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Abstract

The beta rhythm (13-30 Hz) is a prominent brain rhythm. Record-
ings in primates during instructed-delay reaching tasks have shown
that different types of traveling waves of oscillatory activity are asso-
ciated with episodes of beta oscillations in motor cortex during move-
ment preparation. We propose here a simple model of motor cortex
based on local excitatory-inhibitory neuronal populations coupled by
longer range excitation, where additionally inputs to the motor cortex
from other neural structures are represented by stochastic inputs on
the different model populations. We show that the model accurately
reproduces the statistics of recording data when these external inputs
are correlated on a short time scale (25 ms) and have two different
components, one that targets the motor cortex locally and another
one that targets it in a global and synchronized way. The model re-
produces the distribution of beta burst durations, the proportion of
the different observed wave types, and wave speeds, which we show
not to be linked to axonal propagation speed. When the long-range
connectivity is anisotropic, traveling waves are found to preferentially
propagate along the axis where connectivity decays the fastest. Dif-
ferent from previously proposed mechanistic explanations, the model
suggests that traveling waves in motor cortex are the reflection of the
dephasing by external inputs, putatively of thalamic origin, of an os-
cillatory activity that would otherwise be spatially synchronized by
recurrent connectivity.

Introduction

Neural rhythms are one of the most obvious feature of neural dynamics [1].
They have been recorded for more than 90 years in human [2] and they are a
daily tool for the diagnosis of neurological dysfunction. Classic studies have
shown that neural rhythms depend on neural structures and the behavioral
state of the animal [3]. Examples include the theta rhythm, the gamma
rhythm in the visual cortex or the fast 160-200 Hz cerebellar rhythm. How-
ever, in spite of their ubiquity and common diagnostic use, neural rhythms
remain a somewhat mysterious feature of the brain dynamics. It remains to
better understand how they are created and what they are a reflection of
[4].

The beta rhythm consists of oscillations in the 13-30 Hz range. The
motor cortex was found to be one of its main locations in early recordings
in human subjects [5, 6]. It was recorded in cats during motionless focused
attention, when fixating a mouse behind a transparent screen [7]. Subse-
quent studies in monkeys trained to perform an instructed-delay-task [8, 9]
showed that beta oscillations develop in the motor and premotor cortex
during the movement preparatory period and wane during the movement
itself, in agreement with earlier observations in human [5, 6]. It was also
noted that beta oscillations did not have a constant amplitude in time but
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rather appeared as synchronized bursts of a few cycles of oscillations, often
synchronized on electrodes 1-2 mm apart. More recently, it was observed
using multi-electrode arrays that beta oscillations can come as planar [10]
or more complex [11, 12] waves propagating horizontally on the motor cor-
tex. Our aim in the present paper is to develop a mechanistic framework
for these observations and to compare it to available recordings in monkeys
performing an instructed delayed reach-to-grasp task [12, 13]. The model is
based on recurrent interaction between local populations of excitatory (E)
and inhibitory (I) population of neurons coupled by longer range excitation.
The local E-I module is well-known to exhibit oscillatory dynamics when the
recurrent interaction between the E population is sufficiently strong. Long-
range excitation between these local modules has been shown in previous
works to synchronize the oscillatory dynamics of local E-I modules [14, 15].
Comparison with recordings leads us to propose that the whole network
is close to the oscillation threshold and that fluctuating inputs from other
structures, such as the thalamus, power bursts of beta oscillations. We show
that such a spatially extended network submitted to both local and global
external inputs exhibits waves of different types that closely resemble those
recorded in monkey motor cortex. Our analysis makes testable, specific pre-
dictions on the structure of external inputs. More generally, it highlights
the dynamical interplay between fluctuating inputs and intrinsic dynam-
ics shaped by spatially structured connectivity, which is worth of further
experimental investigation.

Data and modelling assumptions

We ground our modeling by comparing it to recordings obtained during
a delayed reach-to-grasp task in two macaque monkeys [12] that have been
made publicly available [13]. As in other recordings in similar tasks [8, 9, 10],
beta oscillations are prominent during the 1 s waiting time, the movement
preparatory period, and wane during the movement itself, as shown in
Fig. S1a. We thus focus on the recordings during the preparatory period in
the following.

In order to develop a model of beta oscillations, assumptions have to be
made on the source and mechanism of their generation. We explicit below
our main ones and their rationale, since they differ from those made in some
previous works.

Debate exists regarding the origin of beta oscillations in cortex. On the
one hand, the basal ganglia display prominent beta oscillations during dif-
ferent phases of movement [16]. Therefore, one view is that beta oscillations
in the motor cortex are simply conveyed to the motor cortex from other
structures such as the basal ganglia. On the other hand, sources of beta os-
cillations have been identified in the cortex [17, 18]. That different cortical
regions have intrinsic oscillation frequencies matching those of their promi-
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nent rhythms is also supported by TMS perturbation studies. Specifically,
the premotor area/supplementary motor area 6 has been found to resonate
at ∼ 30 Hz after stimulation by a short TMS pulse [19]. This seems difficult
to explain if the rhythm frequency originates from a distant structure. We
thus adopt the intermediate view, previously advocated by Sherman et al.
[18], that beta oscillations are generated by recurrent interactions in the
motor cortex but are strongly modulated by inputs from other structures,
notably thalamic ones.

Assuming that beta oscillations originate within M1, the question arises
of the main neuronal populations and recurrent interactions underlying
rhythm generation. Two natural candidates are recurrent interaction be-
tween interneurons, or oscillations involving recurrent interactions between
excitatory and inhibitory populations. Here, one important observation is
that during the preparatory period of movement when beta oscillations are
prominent, neurons do not fire periodically. As shown in Fig. S1b, isolated
units from the recordings of Brochier et al. [13] display large CVs. Beta
oscillations thus appears to be a collective phenomenon arising from sparse
synchronization [20] of different non oscillating units. In such a regime, os-
cillations can emerge from recurrent interaction between interneurons, when
inhibition is sufficiently strong. However, their frequencies are mainly con-
trolled by the kinetics of synaptic transmission and tend to be in the upper
gamma range or higher [21, 22, 23]. Lower frequencies arise in networks of
E-I units, in which each of the two populations inhibits itself via a slower
disynaptic loop. This leads us to assume that beta oscillations arise from
sparsely synchronized oscillations arising from recurrent interaction between
excitatory and inhibitory populations.

Our aim is to account for recordings obtained from 4 mm×4 mm multi-
electrode arrays. Therefore, the spatial structure of the connectivity needs to
be taken into account. We assume that each electrode records the activity of
a local neuronal population. For computational tractability, we describe this
population activity in a classic way by its firing rate [24, 25], but we choose
a particular firing rate formulation (see Methods) that was shown to agree
well with direct simulations of spiking network models in previous works
[15, 26, 27]. We assume that neurons under different electrodes are mainly
connected by excitatory connections and that the connection probability
decreases with distance [28, 29].

Results

E-I modules connected by long-range excitatory connections
exhibit oscillatory activity at beta frequency

The previous considerations lead us to study the model schematically de-
picted in Fig. 1a which generalizes one previously analyzed [15]. It consists of
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multiple recurrently coupled modules between excitatory (E) and inhibitory
(I) neuron populations. These local modules are further coupled by long
range excitatory connections. The different modules are placed on a square
grid corresponding to the different electrodes. The decrease of synaptic con-
nection probability with distance is described by the function C(x), chosen
in the numerical simulations to be Gaussian with range l ∼ 1 mm. We
have taken into account the relatively slow propagation speed (∼ 30 cm/s)
along unmyelinated horizontal axons by introducing a delay proportional
to distance, D|x − y|, between the activity rE in excitatory population at
location y and the corresponding postsynaptic depolarization in the E and
I population at location x. The model is further detailed in Methods. We
begin by examining the dynamics of this network when external inputs are
constant and the number of neurons in each module is very large. The effect
of time-varying inputs and fluctuations due to the finite number of neurons
in each module are then addressed in the following sections.

