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Abstract

An abundant literature reports on ‘sequential effects’ observed when humans make
predictions on the basis of stochastic sequences of stimuli. Such sequential effects
represent departures from an optimal, Bayesian process. A prominent explanation
posits that humans are adapted to changing environments, and erroneously assume non-
stationarity of the environment, even if the latter is static. As a result, their predictions
fluctuate over time. We propose a different explanation in which sub-optimal and
fluctuating predictions result from cognitive constraints (or costs), under which humans
however behave rationally. We devise a framework of costly inference, in which we
develop two classes of models that differ by the nature of the constraints at play: in
one case the precision of beliefs comes at a cost, while in the other beliefs with high
predictive power are favored. To compare model predictions to human behavior, we
carry out a prediction task that uses binary random stimuli, with probabilities ranging
from .05 to .95. Although in this task the environment is static and the Bayesian belief
converges, subjects’ predictions fluctuate and are biased toward the recent stimulus
history. Both classes of models capture this ‘attractive effect’, but they depart in
their characterization of higher-order effects. Only the precision-cost model reproduces
a ‘repulsive effect’, observed in the data, in which predictions are biased away from
stimuli presented in the more distant past. Our experimental results reveal systematic
modulations in sequential effects, which our theoretical approach accounts for in terms
of rationality under cognitive constraints.
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In many situations of uncertainty, some outcomes are more probable than others. Knowing
the probability distributions of the possible outcomes provides an edge that can be leveraged
to improve and speed up decision making and perception [1]. In the case of choice reaction-
time tasks, it was noted in the early 1950s that human reactions were faster when responding
to a stimulus whose probability was higher [2, 3]. In addition, faster responses were obtained
after a repetition of a stimulus (i.e., when the same stimulus was presented twice in a row),
even in the case of serially-independent stimuli (i.e., when the preceding stimulus carried
no information on subsequent ones; [3, 4]). The observation of this seemingly suboptimal
behavior has motivated in the following decades a profuse literature on “sequential effects”,
i.e., on the dependence of reaction times on the recent history of presented stimuli [5–12].
These studies consistently report a recency effect whereby the more often a simple pattern of
stimuli (e.g., a repetition) is observed in recent stimulus history, the faster subjects respond
to it. In tasks in which subjects are asked to make predictions about sequences of random
binary events, sequential effects are also observed and they have given rise since the 1950s
to a rich literature [13–25].

Sequential effects are intriguing: why do subjects change their behavior as a function of
the recent past observations when those are in fact irrelevant to the current decision? A
common theoretical account is that humans infer the statistics of the stimuli presented to
them, but because they usually live in environments that change over time, they may believe
that the process generating the stimuli is subject to random changes even when it is in fact
constant [8, 9, 11, 12]. Consequently, they may rely excessively on the most recent stimuli
to predict the next ones. Instead of positing that subjects hold an incorrect belief on the
dynamics of the environment and do not learn that it is stationary, we propose a different
account, whereby a cognitive constraint is hindering the inference process and prevent it from
converging to the correct, constant belief about the unchanging statistics of the environment.
This proposal calls for the investigation of the kinds of choice patterns and sequential effects
that would result from different cognitive constraints at play during inference.

We derive a framework of constrained inference, in which a cost hinders the representation
of belief distributions (posteriors). As for the nature of the cost, we consider two natural
hypotheses: first, that it is difficult for subjects to carry computations with high precision,
and thus that more precise posteriors come with higher costs; and second, that it is difficult
for subjects to deal with uncertain outcomes, and thus that they are averse to unpredictable
environments. The first cost results in an inference process in which remote observations are
discarded, and beliefs do not converge but fluctuate instead with the recent stimulus history.
By contrast, under the second cost, the inference process does converge, although not to the
correct (Bayesian) posterior, but rather to a posterior that implies a biased belief on the
temporal structure of the stimuli. In both cases, sequential effects emerge as the result of a
constrained inference process.

