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ABSTRACT 27 

As biomass dynamics capture information on population dynamics and ecosystem-level 28 

processes (e.g., changes in production over time), understanding how rising temperatures 29 

associated with global climate change influence biomass dynamics is a pressing issue in ecology. 30 

The total biomass of a species depends on its density and its average mass. Disentangling how 31 

biomass dynamics may respond to increasingly warm and variable temperatures may thus 32 

ultimately depend on understanding how temperature influences both density and mass 33 

dynamics. Here, we address this issue by keeping track of experimental microbial populations 34 

growing to carrying capacity for 15 days at two different temperatures in the presence and 35 

absence of temperature variability. We show that temperature influences biomass through its 36 

effects on density and mass dynamics, which have opposite effects on biomass and can offset 37 

each other. We also show that temperature variability influences biomass, but that effect is 38 

independent of any effects on density or mass dynamics. Last, we show that reciprocal effects of 39 

density and mass shift significantly across temperature regimes, suggesting that rapid and 40 

environment-dependent eco-phenotypic dynamics underlie biomass responses. Overall, our 41 

results connect temperature effects on population and phenotypic dynamics to explain how 42 

biomass responds to temperature regimes, thus shedding light on processes at play in 43 

cosmopolitan and massively abundant microbes as the world experiences increasingly hot and 44 

variable temperatures. 45 

 46 

KEYWORDS: Biomass, Temperature, Temperature size rule, Temperature effects, Warming  47 

 48 

 49 
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INTRODUCTION 50 

Understanding the biotic and abiotic factors that influence ecosystem function is a central goal of 51 

ecology (Giller and O’Donovan 2002, Srivastava and Vellend 2005, Begon et al. 2006). While 52 

censusing species presence/absence and abundances (or densities) provides a window into the 53 

overall structure of a community (e.g., composition, richness, evenness, diversity), species 54 

abundances alone do not contain information on the ecosystem-level functions performed by that 55 

community. However, tracking biomass (or biomass density) over time –i.e., the total mass of all 56 

individuals of a species or community (per unit area, if biomass density)– provides information 57 

on production within trophic levels, and comparing biomass across trophic levels can yield 58 

information on energy transfers within a food web (McKie and Malmqvist 2009, Trebilco et al. 59 

2013, D'Alelio et al. 2016, Barneche et al. 2021). Because of that, biomass is a central concept 60 

that both describes the state of an ecosystem and provides information on ecosystem-level 61 

processes that influence overall function like production or energy transfers (Hatton et al. 2015). 62 

As the planet warms, the structural and dynamical responses of ecosystems are reflected 63 

in changes in biomass (Kortsch et al. 2015, Ullah et al. 2018, Bartley et al. 2019, Gibert 2019, 64 

Barbour and Gibert 2021). For example, the biomasses of multiple taxa have been shown to 65 

decline with temperature across systems (O'Connor et al. 2009, Carr et al. 2018, Larjavaara et al. 66 

2021). However, biomass declines are not universal (Lin et al. 2010) and the mechanisms 67 

through which warming influences species biomass are not well understood. Intuitively, because 68 

biomass is the sum of the mass of all individuals in a species, it is possible to decompose 69 

biomass into two main components: species’ average masses and species’ abundances 70 

(densities). Indeed, biomass is often estimated in the field as the product of the average mass of 71 

the individuals of a population and their abundance (or density). Consequently, any effects of 72 
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temperature on biomass should, at their core, result from temperature effects on the 73 

abundance/density of a species or its average body size/mass.  74 

 Body size is an important functional trait that determines metabolic rates (Gillooly et al. 75 

2001, Brown et al. 2004), demographic parameters (Savage et al. 2004, DeLong and Hanson 76 

2009, Wieczynski et al. 2021), species interactions (DeLong 2014, DeLong et al. 2014, DeLong 77 

et al. 2015), and even community and ecosystem-level structure and processes (Allen et al. 2005, 78 

Gibert and DeLong 2014, Schramski et al. 2015, Wieczynski et al. 2021). Increasing temperature 79 

generally reduces individual body sizes, an effect called the ‘temperature-size rule’ (TSR) that is 80 

pervasive across systems and taxa (Atkinson 1994, Atkinson 1995, Atkinson et al. 2003, Forster 81 

et al. 2012). For these reasons, body size and the temperature-size rule have clear consequences 82 

for changes in biomass across all levels of ecological organization in a warming world (Brose et 83 

al. 2012). 84 

 How temperature influences the other component of biomass –density– is less clear. The 85 

