1 Supplementary methods

2 Seed collection and sowing

3 Seeds of most of the plant species were collected from the natural grassland field site and a further

4 5% were obtained from nearby seed production fields (Planta Naturalis, Markvartice, Czech Republic).

- 5 Seeds of all plant species were sown simultaneously. For this, seeds were placed on the soil surface
- 6 and gently pressed into the soil to avoid seeds from blowing away (Münzbergová, 2012).
- 7

8 Soil chemical analyses

9 All soil was sieved on a 2 mm mesh an thoroughly mixed. Plant available nitrogen (N) (mg kg⁻¹ dry soil) 10 was determined by adding 50 mL of 0.5 M K₂SO₄ to 5 g of fresh soil, shaking for 30 min and filtering the soil out. NO₃⁻, NH₄⁺ and NO₂⁻ concentrations in the filtrate were determined by Flow Injection 11 12 Analysis (QuickChem 8000 FIA; Lachat Instruments, Loveland, CO, USA). Plant available P was 13 determined following Olsen et al (1954). In brief, 5 g air dried soil was extracted with 50 mL of 1 M 14 NaHCO₃ adjusted to pH 8.5 with addition of activated carbon to eliminate discoloration resulting from 15 humic acid release. The solution was shaken for 2 h and soil was filtered out. Available P in the filtrate 16 was determined by the Olsen photometric method (ATI Unicam UV 400/VIS Spectrophotometer at 17 630 nm) (Olsen et al., 1954). K was determined in 5 g air dried soil by shaking with 50 mL Mehlich II soil extraction solution (Hach Lange GmbH, Düsseldorf, Germany) for 30 min. Soil was filtered out and 18 19 and Mg, Ca, and K were measured in the filtrate using atomic absorption spectrometry (ContrAA 700 20 with C₂H₂-air flame for Mg and K, and C₂H₂-N₂O for Ca; Analytik Jena GmbH, Jena, Germany). 21 Exchangeable pH was measured in a solution of 5 mL in 25 mL 0.1M KCl shaken for 30 min (WTW 22 Multilab 540; Xylem Analytics, Weilheim, Germany). Total N, C and organic C were determined in dried 23 soil ground to <0.1 mm particle size using combustion analyses (FLASH 2000 CHNS/O Analyzer; Thermo 24 Fisher Scientific, Waltham, MA, USA).

25

26 Soil bacterial and fungal biomass

27 Soil bacterial and fungal biomass was determined using PLFA and NLFA analysis following García-28 Sánchez et al (2019). In short, 1 g of fresh soil taken from the mixed soil cores was freeze-dried in a 29 chloroform-methanol-phosphate buffer (1:2:0.8, v/v/v)(Bligh, E.G. and Dyer, 1959). Lipids were 30 fractioned into polar lipids (PLFAs), glycolipids and neutral lipids (NLFAs), using an extraction cartridge 31 (LiChrolut Si-60; Merck KGaA, Darmstadt, Germany) and subjected to alkaline methanolysis (Šnajdr et al., 2008). Following Sampedro et al (2009), free methyl esters of PFLAs and NLFAs were analysed by 32 gas chromatography-mass spectrometry (450-GC with 240-MS IT Mass Spectrometer; Varian Medical 33 34 Systems Inc., Palo Alto, CA, USA). Total microbial biomass was estimated by the sum of all PLFA

contents. Bacterial biomass was based on the summed PLFA contents i14:0, i15:0, a15:0, 16:1w5,
16:1w7; 16:1w9, 10Me-16:0, i16:0, i17:0, a17:0, cy17:0, 17:0, 10Me-17:0, 18:1w7, 10Me-18:0 and
cy19:0, and actinobacterial biomass based on the summed contents 10Me-16:0, 10Me-17:0 and 10Me18:0. Gram-positive and gram-negative bacterial were quantified based on i14:0, i15:0, a15:0,
i16:0, i17:0, a17:0 and 16:1w7, 16:1w9, 18:1w7, cy17:0, cy19:0, respectively. Fungal biomass was
quantified based on PLFA content 18:2w6,9 (Šnajdr et al., 2008) and NLFA 16:1w5 was used as a
marker for AM fungi (Olsson et al., 2003).

42

43 16S and ITS amplicon sequencing

44 All frozen soil samples (250 mg each, in duplicates for each sample) were homogenized and lysed in 45 PowerBead Pro Tubes (Qiagen, Germany) on a Vortex adapter. Subsequently, DNA was extracted using 46 the DNeasy PowerSoil Kit (Qiagen, Germany) according to the manufacturer's instructions and eluted 47 in 50 µl of elution buffer. The fungal internal transcribed spacer of the rDNA (ITS2 rDNA) was amplified 48 using primers gITS7ngs (Ihrmark et al., 2012) and ITS4 (White et al., 1990). The bacterial 16S rRNA gene (V4 region) was amplified from the same DNA extracts using primers 515f and 806r (Caporaso et 49 al., 2011). All primers were tagged with sample-specific barcodes of 10-12 bases. PCR mix was 50 51 performed in the total volume of 15 µl and contained 0.07 U Thermo Scientific[™] Tag DNA Polymerase, 10x PCR Buffer, 2.5 mM MgCl₂, 20 µg BSA (all Thermo Fisher Scientific, Waltham, Massachusetts, USA), 52 53 0.3 mM each dNTP, 0.3 μ M of each primer and 1 μ l of the DNA extract. Thermocycling conditions were 54 94 °C for 4 min, 25 cycles of 94 °C for 45 s, 52 °C for 60 s and 72 °C for 35 s, followed by 10 min at 72 55 °C. Each DNA extract was amplified in duplicate. PCR products were visualized on a 1% agarose gel. 56 The pooled duplicates were purified through columns with the QIAquick PCR Purification Kit (Qiagen, 57 Hilden, Germany) according to the manufacturer's protocol and eluted into 20 µl of ddH₂O. DNA 58 concentrations of the amplicon pools were quantified using a Qubit 2.0 Fluorometer (Thermo Fisher 59 Scientific) with High Sensitivity Assay Kit. The purified amplicons were pooled in equimolar ratios. Both negative PCR controls (with ddH₂O instead of a template) were processed in the same way as the 60 61 experimental samples and included into the sequencing library, together with sixty fungal and sixty 62 bacterial amplicons. The library was sequenced on an Illumina MiSeq instrument $(2 \times 250 \text{ bp})$ (SEQme, 63 Dobříš, Czech Republic).

64

65 16S and ITS bioinformatics

In total, Illumina paired end sequencing of 120 samples and 2 negative controls yielded 4 261 236 raw
sequences. The data were processed using the pipeline SEED2 ver. 2.1.1b (Větrovský et al., 2018).
First, low-quality sequences were discarded (mean quality score < 30). The reads were demultiplexed

69 (no mismatch allowed in the tag sequences) and tag switches (i.e. reads with non-matching tags) were70 discarded.

71 The ITS2 region was extracted from the fungal amplicons using ITSx ver. 1.0.11 (Bengtsson-Palme 72 et al., 2013) and sequences shorter than 20 bp were excluded. This yielded 982 036 sequences which 73 were clustered to OTUs using UPARSE implementation in USEARCH ver. 8.1.1861 (Edgar, 2013) with 74 97% similarity threshold (45 480 chimeric sequences were excluded during this step). The most 75 abundant sequences were selected for each of the resulting 10 685 OTUs. These sequences were 76 checked for their identity via BLASTn algorithm against the UNITE database ver. 8.3 (Nilsson et al., 77 2019) and non-fungal, no-hit sequences as well as global singletons, doubletons and tripletons were 78 excluded from further analyses leaving 2638 OTUs represented by 840 206 reads. Two OTUs 79 represented by six reads detected in the negative control were subtracted from the corresponding 80 OTUs across the dataset. The ecological guilds of the fungal OTUs were parsed using the database 81 FungalTraits (Põlme et al., 2020) at genus and sequence levels.

82 Primers were cut from prokaryote reads (1 319 594 reads after demultiplexing) and sequences 83 shorter than 20 bp were excluded. The reads were clustered to OTUs using UPARSE implementation 84 in USEARCH ver. 8.1.1861 (Edgar, 2013) with 97% similarity threshold (442 826 chimeric sequences 85 were excluded during this step). OTUs with n < 5 were discarded. The most abundant sequences were 86 selected for each of the resulting 6532 OTUs. These sequences were checked for their identity via 87 BLASTn algorithm against the RDP trainset 16 (Cole et al., 2014). 179 reads detected in the negative control were subtracted from the corresponding OTUs across the dataset. OTUs with non-target and 88 89 no BLASTn hits were excluded from further analyses leaving 6369 OTUs represented by 841 512 reads.

90

91 Structural equation models

92 To keep the number of potential pathways relative low and avoid spurious effects occurring due to 93 correlating exogeneous variables, we first calculated three base models for each soil type following 94 (Radujković et al., 2021). These three base models captured effects of the plant community onto soil 95 chemical changes after the 13th growing season of (a) the plant community in the year of sampling 96 (aboveground and belowground productivity, plant diversity and plant compositional NMDS axes 1-97 3), (b) overall effects of the plant community from the past (initial invasion effect on plant diversity, 98 aboveground productivity and plant diversity trajectories in time), and (c) plant compositional effects 99 from the past (invasion effect size on plant compositional NMDS axis 2, plant compositional NMDS 100 axes 1-3 trajectories in time). All base models included the same soil chemical parameters: total soil 101 N, C, organic C and pH, and plant available P, NO₃, NH₄, NO₂.

