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Abstract
In the present paper we propose a non-parametric statistical test procedure for interval scaled, paired
samples data that circumvents the multiple comparison problem (MCP) by relating the data to the
rank order of its group averages. Using an auto-regressive procedure, a single test statistic for multiple
groups is obtained that allows for qualitative statements about whether multiple group averages are in
fact different and how they can be sorted. The presented procedure outperforms classical tests, such as
pairwise conducted t-tests and ANOVA, in some circumstances. Furthermore, the test is robust against
noise and does not require the data to follow any particular distribution. If A is a data matrix containing
N observations for k groups, then the test statistic η can be computed by η =

∑N
i=1 f(Ai, s)/N , where s

is a vector of length k containing the average for each group, transformed into unique rank values. This
statistic is compared to the distribution D, obtained by Monte Carlo sampling from the permutation
distribution. It will be demonstrated that D can be described by a normal distribution for a variety
of input data distributions and choices for f , as long as a set of criteria is met. Comparing η to
the permutation distribution controls the false alarm (FA) rate sufficiently, since the exact p-value can
be estimated [1]. Multiple examples of possible choices for f will be discussed, as well as detailed
descriptions of the underlying test assumptions, possible interpretations and use cases. All mathematical
derivations are supported with a set of simulations, written in Python that can be downloaded from
https://gitlab.com/TommyClausner/aros-test together with an implementation of the test itself.
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1 Introduction
In this paper we propose a paired samples, non-
parametric statistical procedure on the basis of a
permutation test, which aims to circumvent the
multiple comparison problem (MCP) by combin-
ing multiple group averages into a single statistical
value. The MCP arises from the fact that in or-
der to control the false alarm (FA) rate for com-
paring more than two groups, the critical α level
needs to be adjusted. Commonly accepted levels
for FA rates are less than 5% or 1%. This means
that the null hypothesis (H0) was falsely rejected in
less than 5% or 1% of all cases. As the number of
groups k increase, the number of tests nt increases

with nt = k!/(2(k − 2)!). If no adjustments to the
critical α was made, the FA rate increases from
≤ 0.05 to ≤ 1 − (1 − α)nt , which for three groups
means the FA rate becomes ≤ 0.14. This issue is
commonly referred to as multiple comparison prob-
lem. One common strategy is to adjust the α level
(lower it), until a satisfactory control for the FA
rate is achieved 1. Adjusting the α level however
comes at the cost of potentially reducing statistical
power, that is the sensitivity of the test, and thus
the rate at which the so called type II errors (falsely
accepting H0) are produced increases.

1There is a large variety of strategies, which are not dis-
cussed here.
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A widely known test used for statistical anal-
yses of more than two groups is the analysis of
variances (ANOVA). The one-way ANOVA, for in-
stance, uses an F -test to relate the variances within
and between groups to each other. However, a sig-
nificant result (i.e. rejecting the H0, which states
no difference between the group means) only indi-
cates a difference between any subset of the means.
Thus, a significant result is often followed by a pair-
wise comparison, which again leads to the afore-
mentioned MCP.

Furthermore, classical tests such as z-tests, t-
tests or F -tests often require the underlying data
to be normal distributed or at least that the pa-
rameters of the underlying distributions are known.
Instead of relying on knowledge of the underlying
distribution, the distribution under H0 can be es-
timated by a permutation procedure, which can be
applied to all of the above classical tests. This
procedure is well established for a variety of use
cases [2–4] and allows for an exact estimation of
the p-value [1]. The fundamental idea behind per-
mutation tests is that if there is no difference be-
tween multiple averages, then the members of each
group can be exchanged, because they stem from
the same distribution (H0). Commonly, members
of each group are shuffled between the groups and
the respective test statistic of interest is computed.
By repeating the procedure a large number of times
(ideally by iterating through all possible combina-
tions), the permutation distribution under H0 is
obtained [5]. In a last step the test statistic of the
original data is compared to the permutation distri-
bution and the p-value is computed as the fraction
of all values of the permutation distribution that
exceed the test statistic computed from the original
data [1]. Since the p-value is computed by Monte
Carlo sampling from the permutation distribution,
no knowledge about the underlying parameters is
required [6]. Thus, permutation tests belong to the
family of non-parametric tests.