The network of E-I modules, described by Eq. (8)-(17), has different
dynamical regimes as a function of the synaptic weights wEE , wIE , wEI , wII
between the excitatory and inhibitory neural populations. This has been ex-
tensively studied in the rate model framework [30, 31] since the pioneering
work of Wilson and Cowan [24]. In the particular case of the present model,
the different regimes are depicted in Fig. 1b, generalizing previous results
[15] to take into account the finite kinetics of synaptic current and propa-
gation delays. Essential parameters controlling stability are the strength of
recurrent excitation, the strength of feedback inhibition through the disy-
naptic E-I loop, and the strength of autoinhibition of interneurones on them-
selves, as respectively measured by parameters α, β and γ (Eq. (32)). With
other parameter fixed, a steady firing rate state in which excitatory and
inhibitory populations fire at rsE and rsI is unstable when the strength of
recurrent disynaptic self-inhibition β becomes larger than a threshold value.
Mathematical analysis (see Methods) provides the bifurcation line that sep-
arates the steady state regimes from the oscillatory ones. Its exact position
depends on propagation delays as depicted in Fig. 1b for zero delay and for
the propagation delay, here chosen, of 1.3 ms between neighboring modules,
see also Methods Eq. (33). The frequency of oscillations that arise when
crossing the bifurcation line at a particular point is also shown in Fig. 1b.
The dynamics of the network is illustrated for two values of recurrent in-
hibition, one above (parameters ON, ‘oscillating network’) and one below
(parameters SN, ‘steady network’) the bifurcation line point corresponding
to beta oscillation frequency (∼ 20 Hz). As illustrated in Fig. 1c-d, for
recurrent inhibition stronger than the critical value, the ON model oscil-
lates regularly. For a lower value of recurrent inhibition (SN model), the
firing rates of the excitatory and inhibitory populations steadily fire at con-
stant rates. When perturbed away from these rates, the firing rates relax to
their stationary values in an oscillatory fashion, transiently exhibiting beta
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oscillations.
For fixed synaptic coupling, the steady state firing rates of the excitatory

and inhibitory neuronal populations depend on the strengths on the external
inputs on those two populations. This is quantitatively illustrated in Fig. 1e,
for synaptic parameters of model SN. Interestingly, when the external input
on the inhibitory neurons is increased, their steady firing rate and the steady
firing rate of the excitatory population both decrease for a large range of
the external input current. (The firing rate of the inhibitory population
starts to increase again for very large inputs, when the firing rate of the
excitatory population tends to vanish.) This “paradoxical suppression of
inhibition” [32] is typical of inhibition-stabilized networks and is observed
in many cortical areas [33, 34] including motor cortex. It arises in the SN
model because it is only when recurrent excitation is large, as measured
by the parameter α that its frequency of oscillation is in the beta range
(Fig. 1b). Namely all networks with α > 1 cannot stably fire at moderate
rates without being stabilized by inhibition.

When the external input strengths are changed on the excitatory and
inhibitory populations, the steady discharge rates of the two populations
change accordingly. They can enter into the parameter regime where a
steady discharge is actually unstable and is replaced by an oscillatory one,
as shown in Fig. 1f. We consider in the present model excitatory inputs to
the motor cortex coming from a distal area. The respective strengths of the
external inputs, IextE and IextI , on the excitatory and inhibitory populations
are proportional to the respective strengths of their synapses, wextE and wextI .
Thus, IextE and IextI vary with the activity of the distal area on a line in the
(IextE , IextI ) plane as depicted in Fig. 1f. The respective strengths of wextE

and wextI are taken in the model (Eq. (35)) such that the network enters
the oscillatory regime when the external inputs are decreased as shown in
Fig. 1f. This conforms to the early observation [5, 6] that external inputs
suppress beta oscillations in motor cortex.

When the external input strength on the SN model varies in time, its
operating point moves relative to the bifurcation line and correspondingly,
beta oscillations are dampened at varying rates. This leads to waxing and
waning of their amplitudes as shown in Fig. 1g-h. This is also true for
the ON model which stands close to the bifurcation line and can move into
the non-oscillatory regime when external inputs vary. These networks that
operate close to the bifurcation line thus appear as promising candidates
to describe the waxing-and-waning of beta oscillations seen in recording
data. This leads us to try and compare beta oscillations produced in the
model by inputs varying on an appropriate time scale, together with intrinsic
fluctuations arising from the finite number of neurons in each module, to
those seen in electrophysiological recordings.
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Fluctuation of external inputs, and finite-size stochasticity
produces model LFP signals statistically similar to the recorded
ones

Early reports [8] already stressed that beta oscillations were not of constant
amplitude but modulated on different time scales. As confirmed in several
later studies (see e.g. [35]), the average power of beta oscillations changes
on a second time scale with different phases of movement e.g preparation,
performance and post-performance periods. Within individual trials, the
amplitude of beta oscillations fluctuates on much shorter time scales with
brief bursts of elevated amplitudes of ∼ 100 ms duration. Examples of LFP
spectrograms from two trials of [13] are shown in Fig. 2a-b and Fig. S2a-b),
respectively for monkeys L and N. Whereas single trials exhibit short bursts
of theta oscillations, trial-averaged spectrograms (Fig. 2c and Fig. S2c) and
LFP power spectra (Fig. 2d and Fig. S2d) only show the average increase
of oscillation in the beta band and its modulation on 1s behavioral time
scale (Fig. 2c and Fig. S2c). A more quantitative characterization of the
brief high oscillation amplitude events, the beta bursts, here taken to be the
75th percentile of the beta oscillation amplitude distribution (Fig. 2e and
Fig. S2e, see also Fig. S3), is provided by their duration distributions shown
in Fig. 2f and Fig. S2f.

Can the model introduced in the previous section account for these data?
At least two sources can be considered for these transient bursts of oscil-
lations fluctuating from trial to trial. The first one is that the number of
neurons in each E-I module, the population of neurons in a 200 µm neighbor-
hood of each electrode, is finite, of about 2×104 cells given the cell density in
cortex. This by itself produces stochastic fluctuations in each module activ-
ity. These intrinsic fluctuations can be described in a simple way by adding
to each neuronal population’s mean firing rate a stochastic component that
is inversely proportional to the square root of its population size (see Meth-
ods) [15, 36]. The effects of these intrinsic fluctuations for models ON and
SN (Fig. 1b) can be obtained both mathematically and through computer
simulations. The results are displayed in Fig. S4 for varying numbers N of
neurons per module around our estimated value N = 2 × 104. For the pa-
rameters SN (Fig. S4a,b), the model LFP power spectrum amplitude grows
with the number of neurons, but in the whole range N = 2× 103 − 2× 105,
the power spectrum shape is invariant and accurately coincides with the one
obtained mathematically by a linear analysis (Eq. (49)). Compared to the
experimental LFP power spectra (Fig. 2d and Fig. S2d), the peak around
beta frequencies is less pronounced; furthermore, the power spectrum misses
the trough and enhancement for frequencies lower than beta frequency ob-
served in the recordings. For the (oscillatory) ON model (Fig. S4j,k), the
power spectra are more strongly peaked than the experimental ones, with in
addition a notable peak at the harmonic frequency of ∼ 50 Hz coming from
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the non-sinusoidal shape of the oscillations (Fig. 1c,d). This indicates that
in either the SN or the ON model, intrinsic fluctuations are not sufficient to
account for the experimental spectra of Fig. 2d and Fig. S2d.

Besides intrinsic dynamical fluctuations, it is likely that fluctuations in
the motor cortex arise from time-varying inputs coming from other areas.
In absence of specific data, we model these as fluctuating inputs with a fi-
nite correlation time, more precisely as Ornstein-Uhlenbeck processes with
a relaxation time τext (Methods). The network dynamics also depend on
the way these external inputs target the motor cortex. Are they essentially
independently targeting local areas or do they target the motor cortex in a
more globally synchronized manner? Again in absence of specific measure-
ments, we suppose that the external inputs comprise a mixture of global
inputs that provide a fraction c of the power, and independent local inputs
that provide the remaining fraction 1− c (see Methods).

With this simple description, external inputs are characterized by 3 pa-
rameters, their amplitude νext, their correlation time τext and the fraction c.
We determine them by comparison with the single electrode LFP trace and
with the cross-correlation between the LFP traces of different electrodes.

The single electrode power spectra and the single electrode oscillation
depend little on the fraction c, we thus consider them first (Fig. S4).

The inclusion of external fluctuations increases the lower frequency part
of the power spectra. It also comparatively decreases the power at frequency
higher than beta frequencies as soon as the fluctuation correlation time is in
the few tens of millisecond range as shown for models SN (Fig. S4c-f) and ON
(Fig. S4l-o). The amplitude of external fluctuations should be large enough
for their effect to be of larger magnitude than the one produced by intrinsic
fluctuations namely νext > 0.2 Hz. For the SN model, it should also be
small enough (νext < 3 Hz), not to produce a secondary power enhancement
at double the beta frequency as shown in Fig. S4c. In this range of ampli-
tudes, the power spectrum shape is independent of the external fluctuation
amplitude νext after normalization, and corresponds to the mathematical
expression (46) (Fig. S4d). For the ON model, a sharp secondary peak at
twice the beta frequency is present at low external fluctuation amplitude
(Fig. S4l). When the external fluctuations are stronger, this peak is blurred
and becomes a wide power enhancement around twice the beta frequency
for νext ∼ 3 Hz (Fig. S4f,o), comparable to the one seen for the SN model at
the same external fluctuation amplitude (Fig. S4c). The external amplitude
fluctuations also produce the power spectrum trough and enhancement ob-
served at lower frequencies in experimental recordings (Fig. 2d and Fig. S2d)
when their correlation time is not too short (Fig. S4e-f,n-o).