3

102 Since a few of the exogeneous plant community parameters significantly correlated in various 103 cases between the three base models, we replaced each plant community parameter in each model 104 with significantly correlating plant community parameters from the other two base models (Fig S11). 105 In case this replacement improved the AIC of the model, the plant community parameter belonging 106 to one of the other base models was considered to represent the effects best. Model selection was 107 then re-run without inclusion of the correlating parameter as these effects were better represented 108 in one of the other base models. The three base models were then merged for each soil origin and 109 another round of stepwise selection was run to end up with the most parsimonious model.

110 Secondly, in each SEM, we ran through each bacterial, fungal and microbial biomass parameter (biomass pools based on PLFA/NLFA analyses and summed relative reads per 16S or ITS cluster from 111 112 the calculated co-occurrence networks per soil type) as the final parameter to be estimated. Per run, one microbial parameter was considered, which could be affected either directly by the plant 113 114 community parameters or indirectly via the soil chemical variables. Each run, a backward stepwise elimination procedure to consecutively remove non-significant pathways was followed in the same 115 way as performed for the base models (in 't Zandt et al., 2020). All microbial variables not following a 116 normal distribution were In- or sqrt-transformed. 117

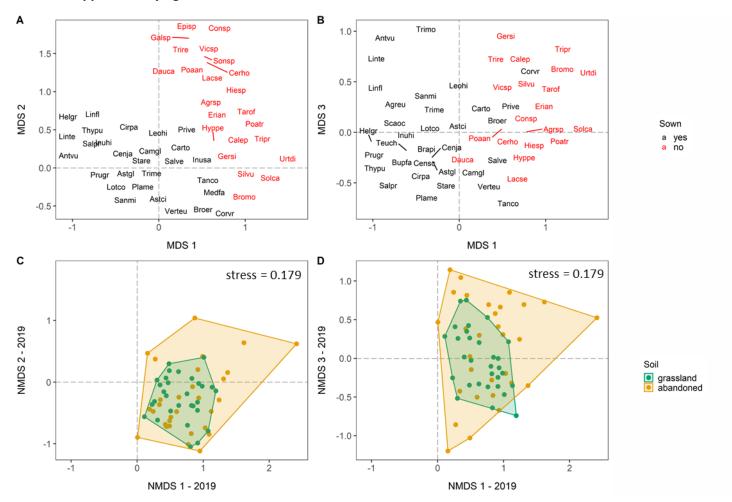
118

119 References

- Bengtsson-Palme, J., Ryberg, M., Hartmann, M., Branco, S., Wang, Z., Godhe, A., de Wit, P., Sánchez García, M., Ebersberger, I., de Sousa, F., Amend, A. S., Jumpponen, A., Unterseher, M.,
- 122 Kristiansson, E., Abarenkov, K., Bertrand, Y. J. K., Sanli, K., Eriksson, K. M., Vik, U., ... Nilsson, R.
- 123 H. (2013). Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS
- sequences of fungi and other eukaryotes for analysis of environmental sequencing data.
- 125 *Methods in Ecology and Evolution*, 4(10), 914–919. https://doi.org/10.1111/2041-210X.12073
- Bligh, E.G. and Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. *Canadian Journal of Biochemistry and Physiology*, *37*(8).
- Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Lozupone, C. A., Turnbaugh, P. J., Fierer,
 N., & Knight, R. (2011). Global patterns of 16S rRNA diversity at a depth of millions of
 sequences per sample. *Proceedings of the National Academy of Sciences*, *108*(supplement_1),
 4516–4522. https://doi.org/10.1073/pnas.1000080107
- Cole, J. R., Wang, Q., Fish, J. A., Chai, B., McGarrell, D. M., Sun, Y., Brown, C. T., Porras-Alfaro, A.,
 Kuske, C. R., & Tiedje, J. M. (2014). Ribosomal Database Project: data and tools for high
 throughput rRNA analysis. *Nucleic Acids Research*, *42*(D1), D633–D642.
 https://doi.org/10.1093/nar/gkt1244
- Edgar, R. C. (2013). UPARSE: highly accurate OTU sequences from microbial amplicon reads. *Nature Methods*, *10*(10), 996–998. https://doi.org/10.1038/nmeth.2604

García-Sánchez, M., Cajthaml, T., Filipová, A., Tlustoš, P., Száková, J., & García-Romera, I. (2019). Implications of mycoremediated dry olive residue application and arbuscular mycorrhizal fungi

- inoculation on the microbial community composition and functionality in a metal-polluted soil.
- 141 Journal of Environmental Management, 247(July), 756–765.
- 142 https://doi.org/10.1016/j.jenvman.2019.05.101
- Ihrmark, K., Bödeker, I. T. M., Cruz-Martinez, K., Friberg, H., Kubartova, A., Schenck, J., Strid, Y.,
 Stenlid, J., Brandström-Durling, M., Clemmensen, K. E., & Lindahl, B. D. (2012). New primers to
- 145 amplify the fungal ITS2 region evaluation by 454-sequencing of artificial and natural
- 146 communities. *FEMS Microbiology Ecology*, *82*(3), 666–677. https://doi.org/10.1111/j.1574 147 6941.2012.01437.x
- in 't Zandt, D., Hoekstra, N. J., Wagemaker, C. A. M., Caluwe, H., Smit-Tiekstra, A. E., Visser, E. J. W.,
 & Kroon, H. (2020). Local soil legacy effects in a multispecies grassland community are
 underlain by root foraging and soil nutrient availability. *Journal of Ecology*, *108*(6), 2243–2255.
 https://doi.org/10.1111/1365-2745.13449
- Münzbergová, Z. (2012). Seed density significantly affects species richness and composition in
 experimental plant communities. *PLoS ONE*, 7(10).
- 154 https://doi.org/10.1371/journal.pone.0046704
- Nilsson, R. H., Larsson, K. H., Taylor, A. F. S., Bengtsson-Palme, J., Jeppesen, T. S., Schigel, D.,
 Kennedy, P., Picard, K., Glöckner, F. O., Tedersoo, L., Saar, I., Kõljalg, U., & Abarenkov, K. (2019).
 The UNITE database for molecular identification of fungi: Handling dark taxa and parallel
 taxonomic classifications. *Nucleic Acids Research*, *47*(D1), D259–D264.
 https://doi.org/10.1093/nar/gky1022
- Olsen, S., Cole, C., Watanabe, F., & Dean, L. (1954). Estimation of available phosphorus in soils by
 extraction with sodium bicarbonate. In USDA Circular Nr 939. US Gov. Print. Office.
- Olsson, P. A., Larsson, L., Bago, B., Wallander, H., & van Aarle, I. M. (2003). Ergosterol and fatty acids
 for biomass estimation of mycorrhizal fungi. *New Phytologist*, *159*, 1–10.
- Põlme, S., Abarenkov, K., Henrik Nilsson, R., Lindahl, B. D., Clemmensen, K. E., Kauserud, H., Nguyen,
 N., Kjøller, R., Bates, S. T., Baldrian, P., Frøslev, T. G., Adojaan, K., Vizzini, A., Suija, A., Pfister, D.,
 Baral, H. O., Järv, H., Madrid, H., Nordén, J., ... Tedersoo, L. (2020). FungalTraits: a user-friendly
 traits database of fungi and fungus-like stramenopiles. *Fungal Diversity*, *105*(1).
 https://doi.org/10.1007/s13225-020-00466-2
- Radujković, D., Verbruggen, E., Seabloom, E. W., Bahn, M., Biederman, L. A., Borer, E. T., Boughton,
 E. H., Catford, J. A., Campioli, M., Donohue, I., Ebeling, A., Eskelinen, A., Fay, P. A., Hansart, A.,
 Knops, J. M. H., MacDougall, A. S., Ohlert, T., Olde Venterink, H., Raynaud, X., ... Vicca, S. (2021).
- 172 Soil properties as key predictors of global grassland production: Have we overlooked
- 173 micronutrients? *Ecology Letters*, 24(12), 2713–2725. https://doi.org/10.1111/ele.13894
- Sampedro, I., Giubilei, M., Cajthaml, T., Federici, E., Federici, F., Petruccioli, M., & D'annibale, A.
 (2009). Short-term impact of dry olive mill residue addition to soil on the resident microbiota. *Bioresource Technology*, 100(23), 6098–6106. https://doi.org/10.1016/j.biortech.2009.06.026
- Šnajdr, J., Valášková, V., Merhautová, V., Cajthaml, T., & Baldrian, P. (2008). Activity and spatial
 distribution of lignocellulose-degrading enzymes during forest soil colonization by saprotrophic
 basidiomycetes. *Enzyme and Microbial Technology*, 43(2), 186–192.
- 180 https://doi.org/10.1016/j.enzmictec.2007.11.008


- 181 Větrovský, T., Baldrian, P., & Morais, D. (2018). SEED 2: A user-friendly platform for amplicon high-
- 182 throughput sequencing data analyses. *Bioinformatics*, *34*(13), 2292–2294.
- 183 https://doi.org/10.1093/bioinformatics/bty071

White, T., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal
ribosomal RNA genes for phylogenetics. In T. White (Ed.), *PCR protocols, a guide to methods and applications* (pp. 315–322). Academic Press.


