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ABSTRACT 

CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR- 

associated nuclease 9) provides powerful gene-editing tools that are applicable for gene 

therapy of a variety of diseases including, but not limited to cancer, rare diseases, and 

heart disease. In the current study, we first examined our artificial stem cell and organoid 

models that were generated by our literature validated DeepNEU platform from the 

perspective of gene-editing. We then evaluated the aiCRISPRL (aiCRISPR-Like) 

application of the DeepNEU platform by comparing the CRISPR-based gene-editing 

approach with the DeepNEU derived aiCRISPRL capabilities using artificial simulated 

HeLa cells (aiHeLa). We then evaluated the aiCRISPRL like capabilities of DeepNEU to 

introduce a series of specific mutations into the MutS homolog 2 (MSH2) gene to 

assess DNA Mismatch Repair (MMR). This approach permits a comparative 

assessment of CRISPR and aiCRISPRL technologies following the introduction of 

specific MSH2 mutations. When combined with our previous research the current data 

indicate that aiCRISPRL is an evolving AI platform technology that can be quickly and 

reliably deployed in gene therapy applications to complement wet-lab based gene-editing 

technologies. 

 
INTRODUCTION 

Overview of gene editing 

Modern gene editing technologies like TALEN and CRISPR have revolutionized disease 

modeling, drug discovery, and gene therapy. The most widely known, used, and studied 

platform, CRISPR, uses a proprietary enzyme known as Cas9 to produce targeted 

double-stranded breaks in DNA [1]. These DNA breaks can then be used to insert, delete, 

or modify a gene or genes of interest. Multiple edits can also be introduced sequentially 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 19, 2022. ; https://doi.org/10.1101/2022.06.18.496679doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.18.496679
http://creativecommons.org/licenses/by-nc-nd/4.0/


to mimic a specific process like those that are thought to be typical of a progressive 

malignant disease like colorectal cancer (CRC) [1]. Following the introduction of the 

required edits, the cell’s innate DNA repairs the modified site mainly by the non- 

homologous end joining (NHEJ) pathway with less contribution from the Homologous 

Repair (HR) pathway. CRISPR and other powerful gene-editing platforms continue to 

evolve in terms of accessibility, accuracy, and wider applicability [1-4]. 

Overview of the DeepNEU AI/ML platform 

DeepNEU© is a literature validated AI/ML platform engineered to produce computer 

simulations of induced human organoids and pluripotent stem cells for studying rare and 

other diseases with a genetic basis. The primary purposes of DeepNEU simulations were 

to (1) better understand the disease pathophysiology that results from introducing specific 

gene mutations, (2) identify potential therapeutic targets and biomarkers, and (3) drive 

drug discovery and re-purposing. To date, this AI platform has been applied successfully 

to several mono and polygenetic diseases, viral pandemic preparedness and precision 

oncology. The DeepNEU platform also continues to evolve in terms of accessibility, 

accuracy, and wider applicability [5-13]. In the current project DeepNEU was used to 

create computer simulations of HeLa cell which we refer to as aiHeLa. 

Comparison of CRISPR vs the DeepNEU simulated aiCRISPRL application 

 
At a fundamental level, CRISPR and the DeepNEU platform are entirely different 

technologies that attempt to do many of the same things. The modern CRISPR era 

began in 2009 [14] and is a widely validated wet lab technology, while DeepNEU is a 

more recent, [5] advanced and literature validated artificial intelligence computational 

platform. Both approaches have their own limitations. For example, in CRISPR, the 

enzyme used to cut DNA is not perfect and the cellular DNA repair process is not 

completely error-free. These CRISPR limitations can result in unwanted off-target 

effects, scars and these errors can be inherited. In addition, current wet lab gene-editing 

technologies are expensive and time-consuming with varying success rates. The current 

version of DeepNEU(v7.0) also has a few limitations. First, the current database from 

which the AI learns is incomplete but growing. The current database contains gene-

gene and gene-protein relationships that account for just over 25% of the human 

genome. Although ~75% of the human genome remains to be included, the database is 

updated regularly with the latest information. The goal is 
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to reach at least 99% representation over the next two to three years. Of note, the 

simulations reached a stable ability to learn and generalize well since reaching 

representation of 20% of the genome. Secondly, the system predictions have been 

validated against a hold-out sample of previously unseen peer-reviewed wet lab results. 

By combining unsupervised learning with early stopping and big data for regularization, 

this platform is increasingly moving towards wet lab testing as employed for CRISPR 

and other gene-editing platforms. 