Examination of the burst durations and amplitudes provides further in-
formation and constraints on the parameters. For both SN and ON mod-
els the burst mean duration grows with the input correlation time τext
(Fig. S4g,p) while it is weakly dependent on the input fluctuation ampli-
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tude νext (Fig. S4i,r). For the SN model, the input fluctuation amplitude
νext does not strongly affect the burst amplitude and duration distributions
(Fig. S4h-i). Their shapes are moreover close to the experimentally observed
ones (Fig. (2e,f). On the contrary, for the ON model, the shape of the burst
amplitude distribution strongly depends on the amplitude νext (Fig. S4q).
It is only for large νext that the shape is close to the one obtained for the
SN model and resembles the experimental one. The coincidence of the SN
and ON distributions, as for the power spectra, is indeed expected when the
fluctuations are large enough as compared to the difference between their
reference parameters. Since the ON network appears potentially relevant
only for large fluctuations, when the distinction before the two network set
points is not meaningful, we focus on the following on a network at the set
point SN, that is fluctuating around a non-oscillatory set point.

Fig. 2i-n and S2i-n, show the results of model simulations for the SN
model with a relaxation time τext = 25 ms and νext = 2 Hz. Both LFP
power spectra, and beta burst duration and amplitude distributions closely
resemble the experimental ones.

Having reproduced the single electrode characteristics of the recording,
we turn to the equal-time correlation between signals on different electrodes.
As shown in Figs. 2g and S2g, the correlation between two neighboring elec-
trodes is lower that the autocorrelation of a single electrode LFP, namely
its variance, but is comparable to the correlation between more distant elec-
trodes. Namely, part of the LFP signal is strongly synchronized between
distant electrodes. This is not the case in the model if the external inputs
on different modules are uncorrelated, i.e. for c = 0. At the other extreme,
when c = 1, the signals are much more correlated than in the data. As
shown in Fig. 2o, it is only when the external inputs are almost equally split
between local and global that the model correlations are comparable to the
experimental one. For monkey L (N), the value c = 0.4 (c = 0.3) is found
to provide the best match. (Note that for the comparison with monkey N,
we also use slightly changed synaptic couplings SN’ that lead to a slightly
lower peak beta oscillation frequency in accordance with experimental data,
see Table 1 for retained parameter values.) The autocorrelation of the single
electrode LFP (Figs. 2h and S2h for monkeys L and N, respectively) is also
well accounted for by the model (Figs. 2p and S2p for parameters SN and
SN’, respectively).

Figs. 2 and S2 provide a comparison between the experimental data for
the two monkeys and the model at points SN and SN’, respectively, with
the determined characteristics of the external inputs. The model clearly
accounts well for the data characteristics, as quantified by the power spectra,
burst duration and amplitude distributions and correlation between different
electrodes.

This leads us to investigate how the model compares to the data for
other spatio-temporal characteristics of the LFP signals, namely traveling
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waves of activity of different types and their characteristics.

Traveling waves of different types

Several groups have reported traveling waves on the motor cortex during the
preparatory phase of the movement in instructed-delay reaching tasks. In
the early study of Rubino et al. (2006) [10], planar waves of beta oscillations
in multielectrode LFP recordings were described. Later works [11, 12] have
classified the spatio-temporal beta oscillations recorded by multielectrode
arrays into different states. Here, we use the data of [13] and closely follow
the classification scheme proposed by these authors [12], distinguishing pe-
riods with planar or radial waves, as well as globally synchronized episodes
and more random appearing states. The classification criteria into these
four states are based on the instantaneous phase and phase gradient spatial
distributions as precisely described in Methods. In short, negligible phase
delays between electrodes characterize the synchronized state. In the other
states, the oscillatory activities of some electrodes have significant phase
differences and give rise to spatial phase gradients. The phase gradients
are tightly aligned for planar waves, pointing inward or outward for radial
waves, or are more disordered in the remaining “random” category. We ap-
ply the exact same analysis to the experimental recordings and our model
simulation data (Fig.S5 and Methods).

Fig. 3a provides one example of a planar wave in monkey L record-
ings [13] with the narrow distribution of phase gradient directions shown in
Fig. 3b. An example of a radial wave is shown in Fig. 3c with its outward
pointing phase gradients shown in Fig. 3d. Analogous examples for monkey
N are shown in Fig. S6.

For a traveling wave of oscillatory activity at frequency f , the local phase
velocity is directly related to the local phase gradient ∇φ,

v =
2πf

|∇φ|
(1)

We refer to the average of v over electrodes simply as the wave speed follow-
ing previous works [10, 11, 12]. The distribution of observed planar wave
speeds is shown in Fig. 3e. The average planar wave speed is about 30 cm/s
but it should be noted that the distribution includes also events with much
smaller velocities. The proportion of the different wave types is depicted in
Fig. 3f.

Can these data be accounted for by our model network? As discussed
in the previous section, the single electrode LFP data and their correla-
tions determine the correlation time (τext) of the fluctuating inputs and
their repartition (c) between global and local inputs, but does not tightly
constrain their amplitude. We thus performed a series of model simulations
with different input amplitudes νext for the SN model as summarized in
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Fig. S7a. The four wave states can be observed for most νext. Examples of
planar and radial waves are provided in Fig. 3g-j. However, the proportion
of the different wave types and the planar wave speeds greatly vary with
νext (Fig. S7). In the SN model, the input fluctuations promote oscillations.
The stronger the amplitude νext, the more developed the oscillations in neu-
ral activity and the better they synchronize. Thus, increasing the noise
amplitude first increases the proportion of synchronized activity and the
propagation speed of planar waves. At higher noise amplitudes, the desyn-
chronizing effect of noise counteracts its oscillation-promoting effect and the
wave speed decreases with increasing input amplitude. This leads in the SN
model for νext in the range 1− 2 Hz to a proportion of a planar wave states
of a few percent with a planar wave speed of about 30 cm/s, as observed
in the experimental recordings (Fig. 3e-f). As a consequence, the propor-
tion of planar and radial waves as well as synchronized activity increases
with νext. The effect of increasing the amplitude of the input fluctuations
is quite different for the ON model (Fig. S7b). In this case, the oscilla-
tory activity is self-generated and the oscillations between different modules
are well-synchronized without fluctuating inputs. The local inputs tend to
desynchronize the different modules and create oscillatory phase differences
between them. The proportion of fully synchronized states thus decreases
with the increasing νext. The speed of planar waves which is inversely pro-
portional to the magnitude of phase gradients (Eq. (1)) also decreases. For
an input fluctuation amplitude νext = 2 Hz, the SN model agrees well with
the distribution of observed wave speeds and the repartition between the
different wave types for monkey L as shown in Fig. 3, although radial waves
seem somewhat underrepresented in the model network. This is also the
case for monkey N as shown in Fig. S6.

The mean speeds of planar waves in the recordings and in the model,
are of a few tens of cm/s (Fig. 3e,k and Fig.S6e,k) which is comparable to
the propagation speed along non-myelinated horizontal fibers. One might
thus think that both are tightly linked. This is actually not the case. An
equally good agreement with the recording data can be found in the model
in the absence of propagation delay, i.e. for D = 0. The corresponding wave
pattern statistics are shown in Fig. S8, and agree as well as the model with
delay with the data for monkey L (Fig. 2 and 3).

Synaptic connection anisotropy and planar waves propagation
direction

Our model network provides a satisfactory description of LFP correlations
and wave statistics when averaged over directions in the data of [13]. The
long-range synaptic connection probability that we implemented decreases
with distance and is independent of orientation. With this choice, we checked
that the direction of observed planar waves does not significantly depend on
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orientation as shown in Fig. 4a-c (namely the anisotropy created by our
choice of a rectangular grid is weak). However, it was reported by [10] that
waves tend to propagate along preferred axes on the cortical surface with
respect to sulcal landmarks and that the orientation of the preferred axes of
propagation also vary between different regions, e.g. between primary motor
cortex and dorsal premotor cortex. For a given preferred axis, propagation
in both directions was observed, e.g. both rightward and leftward propagat-
ing waves were recorded. In order to investigate the possible origin of this
observation, we assessed the effect of anisotropic connectivity in our model.
We thus simulated a modified version of the model in which the connectivity
was of twice longer range in the y-direction than in the x-direction, as illus-
trated in Fig. 4d. This did not change much the distribution of the observed
wave types (Fig. 4e). In contrast, Fig. 4f shows the measured distribution
of the directions along which planar waves propagate when connections are
asymmetric. The fractions of waves propagating along the x and y axis
are clearly different. There is a large predominance of waves observed to
propagate along the x-axis, namely along the axis where the connectivity
is shorter range. Longer-range connectivity promotes longer-range synchro-
nization along the y-axis and synchronized states. The weaker connectivity
along the x-axis allows for the formation of the larger phase gradients along
the x-axis and planar waves.