187

188

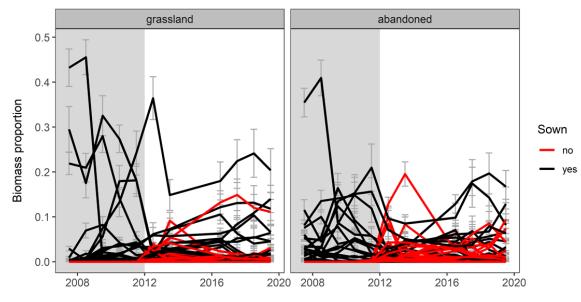
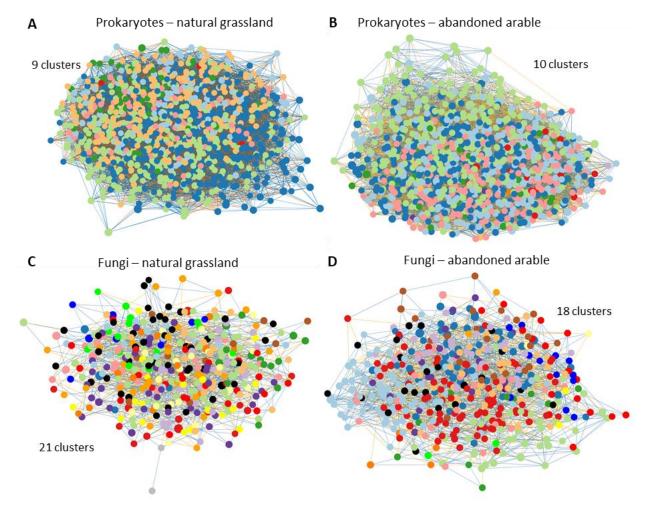
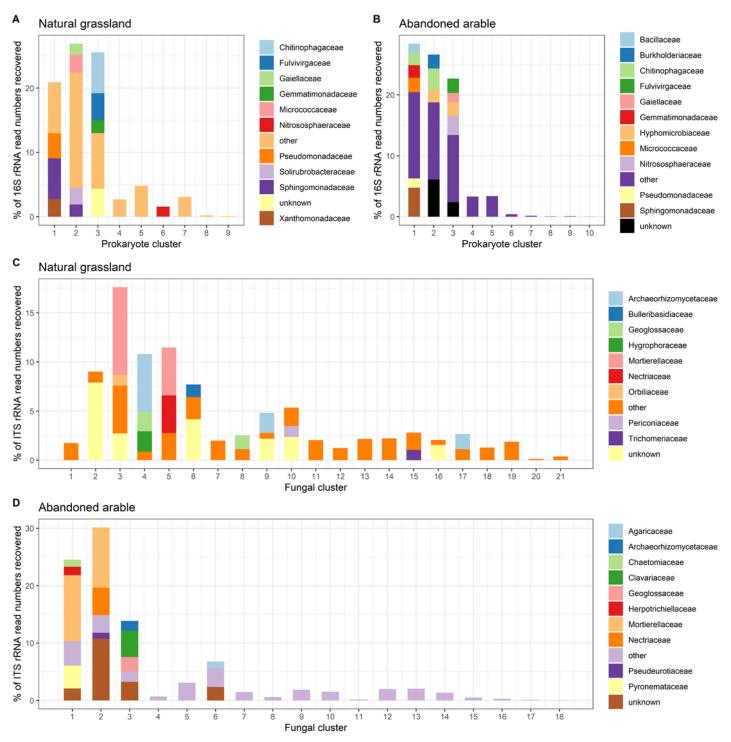
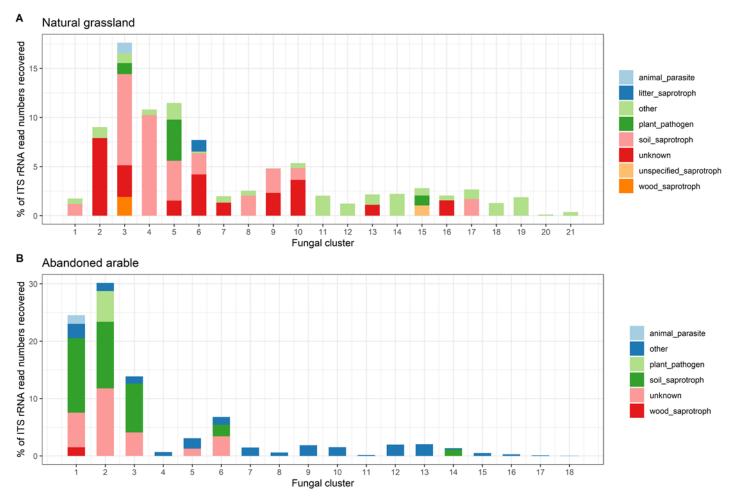

Supplementary figures

Figure S1 Plant species position on the non-metric multidimensional scaling (NMDS) axes (A) 1 and 2, and (B) 1 and 3 (n = 59 plant species). Plant community positions in 2019 on the NMDS axes (C) 1 and 2, and (D) 1 and 3 on natural grassland (green) and abandoned arable soil (yellow) (n = 30 communities on each soil). For NMDS patterns over time, see Fig 1. For plant species abbreviations, see Table S9.


Figure S2 Scores of plant species resulting from non-metric multidimension scaling (NMDS). (A) MDS score 1 correlated to the average residence period (in calendar years) of the plant species (present in early or later years of the experiment; 2007 to 2019) and (B) MDS score 2 correlated to the average residence time (in years, In-transformed) of the plant species (present for 1 to 13 years) (n = 59 species, rare species excluded).


Figure S3 Biomass proportion of sown plant species (black) and invaded plant species (red) over time in plant communities established on natural grassland and abandoned arable soil. Grey shading indicates the period where no invasion was allowed to occur. Averages \pm SE; n = 59 plant species per soil, rare species excluded.


Figure S4 Soil chemical and microbial properties after the 13th growing season in communities grown on natural grassland (green) and abandoned arable (yellow). Total N, C and organic C are given in percentage; NO3, NH4, NO2, K and P, as well as bacterial, fungal and AMF biomass are given in mg \cdot kg⁻¹ dry soil. Root biomass is given in g. 16S and ITS richness represent the number of unique OTUs. Averages ± SE (n = 30), asterisks indicate significant differences between natural grassland and abandoned arable soil (tested in a linear mixed effects model with seed density as random effect). Significance codes: *** p < 0.001; ** p <0.01.

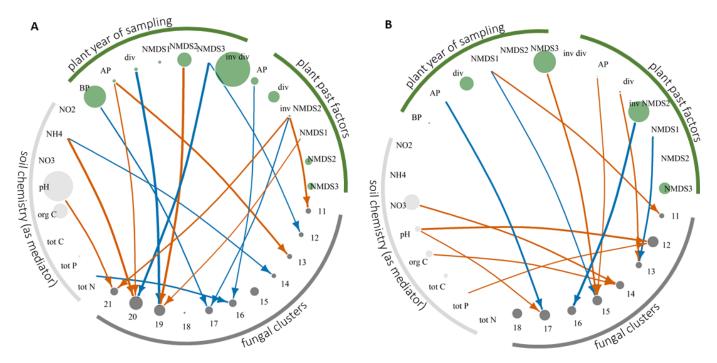

Figure S5 Soil microbial co-occurrence networks of prokaryotes in (A) natural grassland soil and (B) in abandoned arable soil, and of fungi in (C) natural grassland soil and (D) abandoned arable soil. Each dot represents one OTU. Different colours indicate that OTUs belonged to different co-occurrence clusters within the network (n = 30 communities).

Figure S6 Average percentage of 16S and ITS rRNA read numbers recovered per family level over similarly responding prokaryote in (A) natural grassland and (B) abandoned arable soil, and fungal clusters in (C) natural grassland and (D) abandoned arable soil obtained from co-occurrence networks. For 16S, families < 1.5% relative abundances are grouped in 'other', for ITS, families <1% relative abundances are grouped in 'other'.

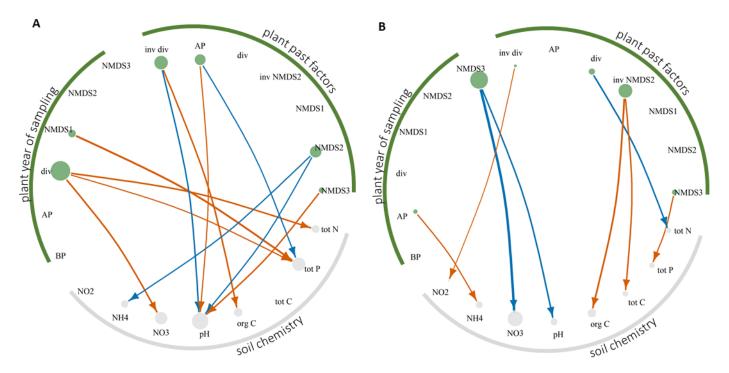
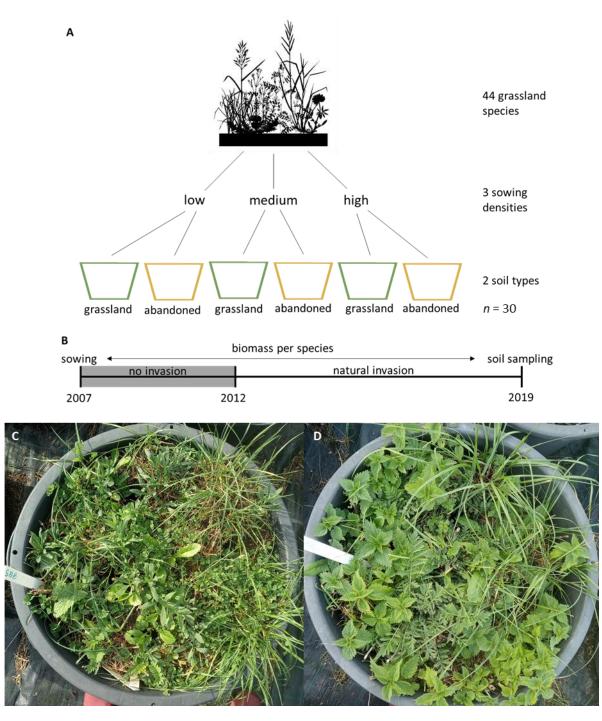


Figure S7 Average percentage of ITS rRNA read numbers recovered per putative fungal trait over similarly responding fungal clusters obtained from co-occurrence networks in (A) natural grassland and (B) abandoned arable soil. Putative fungal traits < 1% relative abundances are grouped in 'other'.