Based on the available data we believe that aiCRISPRL (aiCRISPR-Like) and gene-

editing technologies like CRISPR have important similarities. For example, both can 

create and evaluate knock-in/Gain of Function (GOF) and knock-out/Loss of Function 

(LOF) mutations. They both can also evaluate a broad range of single and multiple gene 

modifications either together or sequentially. I m p o r t a n t l y ,  the proposed 

computational approach avoids unwanted off-target effects and is both time and cost-

effective but lacks the robust validation of the wet lab CRISPR technology. 

In the current study, we first examine our previous artificial stem cell and organoid 

research from the perspective of gene-editing [5-13]. We then extended our previous work 

by evaluating the aiCRISPRL application of the DeepNEU platform by comparing a 

CRISPR-based gene editing approach with the aiCRISPRL approach applied to artificial 

HeLa cells (aiHeLa) exposed to different MSH2 mutations to assess DNA Mismatch 

Repair (MMR). This approach should permit direct comparison of the two gene-editing 

approaches following introduction of specific mutations in the MSH2 gene. 

METHODS 

The DeepNEU platform is an evolving literature-validated unsupervised machine deep 

machine learning platform [5-13]. Here we are presenting the upgraded database of 

DeepNEU (v7.0). this version contains the previous database (v6.6), in addition to an 

upgrade in the form of 67 new genotypic and phenotypic concepts and ~2000 new 

relationships. 

The initial goal of this project was to generate simulated HeLa cells (aiHeLa) by applying 

aiCRISPRL gene editing of the simulated version of induced pluripotent stem cells 

(aiPSC) genome to introduce consensus gene mutations typical of HeLa cells [15-18]. 

Briefly, the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 19, 2022. ; https://doi.org/10.1101/2022.06.18.496679doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.18.496679
http://creativecommons.org/licenses/by-nc-nd/4.0/


values of the high dimensional input or initial state vector (N=5501 concepts) of the aiPSC 

model, were all set to zeros except for the four transcription factors OCT3/4, SOX2, KLF4 

and cMYC. These four factors were given a value of +1 indicating that they were turned 

on for the first iteration and then allowed to evolve over successive iterations until a new 

system wide steady state is achieved. The detailed methodology for generating aiPSC 

simulations has been reported in detail previously [5-13]. 

Previous versions of the DeepNEU platform have successfully simulated a broad range 

of aiPSC derived cell types including neural stem cells, cardiac myocytes, skeletal muscle 

cells, lung cells, brain cells, ovarian cancer cells, lung adenocarcinoma cells, and natural 

killer cells (NK) [5-13]. Using a similar approach and a consensus gene mutational 

profile[15-18], we used the gene-editing capabilities of aiCRISPRL to create simulations 

(aiHeLa) that are most like original HeLa cells. Importantly, except for the simulated HPV-

18 infection, the aiHeLa cells were created to be devoid of all external contaminations 

that plague HeLa variant clones that have emerged since 1951. 

Simulation of HeLa cells (aiHeLa) 

Once the aiPSCs were validated against the current literature they were transformed by 

aiCRISPRL into aiHeLa cells using a gene mutational profile derived from the peer- 

reviewed literature [15-18]. This aiHeLa mutation profile included GOF mutations in 

CD24, CD44, CD95(FasR), HPV-E2, 5, 6, and 7. Aneuploidy, an important feature of 

HeLa cells, was also locked ON and the cells were maintained in simulated DMEM/F12 

media supplemented with doxycycline. This information is summarized in Table 1 below. 

Table 1: Summary of aiPSC and aiHeLa cell simulation protocol 

Concept Recipe Component/Edits 

aiPSC Yamanaka 

transcription 

factors 

OCT4, cMYC, KLF4 and SOX2 – GOF gene edits 

aiHeLa Mutational 

profile 

CD24, CD44, CD95(FasR), HPV-E2,5,6,7– GOF gene 

edits, Aneuploidy turned ON 
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DMEM/F12 

media 

Basic media [eNa+], [ePyruvate], [eZinc], Choline, FGF2/bFGF, 

Folic Acid, HEPES, HSA/Albumin, Hypoxanthine, Inositol, 

KSR, Nicotinamide, ROCK1/2 inhibitor, 

VitB12/Cobalamin, VitB6/Pyridoxine 

DMEM/F12 

media 

Supplements Doxycycline turned ON 

Environment Settings [O2]=21%, [CO2]=5%, Temperature=37 o C - locked ON 

Patient 

factors 

Age, Smoking 31 years, smoker – Locked ON 

Outcome predictions from the HeLa simulations (aiHeLa) were directly compared with 

published data [15-18]. Furthermore, expression values ≥ 0 were classified as expressed 

or upregulated for genes/proteins or present for phenotypic features while values < 0 were 

classified as downregulated, not expressed, or absent. 