The proposed auto-regressive rank order sim-
ilarity (aros) test is constructed as a permutation
test and thus belongs to the family of non-parametric
tests as well. Additionally, the MCP is circum-
vented by condensing the relationship between the
data and each group average into a single statistic.
Precisely, the group data for each paired observa-
tion is treated as vector that is related to the vec-
tor of the rank order of the average group value,

by means of a similarity metric. Thus, the test
statistic η can be seen as the average similarity be-
tween the observations and the rank order of the
averages. It is tested whether this similarity is sig-
nificantly greater than the average similarity within
the permutation distribution under H0.

2 The aros test explained
The aros test is a non-parametric statistical hy-
pothesis test for paired sampled, interval scaled data
for multiple group average comparison. However,
as compared to conventional tests on interval scaled
data, the aros test does not rely on the difference
between the means of multiple distributions, but
rather on the relationship of each paired observa-
tion within the data to an ordinal scaled profile or
shape derived from either the group averages or an
external source. If we assume k = 3 groups with
averages µa, µb, µc, the standard procedure for clas-
sical tests would be to pairwise compare those three
groups in order to obtain the qualitative and quan-
titative relationship between those averages. How-
ever, when applying the aros test, this question
is reduced to the qualitative relationship of how
the group averages rank relative to each other and
how well the data explains this relationship. This
means that if we observe a ranking of the the means
such that µb < µc < µa, auto-regressive rank or-
der similarity tests, whether this relationship can
truly be justified by the data (as compared to de-
termining, whether the pairwise difference between
those means is zero in a more traditional setting).
In other words it is tested, whether - on average
- each observation expresses a similar relationship
between each group or condition as expressed by
the group averages. The most general formulation
for the test statistic η can be written as:

η =

∑N
i=1 f(Ai, s)

N

where s is the vector of group averages, trans-
formed into a set of unique, evenly spaced rank
values, such that s = [s1, . . . , sk]. For the afore-
mentioned relationship µb < µc < µa, one possi-
bility would be to set s = [3, 1, 2]. The function f
relates each observation Ai∈[1,...,N ] (the values for
each observation in all conditions) of length k and
s separately. η is obtained by averaging the re-
sults from f(Ai, s). Thereby, the function f can be
freely chosen, as long as f relates Ai and s in terms
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of similarity. Examples for f might be the least
square solution to s = Aiβi for βi, the correlation
coefficient, the cosine similarity or the explained
variance. In this paper we will focus on the least
square solution to s = Aiβi. To solve for βi we
denote:

β̂i = (AT
i Ai)

−1AT
i s

Since Ai and s are vectors, we can rewrite AT
i Ai

as the dot product of Ai with itself and AT
i s as the

dot product between Ai and s. Hence we denote:

β̂i =
Ai · s
Ai ·Ai

By doing so, the test statistic η for f(x, y) =
(x ·y)/(x ·x) can be computed in the following way:

η =

∑N
i=1

Ai·s
Ai·Ai

N

In this case η can be interpreted as the aver-
age fit of the data to the rank order shape. If
we assume, for example, k = 3 groups with means
[µa, µb, µc] and an average rank order shape of s =
[3, 1, 2], η can be interpreted as the average fit of
each observation Ai to that shape, or in other words,
how well the data explains sorting the means, such
that µb < µc < µa. Note that we cannot state
how much different each mean is from each other,
but how much the data supports this rank order.
As previously mentioned, f can be tailored to the
specific needs of the respective research question.
To the authors opinion however, choosing f(x, y) =
(x ·y)/(x ·x), can be applied to a variety of research
questions, and gives rise to a straightforward inter-
pretation. Nevertheless, this specific choice for f
is limited by the fact that if one observation Ai is
zero for all groups, then f cannot be computed and
thus η would be invalid. Hence, f needs to be cho-
sen such that it is defined for each observation and
each permutation.