We examine experimentally the degree to which the models derived from our framework
account for human behavior, with a task in which we repeatedly ask subjects to predict the
upcoming stimulus in sequences of Bernoulli-distributed stimuli. Most studies on sequential
effects only consider the equiprobable case, in which the two stimuli have the same probabil-
ity. However, the models we consider here are more general than this singular case and they
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apply to the entire range of stimulus probability. We thus manipulate in separate blocks of
trials the stimulus generative probability (i.e. the Bernoulli probability that parameterizes
the stimulus) to span the range from .05 to .95 by increments of .05. This enables us to
examine in detail the behavior of subjects in a large gamut of environments from the sin-
gular case of an equiprobable, maximally-uncertain environment (with a probability of .5
for both stimuli) to the strongly-biased, almost-certain environment in which one stimulus
occurs with probability .95.

To anticipate on our results, the predictions of subjects depend on the stimulus generative
probability, but also on the history of stimuli. We examine whether the occurrence of a
stimulus, in past trials, increase the proportion of predictions identical to this stimulus
(‘attractive effect’), or whether it decreases this proportion (‘repulsive effect’). The two
costs presented above reproduce qualitatively the main patterns in subjects’ data, but they
make distinct predictions as to the modulations of the recency effect as a function of the
history of stimuli, beyond the last stimulus. We show that the responses of subjects exhibit
an elaborate, and at times counter-intuitive, pattern of attractive and repulsive effects, and
we compare these to the predictions of our models. Our results suggest that the brain infers
a stimulus generative probability, but under a constraint on the precision of its internal
representations; the inferred generative process may be more general than the actual one, and
include higher-order statistics (e.g., transition probabilities), in contrast with the Bernoulli-
distributed stimulus used in the experiment.

We present the behavioral task and we examine the predictions of subjects — in par-
ticular, how they vary with the stimulus generative probability, and how they depend, at
each trial, on the preceding stimulus. We then introduce our framework of inference under
constraint, and the two costs we consider, from which we derive two families of models. We
examine the behavior of these models and the extent to which they capture the behavioral
patterns of subjects. The models make different qualitative predictions about the sequential
effects of past observations, which we confront to subjects’ data. We find that the predictions
of subjects are qualitatively consistent with a model of inference of conditional probabilities,
in which precise posteriors are costly.

Results

Subjects’ predictions of a stimulus increase with the stimulus prob-
ability

In a computer-based task, subjects are asked to predict which of two rods the lightning will
strike. On each trial, the subject first selects by a key press the left- or right-hand-side rod
presented on screen. A lightning symbol (which is here the stimulus) then randomly strikes
either of the two rods. The trial is a success if the lightning strikes the rod selected by the
subject (Fig. 1a). The location of the lightning strike (left or right) is a Bernoulli random
variable whose parameter p (the stimulus generative probability) we manipulate across blocks
of 200 trials: in each block, p is a multiple of .05 chosen between .05 and .95. Changes of
block are explicitly signaled to the subjects. Moreover, in order to capture the ‘stationary’
behavior of subjects, which presumably prevails after ample exposure to the stimulus, each
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Figure 1: The prediction task. (a) In each successive trial, the subject is asked to
predict which of two rods the lightning will strike. (1) A trial begins. (1’) The subject
chooses the right-hand-side rod (bold lines), but the lightning strikes the left one. (2) 1.25
seconds after the beginning of the preceding trial, a new trial begins. (2’) The subject
chooses the right-hand-side rod, and this time the lightning strikes the rod chosen by the
subject. The rod and the connected battery light up (yellow), indicating success. (3) A
new trial begins. (3’) If after 1 second the subject has not made a prediction, a red cross
bars the screen, indicating a timeout. (4) A new trial begins. (4’) The subject chooses
the left-hand-side rod, and the lightning strikes the same rod. In all cases, the duration of
a trial is 1.25 seconds. (b) The probability of a lighting strike on the right (respectively
left) rod on a given trial is held fixed within a block and denoted p (respectively 1− p). To
explore the probability range exhaustively, the values of p are evenly spaced from .05 to .95
by increments of .05, and from block to block we sample p without replacement among those
values. In order to probe the subjects’ predictions in a stationary regime, within each block
the first 200 trials consist in passive observation and the 200 following trials are active trials
(whose structure is depicted in a).

block is preceded by 200 passive trials in which the stimuli (sampled with the probability
chosen for the block) are successively shown with no action from the subject (Fig. 1b). We
provide further details on the task in Methods.