To evaluate the ability of the DeepNEU platform to simulate HeLa cells, a consensus 

feature profile was created from the published literature [15-18]. Each feature was 

identified in at least two published references. The final HeLa cell feature profile (N=9) 

includes ALDH1, Aneuploidy, CD24, CD44, CD95(FasR), HPV-E6, HPV-E7, Sox2 and 

Telomerase. The accuracy of simulation predictions was compared to the published 

literature using the unbiased binomial test. A test p-value <0.05 was used to reject the 

null hypothesis (H0) that the simulated HeLa cell (aiHeLa) profile could not reproduce the 

documented wet-lab results. 

 
aiCRISPRL- simulated gene editing of the MSH2 gene in aiHeLa cells 

Following the successful creation and literature validation of the aiHeLa simulations, we 

turned our attention to modifying the MSH2 gene to produce a range LOF mutations. To 

allow a direct comparison with published data we followed the approach and analysis 

presented in [19]. These authors compared wildtype MSH2 to seven specific MSH2 LOF 
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mutations in HeLa cells that were created by CRISPR gene editing. Our approach is 

modified from [19] and summarized in Table 2. 

Table2: Summary of aiCRISPRL gene editing of MSH2 conducted in simulated HeLa 

cells (aiHeLa) 

Simulation Name aiCRISPRL Gene 
Editing 

MSH2-% (Scaled*) 

aiHeLa None (WT) 100 (+1) 

aiHeLa-MSH2-KO MSH2-deleted 0 (-1) 

aiHeLa-RD03 MSH2 G674R1 11 (-0.780) 

aiHeLa-RH07 MSH2 G674R2 5.2 (-0.896) 

aiHeLa-DA02 MSH2 G674D1 4.8 (-0.904) 

aiHeLa-DC08 MSH2 G674D2 3.4 (-0.932) 

aiHeLa-AG11 MSH2 G674A1 30 (-0.400) 

aiHeLa-AH07 MSH2 G674A2 35 (-0.300) 

Modified from [19], 2019, (Scaled*) - the % MSH protein expression was converted to 

the -1 to +1 range used as inputs to the DeepNEU/aiCRISPRL platform 

Specific MSH2 LOF mutations were assigned a simulation name and programmed to 

reproduce the associated changes in the amount of MSH2 protein expression as per 

Table 2. 

Loss of Function (LOF) Scores 

In their paper [19] defined and validated a LOF score for a group of seven CRISPR 

edited MSH2 mutations plus WT that they evaluated. To develop this score, the HeLa 

cells were treated with 6-Thioguanine (6-TG). Their MOA-based reasoning led them to 

conclude that the cells with intact MMR pathways should be sensitive to 6-TG exposure 

while the cells with defective pathways (dMMR) should show varying degrees of 

resistance as measured by cell death. Their LOF score was calculated from the Log 

(base2) of the ratio of 6-TG to placebo treatment effects in each of the gene-edited and 

WT cells. Positive LOF scores imply deleterious mutations while negative scores 

suggest more neutral mutations. Analysis of their data revealed a Pearson correlation r 

of 0.770 between the severity of the MSH2 mutations and HeLa cell death. 
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Our aiCRISPRL generated LOF scores were modified from [19] in that the amount of 

HeLa cell apoptosis was substituted for MSH2 mutation severity since 6-TG primarily 

induces cell death through apoptosis [20]. In addition, the DeepNEU input scaling range 

from -1 to +1 results in some negative values for aiHeLa cell apoptosis necessitating a 

reversal of numerator and denominator to derive the ratio used to produce the LOF 

score. As in [19], positive LOF scores imply deleterious mutations, and negative scores 

indicate typically more neutral mutations. In the present project the correlation between 

the LOF score and MSH2 protein expression was evaluated by calculating the Pearson 

correlation coefficient (r). 