Discussion

We have proposed and studied here a simplified model of the motor cortex
based on local recurrent connections coupling excitatory and inhibitory neu-
ronal populations together with long-range excitatory connections targeting
both populations. The well-known oscillatory instability of coupled E-I net-
works is not qualitatively modified by the presence of long range connections
and the model displays an instability leading to sustained oscillatory behav-
ior. These oscillations take place at beta frequency for adequate synaptic
parameters. Comparison with available data has led us to conclude the mo-
tor cortex operates close to this beta oscillatory instability line under strong
fluctuating inputs from other areas. This constantly displaces the operating
point of the dynamics and lead to waxing and waning of beta amplitude os-
cillations. Analysis of this behavior in time and across electrodes has led us
to infer the characteristics of the appropriate external inputs. The observed
power enhancement on the low frequency-side of the beta peak requires that
their time correlation is not too short on a 10 ms scale while the duration of
the observed oscillation bursts requires than it is not too long on the same
time scale. In an analogous way the external input amplitude should be, on
the one hand, sufficiently large to significantly modify the LFP character-
istics above the background of intrinsic local fluctuations arising from the
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finite number of neurons sampled by each electrode. On the other hand,
it should be small enough to preserve the harmonicity of beta oscillations,
as indicated by the absence of a significant secondary 50-60 Hz peak in the
LFP spectra. The spatial correlation of beta oscillations at the millimeter
distance scale, has furthermore led us to suggest that the motor cortex re-
ceive inputs that target local areas but also synchronous inputs that target
it more globally. Under these conditions, traveling waves of different kinds
are observed that resemble those recorded in vivo both in their repartition
between the different wave types and their speeds of propagation. Charac-
terization of the inputs onto motor cortex during movement preparation is
needed to test these theoretical predictions.

Propagating waves of neural activity have been observed in different
contexts [37, 38]. Some are unrelated to neural oscillations such as sub-
threshold waves [39] or propagation of spiking activity in visual cortex [40].
Others are based on oscillatory activity with proposed mechanisms relying
on a gradient of frequencies [41] or structural sequences of activation [42].
The traveling waves and the mechanism here proposed to underlie them are
quite different. They are obviously based on the existence of oscillations,
since the traveling waves are a reflection of different phases of oscillation
at different positions on motor cortex. The model we have developed here
includes structural connectivity which tend to synchronize oscillations at
different positions, but the stochastic external inputs play an essential role
in creating dephasings between different locations. The wave propagation
speeds are found to be rather low and distributed in the few tens of cm/s.
The mean speed of about 30 cm/s is comparable to the propagation speed
along non-myelinated horizontal fibers. However, we have found that it is
actually independent of it, a comparable distribution of traveling speeds is
found in a model with no propagation delays. This stands, for instance, in
sharp contrast with a recent model of the propagation of spiking activity in
visual cortex [43] which does not involve oscillatory activity but also relies
on external inputs. In the present context, the observed speeds of the os-
cillatory waves of activity are set by the oscillatory frequency, and by the
dephasings produced by the external inputs in the recorded area.

We have proposed that external inputs have both local and global com-
ponents. The existence of a global component appears consistent with the
presence of global inhibition in motor cortex during movement preparation
[44]. The model “external inputs” could represent direct inputs from dif-
ferent neural structures, including frontal and parietal cortex and thalamus
[45]. The known thalamo-cortical connectivity [46] makes the thalamus a
privileged candidate for the origin of, at least, part of these external inputs.
Indeed the described diffused connectivity from calbindin-positive matrix
neurons could be the source of our global inputs while core parvalbumin-
positive neurons could be the source of our local inputs. This requires fur-
ther experiments assessing the origin of synaptic inputs and their influence
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on waves and wave types. As far as recurrent connectivity is implied, we
have suggested that the observed anisotropy of wave propagation is linked
to the anisotropy of long-range connections, with the specific prediction that
traveling waves of oscillatory activity are predominantly observed orthogo-
nal to the longest connection axis. This also needs to be tested in further
experiments.

Finally, the role of traveling waves during movement preparation remains
to be clarified. We have shown that a stochastic description of the inputs
to the motor cortex is sufficient to account for the recordings. However, the
produced traveling waves are correlated with the particular inputs that the
motor cortex receives. Indeed, traveling waves have been shown to carry
information about the subsequent movement [10]. Movement preparation is
presently viewed, in a dynamical system perspective, as taking place in a
subspace orthogonal to the dynamics of the movement itself and producing
the proper initial condition for it [47, 48, 49, 50, 51]. Beta oscillations and
their associated timescale are however absent from this description. Further
work is needed to refine it and include beta oscillations and waves and obtain
a more comprehensive description of motor cortex dynamics.

Methods

Recording data

We analyzed the data that was made publicly available and described in
detail in [13]. We content ourselves here to describe their main features, for
the convenience of the reader. The data were obtained from two macaque
monkeys (L and N) trained to perform one of 4 movements at a GO signal. In
brief, in each trial, the animal was presented for 300 ms with a visual cue that
provided partial information on the movement to be performed. It had to
wait for 1 s, before the GO signal that also brought the missing information
about the rewarded movement. The different phases of a trial are depicted
in Fig. S1.The neural activity was recorded during the task with a 10 × 10
square multielectrode Utah array, with neighboring electrodes separated by
400 µm, implanted in the primary motor cortex (M1) or premotor cortex
contralateral to the active arm. We make use of two published recording
sessions (one for monkey L of 11:49 min/135 correct trials, one for monkey
N of 16:43min/141 correct trials ) as fully detailed in [13].

Data analysis

An overview of our data analysis protocol is provided in Fig. S5. The dif-
ferent steps are detailed below.
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Data filtering

The index of each electrode in the data (Fig. S3) was matched to the (x, y)-
position of the electrode in the data which we use in the following. The
few missing electrode signals were replaced by the average of the neighbor-
ing electrode signals. The followings steps were applied to the so obtained
N = 100 electrode signals. The LFP signal of each electrode was band-
pass filtered in the 13–30 Hz range using a third-order Butterworth filter
(signal.filtfilt function of the Python package scipy). The filtered sig-
nal of each electrode was then z-score normalized and Hilbert-transformed,
using the scipy Hilbert transform function signal.hilbert to obtain its
instantaneous amplitude Axy(t) and phase Φxy(t) (Fig. S3). The instanta-
neous maps Axy(t) and Φxy(t) were used for beta bursts and wave pattern
detection, respectively.

Beta bursts analysis

For each amplitude signal Axy(t), the percentiles of the amplitude distri-
bution were determined [52]. The beta burst threshold was set at the 75th
percentile. A burst onset was defined as a time point at which the analytical
amplitude exceeded the threshold and its termination as the earliest follow-
ing time point at which the amplitude fell below the threshold. The time
difference between these two time points was defined as the burst duration.
The amplitude of a burst was defined as the average amplitude during the
burst duration. The procedure is illustrated in Fig. S3.

Spatio-temporal pattern analysis and wave classification

The spatio-temporal patterns of oscillatory activity were classified with the
help of the phase map Φxy(t) following the steps of [12] with minor modifi-
cations.

First, the phase gradient map Γxy(t) and its normalized version, the
phase directionality map ∆xy(t), were obtained. Specifically the phase gra-
dient map was obtained by averaging the phase differences between a point
and its existing next and next-nearest neighbors along the x and y axis,

Γxy(t) =
1

Nx

∑
neighbors with |dx|≤2

Φ(x+ dx, y; t)− Φ(x, y; t)

dx

+
i

Ny

∑
neighbors with |dx|≤2

Φ(x, y + dy; t)− Φ(x, y; t)

dy

(2)

where the vector has been written as a complex number and Nx, Ny count
the actual number of neighbors along x and y respectively (Nx + Ny may
differ from 8 for electrodes near the array boundaries). Normalization of the
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gradients to unit length serves to produce the “phase directionality map”
[12],

∆xy(t) = |Γxy(t)|−1Γxy(t) (3)

The alignment of the unit vectors ∆xy(t) at time t was quantified using
the norm σg of their mean, the “circular variance of phase directionality”
[12], with

σg(t) = N−1|
∑
x,y

∆x,y(t)| ∈ [0, 1] (4)

with N the total number of electrodes. Well-aligned ∆xy(t) were classified
as planar wave patterns using the criterion σg(t) > 0.5, and provided the
first category of the classification.