The behavior of subjects varies with the stimulus generative probability, p. We denote
by 0 and 1 the left and right outcomes of the random strikes, and by p̄(1) the proportion of
trials in which a given subject predicts the right-hand-side rod. In the equiprobable condition
(p = .5), the subjects predict either side on about half the trials (p̄(1) = .496; standard error
of the mean (sem): .008; p-value of t-test of equality with .5: .59). In the non-equiprobable
conditions, the optimal behavior is to predict 1 on none of the trials (p̄(1) = 0) if p < .5, or
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on all trials (p̄(1) = 1) if p > .5. The proportion of predictions 1 adopted by the subjects also
increases as a function of the stimulus generative probability (Pearson correlation coefficient
between p and p̄(1), subjects pooled: .97; p-value: 3.3e-6), but not as steeply: it lies between
the stimulus generative probability p, and the optimal response 0 (if p < .5) or 1 (if p > .5;
Fig. 2a).

First-order sequential effects: attractive influence of the most recent
stimulus on subjects’ predictions

The sequences presented to subjects correspond to independent, Bernoulli-distributed ran-
dom events. Having shown that the subjects’ predictions follow (in a non optimal fashion) the
stimulus generative probability, we now test whether they also exhibit the non-independence
of consecutive trials featured by the Bernoulli process. Under this hypothesis and in the sta-
tionary regime, the proportion of predictions 1 conditional on the preceding stimulus being
a 1, p̄(1|1), should be no different than the proportion of predictions 1 conditional on the
preceding stimulus being a 0, p̄(1|0). In other words, conditioning on the preceding stimulus
should have no effect. In subjects’ responses, however, these two conditional proportions are
markedly different for all stimulus generative probabilities (Fisher exact test: all p-values <
1e-10; Fig. 2a). Both quantities increase as a function of the stimulus generative probability,
but the proportions of predictions 1 conditional on a 1 are consistently greater than the pro-
portions of predictions 1 conditional on a 0 (Fig. 2b). (We note that because the stimulus
is either 0 or 1, it follows that, symmetrically, the proportions of predictions 0 conditional
on a 0 are consistently greater than the proportions of predictions 0 conditional on a 1.) In
other words, the preceding stimulus has an ‘attractive’ sequential effect.

A framework of costly inference

The attractive effect of the preceding stimulus on subjects’ responses suggests that the
subjects have not correctly inferred the Bernoulli statistics of the process generating the
stimuli. We investigate the hypothesis that their ability to infer the underlying statistics of
the stimuli is hampered by cognitive constraints. We assume that these constraints can be
understood as a cost, bearing on the representation, by the brain, of the subject’s beliefs
about the statistics. Specifically, we derive an array of models from a framework of inference
under costly posteriors [26], which we now present. We consider a model subject who is
presented on each trial t with a stimulus xt ∈ {0, 1} and who uses the sequence of stimuli
x1:t = (x1, . . . , xt) to infer the stimulus generative probability, over which she holds the
belief distribution P̂t. A Bayesian observer equipped with this belief P̂t and observing a
new observation xt+1 would obtain its updated belief Pt+1 through Bayes’ rule. However, a
cognitive cost C(P ) hinders our model subject’s ability to represent probability distributions
P . Thus she approximates the Bayesian posterior Pt+1 through another distribution P̂t+1

that minimizes a loss function L defined as

L(P̂t+1) = D(P̂t+1;Pt+1) + λC(P̂t+1), (1)

where D is a measure of distance between two probability distributions, and λ ≥ 0 is a
coefficient specifying the relative weight of the cost. (We are not proposing that subjects
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Figure 2: Across all stimulus generative probabilities, subjects are more likely
than average to make a prediction equal to the preceding observation. (a) Propor-
tion of predictions 1 in subjects responses as a function of the stimulus generative probability,
conditional on observing a 1 (blue line) or a 0 (orange line) on the preceding trial, and un-
conditional (grey line). Note that ‘left’ and ‘right’ predictions are pooled together as long as
the probabilities of the corresponding observations are the same; thus the grey line is sym-
metric about the middle point, and the blue and orange lines are reflections of each other.
The widths of the shaded areas indicate the standard error of the mean. (b) Difference
between the proportion of predictions 1 conditional on the preceding observation being a 1,
and the proportion of predictions 1 conditional on the preceding observation being a 0. This
difference is positive across all stimulus generative probabilities (all t-test p-values < 1e-15),
i.e., observing a 1 at the preceding trial increases the probability of predicting a 1. Bars
indicate the standard error of the mean.