RESULTS 

The updated version of DeepNEU (v7.0) contains 5501 concepts and 50437 nonzero 

relationships compared to the previous DeepNEU(v6.6) database that included 5434 

concepts and 48,487 nonzero relationships. While this represents an increase of just 67 

concepts, there are almost 2000 new relationships primarily related to HeLa cells and 

mismatch DNA repair (MMR) pathways. The current database (v7.0) represents ~25% of 

the human genome and is growing daily. In addition, a detailed review of the 

relationships revealed that the pretest probability of a positive outcome is 0.660 and the 

probability of a negative prediction is therefore 0.340. These values were used to 

optimize the binomial test by eliminating system biases prior to its use. 

On review of our previous publications [5-13], the DeepNEU platform successfully used 

gene editing to create single-gene mutations, multiple mutations and even edit the entire 

genome of the SARS-CoV-2 and NIPAH viruses. These edits created both loss of 

function (LOF) and gain of function (GOF) mutations. A summary of these data from 

previously published DeepNEU research projects from the perspective of successful 

gene editing is presented in Table 3 below. 
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Table 3: aiCRISPRL-Like gene-editing applications of the DeepNEU platform 

 
Date 

aiStem 
Cell 

 
aiNSC 

 
aiSkMC 

 
aiLUNG 

 
aiOrganoid 

 
Disorder 

LOF 
Mutations 

GOF 
Mutations 

 
Reference 

 
2019 

 
Yes 

 
Yes 

 
No 

 
No 

 
No 

RETT 
Syndrome 

 
MeCP2 

 
None 

 
1 

2019 Yes No Yes No No IOPD GAA None 2 
 
2020 

 
Yes 

 
No 

 
No 

 
No 

 
No 

SARS- 
CoV-2 #1 

Whole 
genome 

Whole 
genome 

 
3 

 
2021 

 
Yes 

 
No 

 
No 

 
No 

Whole 
Brain 

Alzheimer's 
Disease 

 
None 

 
APO-E 

 
4 

 
2021 

 
Yes 

 
No 

 
No 

 
No 

 
Lung 

SARS- 
CoV-2 #2 

Whole 
genome 

Whole 
genome 

 
5 

 
 
 
 

 
2021 

 
 
 
 

 
Yes 

 
 
 
 

 
No 

 
 
 
 

 
No 

 
 
 
 

 
No 

 
 
 
 

 
Lung 

 
 
 
 

 
LUAD 

 
 
 
 

 
TP53 

EML4- 
ALK 
fusion, 
Amplicon 
11q13, 
NFKBIA, 
NKX2-1 

 
 
 
 

 
6 

 
2021 

 
Yes 

 
No 

 
No 

 
Yes 

 
No 

SARS- 
CoV-2 #3 

Whole 
genome 

Whole 
genome 

 
7 

 
2021 

 
Yes 

 
No 

 
No 

 
Yes 

Whole 
Brain 

 
MLD 

 
ARSA 

 
None 

 
8 

2021 Yes No No No No HGSOC Many Many 9 
 
2022 

 
Yes 

 
No 

 
No 

 
No 

Whole 
Brain 

NIPAH 
encephalitis 

Whole 
genome 

Whole 
genome 

 
Pending 

aiCRISPRL-derived aiHeLa Cells Simulations 

The aiCRISPRL gene modifications to the aiPSC described above resulted in aiHeLa 

cells with a profile consistent with the literature-derived nine feature HeLa profile 

including ALDH1, Aneuploidy, CD24, CD44, CD95, HPV-E6,7, Sox2 and Telomerase. 

The probability that all these markers were expressed by chance alone is 0.024 based 

on the unbiased binomial test. The H0 can therefore be rejected in favor of the alternate 

hypothesis (H1) that the simulated HeLa cell (aiHeLa) profile can accurately reproduce 

published wet lab results. These results are summarized below in Figure 1. 

LOF Score Analysis 

Analysis of the relationship between MSH2(scaled) and the calculated LOF score 

revealed a strong, negative correlation with a Pearson r value of -0.900. Based on the 

sample size of 8 and a two-tailed critical r value of 0.765, the probability that this 

correlation occurred by chance alone is <0.01. Allowing for the scaling modifications to 
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our MSH2 LOF score, the strong negative correlation is consistent with [19] in that more 

positive (or less negative in the case of aiCRISPRL) LOF scores imply deleterious 

mutations while more negative scores suggest neutral mutations. These results are 

presented in Table 4 and Figure 2. 