It needs to be pointed out that some of the pro-
posed choices for f are magnitude free (i.e. cor-
relation coefficient, cosine similarity and explained
variance), whereas other choices, such as f(x, y) =
(x · y)/x · x) are not. Magnitude free in this con-
text means that the absolute value of η does not
depend on the absolute values of either the data A
or the values of s. However, due to the fact that
the permutation procedure is applied in a similar
fashion, the bias resulting from the absolute values

of A (and s) affects the estimation of η and the
permutation distribution equally and thus does not
affect the hypothesis test itself.

So far the general idea behind obtaining the test
statistic, as well as multiple possible choices for f
have been discussed. The actual hypothesis test has
been neglected so far. Generally speaking the aros
test is a test on the null hypothesis (H0). As pre-
viously mentioned, this test is performed by Monte
Carlo sampling from the permutation distribution
under H0 and comparing the initially obtained η
to this distribution. In a first step the number
of permutations I is defined. I should be a rela-
tively high number(e.g. I = 10000). Since for each
permutation step an average over N observations
needs to be computed, the maximum number of all
possible permutation steps for k groups (and thus
k! possible permutations per observation) can be
computed as I = k!N/N . Where computationally
feasible, the computation of the exact permutation
distribution D under H0 (all possible combinations)
should be preferred. Otherwise I samples (ideally,
but not necessarily, without replacement [1]) need
to be obtained by means of Monte Carlo sampling.
During each iteration i ∈ [1, . . . , I], the data A is
permuted across groups for each observation sep-
arately. Then, the test statistic is computed and
added to D. After performing I iterations, D con-
tains I values for the test statistic under H0, to
which the initially obtained η is compared. The p-
value is obtained by computing the fraction of all
values in D that exceed η. Figure 1, depicts the
aros test procedure.

During the description of the test procedure,
H0 has been mentioned, but was only implicitly
defined. Derived from the general assumption of
permutation tests, it is important that the data
is exchangeable under H0. This means that the
joint probability distribution (under H0) remains
the same, irrespective of the order of the single val-
ues [4]. Less formally speaking, this means that
if there was no difference between multiple groups
of values, the values in each group could be in-
terchanged, because they can be assumed to stem
from the same distribution. The exchangeability
assumption is tightly linked to H0 itself. If η does
not depend on the grouping of the data (H0), then
η would be expected given D, hence:

H0 : η = E[XD]
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Figure 1: Procedure of the aros test. First, the initial test statistic η is obtained by averaging the data over groups and
transforming the result into rank values forming the shape s (upper left). Afterwards, the data A is related to s using
the function f (upper middle). This procedure is repeated I times to form the permutation distribution D (lower right),
except that the data is shuffled over the data columns for each observation separately (upper right). Lastly, η is compared
to D (lower left). This is achieved by computing the p-value as the fraction of the values in D that exceed η and compare
it to the critical α-value (e.g. 0.05).

Under H0, s is derived from A, where each value
in A

[1,...,k]
i could be exchanged. Hence, s is the

result of randomly arranged group labels and its
respective average relationship with A - expressed
by

∑N
i=1 f(Ai, s)/N - could not be predicted by any

single Ai or s. Thus, each value within D could be
seen as the average of independent random values.
In the "Derivations" section it will be shown that
D can be approximated by a normal distribution:

N (µ, σ2), with µ = E[XD] and σ2 = E[(XD − µ)2]

As described above, the FA rate is controlled
and the hypothesis test performed by estimating
the exact p-value p̂ and comparing it to the critical
α-value [1]:

H =

{
0, if p̂ =

1+
∑I

i=1 Di≥η

I+1 > α

1, otherwise
Since the p-value can be computed directly from

D as the fraction of values in D exceeding η and

comparing it to the critical α-level, the false alarm
rate is controlled sufficiently.

Note that D can be approximated by a nor-
mal distribution (see "Derivations" for additional
details) and thus D could be standardized: Z =
(D−µD)/σD and η expressed in terms of the num-
ber of standard deviations it is different from the
mean of the permutation distribution (z-scoring).