Metabolic Theory of Ecology predicts that warming should decrease species’ carrying capacities 86 

–the maximum density attainable in a given environment– but proof of that decline remained 87 

elusive until recently. Data-tested theoretical work has now shown that carrying capacity indeed 88 

declines with temperature, but this effect can only be understood by integrating associated effects 89 

on body size via the TSR (Bernhardt et al. 2018). Moreover, while carrying capacities may 90 

indeed decline with temperature, it is unlikely that all species within a community will be at 91 

carrying capacity at any given moment—rather transient, non-equilibrium dynamics are expected 92 

(Hastings et al. 2018). Thus, addressing whether and how non-equilibrium densities are impacted 93 

by temperature is important for understanding how temperature influences biomass. 94 
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 Last, body size can influence population growth, and hence densities, through 95 

relationships with demographic parameters like carrying capacity (K) and the intrinsic growth 96 

rate (r) (Damuth 1981, Savage et al. 2004, DeLong et al. 2015). On the flip side, population 97 

dynamics could, in theory, also influence body size, through associated effects on resource 98 

levels, but these effects are less well understood. Recent work has shown that, as populations 99 

grow to carrying capacity, rapid changes in body size can have a stronger effect on changes in 100 

density than the other way around, suggesting important –albeit asymmetric– feedbacks between 101 

population density and body size (Gibert et al. 2022). But how these reciprocal effects change 102 

with temperature, or how they may influence biomass responses to warming, is not known. 103 

 Here, we tackle these unknowns by addressing the following questions: 1) How is 104 

biomass affected by temperature and temperature variability as a species grows to carrying 105 

capacity? 2) To what extent are the effects of temperature on biomass dependent on how density 106 

and body size dynamics respond to temperature? 3) Does density or body size have a stronger 107 

effect on biomass responses to temperature? And, 4) do the reciprocal impacts of density and 108 

body size vary across temperature regimes? To address these questions, we recorded time series 109 

of population dynamics in a microbial species and tracked changes in total biomass, density, and 110 

body size in four different temperature regimes: constant 22ºC, constant 25ºC, and both 111 

temperatures with fluctuations. We derive a simple mathematical expression to partition the 112 

contribution of changes in density and body size to changes in biomass and assess how 113 

temperature responses in either one influence biomass shifts. Last, we use time series analyses to 114 

assess whether and how reciprocal effects of density and body size on biomass vary across 115 

temperature regimes.     116 

 117 
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METHODS 118 

Microcosm growth assays 119 

We grew populations of the protist Tetrahymena pyriformis for 15 days at various temperature 120 

treatments. To do so, we set up 24 experimental microcosms in 250 mL autoclaved borosilicate 121 

jars containing 200 mL of Carolina protist pellet media (1L of autoclaved DI water per pellet) 122 

previously inoculated with pond bacteria from Duke Forest (Gate 9/Wilbur pond, Lat=36.02°, 123 

Long=-78.99°, Durham, NC) and a wheat seed as a carbon source for the bacteria (Altermatt et 124 

al. 2015). All microcosms were started at 10 ind/mL protist densities and incubated in humidity-125 

controlled (65% humidity) growth chambers (Percival AL-22L2, Percival Scientific, Perry, 126 

Iowa) on a 12hr night/day cycle. The entire replicated timeseries is therefore composed of 360 127 

data points. 128 

 The 24 microcosms were subdivided into 4 experimental treatments: constant 22ºC, 129 

constant 25ºC, variable 22ºC or variable 25ºC. Temperature variability was programmed into our 130 

growth chambers to keep an average temperature of either 22ºC or 25ºC, but to fluctuate between 131 

two temperatures that were ±1.5ºC of the average every 12 hours, therefore imposing variability 132 

with a thermal amplitude of 3 ºC. A microcosm in the variable 22ºC treatment thus spent half of 133 

the day at 19.5ºC and half of the day at 23.5ºC while one in the variable 25ºC spent half of the 134 

day at 23.5ºC and half of the day at 26.5ºC. At each temperature change, temperature ramped 135 

up/down for roughly 15 minutes. Neither water nor nutrients were replaced throughout the 136 

course of this experiment. From now on we call these temperature treatments constant’ (C) and 137 