Figure S8 continued from Fig 5 representing fungal clusters 11 and beyond. Significant pathways obtained from structural equation models testing effects of plant community parameters in the year of sampling (2019) and the past (2007-2019) on soil fungal networks in (A) natural grassland soil and (B) abandoned arable soil. Direct effects were separated from *in*direct effects that occurred via changes in soil chemical properties. Plant vertices are indicated in green, soil chemical vertices in light grey and microbial vertices in dark grey. Plant vertice sizes *in*dicate the summed direct and indirect pathway effect sizes onto microbial parameters. Soil chemical vertices indicate only the summed *in*direct pathway effect sizes. Microbial vertices indicate the summed direct and *in*direct pathway effect sizes that these microbial parameters were affected by. All summed pathway effect sizes were scaled to the size of the microbial parameters involved. Negative pathways are represented in vermillion, positive in blue. Arrows indicate the direction of the pathways and the width of the arrows its effect size. Soil chemical pathways are only included when the plant community affected the soil chemical variable. For plant-soil chemical pathways, see Fig S9. Plant year of sampling factors: BP – belowground productivity, AP – aboveground productivity, div – plant diversity, NMDS1 – plant composition related to species residence period, NMDS2 – plant composition related to species residence time, NMDS3 – plant composition related to species differential dominance. Plant past factors: inv div – initial invasion effect size on plant diversity trajectory, div – plant diversity trajectory,

inv NMDS2 – initial invasion effect size on plant composition NMDS2 (increase in new individuals between 2011 and 2012), NMDS1-3 – plant compositional trajectories (see Fig 4A, S1-S2 for more details). Only significant pathways are included (p < 0.05; n = 30).

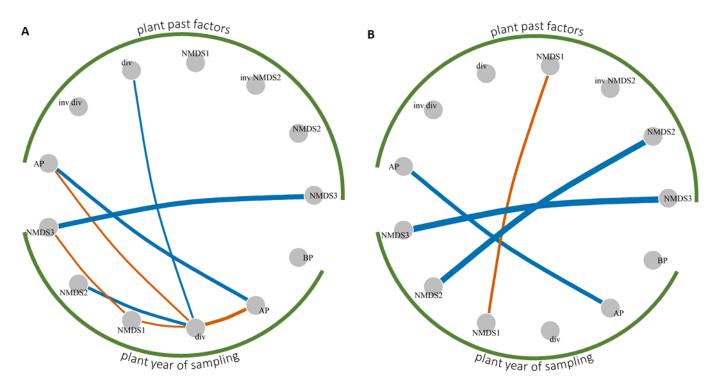


Figure S9 Significant pathways obtained from structural equation models showing effects of plant community parameters in the year of sampling (2019) and the past (2007-2019) on soil chemical properties in (A) natural grassland soil and (B) abandoned arable soil. Plant vertices are indicated in green and soil chemical vertices in grey. Plant vertice sizes indicate the summed pathway effect sizes of the parameter onto all soil chemical properties. Soil chemical vertice sizes indicate the summed pathway effect sizes of all plant community parameters the chemical parameter was affected by. Negative pathways are represented in vermillion, positive in blue. Arrows indicate the direction of the pathways and the width of the arrows its effect size. Plant year of sampling factors: BP – belowground productivity, AP – aboveground productivity, div – plant diversity, NMDS1 – plant composition related to species residence period, NMDS2 – plant composition related to species residence time, NMDS3 – plant composition related to species residence and plant common plant diversity.

plant composition related to species differential dominance. Plant past factors: inv div – initial invasion effect size on plant diversity (increase in diversity between 2011 and 2013), AP – aboveground productivity trajectory, div – plant diversity trajectory, inv NMDS2 – initial invasion effect size on plant composition NMDS2 (increase in new individuals between 2011 and 2012), NMDS1-3 – plant compositional trajectories (see Fig 4A, S1-S2 for more details). Only significant pathways are included (p < 0.05; n = 30).

Figure S10 (A) Experimental design, (B) timeline of the experiment and two typical images of a (C) natural grassland and (D) abandoned arable plant communities (summer 2020). In A, sowing densities represent 25% (low), 100% (medium) and 400% (high) of the natural seed densities as determined in a natural grassland community were the 44 plant species naturally coexist. Grassland soil was taken from a natural grassland and abandoned soil from an arable field that was abandoned in the 1950s (see also Münzbergová, 2012). In B, plant communities were sown in 2007 followed by a 5 year period in which invasion of other plant species was avoided. From 2012 to 2019, natural invasion occurred. In 2019 after the growing season, soil cores for chemical and microbial analysis were taken. For sown and invaded plant species, see Table S9.

Figure S11 Correlations between aboveground plant community parameters in (A) natural grassland and (B) abandoned arable soil. Blue lines indicate significant (p < 0.05) positive correlations, vermillion significant negative correlations. The width of the line indicate the correlation strength (n = 30). Plant year of sampling factors: BP – belowground productivity, AP – aboveground productivity, div – plant diversity, NMDS1 – plant composition related to species residence period, NMDS2 – plant composition related to species residence time, NMDS3 – plant composition related to species differential dominance. Plant past factors: inv div – initial invasion effect size on plant diversity (increase in diversity between 2011 and 2013), AP – aboveground productivity trajectory, div – plant diversity trajectory, inv NMDS2 – initial invasion effect size on plant diversity and the plant composition related to species and 2013), AP – aboveground productivity trajectory, div – plant diversity trajectory, inv NMDS2 – initial invasion effect size on plant diversity trajectory, inv NMDS2 – plant composition related to species.

Supplementary tables

Table S1 Microbial co-occurrence network parameters typically associated withnetwork stability for networks based on 16S and ITS amplicon sequencing

	Prokaryo	te network	Fungal network		
	Natural grassland	Abandoned arable	Natural grassland	Abandoned arable	
Number of nodes	1008	1024	403	455	
Number of edges	10209	10079	1470	1874	
Average number of edges per node	20.3	19.7	7.3	8.2	
Negative edges	46%	46%	36%	33%	
Edge betweenness	132	139	467	510	
Average edge weight	0.07	0.07	0.08	0.08	
Number of clusters	9	10	21	18	
Clustering coefficient	0.36	0.35	0.54	0.56	

Table S2 Dominant phyla, orders and families in soil prokaryote clusters of plant communities grown on natural grassland soil

Cluster	Dominant phyla (>20%)	Dominant orders (>9%)	Dominant families (>9%)	Relates to	Putative metabolic traits and functions
1 (large)	Proteobacteria (77.6%)	Sphingomondales (30.4%) Pseudomonadales (18.6%) Xanthomonadales (13.1%)	Sphingomonadaceae (30.3%) Pseudomonadaceae (18.6%) Xanthomonadaceae (13.1%)	Belowground productivity (+)	Generalist, fast growing metabolically diverse chemoheterotrophs
2 (large)	Actinobacteria (57.7%) Proteobacteria (32.6%)	Micrococcales (16.2%) Solibrubacterales (12.2%) Rhizobiales (11.1%)	Micrococcaceae (10.0%) Solirubrobacteraceae (9.6%)	Plant diversity trajectory (-), NMDS2 trajectory (-)	Specialist chemoheterotrophs. Partially likely involved in N-fixation. Many unknown.
3 (large)	Bacteroidetes (44.6%) Proteobacteria (26.9%)	Chitinophagales (24.9%) Cytophagales (17.3%)	Chitinophagaceae (24.9%) Fulvivirgaceae (16.3%)	Total N (+), plant diversity trajectory (+), NMDS2 trajectory (+)	Specialist, fast growing chemoheterotrophs
4 (small)	Proteobacteria (80.6%)	Burkholderiales (38.0%) Nitrosomonadales (13.3%)	Burkholderiaceae (33.9%) Nitrosomonadaceae (13.3%)	Belowground productivity (-)	Generalist, slow growing chemoheterotrophs. Partially likely involved in nitrification
5 (small)	Proteobacteria (66.1%)	Rhizobiales (27.6%) Nevskiales (21.3%)	Steroidobacteraceae (21.3%) Hyphomicrobiaceae (14.7%)	Organic C (+), belowground productivity (-), NMDS1 (+), invasion effect size diversity (+)	Specialist, slow growing chemolithoautotrophs and chemoheterotrophs
6 (small)	Thaumarchaeota (98.7%)	Nitrososphaerales (98.7%)	Nitrososphaeraceae (98.7%)	Organic C (+), NMDS1 (+), invasion effect size diversity (+)	Specialists. Ammonia oxidising archaea: chemolithoautotrophs, but likely also -heterotroph
7 (small)	Proteobacteria (57.3%)	All below 9%	All below 9%	Plant diversity (-)	Unclear generalists
8 (small)	Actinobacteria (100%)	Acidimicrobiales (60.5%) Streptomycetales (39.5%)	Acidimicrobiaceae (60.5%) Streptomycetaceae (39.5%)	NMDS2 (+)	Specialists heterothrophs and root endophytes (<i>Streptomyces</i>)
9 (small)	Actinobacteria (52.3%) Proteobacteria (47.7%)	Thermoleophilales (52.3%) Rhodobacterales (47.7%)	Thermoleophilaceae (52.3%) Rhodobacteraceae (47.7%)	Invasion effect size diversity (+)	Generalist chemolithoautothrophs

Percentages indicate the relative read abundance of the phylogenetic group within the cluster. Clusters are divided in large and small clusters based on their average relative read abundance (Fig 3). Putative generalist functions are based on relations to overall plant community parameters (productivity, diversity) or absence of a relation to the plant community. Putative specialist functions are based on relations with plant community composition, indicating that plant identity played a role. Putative fast growing characteristics were based on a high relative abundance of the cluster with high soil N, NO3 or NH4, as well as the likely presence of readily available C sources (high belowground productivity). Putative slow growing characteristics were based on a low relative abundance of the cluster in these same soil conditions.