A special case of aros tests
While the standard aros procedure is performed us-
ing a shape derived from the data average (data
driven), a special case arises if the shape can be
derived from an external source. If possible, s can
be obtained by source independent of the data (e.g.
previous research or derived from the hypothesis).
Hence, H0 changes from asking whether a specific
arrangement of the data produces a specific rank
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order of averages as likely as any other rank or-
der obtained from shuffling the data, to whether
under the exchangeability assumption the original
arrangement of the data explains a specific shape
better than any other arrangement of the data.
Then, η would be computed based on this specific
shape. Hence, the shape would not be derived from
the average rank order of the data, which biases
the estimation of the permutation distribution. By
definition, the independence of s is strictly neces-
sary. In order to avoid "double dipping" s can-
not be derived from the mean and used as specific
shape of interest. It must be derived from some
source other than the data, in order to not violat-
ing the independence assumption of s. However,
if s can be derived from some external source, not
violating the independence assumption, then sta-
tistical power for this specific shape can greatly be
increased (see "Comparison of test power"). Fur-
thermore, it is not strictly necessary anymore to
require s to be a unique set of equally spaced val-
ues, as the probability for any s to occur does not
need to be uniformly distributed anymore (because
there is only one shape). Technically this strips the
aros test of its auto-regressive nature. Nevertheless,
the general principle would remain similar enough
to view this as a special case of the aros test. Please
see "Discussion" for a suggested application, where
the standard and special case are combined.

3 Derivations
The derivation is almost immediate given the state-
ment of the central limit theorem.

Theorem 1 (Central limit theorem[7]). Let X1, X2, ...
be i.i.d. with E[Xi] = µ, var(Xi) = σ2 ∈ (0,∞).
Let X̄n = X1 + ...+Xn/n. Then, as n → ∞,

(X̄n − µ)

√
n

σ

converges to the standard normal distribution N (0, 1)

From this theorem and the definition of η:

η =

∑N
i=1 f(Ai, s)

N

we can directly conclude:

Corollary 1. Assuming that f(Ai, s) forms a prob-
ability distribution with mean µ and variance σ2,
then, for N → ∞, the distribution of η converges
to a normal distribution N (µ, σ2/N)

Given this result one can conclude the distribu-
tion of η statistics can be approximated by a normal
distribution.

Now that the distribution of η statistics follows
a known probability distribution, we can conclude
that the probability distribution f(Xη|D), that is
the distribution of the test statistic given the per-
mutation, is well defined. Finally, we only need to
prove that in general the permutation test controls
the FA rate [4]. We only need to show that the α
level of the permutation distribution is the same as
the real α, i.e. P (rejectH0|H0).

Theorem 2. in a permutation test, the probability
α = P (rejectH0|D,H0) is equal to P (rejectH0|H0)

Proof. We rewrite P (rejectH0|H0) to be conditioned
on D, as ∑

D

P (rejectH0|D,H0)f(D)

Then, by definition of the α level of the permu-
tation distribution,

P (rejectH0|H0) =
∑
D

αf(D) = α

So we can conclude that, in particular, the false
alarm rate of the η statistic permutation distribu-
tion, f(Xη|D), is controlled.

4 Simulations
In order to demonstrate the validity and applica-
bility of the proposed test procedure, we conducted
a variety of simulations. It will be demonstrated
that the type I error rate (FA rate) can sufficiently
be controlled given the proposed procedure. Fur-
thermore, it will be demonstrated that the permu-
tation distribution under H0 indeed converges to a
normal distribution for multiple different underly-
ing data distributions. Additionally, one simulation
will construct a specific case, where the aros test
outperforms pairwise t-test and a one-way ANOVA.
Lastly, it will be simulated how under specific con-
ditions the statistical power of the aros test com-
pares to pairwise t-tests and a one-way ANOVA.
For every set of example data A, we generated 50
observation for three groups. The α-level was set to
α = 0.05 and f was defined as f(x, y) = (x ·y)(x ·x)
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(see "The aros test explained"). All example sim-
ulations, as well as an implementation of the aros
test are provided via
https://gitlab.com/TommyClausner/aros-test.

Estimating the type I error (FA rate)
The FA rate was estimated by 10000 simulations
on uniformly distributed random data. A new data
set was created for each simulation. For each test,
10000 permutations were performed to estimate the
permutation distribution under H0. If the null hy-
pothesis was rejected, the result of this simulation
was set to 1 and to 0 otherwise. To obtain the fi-
nal result, all individual test results were averaged,
yielding a FA rate of 0.0503, which can be consid-
ered sufficiently close to the target of 0.05, as the
deviation is only 0.6%. Figure 2 depicts the cumu-
lative average of the result vector. After around
1000 simulations, the FA rate converged to 0.05,
with only minor fluctuations for the other 9000 sim-
ulations.