actively minimize this quantity, but rather that the brain’s inference process is an effective
solution to this optimization problem.) Below, we use the Kullback-Leibler divergence for the
distance (i.e., D(P̂t+1;Pt+1) = DKL(P̂t+1||Pt+1)). If λ = 0, the solution to this minimization
problem is the Bayesian posterior; if λ ̸= 0, the cost distorts the Bayesian solution in ways
that depend on the form of the cost borne by the subject (we detail further below the two
kinds of costs we investigate).

In our framework, the subject assumes that the m preceding stimuli (xt−m+1:t with m ≥ 0)
and a vector of parameters q together determine the distribution of the stimulus at trial t+1,
p(xt+1|xt−m+1:t, q). Although in our task the stimuli are Bernoulli-distributed (thus they do
not depend on preceding stimuli) and a single parameter determines the probability of the
outcomes (the stimulus generative probability), the subject may admit the possibility that
more complex mechanisms govern the statistics of the stimuli, e.g., transition probabilities
between consecutive stimuli. Therefore, the vector q may contain more than one parameter
and the number m of preceding stimuli assumed to influence the probability of the following
stimulus, which we call the ‘Markov order’, may be greater than 0.
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Below, we call ‘Bernoulli observer’ any model subject who assumes that the stimuli are
Bernoulli-distributed (m = 0); in this case the vector q consists of a single parameter that
determines the probability of observing a 1, which we also denote by q for the sake of
concision. The bias and variability in the inference of the Bernoulli observer is studied in
Ref. [26]. We call ‘Markov observer’ any model subject who posits that the probability of
the stimulus depends on the preceding stimuli (m > 0). In this case, the vector q contains
the 2m conditional probabilities of observing a 1 after observing each possible sequence of
m stimuli. For instance, with m = 1 the vector q is the pair of parameters (q0, q1) where qi
is the probability of observing a 1 after observing the stimulus i. In the absence of a cost,
the belief over the parameter(s), P̂t(q), eventually converges towards the parameter vector
that is consistent with the generative Bernoulli statistics governing the stimulus (except if
the prior precludes this parameter vector). Below, we assume a uniform prior.

The ways in which the Bayesian inference is distorted by our model subject depend on the
nature of the cost that weighs on the inference process. Although many assumptions could
be made on the kind of constraint that hinders human inference, and on the cost it would
entail in our framework, here we examine two costs that stem from two possible principles:
that the cost is a function of the beliefs held by the subject, or that it is a function of the
environment that the subject is inferring. We detail, below, these two costs.

Unpredictability cost A first hypothesis is that the subjects favor, in their inference,
parameter vectors q that correspond to more predictable outcomes. We quantify the out-
come unpredictability by the Shannon entropy [27] of the outcome implied by the vector of
parameters q, which we denote by H(X; q). The cost associated with the distribution P̂ (q)
is the expectation of this quantity averaged over beliefs i.e.,

Cu(P̂ ) = EP̂ [H(X; q)] =

∫
H(X; q)P̂ (q)dq, (2)

which we call the ‘unpredictability cost’. For a Bernoulli observer, a posterior concentrated
on extreme values of the Bernoulli parameter (toward 0 or 1), thus representing more pre-
dictable environments, comes with a lower cost than a posterior concentrated on values of the
Bernoulli parameter close to 0.5, which correspond to the most unpredictable environments
(Fig. 3a). The loss function (Eq. (1)) under this cost is minimized by the posterior

P̂t+1(q) ∝ P̂t(q)e
−λH(X;q). (3)

In the Bernoulli case (m = 0), assuming a uniform prior (P̂0(q) ∝ 1), the posterior after
t stimuli has the form P̂t(q) ∝ [φ(q; rt)]

t, where rt is the proportion of stimuli 1 observed up
to trial t, i.e. rt =

∑t
i=1 xi/t, and

φ(q; rt) = qrt(1− q)1−rte−λH(X;q). (4)