‘variable’ (V). 138 

 139 

Density, mass, and biomass estimates 140 
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Densities (ind/mL) and trait dynamics were tracked daily for 15 days through fluid imaging of 1 141 

mL subsamples of each microcosm (Fig 1a, FlowCam, Fluid Imaging Technologies, 142 

Scarborough, ME, USA). The FlowCam captures images of particles ranging from 5-10 µm to 143 

2mm in length. The procedure produced ~ 450k cell images, thus providing us a unique window 144 

into how biomass, density, and body size, changed together over the course of this experiment. 145 

Density was quantified as cell counts per volume sampled. Cell mass was quantified as the 146 

product of cell volume (as the volume of a spheroid, in µm3) and water density (1 g/cm3, or 10-147 

12 g/µm3). Sample biomass was measured as the sum of the masses of all individuals per sample 148 

(in grams, g). However, the FlowCam can only census a fraction of each water sample. This 149 

determines the efficiency of the machine (in our case ~ 0.33). Because of that, total biomass 150 

needs to be corrected by the efficiency, as the observed number of individuals is a fraction of the 151 

total that actually occur in our water samples. To do so, we linearly transform sample biomass 152 

according to the observed relationship between the number of cell images and the actual 153 

densities as detailed in Appendix 1. True biomass is therefore the observed biomass divided by 154 

the sampling efficiency. 155 

 156 

Statistical analyses 157 

To assess how temperature regimes influenced biomass, density and mass dynamics, we used 158 

Generalized Additive Mixed Models (GAMMs) with biomass, density, or mass as the response 159 

variables, day is a smooth term, both temperature and the presence and absence of variation as 160 

discrete predictors, and jar replicate as a random intercept. Additionally, because time series are 161 

necessarily sampled in a repeated fashion within each replicate, temporal autocorrelation may 162 

exist. To account for this temporal autocorrelation, we included an Autoregressive Moving 163 
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Average (ARMA) correlation structure of order one in our GAMMs using the R package mgcv 164 

v.1.8 (Wood 2011, Wood et al. 2016). 165 

 While GAMM yields a good understanding of how time and treatments influence 166 

dynamics, a finer understanding is possible by assessing what specific aspects of the dynamics 167 

may have been influenced by the treatments. First, we assessed whether the imposed treatments 168 

in any way influenced the peak observed biomass by running a multiple linear regression (‘lm’ 169 

function in base R (R Core Team 2013)) with peak biomass (i.e., from days 3 to 5) as the 170 

response variable and both additive and interactive effects of temperature and the 171 

presence/absence of fluctuations as predictors. To quantify which differences between treatments 172 

were significant, we also ran a separate ANOVA with a post-hoc Tukey test (‘aov’ and 173 

‘TukeyHSD’ functions in base R (R Core Team 2013)) with peak biomass (i.e., from days 3 to 5) 174 

as the response variable and all four temperature treatments as separate predictors. We used the 175 

same statistical methods to assess whether demographic parameters controlling density –i.e., 176 

intrinsic growth rates, r, and carrying capacities, K– changed with treatment. Intrinsic growth 177 

rates r where calculated as the natural log of the ratio of the density at day 1 and the density at 178 

day 0 (Wieczynski et al. 2021, Gibert et al. 2022), and K was estimated as the densities measured 179 

over the last 2 days of the dynamics in each jar.  180 

 181 

Decomposing change in biomass into change in density and mass 182 

To decompose the contribution of changes in density and mass to the observed changes in 183 

biomass, we assume that the biomass, B, could be written as a function of density, N, and 184 

average mass, M, as  185 

𝐵 = 𝑁𝑀.        Eq. 1 186 
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The rate of change of B over time, %&
%'

, can be found by taking time derivatives in both sides of 187 

Eq. 1., which yields:  188 

%&
%'
= 𝑀 %(

%'
+ 𝑁 %*

%'
.      Eq. 2  189 

We then noticed that Eq 1 could be used to solve for either N or M, as 𝑁 = &
*

 and 𝑀 = &
(

, and 190 

replaced both into Eq. 2 to get: 191 

%&
%'
= &

(
%(
%'
+ &

*
%*
%'

.      Eq 3. 192 

Eq. 3 coul be further simplified by factoring B, dividing both sides of the expression by B, then 193 

using the relation +
,
%,
%'
= %	./(,)

%'
 to get: 194 

%	./(&)
%'

= %	./(()
%'

+ %	./(*)
%'