Figure 2: False alarm rate under H0. Each value of the
continuous line represents the average of the result vector
up to that respective simulation, whereas the dotted line
represents the target value of 0.05 for the expected FA rate.
Each value within the results vector could either be 0 (H0

was accepted) or 1 (H0 was falsely rejected).

Demonstrating independence of sam-
ple data distributions
A crucial step towards verifying the validity of the
aros test is to demonstrate that the estimated per-
mutation distribution under H0 (the distribution
D), indeed results in normal distribution for a vari-
ety of data distributions. As previously mentioned,

Ai (each paired sample) and s (the respective rank
order shape obtained from the average over N ob-
servations in A), can be seen as independent ran-
dom samples given H0. Therefore, the average of
all f(Ai, s) under H0 represents an average of in-
dependent random values, which according to the
central limit theorem, distributes normal.

For the purpose of demonstration, four differ-
ent data distributions were used to estimate the
permutation distribution under H0. Random sam-
ples from the following distributions (with stated
parameters), were chosen: normal distributed data
with N (0, 1), uniform distributed data with U(0, 1),
binomial distributed data with B(3, 0.6) and Pois-
son distributed data with P(3). For each simula-
tion 20000 permutations were used to estimate the
permutation distribution under H0. The result-
ing distribution was standardized by subtracting
the data to its mean and dividing it by the stan-
dard deviation. Afterwards, the data was trans-
formed into histogram data with the number of bins
determined by Sturges [8] or Freedman-Diaconis
[9] rule. The approach yielding the higher num-
ber of bins was used, as is the standard for the
histogram(a, bins=’auto’) function provided by
numpy [10]. Furthermore, the count value for each
bin was divided by all counts to obtain the proba-
bility for each point of the distribution. As Figure 3
clearly shows, the resulting estimated permutation
distribution approximates the same normal distri-
bution irrespective of the underlying data distribu-
tion.

Simulated example
In order to compare the aros test to paired sample
t-tests and one-way ANOVA, we constructed a data
set in the following way: A vector of N = 50 ran-
dom standard normal distributed values was cre-
ated, to which an offset of [0.2, 0, 0.1] was added in
order to simulate the difference between the group
averages. Furthermore, uniform random noise was
added to each group, drawn from a uniform distri-
bution with parameters U(−0.5, 0.5). A box-plot
of the simulated data for each group can be found
in Figure 4. The authors point out that the same
random seed as for all other simulations was used
and no particular choice towards tuning the result
in a desirable way was made. However, the authors
are aware of the fact that changing the random seed
might indeed affect the clarity of the result. How-
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Figure 3: Probability distribution under H0 for a variety of
input data distributions. All distributions were standardized
and transformed according to Z = (D − µD)/σD. After-
wards the data was transformed into histogram data, where
the count per bin was divided by the sum of all counts to
obtain probability values for each point of the histogram.
Histogram data was depicted as lines, rather than bars, for
better readability.

ever, the aim of this particular simulation was to
demonstrate that there exist data sets for which
the aros test is particularly well suited. Further-
more, additional 1000 simulations were conducted,
where multiple sets of data using the same parame-
ters as in this simulation were constructed and the
respective test power was compared (see "Compar-
ison of test power").

In a first step the aros test was performed, fol-
lowed by pairwise paired sample t-tests between the
groups (1 vs. 2; 1 vs. 3; 2 vs. 3) and a one-way
ANOVA over all three groups. The p-value for each
test was obtained and in case of the aros test, the
rank order shape as well. Due to how the data was
simulated, it is expected for the three averages to
be related such that µ2 < µ3 < µ1. Respective p-
values for each test can be found in Table 1. At
a critical α-level of α = 0.05, only the aros test
and the t-test comparing groups 1 and 2 yielded a
significant result. All other p-values were greater
than the specified critical α-value. Additionally,
from the aros test the rank order shape s = [3, 1, 2]
could be obtained. Thus, the respective means can
be ordered as µ2 < µ3 < µ1. This rank order could
not have been obtained (given the data) using any
other test.