This function has a global maximum q∗(rt) and as the number of presented stimuli t grows the
posterior P̂t becomes concentrated around this maximum. The proportion of 1s, rt, naturally
converges to the stimulus generative probability p, thus our subject’s inference converges
towards the value q∗(p) which is different from the true value p in the non-equiprobable case
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(p ̸= .5). The equiprobable case (p=.5) is singular, in that with a weak cost (λ < 1) the
inferred probability is unbiased (q∗(p) = .5), while with a strong cost (λ > 1) the inferred
probability does not converge but instead alternates between two values above and below
.5; see Ref. [26]. In other words, except in the equiprobable case, the inference converges
but it is biased, i.e., the posterior peaks at an incorrect value of the stimulus generative
probability (Fig. 3c). This value is closer to the extremes (0 and 1) than the stimulus
generative probability, i.e., it implies an environment more predictable than the actual one.

In the case of a Markov observer (m > 0), the posterior also converges to a vector of
parameters q which implies not only a bias but also that the conditional probabilities of
a 1 (conditioned on different stimulus histories) are not equal. The prediction of the next
stimulus being 1 on a given trial depends on whether the preceding stimulus was a 0 or a 1:
this model therefore predicts sequential effects. We further examine below the behavior of
this model in the cases of a Bernoulli observer and of different Markov observers. We refer
the reader interested in more details on the Markov models, including their mathematical
derivations, to the Methods section.

In short, with the unpredictability-cost models, when p ̸= .5, the inference process con-
verges to an asymptotic posterior q∗(p) which does not itself depend on the history of the
stimulus, but that is biased. In particular, for Markov observers (m > 0), the asymptotic
posterior corresponds to an erroneous belief about the dependency of the stimulus on the
recent stimulus history, which results in sequential effects in behavior. We now turn to an-
other family of models in which the posterior itself depends on the recent stimulus history,
and thus does not asymptotically converge.

Precision cost A different hypothesis about the inference process of subjects is that the
brain mobilizes resources to represent probability distributions, and that more ‘precise’ dis-
tributions require more resources. We write the cost associated with a distribution, P̂ (q), as
the negative of its entropy,

Cp(P̂ ) = −H[P̂ (q)] =

∫
P̂ (q) ln P̂ (q)dq, (5)

which is a measure of the amount of certainty in the distribution. Wider (less concentrated)
distributions provide less information about the probability parameter and are thus less
costly than narrower (more concentrated) distributions (Fig. 3b). As an extreme case, the
uniform distribution is the least costly.

With this cost, the loss function (Eq. (1)) is minimized by the distribution equal to the
Bayesian posterior raised to the exponent 1/(λ+ 1), and renormalized, i.e.,

P̂t+1(q) ∝
[
P̂t(q)p(xt+1|xt−m+1:t, q)

]1/(λ+1)

. (6)

Since λ is strictly positive, the exponent is positive and lower than 1. As a result, the solution
‘flattens’ the Bayesian posterior, and in the extreme case of an unbounded cost (λ → ∞) the
posterior is the uniform distribution. Furthermore, in the expression of our model subject’s
posterior, the likelihood p(xt+1|xt−m+1:t, q) is raised after k trials to the exponent 1/(λ+1)k+1,
it thus decays to zero as the number k of new stimuli increases. One can interpret this effect
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Figure 3: Illustration of the Bernoulli-observer models, with unpredictability
and precision costs. (a) Precision cost (purple) and unpredictability cost (green lines) of
a Beta distribution with parameters α and β, as functions of the mean of the distribution,
α/(α+β), and keeping the entropy constant. The precision cost is the negative of the entropy
and it is thus constant, regardless of the mean of the distribution. The unpredictability
cost is larger when the mean of the distribution is closer to 0.5 (i.e., when unpredictable
environments are likely, under the distribution). Insets: Beta distributions with mean .2, .5
and .8, and constant entropy. (b) Costs as functions of the sample size parameter, α + β.
A larger sample size implies a higher precision and lower entropy, thus the precision cost
increases as a function of the sample size, whereas the unpredictability cost is less sensitive
to changes in this parameter. Insets: Beta distributions with mean .6 and sample size
parameter, α+β, equal to 5, 50 and 200. (c) Posteriors P (p) of an optimal observer (gray),
a precision-cost observer (purple) and an unpredictability-cost observer (green lines), after
the presentation of ten sequences of N = 50, 200, and 400 observations sampled from a
Bernoulli distribution of parameter 0.7. The posteriors of the optimal observer narrow as
evidence is accumulated, and the different posteriors obtained after different sequences of
observations are drawn closer to each other and to the correct probability. The posteriors of
the unpredictability-cost observer also narrow and group together, but around a probability
larger (less unpredictable) than the correct probability. Precise distributions are costly to
the precision-cost observer and thus the posteriors do not narrow after long sequences of
observations. Moreover, as uncertainty is maintained throughout inference, the posteriors
fluctuate with the recent history of the stimuli and they do not converge.
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as gradually forgetting past observations. The posterior P̂t(q) is thus dominated by the
recent history of the stimuli. It does not converge, but instead fluctuates with the recent
stimulus history (Fig. 3c). Hence, this model implies predictions about subsequent stimuli
that depend on the stimulus history, i.e., it predicts sequential effects.