The remaining patterns were further classified using additional measures.
Patterns were next categorized as “radial waves” (or not) by considering
critical points (i.e. maxima, minima or saddle points) of the phase map
Φxy(t) [11]. A smoothed phase gradient map, the “gradient coherence map”,
was defined following [12],

Λxy(t) = N−1
xy

∑
x′,y′∈{−2,−1,0,1,2}

∆x+x′,y+y′(t) (5)

(Note that the sum is taken over existing neighboring electrodes, the number
of which is given by Nxy ≤ 9.) Minima, maxima, and saddle points were
obtained by locating the sign changes in the local gradient coherence map
[53]. Maps with exactly one critical point were classified as radial waves,
thus providing the second category of our classification (these patterns could
be subdivided in further subcategories [11] but this was not pursued).

The synchronous patterns were finally identified using the “circular vari-
ance of phases” [12], σp, analogous to the well-known Kuramoto order pa-
rameter,

σp(t) = N−1|
∑

x,y∈(1,··· ,
√
N)

ejΦx,y(t)| ∈ [0, 1] (6)

with N the total number of electrodes in the array. Patterns with σp(t) >
0.85, indicating tight synchronization of the oscillations of all electrodes,
were classified as “synchronized” the classification third category. All re-
maining patterns were assigned to the “random” fourth category.

Model

The motor cortex is described as a collection of recurrently connected exci-
tatory (E) and inhibitory (I) neuronal populations of linear size ∼ 400µm,
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comparable to the one of a cortical column. These E-I modules are connected
by long-range excitatory connections with a connection probability decaying
with the distance between modules. The neural activity of each E-I module
is represented at the level of its excitatory and inhibitory neuronal popula-
tions in the rate-model framework [24, 25]. This eases numerical simulations
that would otherwise be extremely demanding for a comparable spatially
structured network of a few hundred modules with a few tens of thousand
spiking neurons each. Additionally, the rate model description also eases
analytical computations. We choose a rate model description with an adap-
tive time scale [26, 27]. It was shown to quantitatively describe networks of
stochastically spiking Exponential Integrate-and-Fire (EIF) neurons, either
uncoupled and receiving identical noisy inputs [26], or coupled by recurrent
excitation [27], as well as sparsely synchronized oscillations of recurrently
coupled spiking E-I module of EIF neurons [15]. The adaptive timescale
rate model describes the activity of a population of EIF neurons as:

τ(I)
dI

dt
= −I + I0 + s(t), r(t) = Φσ[I(t)] (7)

with Φσ[I] the f-I curve of an EIF neuron with white noise current input of
mean I and strength σ (see [15] for a detailed description). The time scale
τ(I) is referred to as ’adaptive’ because it varies with the current I. The
function τ(I) is chosen here, as in [15] and precisely described there, to best
fit the response to oscillatory inputs in a wide frequency range of 1Hz-1kHz,
of an EIF neuron subjected also to a white noise current of mean I and
strength σ. The tabulated functions Φσ[I] and τ(I) are given in [15] and
are also provided here as Source data for the convenience of the reader.

We generalize the rate model description (7) to a two-dimensional net-
work of E-I modules coupled by long-range excitation,

τE(IE)
dIE
dt

(x, t) = −IE(x, t) + IextE (x, t) + IsynEE (x, t)− IsynEI (x, t) (8)

τI(II)
dII
dt

(x, t) = −II(x, t) + IextI (x, t) + IsynIE (x, t)− IsynII (x, t) (9)

where the index x denotes the module position on a rectangular grid. The
firing rates rE(x, t), rI(x, t) are related to the currents IE(x, t), II(x, t) by,

rA(x, t) = ΦA[IA(x, t)] +

√
ΦA[IA(x, t)]

NA
ξA(x, t), A ∈ {E, I} (10)

The ξA(x, t) are independent unit amplitude white noises for each neuronal
population in each module 〈ξA(x, t)ξB(x′, t′)〉 = δA,Bδx,x′δ(t − t′) and Ito’s
prescription is used to define Eq. (10) [15]. These stochastic terms account,
in the firing rate framework, for the fluctuations due to the finite numbers
NE of excitatory neurons and NI of inhibitory in each E-I module [36]. For
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the numerical computations, both ΦE and ΦI are taken equal to the function
Φσ[I] provided in the Supplemental Material.

The currents IextE (x, t) (resp. IextI (x, t)) represent inputs external to the
motor cortex, possibly position and time-dependent, targeting the excitatory
(resp. inhibitory) population of the E-I module at position x,

IextA (t)(x, t) = Iext,0A + σextA η(x, t), σextA = wextA νext, A ∈ {E, I} (11)

We model the fluctuations of external inputs as stochastic O-U processes
with global and independent components,

τext
dη

dt
(x, t) = −η(x, t) +

√
τext [

√
1− c ξ(x, t) +

√
c ξg(t)] (12)

〈ξ(x, t)ξ(x′, t′)〉 = δ(t− t′)δx,x′ , 〈ξg(t)ξg(t′)〉 = δ(t− t′)

The currents IsynEE (x, t), IsynEI (x, t) (resp. IsynIE (x, t), IsynII (x, t)) represent
the recurrent excitatory and inhibitory inputs on the excitatory (resp. in-
hibitory) population of the module at position x. With our normalization
choice, νext has the dimension of a frequency and can be interpreted as the
discharge rate ampltude of the external inputs. The recurrent inputs depend
on the firing rates of the neuronal populations of the different motor cortex
modules and on the kinetics of the different synapses. Namely,

IsynAE (x, t) = wAE

∫ t

duSE(t− u)
∑
y

C(|x− y|)rE(y, u−D|x− y|)),

IsynAI (x, t) = wAI

∫ t

duSI(t− u)rI(x, u), A ∈ {E, I} (13)

The kinetic kernels SE(t), SI(t) include synaptic current rise times, τEr , τ
I
r ,

decay times, τEd , τ
I
d , and latencies, τEl , τ

I
l ,

SA(t) =
θ(t− τAl )

τAd − τAr

{
exp[−(t− τAl )/τAd ]− exp[(−(t− τAl )/τAr )]

}
, A ∈ {E, I}

(14)

where θ(t) denotes the Heaviside function, θ(t) = 1, t > 0 and 0 otherwise.
The kernels SA, A ∈ {E, I} are normalized such that:∫

dt SA(t) = 1 (15)

We have supposed, for simplicity, that the kinetics of the synaptic cur-
rents depend on their excitatory or inhibitory character but not on the
nature of their post-synaptic targets (e.g. IsynEI and IsynII have the same
kinetics). Instead of using the kinetic kernels SA(t), A ∈ {E, I}, one can
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equivalently compute the synaptic currents by introducing supplementary
variables JAE , JAI ,

τEd
dIsynAE

dt
(x, t) = −IsynAE (x, t) + JAE(x, t), (16)

τEr
dJAE
dt

(x, t) = −JAE(x, t) + wAE
∑
y

C(x− y)rE(y, t− τEl −D|x− y|))

τ Id
dIsynAI

dt
(x, t) = −IsynAI (x, t) + JAI(x, t), (17)

τ Ir
dJAI
dt

(x, t) = −JAI(x, t) + wAIrI(x, t− τ Il )

In Eq. (13) or (16), the probability that an excitatory neuron at position
y targets a neuron at position x is represented by the function C(x − y)
normalized such that, ∑

x

C(x) = 1 (18)

The delay, D|x−y| accounts for the signal propagation time along hori-
zontal non-myelinated fibers in the motor cortex. The mathematical expres-
sions below are written for a general function C(x). For all the numerical
computations, except those shown in Fig. 4, the following isotropic Gaussian
function is taken,

C(x) =
1

Z
exp(−|x|2/l2), Z =

∑
x

exp(−|x|2/l2) (19)

In Fig. 4, we consider instead the anisotropic function,

C(x) =
1

Z
exp(−x2/l2x − y2/l2y], Z =

∑
x

exp(−x2/l2x − y2/l2y) (20)

with x = (x, y).

Theoretical analysis

Our analysis starts by considering the deterministic version of the model de-
scribed by Eq. (8)-(17). That is, the limit NE →∞, NI →∞, in which the
amplitudes of the stochastic terms vanish in Eq. (10). All module popula-
tions are supposed to fire steadily in time at constant rates rsE and rsI . This
requires external inputs that are constant in time, i.e. with σextE = σextI = 0
(Eq. (11)), and of specific magnitudes that we first determine.