 .     Eq. 4 195 

Eq. 4 links the rate of change in Ln(B), to that of Ln(N) and Ln(M). This equation can thus be 196 

used to decompose the contributions of N (i.e., %	./(()
%'

)  and M (i.e., %	./(*)
%'

) to the rate of change 197 

in B over time and across temperature treatments. We used our experimental time series to 198 

calculate these contributions of N and M to changes in B for each individual jar on each day of 199 

the experiment.  200 

 201 

Time series analysis 202 

Previous studies have shown that Convergent Cross Mapping (CCM) can be used to infer 203 

causation between variables with available time series across ecological systems and 204 

environmental conditions (Sugihara et al. 2012, Clark et al. 2015, Karakoç et al. 2020, Kondoh et 205 

al. 2020, Rogers et al. 2020). A recent study used CCM to show that rapid plastic change in body 206 

size influences population dynamics more than the other way around, which was then confirmed 207 

through a manipulative experiment (Gibert et al. 2022). Following this literature, we therefore 208 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 18, 2022. ; https://doi.org/10.1101/2022.06.17.496633doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.17.496633
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

used CCM to assess whether change in body size more strongly influenced changes in density, or 209 

vice versa, across the temperature treatments.  210 

CCM quantifies whether one time series (A) causally influences another (B) through the 211 

estimation of how much information of A is contained in B (Takens 1981, Sugihara et al. 2012). 212 

Conceptually, if a variable A causally influences variable B, but B does not influence A, then B 213 

should contain information about A, but not the other way around. CCM assesses how much 214 

information of the one variable is contained in the other by quantifying whether variable A can 215 

be predicted from the time series of B (and vice-versa) for subsets of the time series of increasing 216 

length (the length of these re-sampled time series is called the library size). If A more strongly 217 

influences changes in B than the other way around, then B responds to A more strongly than A 218 

responds to B. If the effect of A on B is causal, then the ability to predict A from B increases 219 

with library size, while the error associated with the prediction decreases. If this ‘predictability’ 220 

(or cross-mapping skill, 𝜌) is constant across library sizes, there is correlation, but not causation 221 

(Sugihara et al. 2012). More details can be found in the now extensive literature on this 222 

algorithm (Brookshire and Weaver 2015, Ye et al. 2015a, Ye et al. 2015b, Kaminski et al. 2016, 223 

Hannisdal et al. 2017, Luo et al. 2017, Mønster et al. 2017, Tsonis et al. 2018, Vannitsem and 224 

Ekelmans 2018, Liu et al. 2019, Barraquand et al. 2020). We used modified version of the CCM 225 

algorithm (R package multispatialCCM v1.0 (Clark et al. 2015)) to analyze the time series for 226 

each of the four temperature treatments because it allows for replicated times series.  227 

 228 

RESULTS 229 

General dynamics 230 
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Biomass increased steeply in the early days of the dynamics, then declined over time (Fig 2) 231 

across temperatures. Density showed a typical logistic growth pattern of fast growth in the early 232 

days followed by a plateau at around 6,000 ind/mL (Fig 2b). Average mass increased from Day 0 233 

to Day 1, then decreased roughly monotonically over time (Fig 2c).  234 

 235 

Effects of temperature and variability on biomass, density, and average mass 236 

Biomass did not respond to either temperature (estimate=0.02±0.02, p=0.48, Fig 2d) or 237 

temperature variability (estimate=-0.009±0.02, p=0.73, Fig 2d). Temperature had a positive 238 

additive effect on density at 25ºC relative to 22ºC (estimate=0.05±0.02, p=0.018) while 239 

temperature variability had no effect (estimate=0.003±0.02, p=0.89, Fig 2e). Temperature also 240 

had a negative effect on mass (estimate=-0.006±0.003, p=0.002), but there was no effect of 241 

variability (estimate=-0.03±0.01, p=0.06, Fig 2f). These results suggest that the effects of 242 

temperature on density and mass likely cancel each other out, thus leading to an apparent lack of 243 

biomass temperature response.  244 

 Once the time series were detrended (by subtracting a GAMM model only containing 245 

time as a smooth term), additional effects of the treatments could be observed (Fig 2 g-i). In 246 

particular, biomass and density showed similar strong effects of temperature (but not 247 

fluctuations) in the first few days of the dynamics (Fig 2g & 2h). Mass temperature responses, 248 

however, were most prevalent in the later dynamics, when the temperature size rule appears to 249 

set in (Fig 2i).  250 

Despite showing no effects of temperature or variability on overall biomass dynamics 251 