Table 1: p-value of different statistical tests based on the
data depicted in Figure 4

test p-value
aros test 0.001

t-test 1 vs. 2 0.003
t-test 1 vs. 3 0.065
t-test 2 vs. 3 0.203

one-way ANOVA 0.618

Figure 4: Simulated raw data. For each of the k = 3
groups, N = 50 observations were generated in the following
way: N random samples were drawn from a normal distri-
butions with parameters N (0, 1). To simulate the difference
in means, the same data was used three times and shifted
such that µ1 = 0.2;µ2 = 0;µ3 = 0.1. Additionally uniform
random noise was added separately to each group, drawn
from a distribution with parameters U(−0.5, 0.5).

Comparison of test power
In order to approximate the relative test power
given the scenario explained in "Simulated exam-
ple", the procedure was repeated 1000 times (with
similarly constructed, but newly generated data),
where we recorded the number of correctly rejected
H0 for each test scenario. The following scenar-
ios were included: aros test (aros), aros test with
known (pre-determined) shape (arosks), pairwise
t-tests with uncorrected p-values (tUC), pairwise t-
tests with Bonferroni (tB) or Bonferroni-Holm (tBH)
correction and a one-way ANOVA (ANOV A) for
simultaneous comparison of all groups. During each
of the 1000 simulations, it was recorded whether H0

was correctly rejected or not. For the t-test scenar-
ios, H0 was counted as correctly rejected, if p-values
of all three tests (corrected or not), were lower than
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or equal to the critical α-level, which was set to
α = 0.05. For all other test tests, H0 was counted
as rejected, if the respective p-value was lower than
or equal to α and the predicted shape corresponded
to the presumed shape from which the data was
constructed. This last condition was of cause omit-
ted from the ANOVA scenario. In a last step, the
cumulative average of each condition was divided
by the overall average of the uncorrected t-test sce-
nario, which acted as a baseline. Figure 5 depicts
the cumulative, relative average for each condition.
Thereby a change of the y-axis, e.g. by a factor
of two, would indicate that the relative test power
of the respective test was twice as high as the es-
timated test power of the uncorrected t-test after
1000 simulations.

None of the traditional methods was able to cap-
ture the respective difference between the three av-
erages as good as the aros test. Note that the result
for the aros test with known shape (arosks) needs
to be taken with a grain of salt. Technically s was
not derived from an external source and must be
considered "double dipping" in this scenario. Nev-
ertheless, it was included to demonstrate the po-
tential increase in statistical power for that case.

5 Discussion
We propose a paired samples, non-parametric sta-
tistical test procedure on the basis of a permuta-
tion test, which aims to circumvent the MCP by
combining the relationship between multiple group
averages into a single statistical value. Via an auto-
regressive procedure, paired sample data for mul-
tiple groups is related to the rank order shape of
the group averages. As such, the aros test acts as
a test for interval scaled data, where the test re-
sult needs to be interpreted on the basis of ordinal
scaled ranks. It was demonstrated that the FA rate
is controlled sufficiently by a permutation proce-
dure, where the estimated permutation distribution
D under H0 can be described by a normal distribu-
tion with parameters N (E[XD],

√
E[(D − E[XD])2]).

A set of simulations has been conducted to verify
the procedure. First, the FA rate was estimated
over 10000 simulations, which yielded an estimated
value of 0.0503. This value can be considered suf-
ficiently close to the target value of 0.05. In or-
der to save computation time, each simulation was
based on 10000 permutations and k = 3 groups.

Figure 5: Cumulative average of relative test power. For
each condition, the number of correctly rejected H0 was
counted and plotted cumulatively, relative to the number
of simulations. This was done for k = 3 groups. Addition-
ally, each value was divided by the final average of correctly
rejected H0 obtained from the uncorrected t-test scenario
(tUC). For each of the t-test scenarios, H0 was counted as
successfully rejected if all three of the pairwise comparison
yielded a p-value lower than or equal to the critical α. This
procedure was performed for the regular aros test (aros), a
version of the aros test, where the shape was set to be known
(arosks), pairwise t-test without correction for MCP (tUC)
and with correction for MCP using the Bonferroni (tB) or
the Bonferroni-Holm method (tBH). Additionally a one way
ANOVA for the simultaneous comparison of all three groups
was performed (ANOV A). The green line indicates the final
average of tUC after 1000 iterations.