We then assess the stability of this steady state. This provides the bifur-
cation diagrams of Fig. 1. When the steady state is stable, we compute the
effect of fluctuations arising both from the finite number of neurons in each
E-I module and from the time-variation of the external inputs. This pro-
vides the analytic curves for the power spectra and correlations of currents,
shown in Fig. 2, S2, and S4.
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Steady state

We consider first the steady state of the deterministic network in which
excitatory populations and inhibitory populations are firing at constant rates
rsE and rsI , independently of time and module position, with

rsA = ΦA(IsA), A ∈ {E, I} (21)

In this state, the synaptic currents in the different populations are ob-
viously also independent of time and position. Given the normalization
conditions (Eq. (15), (18)) they simply read,

IsynAB (x, t) = Isyn,sAB = wABr
s
B, A ∈ {E, I}, B ∈ {E, I} (22)

From the model definition (Eq. (8), (9)), these firing rates are produced
by constant external inputs of magnitudes,

IextA (x, t) = Iext,sA = IsA − wAE rsE + wAI r
s
I , A ∈ {E, I} (23)

Bifurcation lines

The stability of the steady firing state can be assessed by imposing the
constant external currents (Eq. (23)) and computing the dynamics of small
perturbations around the steady state. To this end, we linearize Eq. (8)-(17)
and look for solutions that are oscillatory in space and exponential in time,

IE(x, t) = IsE + δIE(x, t), IE(x, t) = δ̃IE(q, σ) exp(σt+ iq · x) (24)

with similar expansions for the other variables. Substitution in the ex-
plicit formulas (Eq. (14)), or in the corresponding differential equations
(Eq. (16,17)), provides the expression of the synaptic current in term of
the module activities,

δ̃I
syn
AB (q, σ) = wABCl(q, σ)S̃B(σ)δ̃IB(q, σ) (25)

where S̃E(σ) and S̃I(σ) are the Laplace transforms of SE(t) and SI(t),

S̃A(σ) =
exp(−στAl )

(1 + στAr )(1 + στAd )
, A ∈ {E, I} (26)

Substitution of Eq. (25), in the linearized Eq. (8, 9) gives

L̃EI(q, σ) · δ̃I(q, σ) = 0 (27)

The matrix L̃EI(q, σ) reads, 1 + στE − αC(q, σ)S̃E(σ) wEIΦ
′
I(I

s
I )S̃I(σ)

−wIEΦ′E(IsE)C(q, σ)S̃E(σ) 1 + στI + γS̃I(σ)

 (28)
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where the function C(q, σ) is the Fourier transform of the coupling function
with propagation delays taken into account,

C(q, σ) =
∑
x

exp[−iq · x− σ|x|D]C(|x|) (29)

In Eq. (28) and in the following, the short-hand notation τE (resp. τI)
is used for τE(IsE) (resp. τI(I

s
I )). The existence of a non-trivial solution of

Eq. (27) requires that the determinant, W (q, σ), of the matrix L̃EI(q, σ)
vanishes, i.e.

W (q, σ) =
[
1− αC(q, σ)T̃E(σ)

] [
1 + γT̃I(σ))

]
+ βC(q, σ)T̃E(σ)T̃I(σ) = 0

(30)

with the functions T̃E(σ), T̃I(σ), defined by,

T̃A(σ) =
S̃A(σ)

1 + τAσ
, A ∈ {E, I} (31)

The constants α and γ respectively measure the gain of monosynaptic
recurrent excitation and inhibition while β measures the gain of disynaptic
recurrent inhibition,

α = wEEΦ′E(IsE), β = wIEwEIΦ
′
E(IsE)Φ′I(I

s
I ), γ = wIIΦ

′
I(I

s
I ) (32)

where Φ′A(I) denotes the derivative of ΦA with respect to I.
The oscillatory instability, or “Hopf bifurcation”, line, corresponds to

the parameters for which the growth rate is purely imaginary, σ = iω. It
is obtained in parametric form, with α and β as functions of the frequency
ω (and of the recurrent inhibition γ) by separating the real and imaginary
parts of Eq. (30) and solving the resulting linear equations, for α and β.
This gives,

α =
Im
{
C(q, iω)

[
T̃I(iω)T̃E(iω) + γ|T̃I(iω)|2T̃E(iω)

]}
|C(q, iω)|2 |T̃E(iω)|2 Im[T̃I(iω)]

(33)

β =
Im
[
C(q, iω)T̃E(iω)

]
|1 + γT̃I(iω)|2

|C(q, iω)|2 |T̃E(iω)|2 Im[T̃I(iω)]

The instability first appears at long wavelengths, namely at q = 0 on
a large enough lattice. The expressions (33) with q = 0 have been used to
draw the diagram of Fig. 1b.

Besides this oscillatory instability, there is a possible loss of stability to-
wards a high firing rate state. It is obtained when the growth rate σ changes
with parameter variation from being real negative to real positive i.e. for
parameters such that W (q, 0) = 0. Since at the ’real’ instability threshold,
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the instability growth rate vanishes, the instability line is independent of
the synaptic current kinetics. One indeed checks from Eq. (26, 31) that
T̃E(σ) = 1. Thus, Eq. (30) gives for the real instability line for a given
wavevector q.

β = [α− 1

C(q, 0)
][1 + γ], and β = (α− 1)(1 + γ) when q = 0 (34)

Since C(q, 0) < 1 when q does not vanish, the instability appears first
at q = 0 with C(0, 0) = 1 when all the modules are in the exact same state.

The expressions (33, 34) with q = 0 have been used to draw the dia-
gram of Fig. 1b. The diagram of Fig. 1f is similarly obtained by computing
the external inputs corresponding to different steady discharges, for fixed
synaptic parameters, and assessing the stability of these states from their
position with respect to the stability lines (33) and (34). We have taken the
synaptic strength of external inputs such that the network operating point
crosses the oscillatory bifurcation line when the external input amplitude
varies,

wextE = wEE , w
ext
I = 2wIE (35)

Auto and cross-correlations of module activities and power spec-
trum

We consider the network described by Eq. (8, 9) with the kinetics of the
synaptic currents given by Eq. (14). We include the stochastic effects arising
from the finite number of neurons in each module by using the stochastic
description (Eq. (10)) of the instantaneous firing rates of the excitatory and
inhibitory module neuronal populations. We also include external input
fluctuations as described by Eq. (11,12).

We treat these two kinds of stochastic effects as perturbations of the
steady dynamics and fully characterize the stochastic dynamics of the net-
work at the linear level.

Linearizing Eq. (8, 9) around their steady values gives,

IE(x, t) = IsE + δIE(x, t), II(x, t) = IsI + δII(x, t) (36)

Translation invariance leads us to search for δIE and δII in Fourier space,

δIE(x, t) =

∫ +π

−π

∫ +π

−π

dqx
2π

dqy
2π

∫ +∞

−∞

dω

2π
δ̃IE(q, ω) exp[i(q · x + ωt)] (37)

with an analogous expansion for δII .
The linearized Eq. (8, 9) then read, with a vectorial notation

L̃EI(q, iω) · δ̃I(q, iω) = F(q, iω) (38)
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where the 2×2 matrix L̃EI(q, iω) is given in Eq. (28). The two components
of the stochastic forcing term F(q, iω) read,

FA(q, iω) = wAEC(q, iω)S̃E(iω)

√
rsE
NE

ξ̃E(q, ω) (39)

− wAI S̃I(iω)

√
rsI
NI

ξ̃I(q, ω) + σextA η̃(q, ω), A ∈ {E, I}

where σextA is given by Eq. (11) and (35). Solution of the linear system (38)
provides the expression of the Fourier components of the currents. For the
excitatory current, one obtains,

δ̃IE(q, ω) =
1

(1 + iωτE)

VE(q, iω)

W (q, iω)
(40)

with W (q, iω) defined in Eq. (30) and VE(q, iω) given by,

VE(q, iω) = FE(q, iω)
[
1 + γT̃I(iω)

]
− FI(q, iω)wEIΦ

′
I T̃I(iω) (41)

The Fourier components of the input fluctuations read,

η̃(q, ω) =

√
τext

1 + iωτext

[√
1− c ξ̃(q, ω) +

√
c (2π)2δ2(q), ξ̃g(ω)

]
(42)

with the white noise averages,

〈ξ̃(q, ω)ξ̃∗(q′, ω′)〉 = (2π)3δ(ω − ω′)δ2(q− q′) 〈ξ̃g(ω)ξ̃∗g(ω′)〉 = 2πδ(ω − ω′)
(43)

The short-hand notation δ2(q) has been used for the two-dimensional
δ-function δ(qx)δ(qy). Similarly, one has for the finite size noise averages.