Cluster	Dominant phyla (>20%)	Dominant orders (>10%)	Dominant families (>9%)	Relates to	Putative metabolic traits and function
1 (large)	Proteobacteria (50.4%) Actinobacteria (20.1%)	Spingomonadales (18.2%)	Sphingomonadaceae (16.8%)	NMDS1 trajectory (-), invasion effect size composition (-)	Specialist metabolically diverse chemoheterotrophs. Many unknown
2 (large)	Proteobacteria (54.2%)	Burkholderiales (14.0%) Chitinophagales (13.1%)	Chitinophagaceae (13.1%)	pH (-), NO3 (-), plant diversity (+)	Generalist, slow growing chemoheterotrophs. Many unknown
3 (large)	Proteobacteria (28.5%) Actinobacteria (21.4%)	Nitrososphaerales (13.6%) Rhizobiales (12.8%) Cytophagales (10.6%)	Nitrososphaeraceae (13.6%) Fulvivirgaceae (10.4%) Hyphomicrobiaceae (9.9%)	Total N (-), pH (+), invasion effect size NMDS2 (+)	Specialist, slow growing. Ammonia oxidising archaea, chemolithoautotroph and likely also -heterotroph. Likely N- fixing taxa
4 (small)	Actinobacteria (44.2%) Acidobacteria (25.7%) Proteobacteria (22.2%)	Solirubrobacterales (15.8%) Xanthomonadales (13.2%) Gaiellales (12.5%)	Solirubrobacteraceae (15.8%) Xanthomonadaceae (13.2%) Gaiellaceae (12.5%)	NMDS2 (-)	Specialist chemoheterotrophs
5 (small)	Proteobacteria (52.0%) Actinobacteria (22.2%)	Solirubrobacterales (12.4%) Sphingomonadales (12.4%) Rhizobiales (11.1%)	Solirubrobacteraceae (12.4%) Sphingomonadaceae (12.0%) Chitinophagaceae (9.0%)	Total N (+), organic C (-), NO2 (+), aboveground productivity (+)	Generalist, fast growing chemoheterotrophs
6 (small)	Proteobacteria (60.5%)	Gemmatimonadales (17.3%) Myxococcales (16.6%) Burkholderiales (14.0%) Micropepsales (12.8%) Desulfuromonadales (11.9%) Chthoniobacterales (11.0%)	Gemmatimonadaceae (17.3%) Comamonadaceae (14.0%) Micropepsaceae (12.8%) Chthoniobacteraceae (11.0%)	-	Generalist chemoheterotrophs, various likely N-fixing taxa
7 (small)	Proteobacteria (45.9%) Acidobacteria (27.4%)	Rhizobiales (45.9%) Verrucomicrobiales (18.4%)	Methylocystaceae (45.9%) Verrucomicrobia subdivision 3 (18.4%)	Plant diversity (+)	Generalist chemolithotrophs, aerobic methane oxidisers (more likely surviving on organic material) and N-fixing taxa
8 (small)	Bacteroidetes (63.6%) Acidobacteria (36.4%)	Chitinophagales (63.6%)	Chitinophagaceae (63.6%)	Organic C (+), belowground productivity (-), plant diversity (-), NMDS3 trajectory (-)	Specialist, slow growing chemoheterotrophs
9 (small)	Acidobacteria (76.8%)	Burkholderiales (14.8%)	Alcaligenaceae (14.8%)	Plant diversity trajectory (+)	Unclear generalists, many unknown
10 (small)	Actinobacteria (68.0%) Bacteroidetes (32.0%)	Acidimicrobiales (68.0%) Chitinophagales (32.0%)	Acidimicrobiaceae (68.0%) Chitinophagaceae (32.0%)	NH4 (+), plant diversity (+), invasion effect size diversity (-)	Generalist, fast growing chemoheterotrophs

 Table S3 Dominant phyla, orders and families in soil prokaryote clusters of plant communities grown on abandoned arable soil

 Cluster
 Dominant phyla
 Putative metab

 Cluster
 Dominant phyla
 Putative metab

Percentages indicate the relative read abundance of the phylogenetic group within the cluster. Clusters are divided in large and small clusters based on their average relative read abundance (Fig 3). Putative generalist functions are based on relations to overall plant community parameters (productivity, diversity) or absence of a relation to the plant community. Putative specialist functions are based on relations with plant community composition, indicating that plant identity played a role. Putative fast growing characteristics were based on a high relative abundance of the cluster with high soil N, NO3 or NH4, as well as the likely presence of readily available C sources (high belowground productivity). Putative slow growing characteristics were based on a low relative abundance of the cluster in these same soil conditions.

Table S4 Dominant phyla, orders, families and putative traits in soil fungal clusters of plant communities grown on natural grassland soil

Cluster	Dominant phyla (>20%)	Dominant orders (>9%)	Dominant families (>9%)	Relates to	Dominant fungal traits (>9%)	Putative metabolic traits and functions
1 (small)	Ascomycota (41.0%) Mucoromycota (37.5%)	Mucorales (37.5%) Archaeorhizomycetal es (15.7%) Mortierellales (15.0%)	Mucoraceae (37.5%) Archaeorhizomycetaceae (15.7%) Mortierellaceae (15.0%)	Tot N (-), aboveground productivity (+)	Soil saprotroph (68.2%)	Generalist, slow growing soil saprotrophs
2 (large)	Ascomycota (89.0%)	Filobasidiales (9.4%)	Piskurozymaceae (9.4%)	Organic C (+), plant diversity trajectory (+)	Soil saprotroph (9.4%)	Largely unknown Ascomycota. Likely generalist soil saprotrophs
3 (large)	Mortierellomycota (50.7%) Ascomycota (36.3%)	Mortierellales (50.7%)	Mortierellaceae (50.7%)	Organic C (+), pH (+), belowground productivity (-)	Soil saprotroph (52.7%) Wood saprotroph (10.9%)	Generalist, slow growing saprotrophs
4 (large)	Ascomycota (77.3%) Basidiomycota (22.7%)	Archaeorhizomycetal es (54.7%) Agaricales (21.9%) Geoglossales (18.1%)	Archaeorhizomycetaceae (54.6%) Hygrophoraceae (19.2%) Geoglossaceae (18.1%)	Organic C (-), NMDS2 (+), plant diversity trajectory (-), invasion effect size diversity (-)	Soil saprotroph (94.7%)	Specialist soil saprotrophs
5 (large)	Ascomycota (52.5%) Mortierellomycota (42.5%)	Mortierellales (42.5%) Hypocreales (35.8%)	Mortierellaceae (42.5%) Nectriaceae (33.4%)	Organic C (+), invasion effect size diversity (+)	Plant pathogen (36.5%) Soil saprotroph (35.4%)	Generalist soil saprotrophs and plant pathogens (Fusarium, Ilyonectria, Verticillium, Leptosphaeria, Gibberella)
6 (large)	Ascomycota (82.2%)	Helotiales (57.5%) Tremellales (16.5%) Capnodiales (12.0%) Thelebolales (11.2%)	Bulleribasidiaceae (16.5%) Cladosporiaceae (12.0%) Pseudeurotiaceae (11.2%)	Belowground productivity (+), NMDS2 (-)	Soil saprotroph (27.9%) Litter saprotroph (15.3%)	Specialist saprotrophs possibly profiting from rhizodeposits. Fast growing
7 (small)	Ascomycota (86.4%)	Pezizales (50.1%) Mortierellales (11.4%)	Pyronemataceae (46.3%) Mortierellaceae (11.4%)	рН (+)	Soil saprotroph (13.6%) Plant pathogen (9.2%)	Generalist, soil saprotrophs and plant pathogens (<i>Fusarium, Lectera</i>)
8 (small)	Ascomycota (69.5%) Basidiomycota (23.7%)	Geoglossales (56.0%) Agaricales (23.7%)	Geoglossaceae (56.0%) Clavariaceae (23.7%)	Tot N (+), aboveground productivity (-), NMDS2 (+)	Soil saprotroph (79.7%)	Specialist, fast growing soil saprotrophs