Overview of the inference models Although the two families of models derived from the
two costs both potentially generate sequential effects, they do so by giving rise to qualitatively
different inference processes. Under the unpredictability cost, the inference converges to a
posterior that, in the Bernoulli case (m = 0), implies a biased estimate of the stimulus
generative probability, while in the Markov case (m > 0) it implies the belief that there
are serial dependencies in the stimuli: predictions therefore depend on the recent stimulus
history. By contrast, the precision cost prevents beliefs from converging. As a result, the
subject’s predictions vary with the recent stimulus history. This inference process amounts
to an exponential discount of remote observations, or equivalently, to the overweighting of
recent observations.

To investigate in more detail the sequential effects that these two costs produce, we
implement two families of inference models derived from the two costs. Each model is
characterized by the type of cost (unpredictability cost or precision cost), and by the assumed
Markov order (m): we examine the case of a Bernoulli observer (m = 0) and three cases of
Markov observers (with m = 1, 2, and 3). We thus obtain 2 × 4 = 8 models of inference.
Each of these models has one parameter λ controlling the weight of the cost.

Response-selection strategy We assume that the subject’s response on a given trial
depends on the inferred posterior according to a generalization of ‘probability matching’
implemented in other studies [28–30]. In this response-selection strategy, the subject predicts
a 1 with the probability p̄κt /(p̄

κ
t +(1−p̄t)

κ), where p̄t is the expected probability of observing a
1 derived from the posterior, i.e., p̄t ≡

∫
p(xt+1 = 1|xt−m+1:t, q)P̂t(q)dq. The single parameter

κ controls the randomness of the response: with κ = 0 the subject chooses 0 and 1 with equal
probability; with κ = 1 the response-selection strategy corresponds to probability matching,
i.e., the subject chooses 1 with probability p̄t; and as κ increases toward infinity the choices
become optimal, i.e., the subjects responds 1 if the expected probability of observing a 1,
p̄t, is greater than .5, and 0 if it is lower than .5 (if p̄t = .5 the subject chooses 0 or 1 with
equal probability).

In our investigations, we also implement three other response-selection strategies. First,
a strategy based on a ‘softmax’ function that smoothes the optimal decision rule; it does not
yield, however, a behavior substantially different from that of the generalized probability-
matching response-selection strategy. Second, we examine a strategy in which the model
subject chooses the optimal response with a probability that is fixed across conditions, which
we fit onto her choices. No subject is best-fitted by this strategy. Third, another possible
strategy proposed in the game-theory literature [31] is ‘win-stay, lose-shift’: it prescribes
to repeat the same response as long as it proves correct and to change otherwise. In the
context of our binary-choice prediction task, it is indistinguishable from a strategy in which
the model subject chooses a prediction equal to the outcome that last occurred. This strategy
is a special case of our Bernoulli observer hampered by a precision cost whose weight λ is
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large combined with the optimal response-selection strategy (κ → ∞). Since the generalized
probability-matching strategy parameterized by the exponent κ appears either more general,
better than or indistinguishable from those other response-selection strategies, we selected
it to obtain the results presented below.