(Fig 1d-f), peak biomass in the variable environment was higher than in the non-variable 252 

environment across temperatures, and this difference was only slightly smaller in the high 253 
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temperature treatment, thus showing an effect of temperature variability but not temperature 254 

alone on peak biomass (temp. effect = 4x10-7±3x10-6, p=0.906, var. effect = 9.492x10-255 

6±3.410x10-6, p=0.007, interaction= -5x10-6±5x10-6, p=0.314; ANOVA p = 0.02, Fig 3a). 256 

Temperature and temperature variability also influenced simple descriptors of what are otherwise 257 

complex density dynamics (Fig 3b, c). Indeed, temperature increased intrinsic growth rate 258 

despite fluctuations having no effect (temp. effect = 1.03±0.02, p<10-4, var. effect = -0.08±0.02, 259 

p=0.7, interaction= -0.17±0.28, p=0.6; ANOVA p < 10-4, Fig 3b; calculated using the first two 260 

days). Carrying capacity, on the other hand, decreased with variability but only at the low 261 

temperature and showed no significant differences between temperatures (temp. effect = -262 

304±166.1, p=0.074, var. effect = -696±166, p<10-3, interaction= 667.2±234.9, p=0.007; 263 

ANOVA p = 0.002, Fig 3c).  264 

 265 

Decomposing the effects of density and mass on biomass across treatments 266 

Density and mass dynamics contributed distinctly to biomass dynamics, especially in the first 267 

three days (Fig 4). For day £ 2, rapid density increases strongly and positively influenced 268 

biomass, while mass only positively influenced biomass dynamics on day 1, then made mostly 269 

negative contributions (GAMM smooth term = p<10-16, Fig 4a; ANOVA p<10-16, Fig 4g), likely 270 

due to the monotonous decline in mass from day 1 on (Fig 2c, f).  271 

 Despite temperature and temperature variability influencing both density and mass 272 

dynamics, their effects on the contributions of either one to biomass dynamics –i.e.,	%	./(()
%'

	 and	273 

%	./(*)
%'

	– was surprisingly low, especially in the long-term. Initially (day £ 2), density had a 274 

large, positive affect on biomass that remained high until day 2 at 22ºC (Fig 4a) but declined 275 

sharply after day 1 at 25ºC (Fig 4b, thin lines). Beyond day 2, the contributions of either density 276 
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or mass to biomass dynamics were small but different in sign (positive for density, negative for 277 

mass, Fig 4e–g). These results suggest that, while temperature treatment effects on biomass are 278 

most notable in the early dynamics, small, opposing effects of density and mass dynamics on 279 

biomass dynamics persist in the long term but are mostly unaffected by temperature and 280 

temperature fluctuations. Moreover, small temperature effects in the contributions of mass and 281 

density in the early dynamics are enough to produce larger effects later on.  282 

 283 

The temperature response of the coupling between density and mass 284 

We observed that changes in mass more strongly influenced change in density than the other way 285 

around (consistent with a recent study (Gibert et al. 2022)) across all temperature treatments (Fig 286 

5 and Fig S2 Appendix2). However, the strength of these reciprocal effects varied among 287 

treatments in specific ways. Temperature variability weakened the effect of mass on density 288 

across temperatures, and this effect was slightly stronger at 25 ºC compared to 22ºC (Fig 5, temp. 289 

effect = 0.013±0.001, p=0.15, var. effect = -0.05±0.009, p<10-6, interaction= -0.05±0.01, p<10-4). 290 

In contrast, the effect of density on mass weakened from 22ºC to 25ºC but got stronger with 291 

temperature fluctuations (Fig 5, temp. effect = -0.05±0.01, p<10-6, var. effect = 0.20±0.007, 292 

p<10-16, interaction= -0.02±0.01, p=0.29). These results suggest that rapid feedbacks between 293 

density and mass (or “eco-phenotypic feedbacks”) may themselves depend on environmental 294 

conditions—especially the effect of density on mass, which seems to respond more strongly to 295 

environmental variability than the effect of mass on density (Fig 5).  296 

 297 

 298 

 299 
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DISCUSSION  300 

Understanding how changes in environmental conditions influence biomass dynamics is 301 

paramount in ecology. Here, we argue that doing so requires understanding how temperature and 302 

temperature variability influence density and mass dynamics, then determining how those, in 303 

turn, influence biomass dynamics. Our results show that, while density and mass dynamics are 304 

independently susceptible to changes in temperature regimes (Fig 2 and 3), these effects may 305 

cancel each other out and not always translate to changes in biomass in response to temperature 306 