〈ξ̃E(q, ω)ξ̃∗E(q′, ω′)〉 = 〈ξ̃I(q, ω)ξ̃∗I (q′, ω′)〉 = (2π)3δ(ω − ω′)δ2(q− q′) (44)

The current-current correlation function is obtained by averaging the
product of the currents (Eq. (40)) over the noise with the help of Eq. (43,44).
One obtains,

〈δ̃IE(q, ω)δ̃I
∗
E(q′, ω′)〉 = 2πδ(ω − ω′){(2π)2δ2(q− q′)SNEE(q, ω) (45)

+ [(1− c)(2π)2δ2(q− q′) + c(2π)4δ2(q)δ2(q′)]SextEE(q, ω)}

with

SextEE(q, ω) =
τext

∣∣∣σextE + (γσextE − σextI wEIΦ
′
I)T̃I(iω)

∣∣∣2
[1 + (ωτext)2][1 + (ωτE)2]|W (q, iω)|2

(46)
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and

SNEE(q, ω) =
1

|W (q, iω)|2

{
rsE
NE

w2
EE

∣∣∣∣1 + (γ − β

α
)T̃I(iω)

∣∣∣∣2 ∣∣∣C(q, iω)T̃E(iω)
∣∣∣2

+
rsI
NI

w2
EI

∣∣∣S̃I(iω)
∣∣∣2

1 + (ωτE)2

 (47)

This provides the expression of the current-current correlation in real
space,

〈δ̃IE(x, t)δ̃IE(x′, t′)〉 =

∫ +∞

−∞

dω

2π
exp[iω(t− t′)]

{
c SextEE(0, ω) (48)

+

∫ +π

−π

∫ +π

−π

dqx
2π

dqy
2π

[
(1− c)SextEE(q, ω) + SNEE(q, ω)

]
exp[iq · (x− x′)]

}
One can check that the cross-correlation is a real function, as it should,

since SextEE and SNEE are related to their complex conjugates by Sext ∗EE (q, ω) =
SextEE(−q,−ω) and SN ∗EE (q, ω) = SNEE(−q,−ω), a symmetry inherited from
the function C(q, ω) (Eq. (29)).

Taking coincident points (i.e. x = x′) in the current-current correlation
(Eq. (48)) gives IE current auto-correlation for a local module in the net-
work. Remembering that the auto-correlation is the Fourier transform of
the spectrum, this provides the spectrum S(ω) of a local module excitatory
current time series,

S(ω) = c SextEE(0, ω) +

∫ +π

−π

∫ +π

−π

dqx
2π

dqy
2π

[
(1− c)SextEE(q, ω) + SNEE(q, ω)

]
(49)

We take the local module excitatory current as a proxy for the LFP.
Eq. (48) and (49) have been used to draw the theoretical lines for current-
current correlations and power spectra in Fig. 2, S2, and S4.

Simulations

The mathematical model defined in section Model was numerically simu-
lated. We used a 28 × 28 grid of E-I modules. Two external layers of with
E-I populations at their fixed points were added as boundary conditions.
Measurements were only performed in the center square 10×10 grid to min-
imize boundary effects. A sketch of the grid is shown in Fig. S10. Model
distributions and averages in all figures were obtained by performing 20
independent network simulations of 10 s simulated time each.

The reference parameters for all simulations are provided in Table 1.
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Simulations were performed with a custom C program using a first-order
Euler-Maruyama integration method, with a time step dt = 0.01 ms. Python
programs were used for data analysis and to draw the figures. All simulations
were performed on ECNU computer clusters.
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Horizontal propagation of visual activity in the synaptic integration
field of area 17 neurons. Science, 283(5402):695–699, 1999.

28

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 17, 2022. ; https://doi.org/10.1101/2022.06.15.496263doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.15.496263
http://creativecommons.org/licenses/by-nc-nd/4.0/


[40] Zachary W Davis, Lyle Muller, Julio Martinez-Trujillo, Terrence Se-
jnowski, and John H Reynolds. Spontaneous travelling cortical waves
gate perception in behaving primates. Nature, 587(7834):432–436, 2020.

[41] Bard Ermentrout, Jorge Flores, and Alan Gelperin. Minimal model
of oscillations and waves in the limax olfactory lobe with tests of the
model’s predictive power. Journal of neurophysiology, 79(5):2677–2689,
1998.

[42] L. Muller, G. Piantoni, D. Koller, S. S. Cash, E. Halgren, and T. J.
Sejnowski. Rotating waves during human sleep spindles organize global
patterns of activity that repeat precisely through the night. Elife, 5, 11
2016.

[43] Zachary W Davis, Gabriel B Benigno, Charlee Fletterman, Theo Des-
bordes, Christopher Steward, Terrence J Sejnowski, John H Reynolds,
and Lyle Muller. Spontaneous traveling waves naturally emerge from
horizontal fiber time delays and travel through locally asynchronous-
irregular states. Nature Communications, 12(1):1–16, 2021.

[44] Ian Greenhouse, Ana Sias, Ludovica Labruna, and Richard B Ivry.
Nonspecific inhibition of the motor system during response preparation.
Journal of Neuroscience, 35(30):10675–10684, 2015.

[45] Bryan M Hooks, Tianyi Mao, Diego A Gutnisky, Naoki Yamawaki,
Karel Svoboda, and Gordon MG Shepherd. Organization of cortical and
thalamic input to pyramidal neurons in mouse motor cortex. Journal
of Neuroscience, 33(2):748–760, 2013.

[46] Edward G Jones. The thalamic matrix and thalamocortical synchrony.
Trends in neurosciences, 24(10):595–601, 2001.

[47] Matthew T Kaufman, Mark M Churchland, Stephen I Ryu, and Kr-
ishna V Shenoy. Cortical activity in the null space: permitting prepa-
ration without movement. Nature neuroscience, 17(3):440–448, 2014.

[48] Jing Wang, Devika Narain, Eghbal A Hosseini, and Mehrdad Jazay-
eri. Flexible timing by temporal scaling of cortical responses. Nature
neuroscience, 21(1):102–110, 2018.

[49] Andrew J Zimnik and Mark M Churchland. Independent generation
of sequence elements by motor cortex. Nature neuroscience, 24(3):412–
424, 2021.

[50] Hidehiko K Inagaki, Susu Chen, Margreet C Ridder, Pankaj Sah, Nuo
Li, Zidan Yang, Hana Hasanbegovic, Zhenyu Gao, Charles R Gerfen,
and Karel Svoboda. A midbrain-thalamus-cortex circuit reorganizes
cortical dynamics to initiate movement. Cell, 185(6):1065–1081, 2022.

29

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 17, 2022. ; https://doi.org/10.1101/2022.06.15.496263doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.15.496263
http://creativecommons.org/licenses/by-nc-nd/4.0/


[51] Ludovica Bachschmid-Romano, Nicholas G Hatsopoulos, and Nicolas
Brunel. Interplay between external inputs and recurrent dynamics dur-
ing movement preparation and execution in a network model of motor
cortex. bioRxiv, 2022.

[52] Gerd Tinkhauser, Alek Pogosyan, Simon Little, Martijn Beudel,
Damian M Herz, Huiling Tan, and Peter Brown. The modulatory ef-
fect of adaptive deep brain stimulation on beta bursts in parkinson’s
disease. Brain, 140(4):1053–1067, 2017.

[53] Anthony E Perry and Min S Chong. A description of eddying motions
and flow patterns using critical-point concepts. Annual Review of Fluid
Mechanics, 19(1):125–155, 1987.

[54] Paulina Anna Dabrowska, Nicole Voges, Michael von Papen, Junji Ito,
David Dahmen, Alexa Riehle, Thomas Brochier, and Sonja Grün. On
the complexity of resting state spiking activity in monkey motor cortex.
Cerebral cortex communications, 2(3):tgab033, 2021.

30

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 17, 2022. ; https://doi.org/10.1101/2022.06.15.496263doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.15.496263
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure captions

31

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 17, 2022. ; https://doi.org/10.1101/2022.06.15.496263doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.15.496263
http://creativecommons.org/licenses/by-nc-nd/4.0/


wEE
wIE
wII
wEI

E I

E IE I

E I

E I
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Figure 1: Model of neural network generating beta oscilla-
tions. (a) Schematic depiction of the model with excitatory neu-
rons (blue), inhibitory neurons (red), independent external inputs
on each module (“local”, purple) and inputs common to all mod-
ules (“global”, orange). (b) Different dynamical regimes for fixed
firing rates of the excitatory and inhibitory populations (rsE = 5 Hz,
rsI = 10 Hz), as a function of the strengths of recurrent excitation
(α) and of feedback inhibition through the E-I loop (β) as defined
in Eq. (32). The oscillatory instability line for D = 1.3 ms (solid
black) and D = 0 ms (dashed black) and the line of ‘real instability’
(short-dashed black) are shown. Color around the oscillatory line
indicates the frequency of oscillation at threshold at each point. (c)
Time series of the firing rate for the E (blue) and I (red) module
populations at the SN (thick lines) and at the ON (thin lines with
symbols) points. E and I population activities become steady at the
SN point and display regular oscillations at the ON point. (d) Same
data as in (c) for SN (blue) and ON (green) parameters but with
rE plotted as a function of rI . (e) Firing rates of the E (top) and
I (middle) populations for SN parameters when the external inputs
are varied and (bottom) along the solid lines in top and middle pan-
els when only the external input on the inhibitory population IextI