Table 4 Pearson correlation (r) between MSH2 protein and LOF Score = -0.900 

Model-Average, N = 3 MSH2* 6-TG** Placebo*** Ratio# LOF 

Score## 

aiHeLa_Cell (24/11/21) +1 -0.746 -0.615 0.825 -0.278 

aiHeLa_Cell (24/11/21)-AG11 -0.400 -0.643 -0.603 0.938 -0.093 

aiHeLa_Cell (24/11/21)-AH07 -0.300 -0.641 -0.623 0.973 -0.040 

aiHeLa_Cell (24/11/21)-DA02 -0.904 -0.344 -0.389 1.129 0.175 

aiHeLa_Cell (24/11/21)-DC08 -0.932 -0.358 -0.368 1.028 0.040 

aiHeLa_Cell (24/11/21)-KO -1 -0.366 -0.426 1.164 0.220 

aiHeLa_Cell (24/11/21)-RD03 -0.780 -0.422 -0.450 1.066 0.092 

aiHeLa_Cell (24/11/21)-RH07 -0.896 -0.341 -0.402 1.180 0.238 
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Table 4 Legend: MSH2*= MSH2 gene expression scaled between -1 to +1 for input to the 

DeepNEU platform; 6-TG** = the predicted effect of 6-TG on aiHeLa apoptosis; Placebo*** 

= the predicted effect of Placebo on aiHeLa apoptosis; Ratio#= ratio of Placebo effect over  

6-TG effect; LOF Score##= Log2(Ratio) as per [19] 

 

DISCUSSION 

Our previous successful gene editing applications of the DeepNEU platform are 

summarized in Table 1 above [5-13]. In the current project, we have extended those 

results by simulating HeLa cells and then introducing variable LOF mutations into a 

specific DNA damage repair gene (MSH2) in the aiHeLa cells. Based on a literature 

derived 9 element feature profile [15-18], our analysis of the data indicates that the 

aiCRISPRL application has successfully simulated a version of the original HeLa cell 

line (aiHeLa). Since 1951, the original HeLa cell genome has diverged to form 

numerous unique clones across the globe. These widespread changes in the HeLa 

genome have been the result of sequential infections from multiple bacteria, fungi, and 

viruses aided by more than 70 years of mutational pressures and rapid cell division. HeLa 

cells in culture have a doubling time of just 23 hours. As a result, available HeLa cells 

have little in common with the original cell line [21-24]. 

An important advantage of our DeepNEU/aiCRISPRL application for engineering aiHeLa 

cells allows us to avoid any unwanted external contamination from chemicals and 

infective organisms using a standardized culture medium. The only source of infection in 

these simulations comes from the simulated HPV-18 that generates E proteins 2, 5, 6, 

and 7. The impact of our early stopping regularization on system evolution is to reduce 

the impact of protracted time on frequent DNA replication and rapid cell division. The 

use of a consensus approach to mutational profile was also designed to eliminate the 

development of any mutations resulting from the combination of time, laboratory 

conditions, and contamination by multiple infecting organisms. Taken together these 

factors suggest that the simulations have produced a generic HPV-18 induced cervical 

cancer in a 31-year-old woman smoker and as a result, these simulations are likely to 

be more like the original HeLa cell type than current divergent clones. 

Once the aiHeLa cell simulations were validated using the previously unseen published 

literature, the DeepNEU/aiCRISPRL platform was used to modify the aiHeLa cell MSH2 

gene. This was conducted by introducing several (N=7) LOF mutations to produce a 
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range of negative effects on MSH2 protein expression and then comparing these LOF 

mutations with the wildtype aiHeLa. The relationship between LOF mutations and the 

resulting MSH2 protein levels was scaled from the format in Table 3, [19] to the 
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DeepNEU input range where -1 = deletion of the MSH2 gene resulting in complete loss 

of protein and +1 = wild type gene status and normal levels of MSH2 protein. 

The impact of these LOF mutations on aiHeLa cell DNA damage repair was evaluated by 

assessing the impact of 6-Thioguanine (6-TG) treatment on both WT and mutated aiHeLa 

cells as described in [19]. 6-TG is a thiopurine prodrug metabolized to its active form in 

the liver. The active form undergoes further metabolism to produce thioguanine 

nucleotides (6-TGNs) that can be incorporated into RNA and DNA synthesis as false 

purines resulting in potentially lethal DNA mutations. While the MMR process recognizes 

these mutations, it is unable to repair them resulting in replication arrest and apoptosis. 

Additional cytotoxicity from 6-TGNs is the result of inhibiting the RAC1 protein that 

regulates the diverse downstream signals of the RAC1-VAV pathway in various cancer 

cells [26]. 