Model fitting favors Markov-observer models

Each of our eight models has two parameters: the factor weighting the cost, λ, and the
exponent of the generalized probability-matching, κ. We fit the parameters of each model to
the responses of each subject, by maximizing their likelihoods. We find that 60% of subjects
are best fitted by one of the unpredictability-cost models, while 40% are best fitted by one
of the precision-cost models. When pooling the two types of cost, 65% of subjects are best
fitted by a Markov-observer model. We implement a ‘Bayesian model selection’ procedure
[32], which takes into account, for each subject, the likelihoods of all the models (and not
only the maximum) in order to obtain a Bayesian posterior over the distribution of models in
the general population (see Methods). The derived expected probability of unpredictability-
cost models is 57% (and 43% for precision-cost models) with an exceedance probability (i.e.,
probability that unpredictability-cost models are more frequent in the general population) of
78%. The expected probability of Markov-observer models, regardless of the cost used in the
model, is 70% (and 30% for Bernoulli-observer models) with an exceedance probability (i.e.,
probability that Markov-observer models are more frequent in the general population) of 98%.
These results indicate that the responses of subjects are generally consistent with a Markov-
observer model, although the stimuli used in the experiment are Bernoulli-distributed. As for
the unpredictability-cost and the precision-cost families of models, Bayesian model selection
does not provide decisive evidence in favor of either model, indicating that they both capture
some aspects of the responses of the subjects. Below, we examine more closely the behaviors
of the models, and point to qualitative differences between the predictions resulting from
each model family.

Before turning to these results, we validate the robustness of our model-fitting procedure
with two additional analyses. First, we estimate a confusion matrix (see Methods) to examine
the possibility that the model-fitting procedure could misidentify the models which generated
test sets of responses. We find that the best-fitting model corresponds to the true model
in at least 70% of simulations (the chance level is 12.5% = 1/8 models), and actually more
than 90% for the majority of models (Fig. 9).

Second, we seek to verify whether the best-fitting cost factor, λ, that we obtain for each
subject is consistent across the range of probabilities tested. Specifically, we fit separately the
models to the responses obtained in the blocks of trials whose stimulus generative probability
was ‘medium’ (between 0.3 and 0.7, included) on the one hand, and to the responses obtained
when the probability was ‘extreme’ (below 0.3, and above 0.7) on the other hand; and we
compare the values of the best-fitting cost factors λ in these two cases. More precisely,
for the precision-cost family, we look at the decay time, equal to 1/ ln(1 + λ), which is the
characteristic time over which the model subject ‘forgets’ past observations. With both
families of models, we find that on a logarithmic scale the parameters in the medium- and
extreme-probabilities cases are significantly correlated across subjects (Pearson’s r, precision-
cost models: 0.58, p-value: 7e-3; unpredictability-cost models: r = .74, p-value: 2e-4). In
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other words, if a subject is best fitted by a large cost factor in medium-probabilities trials, he
or she is likely to be also best fitted by a large cost factor in extreme-probabilities trials. This
indicates that our models capture idiosyncratic features of subjects that generalize across
conditions instead of varying with the stimulus probability (Fig. 10; see Methods).

Models of costly inference reproduce the attractive effect of the most
recent stimulus

We now examine the behavioral patterns resulting from the models. Looking at the responses
of the models that best fit each subject, we find that the proportion of predictions 1, p̄(1),
increases smoothly as a function of the stimulus generative probability p; it is below it at
small probabilities (p̄(1) < p when p < .5) and above it at high probabilities (p̄(1) > p when
p > .5; Fig. 4a). The proportions of predictions 1 conditional on the preceding stimulus
being a 1, p̄(1|1), are larger at all probabilities than their counterparts conditional on a 0,
p̄(1|0) (Fig. 4b). In other words, the predictions of the model subjects are biased towards
the preceding stimulus. The models of constrained inference, thus, reproduce the attractive
sequential effect observed in subjects’ responses.