(Fig 2). We also show that different aspects of density-mass-biomass dynamics respond 307 

differentially to variation in environmental conditions (Fig 3), even when environmental effects 308 

on overall dynamics are less obvious (Fig 2). We show that density and mass have mostly 309 

opposite effects on biomass and their contributions are nuanced and likely stronger in earlier 310 

dynamics (Fig 4). Last, we show that temperature and temperature variability can alter the 311 

strength of feedbacks between mass and density (Fig 5), suggesting that rapid eco-phenotypic 312 

feedbacks may play and important but poorly understood role in biomass change in novel 313 

environments. 314 

 Previous research has shown that temperature often reduces body size, a phenomenon 315 

widely known as the Temperature-Size Rule (or TSR, e.g., (Atkinson 1994, Atkinson et al. 316 

2003)). This phenomenon is widespread in myriad organisms, including mammals (Ozgul et al. 317 

2009), birds (Weeks et al. 2020, Jirinec et al. 2021), invertebrates (Ghosh et al. 2013) and 318 

unicellular organisms (Atkinson et al. 2003, DeLong 2012, Tabi et al. 2020). The TSR has long 319 

been suggested to play an important role in the responses of populations (Ozgul et al. 2009), 320 

communities (Brose et al. 2012, Forster et al. 2012, Gibert and DeLong 2017) and ecosystems 321 

(Brose et al. 2012) to warming, as body size can directly impact reproductive and mortality rates 322 
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and species-interaction parameters through its effect on metabolic rates (Gillooly et al. 2002, 323 

Brown et al. 2004, Savage et al. 2004). Our results show that the onset of the TSR occurs very 324 

early in population dynamics as species grow towards carrying capacity (Fig 1). Our results also 325 

suggest that, despite the numerous hypothesized effects of the TSR on ecological processes and 326 

dynamics, the TSR represents at most 5% of the observed variation in mass over time, with 327 

transient changes in mass being much larger in magnitude than the observed TSR (Fig 1). 328 

 However, recent work has shown that, without accounting for the TSR, predictions about 329 

how temperature influences long-term species densities (i.e., at carrying capacity) may be 330 

inaccurate (Bernhardt et al. 2018). Our results further imply that, without accounting for the 331 

TSR, inferring changes in biomass from changes in density alone may lead to equivocal 332 

estimates, as the effects of temperature on density and mass can cancel each other out (Fig 2). 333 

These results are important because they imply that environmental perturbations may –334 

sometimes rapidly– change populations not just numerically (e.g., changes in densities), but also 335 

phenotypically. Although the ecological consequences of these rapid, plastic, phenotypic 336 

responses are still very poorly understood, our results emphasize the need to improve this 337 

understanding. 338 

 A recent study showed that rapid, plastic changes in body size more strongly influence 339 

changes in density than the other way around (Gibert et al. 2022), thus establishing the existence 340 

of important, but poorly understood, rapid feedbacks between body size and density. We 341 

observed the same pattern across in our study. Additionally, our results show that the strength of 342 

these feedbacks vary across temperature regimes (Fig 4) and that both mean temperature and 343 

temperature variability may be important. This result further emphasizes the need to study rapid 344 
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phenotypic change –evolutionary or not– as a fundamental ecological response mediating how 345 

species cope with novel environmental conditions.  346 

 While our results provide novel insights about how rapid eco-phenotypic dynamics may 347 

mediate changes in biomass, density, and mass in response to warming and temperature 348 

variability, we caution against extrapolating these results beyond the range of temperatures 349 

studied here. Indeed, temperature effects are well known to have canonically unimodal effects on 350 

many demographic rates (Amarasekare and Savage 2012, Amarasekare and Coutinho 2013, 351 

Luhring and DeLong 2017, DeLong et al. 2018, Wieczynski et al. 2021). Thus, eco-phenotypic 352 

responses to a wider range of temperatures may be more complex than the results reported here. 353 