Consistent with the data from [19] we were able to confirm the effect of MSH2 protein loss 

on HeLa cell mortality as measured by the degree of apoptosis. When we analyzed the 

relationship between MSH2(scaled) and the calculated LOF score a strong, negative 

correlation with a Pearson r value of -0.900 was revealed (N=8, critical r = 0.765, 

p<0.01). This finding confirms that the effectiveness of 6-TG to induce apoptosis in 

aiHeLa cells is dependent on a functioning MSH2 dependent MMR machinery. 

Importantly, aiCRISPRL editing of the MSH2 gene can accurately reproduce specific 

mutations and the LoF scores reported in [19]. In addition, this important relationship 

appears to be stronger for the aiCRISPRL editing case (i.e., Pearson r =-0.900 vs 

0.770). 

Conclusions and Future Considerations 

In this study, we successfully employed the DeepNEU platform to simulate aiHeLa cells 

that accurately resembled the original and uncorrupted immortalized HeLa cell line. We 

then evaluated the DeepNEU derived aiCRISPRL like capabilities to introduce a series 

of specific LOF mutations into the MSH2 gene. We chose to study the MSH2 gene 

because it is a critical component of the MMR DNA repair pathway and it could be 

evaluated by treating the affected HeLa cells with the cytotoxic prodrug, 6 Thioguanine 

(6-TG), and observing the degree of resulting apoptosis. The severity of the loss of 

function mutations in MSH2 was estimated from the LOF score. This score was 

calculated in a manner like 
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that reported in [19] and produced data confirming a highly significant inverse correlation 

between MSH2 protein levels and aiHeLa cell apoptosis. This methodology has permitted 

the direct comparison of CRISPR-Cas9 and aiCRISPRL technologies for introducing 

specific MSH2 mutations into the HeLa/aiHeLa genome and while the technologies are 

different, they are directly comparable. Furthermore, like CRISPR-Cas9, aiCRISPRL 

can be used to create single, multiple as well as a sequential (LOF and GOF mutations 

(see Table 1). 

CRISPR-Cas9 is a mature and impressive in vitro gene-editing technology with an 

improving success rate while aiCRISPRL is a specific application of an evolving AI platform 

technology that can be quickly and reliably deployed. Like other AI simulation 

technologies, DeepNEU requires substantial amounts of validated data from multiple 

sources. The current DeepNEU network is composed of >3X10^7 artificial neurons and 

the database contains relationship data for >25% of the human genome. Our objective 

is to obtain relationship data for ~99% of the human genome over the next 2-3 years. 

To date, the DeepNEU platform has relied on previously unseen and published wet-lab 

data to function as a hold-out sample for the validation of system predictions. We are now 

embarking on a program of additional wet-lab experiments to further validate the 

DeepNEU platform, beginning in the coming months. 

Finally, we have evidence that the DeepNEU platform has recently entered the domain 

of Wise Learning (WL) as it relates to health care. The WL process defined by Groumpos 

in 2016, represents the next evolutionary step in AI that combines Fuzzy Cognitive Map 

simulations, with data from multiple experts and a Generic Decision-Making System 

(DMS). The WL process should also explore available learning algorithms including Deep 

Learning (DL) methods when available [25]. While the DeepNEU platform continues to 

evolve, as of this writing, the current version (7.0) meets all these Wise Learning stated 

criteria. 
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FIGURE LEGENDS 

Figure 1: aiCRISPRL HeLa Cell simulations profile. aiHeLa Cell Marker expression. 

The vertical y-axes represent the semiquantitative levels of markers that are estimated 

by DeepNEU relative to an arbitrary baseline where 0 = baseline, +1 = maximum 

expression or presence and -1 = minimal expression level or presence. The horizontal 

x-axis represent the aiHeLa markers being simulated. Data represent means of three 

experiments ± 95% confidence interval. All p values from the Welch’s t test. *p<0.01 

Figure 2: aiCRISPRL analysis of MSH2 Mutations in aiHeLa Cells. Analysis of the 

relationship between MSH2(scaled) and the calculated LOF score. Analysis of the 

relationship between MSH2(scaled) and the calculated LOF score revealed a strong, 

negative correlation with a Pearson r value of -0.900, based on the sample size of 8 and 

a two-tailed critical r value of 0.765. Data represent means of three experiments ± 95% 

confidence interval. All p values from the Welch’s t test. *p<0.01 
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