19

Table S4 continued

Cluster	Dominant phyla (>20%)	Dominant orders (>9%)	Dominant families (>9%)	Relates to	Dominant fungal traits	Putative function
9 (small)	Ascomycota (84.8%)	Archaeorhizomycetales (42.3%)	Archaeorhizomycetaceae (42.3%)	NMDS1 (-), NMDS2 (+)	Soil saprotroph (51.2%)	Specialist soil saprotrophs
10 (small)	Ascomycota (55.8%)	Pleosporales (38.0%) Agaricales (13.5%)	Periconiaceae (21.0%) Hygrophoraceae (13.0%)	Tot P (-), pH (+), plant diversity trajectory (+)	Soil saprotroph (22.4%)	Generalist soil saprotrophs
11 (small)	Ascomycota (64.1%)	Pleosporales (35.9%) Helotiales (14.3%)	Didymellaceae (21.2%) Sclerotiniaceae (13.8%) Pleosporaceae (11.2%)	Invasion effect size NMDS2 (-)	Plant pathogen (46.5%)	Specialist plant pathogens (Phoma, Botrytis, Stemphylium, Ophiosphaerella)
12 (small)	Mucoromycota (49.0%) Ascomycota (30.2%)	Mucorales (49.0%) Pleosporales (21.1%)	Mucoraceae (49.0%) Melanommataceae (21.1%)	NMDS3 (+)	Soil saprotroph (50.4%) Plant pathogen (21.1%)	Specialist soil saprotrophs and plant pathogens (<i>Herpotrichia</i>)
13 (small)	Ascomycota (81.0%)	Pleosporales (61.2%)	Phaeosphaeriaceae (32.2%) Pleosporales (24.5%)	Aboveground productivity (-)	Plant pathogen (37.7%)	Generalist plant pathogens (Paraphoma, Septoria, Plenodomus)
14 (small)	Ascomycota (82.3%)	Pleosporales (33.0%) Geoglossales (19.7%)	Didymellaceae (25.6%) Geoglossaceae (19.7%)	NH4 (+)	Soil saprotroph (28.6%) Plant pathogen (26.7%)	Generalist soil saprotrophs and plant pathogens (<i>Stagonosporopsis,</i> Plectosphaerella)
15 (small)	Ascomycota (79.9%)	Chaetothyriales (41.7%) Pleosporales (30.7%)	Trichomeriaceae (37.3%) Didymellaceae (25.8%)	-	Unspecified saprotroph (37.3%) Plant pathogen (36.3%)	Generalist saprotrophs and plant pathogens (<i>Ascochyta, Gibberella,</i> <i>Coniosporium</i>)
16 (small)	Ascomycota (69.4%)	Pleosporales (44.0%)	Unidentified (76.3%)	Tot N (+), aboveground productivity trajectory (+)	Plant pathogen (11.1%)	Generalist fast growing fungi. Possibly plant pathogens as order contains many putative plant pathogens, but also many unknown.

Table S4 continued

Cluster	Dominant phyla (>20%)	Dominant orders (>9%)	Dominant families (>9%)	Relates to	Dominant fungal traits	Putative function
17 (small)	Ascomycota (72.1%) Basidiomycota (25.9%)	Archaeorhizomycetales (58.2%) Trechisporales (12.2%)	Archaeorhizomycetaceae (58.2%)	Belowground productivity (+), invasion effect size NMDS2 (+)	Soil saprotroph (62.7%) Wood saprotroph (9.1%)	Specialist, fast growing saprotrophs possibly profiting from root exudates
18 (small)	Ascomycota (32.3%) Basidiomycota (27.9%)	Sebacinales (18.5%) Mortierallales (14.1%) Rhizophlyctidales (9.9%)	Sebacinaceae (18.5%) Mortierellaceae (14.1%) Rhizophlyctidaceae (9.9%)	-	Litter saprotroph (22.8%) Soil saprotroph (14.1%)	Generalist saprotrophs including litter
19 (small)	Ascomycota (57.4%) Basidiomycota (38.0%)	Hypocreales (21.0%) Agaricales (15.1%) Chaetothyriales (13.7%) Cantharellales (9.8%)	Ceratobasidiaceae (9.8%)	Plant diversity (+), NMDS2 (-), NMDS1 trajectory (-)	Litter saprotroph (17.1%) Animal parasite (11.0%) Soil saprotroph (10.9%)	Specialist saprotrophs including litter. Possible nematode parasites
20 (small)	Kickxellomycota (100%)	Kickxellales (100%)	Kickxellaceae (100%)	NH4 (-), aboveground productivity (-), NMDS3 (+)	Soil saprotroph (100%)	Specialist, slow growing soil saprotrophs
21 (small)	Ascomycota (54.9%)	Pleosporales (26.5%) Verrucariales (16.7%) Orbiliales (11.4%)	Phaeosphaeriaceae (26.5%) Verrucariaceae (16.7%) Orbiliaceae (11.4%)	pH (-), invasion effect size composition (-)	Plant pathogen (26.5%) Lichenized (16.7%) Animal parasite (11.4%)	Specialist lichens, nematode parasites (Arthrobotrys) and plant pathogens (Chaetosphaeronema)

Percentages indicate the relative read abundance of the phylogenetic group within the cluster. Clusters are divided in large and small clusters based on their average relative read abundance (Fig 3). Putative generalist functions are based on relations to overall plant community parameters (productivity, diversity) or absence of a relation to the plant community. Putative specialist functions are based on relations with plant community composition, indicating that plant identity played a role. Putative fast growing characteristics were based on a high relative abundance of the cluster with high soil N, NO3 or NH4, as well as the likely presence of readily available C sources (high belowground productivity). Putative slow growing characteristics were based on a low relative abundance of the cluster in these same soil conditions. Genera identified as putative plant pathogens presented in brackets.

Table S5 Dominant phyla, orders, families and putative traits in soil fungal clusters of plant communities grown on abandoned arable soil

Cluster	Dominant phyla (>20%)	Dominant orders (>9%)	Dominant families (>9%)	Relates to	Dominant fungal traits	Putative function
1 (large)	Mortierellomycota (46.8%) Ascomycota (43.8%)	Mortierellales (46.8%) Pezizales (18.4%)	Mortierellaceae (46.8%) Pyronemataceae (16.2%)	Tot C (-), pH (+), plant diversity (-), NMDS3 trajectory (+)	Soil saprotroph (52.8%)	Specialist soil saprotrophs
2 (large)	Ascomycota (61.3%) Mortierellomycota (34.8%)	Mortierellales (34.8%) Hypocreales (18.7%)	Mortierellaceae (34.8%) Nectriaceae (15.8%)	Organic C (+), NO3 (+)	Soil saprotroph (38.5%) Plant pathogen (17.8%)	Generalist, fast growing soil saprotrophs and plant pathogens (Fusarium, Ilyonectria, Nectria, Plenodomus, Thielaviopsis, Lectera, Paraphoma, Ascochyta, Plectosphaerella, Stagonosporopsis)
3 (mediu m)	Ascomycota (46.3%) Basidiomycota (42.3%)	Agaricales (35.7%) Geoglossales (18.2%) Archaeorhizomycetal es (12.2%) Incertae (9.8%)	Clavariaceae (33.0%) Geoglossaceae (18.2%) Archaeorhizomycetaceae (12.2%)	NO3 (-), NO2 (-), invasion effect size composition (+)	Soil saprotroph (61.4%)	Specialist, slow growing soil saprotrophs
4 (small)	Ascomycota (62.4%) Basidiomycota (37.6%)	Agaricales (37.6%) Geoglossales (20.5%) Eurotiales (14.2%) Hypocreales (12.0%) Saccharomycetales (11.6%)	Tricholomataceae (37.6%) Geoglossaceae (20.5%) Aspergillaceae (14.2%) Nectriaceae (12.0%) Debaryomycetaceae (11.6%)	NMDS2 trajectory (-), NMDS3 trajectory (+)	Litter saprotroph (37.6%) Soil saprotroph (20.5%) Plant pathogen (16.1%) Unspecified saprotroph (14.2%) Nectar/tap saprotroph (11.6%)	Specialist saprotrophs and plant pathogens (<i>Fusarium, Protomyces</i>)
5 (small)	Ascomycota (48.9%) Mortierellomycota (23.0%)	Hypocreales (34.1%) Mortierellales (23.0%) Glomerales (9.4%)	Mortierellaceae (23.0%) Hypocreaceae (18.3%) Nectriaceae (15.8%)	Belowground productivity (-), aboveground productivity trajectory (-)	Soil saprotroph (23.0%) Mycoparasite (18.3%)	Generalist, slow growing soil saprotrophs and mycoparasites

Table S5 Dominant phyla, orders, families and putative traits in soil fungal clusters of plant communities grown on abandoned arable soil

Cluster	Dominant phyla (>20%)	Dominant orders (>9%)	Dominant families (>9%)	Relates to	Dominant fungal traits	Putative function
6 (small)	Ascomycota (56.3%) Basidiomycota (21.3%)	Agaricales (17.4%) Sordariales (15.0%) Pleosporales (14.2%) Orbiliales (12.4%)	Agaricaceae (17.1%) Orbiliaceae (12.4%)	Tot N (+), tot P (-), plant diversity (+)	Soil saprotroph (29.8%)	Generalist, fast growing soil saprotrophs. Small proportion, but high diversity of plant pathogens (Herpotrichia, Chaetosphaeronema, Verticillium, Stemphylium, Periconia, Leptosphaeria, Fusarium, Alternaria, Gibellulopsis, Botrytis, Gibberella).
7 (small)	Ascomycota (48.3%) Basidiomycota (36.5%)	Sebacinales (21.9%) Pezizales (19.5%) Pleosporales (12.7%)	Sebacinaceae (21.9%) Pyronemataceae (14.3%)	Tot C (-), pH (+)	Soil saprotroph (25.5%) Litter saprotroph (11.6%)	Generalist soil and litter saprotrophs
8 (small)	Kickxellomycota (57.4%)	Kickxellales (57.4%) Mortierellales (11.9%)	Kickxellaceae (57.4%) Mortierellaceae (11.9%)	Invasion effect size composition (-)	Soil saprotroph (69.3%)	Specialist soil saprotrophs
9 (small)	Basidiomycota (42.1%) Ascomycota (36.2%)	Sebacinales (29.1%)	Serendipitaceae (29.1%)	Belowground productivity (+)	Root endophyte (29.1%) Litter saprotroph (10.9%)	Generalist root endophytes (Serendipita) and litter saprotrophs
10 (small)	Ascomycota (88.9%)	Pleosporales (39.8%) Geoglossales (18.6%) Pezizales (9.2%)	Didymellaceae (24.1%) Geoglossaceae (18.6%) Lentitheciaceae (9.2%) Pyronemataceae (9.2%)	NMDS2 trajectory (-)	Soil saprotroph (28.1%) Plant pathogen (24.1%) Root endophyte (9.2%)	Specialist soil saprotrophs, plant pathogens (<i>Ascochyta</i>) and root endophytes (<i>Darksidea</i>).
11 (small)	Chytridiomycota (100%)	Rhizophydiales (100%)	Rhizophydiaceae (100%)	NMDS1 (-)	Algal parasite (100%)	Specialist algal parasites
12 (small)	Ascomycota (51.2%) Olpidiomycota (36.3%)	Olpidiales (36.3%)	Olpidiaceae (36.3%)	Tot Р (-), рН (-)	Algal parasite (36.3%) Litter saprotroph (10.8%)	Generalist litter saprotrophs and algal parasites