Moreover, the regimes of temperature fluctuations imposed here were less variable than the 354 

random fluctuations expected in an increasingly warmer world (Vasseur et al. 2014). Because of 355 

this, we also caution against interpreting our results to say that average temperatures cause 356 

stronger species-level responses than temperature variability and, in fact, some of our results 357 

even suggest that variability does have important effects (Fig 3a, Fig 5). Last, while CCM has 358 

long been used to infer effects of one time series on another (e.g. (Sugihara et al. 2012, Clark et 359 

al. 2015, Ye et al. 2015a, Ye et al. 2015b, Tsonis et al. 2018)), other unobserved variables like 360 

reductions in available nutrients, effects of regular sampling, or even physiological and 361 

metabolic changes as the ecological dynamics unfold, may affect and even weaken the CCM 362 

inference. A silver lining is that our results are consistent with those obtained by Gibert et al. 363 

(2022) which were validated with additional body size and density manipulations and showed 364 

that CCM correctly inferred reciprocal effects between size and density based only on their time 365 

series, as was done here (Fig 5). 366 
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 Overall, our results shed light on how rapid eco-phenotypic dynamics in density and mass 367 

may influence how biomass responds to changes in temperature regimes. Our study emphasizes 368 

the need to consider rapid phenotypic change as an important –but poorly understood– 369 

mechanism through which organisms cope with changes in environmental conditions, with 370 

important implications for species responses to a rapidly changing and increasingly warm world. 371 

 372 
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FIGURES 390 

 391 

Fig 1: Microcosms where initialized at Day 0 and kept in four possible temperature treatments 392 

(Constant-22ºC, Variable-22ºC, Constant-25ºC or Variable-25ºC) for 15 days. Each day, a 1mL 393 

sample of media was taken for fluid imaging (FlowCam) to estimate total biomass, density, and 394 

average mass as the species grew to carrying capacity.  395 
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 403 

Fig 2: (a) Biomass over time for all 24 experimental jars. (b)-(c) as in (a) but for density and 404 

average mass respectively. (d) Biomass change over time (dots represent average biomass across 405 

all 6 replicates within each experiment, blue represents 22ºC treatments, red represent 25ºC 406 

treatments, while solid lines represent constant temperature treatments, C, dashed lines represent 407 

variable temperature treatments, V). Solid bold lines represent GAMM model predictions. (e-f) 408 

as in (d) but for density and mass. (g) Detrended biomass dynamics across all temperature 409 

treatments (but only color coded for mean temperature as temperature variability had no effect in 410 

d-f) with color coding as in (d). Bold dashed lines represent mean biomass for both temperature 411 

treatments. The distribution that biomass values take over time are shown on the right. (h-i) as in 412 

(g) but for density and mass. 413 
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 417 

Fig 3: (a) Peak biomass, measured at days 3-5 with significant differences indicated as letters 418 

above the boxes. Variable temperatures lead to higher peak biomass, and that peak is higher at 419 

22ºC than at 25ºC. (b) Intrinsic growth rate increases at 25ºC. (c) Carrying capacity is higher at 420 

constant 22ºC than in variable temperature but that difference disappears at 25ºC. Color coding 421 

as in Fig 1.  422 
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 434 

Fig 4: Contributions of density (d ln(N)/dt) and mass (d ln(M)/dt) to biomass dynamics at (a,c,e) 435 

22ºC and (b,d,f) 25ºC. (a) and (b) show the contributions of density and mass over time at 22ºC 436 

and 25ºC, respectively. Thin lines represent replicate populations (jars) and thick lines are 437 

GAMM fits to these data. (c,d) and (e,f) show distributions of density and mass contributions 438 

over time for Days 0–2 and Days > 2, respectively. (g) shows differences in the contributions of 439 

density and mass across both temperatures for Day £ 2 and Day >2, evaluated using an ANOVA 440 

with Tukey’s HSD post-hoc test (p < 10-5). 441 
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 449 

Fig 5: We show the cross-mapping skill (𝜌) for all possible library sizes across temperature 450 

treatments (here represented as individual dots). Package multispatialCCM performs CCM on 451 

800 total bootstrap replicates of the time series for each library size and yields an average value 452 

for the cross mapping skill. Effects of mass on density are indicated as ‘Mass®Density’ and 453 

effects of density on mass are indicated as ‘Density®Mass’. Mass more strongly influences 454 

density than the other way around, but the reciprocal effects of mass and density respond to both 455 

average temperature and temperature fluctuations. Colors as in Figs 1-3. 456 
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