Since it could be demonstrated that each f(Ai, s)
yields an independent random value, the authors
do not assume the FA rate to change on the ba-
sis of the number of groups, nor by increasing the
number of permutations per simulation. Further-
more, simulations on the basis of multiple data dis-
tributions showed that the estimated permutation
distribution under H0 distributes normal, as pre-
dicted. It needs to be pointed out that no par-
ticular reason for the choices of the data distribu-
tions can be brought forward. Instead - to the
authors experience - the most common distribu-
tions have been chosen. Again, since each value
in D stems from an average of independent ran-
dom values, it is not expected that different choices
for the data distributions would affect the normal-
ity of the estimated permutation distribution un-
der H0. In a third simulation, the aros test was
compared to the probably most common statistical
tests: the t-test and ANOVA. Since the purpose
of this paper was to demonstrate that conducting
an aros test in some circumstances can be beneficial
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where t-tests or ANOVAs fail, the data was deliber-
ately constructed such that the result would favor
the aros test. However, no particular manipula-
tion was applied to the data. Instead the data was
constructed based on normal distributed data (re-
quired by t-test and ANOVA), where the difference
in means was marginal compared to the noise that
was added. This particular case (low signal-to-noise
ratio) is one example where the aros test potentially
outperforms classical tests. Nevertheless, the aros
test has not been applied to a real data set in the
current publication, which needs to be addressed in
the future. However, one of the authors can confirm
that the aros test has been applied successfully to a
set of (yet unpublished) neuro-scientific data. In a
last simulation, the relative power between the aros
test and traditional tests has been assessed. For
1000 simulations, the true positive rate was com-
pared between the tests. Thereby, the true positive
rate of uncorrected t-tests served as baseline and
the result was computed relative to that average.
Since the statistical power for tests on the null hy-
pothesis is generally hard to assess and is strongly
dependent on the data, the relative power to well
established statistical tests might provide insight
into how the aros test performs under specific cir-
cumstances. On average, the aros test performed
more than three times as good as a uncorrected t-
test, given the respective data. However, it needs to
be pointed out that positive results for the pairwise
t-tests were only counted if all three tests yielded a
significant result. This procedure might be overly
conservative in many circumstances. However, in
this specific case, the distribution of the group av-
erages was known beforehand and the goal was to
determine the specific order in which those aver-
ages could be sorted. For such a statement to be
made using t-tests, indeed three significant results
would be required. Since not a single test using
the one-way ANOVA yielded a significant result,
the authors presume that it would not be suited
for the respective data set. Relating within and be-
tween subject variance might have failed due to the
large overall variability in the data that was much
greater within than between the groups. Lastly, the
aros test with pre-defined, known shape performed
almost six times better then the baseline method.
Since the present example would clearly be a case
of "double dipping", this result should not be over-
stated. However, in a real world scenario, if the
a specific shape would be expected (e.g. due to
how the hypothesis was constructed or by previous

research), this method potentially increases statis-
tical power significantly.

In general, the biggest advantage of the aros test
is its capability of allowing for a qualitative con-
clusion about the relationship between more than
two group averages without prior knowledge of the
underlying data distributions. Thereby, the test
is relatively robust against noise. Depending on
the choice for f , a significant result can be inter-
preted in multiple ways. Irrespective of f how-
ever, rejecting H0 means that the paired observa-
tions [1, . . . , N ], are not fully independent and that
the shape s can be predicted by A with a proba-
bility P (s) > 1/k!. This means that the labels of
groups [1, . . . , k] are not exchangeable since the dis-
tributions for D[1,...,k] are different. In other words,
grouping the data into [1, . . . , k] groups with labels
[1, . . . , k] is in fact meaningful and can be justified
by the data. The respective choice for f enriches
this finding with some additional information. If f
was set to e.g. f(x, y) = (x · y)(x · x), η indicates
how many units of change in the data explain a sin-
gle unit of change in the shape vector s.

