKto.  602 

In hiPSC-CMs showing less negative MDP than ~-65 mV, the contribution of IK1, INa and Iha should 603 

be negligibly small because IK1 is nearly completely blocked by the intracellular Mg2+ and polyamine, INa is 604 

inactivated, and Iha is deactivated during SDD, even if any expressed.    605 

Nevertheless, parameter optimization might be laborious and time-consuming for those who are not 606 

familiar with the electrophysiology of the cardiac myocyte. This difficulty might be largely eased by 607 

accumulating both AP configurations and the underlying current profile obtained in the parameter optimization 608 

into a database in the future. If this database becomes available, the computer may search for several candidate 609 

APs for the initial parameter set, which is used for automatic parameter optimization.   610 
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