Table S5 continued

Cluster	Dominant phyla (>20%)	Dominant orders (>9%)	Dominant families (>9%)	Relates to	Dominant fungal traits	Putative function
13 (small)	Ascomycota (43.4%) Basidiomycota (35.3%)	Agaricales (18.9%) Mortierellales (15.3%) Cantharellales (15.3%) Pezizales (14.8%) Hypocreales (10.4%)	Mortierellaceae (15.3%) Cantharellales (15.3%) Pyronemataceae (14.8%) Marasmiaceae (12.8%)	Plant diversity trajectory (-), NMDS1 trajectory (+)	Soil saprotroph (17.2%) Litter saprotroph (17.1%) Lichen parasite (15.3%) Wood saprotroph (14.3%)	Specialist soil, litter and wood saprotrophs as well as lichen parasites.
14 (small)	Ascomycota (50.4%) Basidiomycota (37.7%)	Archaeorhizomycetal es (44.6%) Agaricales (37.7%) Rhizophydiales (10.9%)	Archaeorhizomycetaceae (44.6%) Clavariaceae (30.5%)	Organic C (-), NO3 (-)	Soil saprotroph (82.3%)	Generalist, slow growing soil saprotrophs
15 (small)	Ascomycota (74.9%)	Chaetothyriales (19.9%) Pleosporales (16.5%) Helotiales (15.7%) Orbiliales (10.8%) Cystofilobasidiales (10.3%)	Sporormiaceae (16.5%) Orbiliaceae (10.8%)) Mrakiaceae (10.3%)	NMDS1 (+), NMDS3 (-), aboveground productivity trajectory (-)	Dung saprotroph (16.5%) Plant pathogen (10.3%) Litter saprotroph (9.9%)	Specialist litter and dung saprotrophs and plant pathogens (<i>Itersonilia</i>).
16 (small)	Basidiomycota (100%)	Unidentified (100%)	Unidentified (100%)	Invasion effect size NMDS2 (+)	Unknown (100%)	Unknown specialists
17 (small)	Ascomycota (100%)	Melanosporales (60.6%)	Melanosporaceae (60.6%)	pH (-), aboveground productivity (+)	Mycoparasite (60.6%)	Generalist mycoparasites
18 (small)	Basidiomycota (53.3%) Ascomycota (46.7%)	Sebacinales (53.3%) Helotiales (46.7%)	Serendipitaceae (53.3%)	-	Root endophyte (53.3%)	Generalist root endophytes (<i>Serendipita</i>)

(46.7%)

Percentages indicate the relative read abundance of the phylogenetic group within the cluster. Clusters are divided in large and small clusters based on their average relative read abundance (Fig 3). Putative generalist functions are based on relations to overall plant community parameters (productivity, diversity) or absence of a relation to the plant community. Putative specialist functions are based on relations with plant community composition, indicating that plant identity played a role. Putative fast growing characteristics were based on a high relative abundance of the cluster with high soil N, NO3 or NH4, as well as the likely presence of readily available C sources (high belowground productivity). Putative slow growing characteristics were based on a low relative abundance of the cluster in these same soil conditions. Genera identified as putative plant pathogens presented in brackets. 24

	Natural	Abandoned		Natural	Abandoned
	grassland	arable		grassland	arable
Soil chemistry			Fungal clusters		
Total N	0.22	0.15	1	0.51	0.56
Total P	0.36	0.16	2	0.49	0.55
Total C	0.00	0.17	3	0.53	0.59
Organic C	0.24	0.24	4	0.45	0.34
NO3	0.34	0.41	5	0.62	0.39
NH4	0.21	0.20	6	0.65	0.46
NO2	0.00	0.07	7	0.34	0.38
рН	0.44	0.20	8	0.43	0.29
PLFA/NLFA			9	0.71	0.31
Bacterial biomass	0.65	0.55	10	0.38	0.42
Fungal biomass	0.42	0.69	11	0.26	0.24
AMF biomass	0.53	0.57	12	0.23	0.47
Prokaryote clusters			13	0.24	0.29
1	0.29	0.33	14	0.22	0.36
2	0.51	0.51	15	0.38	0.42
3	0.46	0.58	16	0.34	0.39
4	0.53	0.27	17	0.35	0.46
5	0.33	0.64	18	0.12	0.43
6	0.60	0.27	19	0.48	
7	0.15	0.29	20	0.57	
8	0.16	0.45	21	0.35	
9	0.17	0.17			
10		0.58			

Table S6 Marginal R² of soil chemistry, microbial biomass pools and clusters from SEM models in natural grassland and abandoned arable plant communities

R² in bold belong to large clusters (Fig 3). Note: sowing density was incorporated as a random effect, but in most cases explained no variation. Marginal R² indicates variation explained by fixed factors only.

Time point	Plant parameter	Pathway	Microbial biomass	Prokaryote clusters	Fungal clusters	Putative metabolic traits and functions
Year of	Plant	direct		√7	个19	↑ nitrifying taxa; generalist
sampling	diversity	via ↓N		43	↑1 ↑8 ↓16	slow growing soil saprotrophs; specialist fast growing soil
		via ↓P	√bacteria	个4	<u>↑</u> 10	saprotrophs; generalist litter
		via ↓NO3				saprotrophs ↓ bacterial biomass; dominant fast growing chemoheterotrophs; generalist fast growing fungi (in part plant pathogens)
Year of sampling	Belowgroun d productivity	direct	↑ bacteria	↑1 ↓4 ↓5	↓3 ↑6 ↑17	 ↑ bacterial biomass; dominant fast chemoheterotrophs; dominant and other fast specialist soil saprotrophs; litter and wood saprotrophs ↓ nitrifying taxa; slow chemolithoautotrophs and heterotrophs; dominant slow generalist soil and wood saprotrophs
Year of sampling	Composition (NMDS2) – residence time	direct		个8	↑4 ↓6 ↑8 ↑9 ↓19	 ↑ root endophytes; dominant specialist soil saprotrophs; specialist fast growing soil saprotrophs ↓ dominant fast and other specialist soil and litter saprotrophs
Year of sampling	Composition (NMDS3) – differential dominance	direct			个12 个20	↑ specialist soil saprotrophs and plant pathogens
Past	AP	direct			个16	↑ bacterial biomass; generalist
	trajectory	via 个P	个bacteria	↓4	↓10	fast growing fungi (in part plant
		via ↓pH			↓3 ↓7 ↓10 ↑21	 pathogens); specialist lichens, nematode parasites and plant pathogens ↓ nitrifying taxa; dominant and other generalist soil and wood saprotrophs; generalist plant pathogens
Past	Plant diversity trajectory	direct	√AMF	↓ 2 ↑3	↑2 ↓4 ↑10	 ↑ dominant fast-growing chemoheterotrophs; dominant and other generalist soil saprotrophs ↓ AMF biomass; dominant chemoheterotrophs; N-fixing taxa; dominant specialist soil saprotrophs
Past	Invasion	direct		个5 个6 个9	↓4 ↑5	↑ AMF biomass,
	effect size	via ↓org C	↑AMF	$\sqrt{5}\sqrt{6}$	↓2 ↓3	chemolithoautotrophs;
	diversity				个4 个5	dominant generalist and other
		via ↑pH			↑3 ↑7 ↑10	soil saprotrophs and plant pathogens
					↓21	 ↓ dominant generalist soil saprotrophs; specialist lichens, nematode parasites and plant pathogens

Table S7 Summarised putative effects of the strongest pathways of the plant community in the year ofsampling and past on microbial communities in natural grassland soil.

Time	Plant	Pathway	Microbial	Prokaryote	Fungal	Putative metabolic traits and	
point	parameter		biomass	clusters	clusters	functions	
Past	NMDS2	direct	√fungi	↓2 ↑3	个19	↑ dominant fast-growing	
	trajectory	via 个pH			↑3 ↑7	chemoheterotrophs; dominant	
					10 ↓21	and other generalist soil and	
		via ↓NH4	↓fungi ↓AMF		↓14 ↑20	wood saprotrophs; specialist soil and litter saprotrophs; generalist plant pathogens ↓ fungal and AMF biomass; dominant chemoheterotrophs N-fixing taxa; generalist soil saprotrophs and plant pathogens; specialist lichens, nematode parasite and plant pathogens	
Past	NMDS3 trajectory	direct	个bacteria 个fungi			↑ bacterial and fungal biomass specialist lichens, nematode	
		via ↓pH			↓3 ↓7	parasites and plant pathogens	
					↓10 ↑21	 ↓ dominant and other generalist soil and wood saprotrophs; generalist plant pathogens 	
Past	Invasion	direct			↓11 ↑17	\uparrow specialist soil and wood	
	effect size				↓21	saprotrophs	
	composition					\downarrow specialist plant pathogens,	
						lichens and nematode parasite	

Table S8 Summarised putative effects of the strongest pathways of the plant community in the year of sampling and past on microbial communities in abandoned arable soil.