As mentioned before, the aros test is meant as
an alternative for a variety of scenarios where more
than two groups need to be compared, but classical
statistical tests fail, either by violation of assump-
tions (e.g. violation of normality of the underlying
data distributions) or if the MCP reduces statistical
power unsatisfactorily. We could further demon-
strate that the aros test potentially outperforms
classical tests in low signal-to-noise ratio scenarios.
Another positive aspect is the additional informa-
tion that can be obtained by the rank order shape.
An ANOVA, applied to multiple groups, can in-
form the user about whether there is any difference
across the tested groups, whereas the aros test addi-
tionally provides information about the qualitative
relationship between the group averages. However,
the relatively high statistical power to obtain an or-
dinal result from interval scaled data, circumvent-
ing the MCP, comes at a cost.

First and foremost the aros test does not provide
any information about the quantitative difference
between a set of means and can furthermore not be
interpreted in such a way. Thus, it is impossible to
obtain any effect size for the differences in means
and hence should only be applied with this knowl-
edge in mind. In some way the absolute difference
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between group averages is sacrificed in favor of an
increased power for relative differences between the
groups. Second, the result can only be interpreted
in its entirety. This means no sub-comparisons be-
tween the relationship of means can be made and
only the entire rank order profile as such can be
interpreted. Note that this is similar to the result
of a cluster based permutation test [4]. This leads
directly to a third caveat, that is the number of
groups that can be meaningfully compared. While
the interpretation of the rank order shape for three
groups in most cases might be straight forward, it
might not be for a large number of groups. In gen-
eral, if a very large number of groups is compared
and at least one dimension of the data is correlated,
it might be advisable to choose a cluster permuta-
tion test [4]. Since it is possible to compute the aros
test for an arbitrary large number of groups, the au-
thors can only provide a rule of thumb, based on
their experience in the fields of experimental Psy-
chology and Neuroscience. The authors believe that
the number of groups k to be compared, should be
kept in a range where 3 ≤ k ≤ 7. Values for k
higher than that might be extremely difficult to in-
terpret. Moreover, if H0 was rejected, the obtained
shape can only be interpreted if the group averages
are indeed unique. This means that in order for the
aros test to be interpretable, it needs to be ensured
beforehand that each group average is numerically
unique.

Lastly, the authors would like to point towards
a variation of the aros test, which can be considered
similarly valid as the standard procedure. However,
if not applied carefully, this variation quickly leads
to a circular analysis ("double dipping"). In some
scenarios, the expected shape that is explained by
the data might already be known. This can be
the case if previous experiments allow for a jus-
tified prediction or in other cases the experimental
hypothesis pre-determines the expected shape al-
ready. However, it needs to be emphasized that
irrespective of the origin of the shape, it needs to
be independent to not bias the estimation of the
permutation distribution under H0. If such an in-
dependent shape could be derived from some ex-
ternal source other than the data, then this shape
could be used to obtain η and computing D. Hence,
one could test whether a specific rank order can be
justified by the data with a probability higher than
1/k!. Additionally, this approach can be combined
with the classical procedure: If two independent

data sets with k groups exist, then the classical ap-
proach could be applied to one of the data sets and
- in case H0 was rejected - the obtained shape can
be tested against the second data set.

6 Conclusion
As demonstrated, the auto-regressive rank order
similarity (aros) test can be considered an alterna-
tive test to circumvent the MCP for a small num-
ber of groups in a paired sample statistical test set-
ting. While the ability to determine the magni-
tude of differences between group averages is lost,
additional statistical power is gained to test the
relationship between the raw data and the rank
order of the group averages. Since the aros test
is based on a permutation procedure to estimate
the permutation distribution under H0, no assump-
tions about the distribution of the data are required
other than exchangeability under H0. Furthermore,
it has been demonstrated that the aros test controls
the FA rate sufficiently. Since the aros test relates
the magnitude of the group averages, without com-
paring them directly, it is exceptionally well suited
for test scenarios, where the signal-to-noise ratio is
low and the rank order of the means is of higher
interest than the actual effect size.
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