is varied (E blue, I red). The dashed parts of the line correspond to
unstable steady states. (f) Different dynamical regimes as a function
of the mean strength of external inputs for SN. The variation of the
external inputs on each population is also shown (solid black line)
when the strength of the external input is varied. (g) Example of
E and I activity time traces when the external inputs vary in time
along the solid dark line in (f). (h) Same data as in (f) but with rE
plotted as a function of rI . Model parameters correspond to SN and
ON in Table 1. 32
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Figure 2: Single electrode recordings vs. model E-I module
dynamics with fluctuating inputs. (a)-(h) Monkey L recordings
[13], (i)-(p) Model simulations. (a)-(b) Two examples of single trials
spectrograms of a single electrode LFP during the preparatory period
(the CUE-OFF to GO period in Fig. S1). (c) Spectrogram averaged
over different trials and different electrodes. (d) Power spectrum of
single electrode LFP averaged over all electrodes. (e) Distribution
of beta oscillation amplitudes. The amplitude of oscillation corre-
sponding to the beta burst are shown in darker color. (f) Distribution
of beta burst duration. (g) Average LFP cross-correlation between
two electrodes as a function of their distance. (h) Auto correlation
of single LFP time series averaged over trials and electrodes. (i)-(p)
Corresponding model figures. (i)-(j) Two examples of single modules
spectrograms of IE 1 s time series. (k) Average IE time series spec-
trogram. (i) Corresponding power spectrum. (o) Cross-correlations
between different modules IE times series as a function of their dis-
tance, for different c fractions of global (i.e shared) external inputs,
c = 0.4 (solid), c = 0.1 (dashed) and c = 0.7 (dashed-dotted). (p)
Auto correlation of single module IE time series for the different
fractions c in (o). Model parameters correspond to SN in Table 1.
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Figure 3: Waves in recordings and in model simulations. (a)-
(f) Monkey L recordings [13], (g)-(l) Model simulations with SN
parameters. (a) Snapshot of a planar wave. The phases of the LFP
on the different electrodes are shown in color. Phase isolines are also
shown (thin dark lines). (b) Distribution of phase gradients on the
multielectrode array in (a) Note the high coherence of the phase gra-
dients ( σg = 0.61). (c) Example of a radial wave with LFP phases
and isolines displayed as in (a). (d) Corresponding distribution of
phase gradients ( σg = 0.13). (e) Distribution over time and trials of
measured planar wave speeds. (f) Proportion over time and trials of
different wave types. (g)-(l) Corresponding model simulations. (g)
Snapshot of a planar wave showing the IE phases of different mod-
ules. (h) Distribution of IE phase gradients (σg = 0.51) in (g). (i)
Snapshot of a radial wave. (j) Distribution of phase gradients in (i)
(σg = 0.13). (k) Distribution of planar wave speeds. (l) Proportions
of different wave types.
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Figure 4: Influence of connectivity anisotropy on planar
wave propagation direction. (a)-(c) Model simulations with an
isotropic connectivity as in the previous figures. (a) The function
C(x,y) is shown (with x arbitrarily chosen at position (7,6)). (b)
Proportion of different wave types. (c) Distribution of propaga-
tion directions of planar waves. (d) The chosen anisotropic function
C(x,y) is shown (with x again chosen as (7,6)). (e) Proportion of
different wave types. (f) Distribution of propagation directions of
planar waves. The planar waves predominantly propagates along
the x-axis, the axis along which C decreases the fastest.
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Table

Parameters

Symbol Value Unit Definition

SN SN’ ON SN0

rsE , r
s
I 5,10 Hz Steady firing rates

IsE , I
s
I -6.28,-3.62 mV Currents at rsE , r

s
I

τ sE , τ
s
I 8.74,7.14 ms Adaptive membrane time constant at rsE , r

s
I

Φ
′
E(IsE),Φ

′
I(I

s
I ) 1.46,2.30 Firing rate gains at rsE , r

s
I

τEr , τ
I
r 0.70 ms Rise time of synaptic currents

τEd , τ
I
d 3.50 ms Decay time of synaptic currents

τEl , τ
I
l 0.50 ms Latency of synaptic currents

l 2 Excitatory connectivity range

NE , NI 16000, 4000 Neuron numbers in each E-I module

τext 25 ms Correlation time of external input fluctuations

νext 2 Hz External input amplitude fluctuations

Iext,0E , Iext,0I 9.72,0.08 6.12,0.08 13.72,0.08 5.72,0.08 mV External currents

wextE 0.96 1.12 0.96 1.20 mV·s External input onto excitatory neurons synaptic coupling strength

wextI 4.16 3.60 4.96 3.60 mV·s External input onto inhibitory neurons synaptic coupling strength

wII 0.87 0.87 0.87 0.87 mV·s Recurrent synaptic coupling strength (I to I)

wIE 1 1 1 1 mV·s Recurrent synaptic coupling strength (E to I)

wEE 0.96 1.12 0.96 1.20 mV·s Recurrent synaptic coupling strength (E to E)

wEI 2.08 1.80 2.48 1.80 mV·s Recurrent synaptic coupling strength (I to E)

D 1.30 1.30 1.30 0 ms Propagation delay between to nearest E-I modules

c 0.40 0.30 0.40 0.30 Proportion of global external inputs

Table 1: Parameter table.
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Figure S1: Recording data, LFP and single unit characteristics. Monkey L(a)-(b) and
Monkey N (c)-(d). (a)(c) Different periods of the experiments. We focus here on the data
between CUE-OFF and GO, the movement “preparatory period”. (b)(d) Characteristics of
the single units spike sorted in [13] (monkey L, 93 units; monkey N, 156 units). Following
Dabrowska et al.[54], spikes of width smaller than 0.4 ms were classified as Narrow Spike
units (NS)/ putative interneurons (monkey L, 73 units; monkey N, 54 units) and spike of
width larger than 0.41 ms were classified as Broad Spike units (BS)/ putative pyramidal cells
(monkey L, 12 units; monkey N, 97 units) (units with spike width between 0.40 and 0.41 ms
are not classified).
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Figure S2: Beta bursts and power spectra for monkey N. Same as Fig. 2. Model
parameters correspond to SN’ in Table 1.
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Figure S3: Data analysis: filtering and burst amplitude threshold. Electrode posi-
tions and numbering in [13] for (a) monkey L (b) monkey N. The blue squares indicates the
positions of the dead electrodes. (c)-(e) Illustration of data analysis. (c) 1 s of single elec-
trode signal (monkey N, electrode 7, trial 1). (d) Same signal after bandpass filtering. The
amplitude threshold used to define the beta bursts is indicated (dashed red line). The corre-
sponding beta bursts themselves correspond to the shaded blue regions (d). (e) Spectrogram
of the signal in (c).
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Figure S4: Model power spectra and beta bursts as a function of the external
input parameters. (a)-(i) SN parameters, (j)-(r) ON parameters. (a)(j) Power spectra
for different numbers of neurons N in each module corresponding to different levels of intrinsic
noise without fluctuations of external inputs. For the SN parameters, the analytical formula
Eq. (49) is also shown (solid lines). (b)(k) Power spectra multiplied by the number of neurons
N. In this range of amplitude, the power spectra have the same shape when normalized
by the amplitude of the stochastic fluctuations. (c)(l) Influence on the power spectra of
the amplitude νext of external input fluctuations. (d)(m) Power spectra divided by ν2

ext.
(e)(f),(n)(o) Influence on the power spectra of the correlation time τext for two amplitudes
of external input fluctuations. (g)(p) Influence on the beta burst duration of the correlation
time τext of external input fluctuations. Distribution of beta burst amplitudes (h)(q) and
durations (i)(r) for two amplitudes νext of external input fluctuations. Parameters of the
input that are not explicitly varied as well as the network parameters for models SN and ON
are given in Table 1.
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Figure S5: Data analysis protocol. See Methods for a description of the different steps.
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Figure S6: Waves in model simulations and in recordings for monkey N. Same as
Fig. 4. (b) σg = 0.59. (d) σg = 0.10. (h) σg = 0.53. (j) σg = 0.23.
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Figure S7: Variation of wave type distribution and planar wave speed with the
amplitude of the external input fluctuations (νext). (a) SN parameters. (b) ON
parameters.
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Figure S8: Model with no propagation delay. (a) Single module IE power spectrum.
(b) Single module IE auto correlation. (c) IE cross-correlation as a function of module
distance. (d) Distribution of beta burst duration. (e) Proportion of different wave types. (f)
Distribution of speeds of planar waves. Model parameters correspond to SN0 in Table 1.
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Figure S9: Rate model f-I curve and adaptive time scale. (a) f-I curve. Insert : zoom
on the 0− 100 Hz part. (b) Adaptive time scale. The data corresponding to these curves are
provided in Source data.
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Figure S10: Numerical simulation grid. Different E-I modules (disk) are placed at the
center of the different squares. The discharge rates of the E-I populations in two most
external layers (gray disks) are fixed at their steady state values. The other modules (black
disks) in the 24 × 24 central array are simulated. Only the modules in the 10 × 10 central
array (blue squares) are used for the different signal measurements.
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