Time point	Plant parameter	Pathway	Microbial biomass	Prokaryote clusters	Fungal clusters	Putative metabolic traits and functions
Year of sampling	Plant diversity	direct	↓bacteria ↓fungi ↓AMF	↑2 ↑7 ↓8 ↑10	↓1 ↑6	 ↑ dominant slow growing chemoheterotrophs; aerobic methane oxidisers and N- fixing taxa; generalist fast growing soil saprotrophs and plant pathogens ↓ bacterial, fungal and AMF biomass; slow growing chemoheterotrophs; dominant specialist soil saprotrophs
Year of sampling	Belowground productivity	direct		48	↓5 ↑9	 ↑ root endophytes and litter saprotrophs ↓ chemoheterotrophs (dead material); generalist soil saprotrophs and mycoparasites
Year of sampling	Composition (NMDS2) – residence time	direct		↓4		↓ Specialist chemoheterotrophs
Year of	Composition	direct	↓AMF		↓15	↑ dominant slow AOA and N-
sampling	(NMDS3) – differential dominance	via ↑NO3	↓fungi ↓AMF	↓2	↑2 ↓3 ↓14	fixing taxa; dominant specialist soil saprotrophs; dominant generalist fast- growing soil saprotrophs and plant pathogens; generalist mycoparasites ↓ fungal and AMF biomass; dominant slow growing chemoheterotrophs; generalist litter saprotrophs; generalist slow growing soil saprotrophs; specialist litter saprotrophs and plant pathogens
		via 个pH		↓2 ↑3	↑1 ↑7 ↓12 ↑17	
Past	AP trajectory	direct			↓5 ↓15	 ↓ generalist soil saprotrophs and mycoparasites; specialist litter saprotrophs and plant pathogens
Past	Plant diversity trajectory	direct via 个N	↓bacteria	↑ 9 ↓3 ↑5	\ <u>↓13</u> ↑6	 ↑ fast-growing chemoheterotrophs; generalist fast-growing soil saprotrophs and plant pathogens ↓ bacterial biomass; dominant AOA and N-fixing taxa; specialist soil, litter and wood saprotrophs
Past	Invasion effect size plant diversity	direct via ↓NO2	↓bacteria	↓10 ↑5	↑ 3	 ↑ fast-growing chemoheterotrophs; dominant specialist slow- growing soil saprotrophs ↓ bacterial biomass; chemoheterotrophs

Table S8 Summarised putative effects of the most important plant community parameters in the year of sampling and past effects on microbial soil legacies in abandoned arable soil communities

Time point	Plant parameter	Pathway	Microbial biomass	Prokaryote clusters	Fungal clusters	Putative function
Past	NMDS1 trajectory	direct		↓1	个13	 ↑ specialist soil, litter and wood saprotrophs ↓ dominant chemoheterotrophs
Past	NMDS2 trajectory	direct			↓4 ↓10	 ↓ specialist soil saprotrophs, plant pathogens and root endophytes
Past	NMDS3	direct	√fungi	√8	↑1 ↑4	 ↑ dominant and other specialist soil saprotrophs; specialist plant pathogens; generalist fast-growing soil saprotrophs and plant pathogens; generalist litter saprotrophs ↓ fungal biomass; chemoheterotrophs (dead material) ↑ dominant AOA and N-fixing taxa; fast-growing chemoheterotrophs; dominant specialist soil saprotrophs; generalist soil saprotrophs; dominant slow-growing soil saprotrophs; generalist soil and litter saprotrophs; generalist slow-growing soil saprotrophs; unknown specialists ↓ dominant chemoheterotrophs (dead material); dominant generalist fast-growing soil saprotrophs and plant pathogens; specialist soil
	trajectory	via ↓P			个6 个12	
Past	Invasion effect size composition	direct		↓1 ↑3	↑3 ↓8 ↑16	
		via ↓C			↑1 ↑7	
	(NMDS2)	via ↓orgC		<u>↑</u> 5 ↓8	↓2 ↑14	

Plant species	Abbreviation	Sown/invaded
Acer spp	Acesp	Invaded
Agrimonia eupatorium	Agreu	Sown
Agrostis spp	Agrsp	Invaded
Anthericum ramosum	Antra	Sown, not established
Anthylis vulneraria	Antvu	Sown
Arabidopsis thaliana	Arath	Invaded
Arenaria serpyllifolia	Arese	Invaded
Arrhenatherum elatior	Arrel	Invaded
Artemisia vulgaris	Artvu	Invaded
Asperula spp	Aspsp	Sown
Aster amellus	Astam	Sown, not established
Astragalus cicer	Astci	Sown
Astragalus glycyphylos	Astgl	Sown
Atriplex spp	Atrsp	Invaded
Brachypodium pinnatum	Brapi	Sown
Bromus erectus	Broer	Sown
Bromus mollis	Bromo	Invaded
Bupleurum falcatum	Bupfa	Sown
Calamagrostis epigejos	Calep	Invaded
Campanula gentilis	Camge	Sown
Campanula glomerata	Camgl	Sown
Campanula patula	Campa	Invaded
Carex flacca	Carfl	Sown
Carex hirta	Carhi	Invaded
Cardamine spp	Carsp	Invaded
Carex tomentosa	Carto	Sown
Centaurea jacea	Cenja	Sown
Centaurea scabiosa	Censc	Sown
Cerastium holosteoides	Cerho	Invaded
Cirsium acaule	Cirac	Sown, not established
Cirsium pannonicum	Cirpa	Sown
Conyza spp	Consp	Invaded
Coronila varia	Corva	Sown, not established
Crepis biennis	Crebi	Invaded
Dactylis glomerata	Dacgl	Invaded
Daucus carota	Dauca	Invaded
Dianthus carthusianorum	Diaca	Sown, not established
Dipsacus sylvestris	Dipsy	Invaded
Elymus repens	Elyre	Invaded
Epilobium spp	Episp	Invaded
Erigeron annuus	Erian	Invaded
Euphorbia cyparissias	Eupcy	Invaded
Fallopia convolvulus	Falco	Invaded
Falcaria vulgaris	Falvu	Invaded
Galeopsis spp	Galsp	Invaded
Gueopsis spp Geranium sibiricum	Gersi	Invaded
		Sown
Helianthemum grandiflorum	Helgr	
Heracleum mantegazzianum	Herma	Invaded Invaded
Hieracium spp	Hiesp	
Holcus mollis	Holmo	Invaded
Hypericum perforatum	Hyppe	Invaded
Inula hirta	Inuhi	Sown
Inula salicina	Inusa	Sown

Table S9 Sown and invaded plant species and their abbreviations

Table S9 Continued

Plant species	Abbreviation	Sown/invaded
Lactuca serriola	Lacse	Invaded
Lamium purpureum	Lampu	Invaded
Laserpitium latifolium	Lasla	Sown
Lathyrus pratensis	Latpr	Invaded
Leontodon autumnalis	Leoau	Invaded
Leontodon hispidus	Leohi	Sown
Linum catharticum	Linca	Invaded
Linum flavum	Linfl	Sown
Linum tenuifolium	Linte	Sown
Lolium perenne	Lolpe	Invaded
Lotus corniculatus	Lotco	Sown
Medicago falcata	Medfa	Sown
Medicago lupulina	Medlu	Invaded
Myos spp	Myosp	Invaded
Plantago lanceolata	Plala	Invaded
Plantago media	Plame	Sown
Poa annua	Poaan	Invaded
Poa trivialis	Poatr	Invaded
Polygonum spp	Polsp	Invaded
Primula veris	Prive	Sown, not established
Prunella grandiflora	Prugr	Sown
Ranunculus spp	Ransp	Invaded
Raphanus raphanistrum	Rapra	Invaded
Rumex spp	Rumsp	Invaded
Salvia pratensis Salix spp	Salpr Salsp	Sown Invaded
Salvia verticilata	Salve	Sown
Sanquisorba minor Scabiosa ochroleuca	Sanmi	Sown Sown
	Scaoc	
Silene vulgaris	Silvu	Invaded
Solidago canadensis	Solca	Invaded
Sonchus spp	Sonsp	Invaded
Stachys recta	Stare	Sown
Stipa spp	Stisp	Invaded
Tanacetum corymbosum	Tanco	Sown
Tanacetum spp	Tansp	Invaded
Tanacetum vulgaris	Tanvu	Invaded
Taraxacum officinalis	Tarof	Invaded
Teucrium chamaedrys	Teuch	Sown
Thlaspi arvense	Thlar	Invaded
Thymus pulegioides	Thypu	Sown
Trifolium medium	Trime	Sown
Trifolium montanum	Trimo	Sown
Trifolium pratensis	Tripr	Invaded
Trifolium repens	Trire	Invaded
Tussilago farfara	Tusfa	Invaded
Urtica dioica	Urtdi	Invaded
Veronica teucrium	Verteu	Sown
Viccia spp	Vicsp	Invaded