In order to investigate the sequential effects exhibited by the two model families (precision-
cost models and unpredictability-cost models), we first examine separately the behaviors of
the subjects whose responses are best-fitted by each of the two costs. The subjects in both
cases exhibit the attractive sequential effect, i.e., the proportion of predictions 1 following
the observation of a 1 is greater than the same proportion after observing a 0. The behav-
iors differ quantitatively in the non-equiprobable conditions: with the subjects best-fitted by
unpredictability-cost models, if the preceding stimulus (e.g. 1) corresponds to the least likely
outcome (e.g. p < .5), then the proportion of predictions equal to the preceding stimulus
is close to the stimulus generative probability (e.g., p̄(1|1) ≈ p), while with the subjects
best-fitted by precision-cost models, this proportion is larger than the stimulus generative
probability (p̄(1|1) > p; Fig. 4c, first column). The best-fitting models derived from the
two costs reproduce these behavioral patterns. Notably, the models derived from both costs
yield the attractive sequential effect. Moreover, they differ in the proportion of predictions
equal to the preceding stimulus, when the latter is least likely, consistently with the subjects’
predictions that they fit (Fig. 4c).

In addition, we investigate for each subject whose responses are best fit by a precision-
cost model, the best-fitting unpredictability-cost model, and vice-versa. We find that the
precision-cost models reproduce the behavioral patterns of the subjects that are best fit by
unpredictability-cost models (in particular, the proportion of predictions equal to the least
likely outcome), while the converse is not verified, i.e., the models in the unpredictability-cost
family do not reproduce well the behavior of the subjects that are best fit by precision-cost
models (Fig. 4c, middle and last columns). In short, the precision-cost family of models
seems more able to capture the heterogeneity in the behavior of the subjects.
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Figure 4: The best-fitting precision-cost and unpredictability-cost models reproduce
the subjects’ attractive sequential effects. (a) Proportion of predictions 1 in the model
subjects’ responses as a function of the stimulus generative probability, conditional on observing a 1
(blue line) or a 0 (orange line) on the preceding trial, and unconditional (grey line). The responses
of each model best-fitting each subject are pooled together. (b) Difference, in the model subjects’
responses, between the proportion of predictions 1 conditional on the preceding observation being
a 1, and the proportion of predictions 1 conditional on the preceding observation being a 0. This
difference is positive across all stimulus generative probabilities, indicating an attractive sequential
effect (i.e., observing a 1 at the preceding trial increases the model subjects’ probability of predicting
a 1). (c) The subjects are divided in two groups: those whose responses are best-fitted by a
prediction-cost models (top row) and those whose responses are best-fitted by an unpredictability-
cost model (bottom row). The sequential effects of these two groups are shown in the panels in the
left column. The panels in the other two columns show the sequential effects in the responses of the
prediction-cost models fitted to each group of subjects (middle column), and of the unpredictability-
cost models fitted to each group of subjects (right column).
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Beyond the most recent stimulus: patterns of higher-order sequential
effects

Notwithstanding the quantitative differences just presented, both families of models yield
qualitatively similar attractive sequential effects: the model subjects’ predictions are biased
towards the preceding stimulus. Does this pattern also apply to the longer history of the
stimulus, i.e., do more distant trials also influence the model subjects’ predictions? To
investigate this hypothesis, we examine the difference between the proportion of predictions
1 after observing a sequence of length n that starts with a 1, minus the proportion of
predictions 1 after the same sequence, but starting with a 0, i.e. p̄(1|1x) − p̄(1|0x), where
x is a sequence of length n − 1, and 1x and 0x denote the same sequence preceded by a 1
and by a 0. This quantity enables us to isolate the influence of the n-to-last stimulus on
the current prediction. If the difference is positive, the effect is ‘attractive’; if it is negative,
the effect is ‘repulsive’ (in this latter case, the presentation of a 1 decreases the probability
that the subjects predicts a 1 in a later trial, as compared to the presentation of a 0); and if
the difference is zero there is no sequential effect stemming from the n-to-last stimulus. The
case n = 1 corresponds to the immediately preceding stimulus, whose effect we have shown
to be attractive, i.e. p̄(1|1)− p̄(1|0) > 0, in the responses both of the best-fitting models and
of the subjects (Figs. 2b and 4b).

We investigate the effect of the n-to-last stimulus on the behavior of the two families of
models, with n = 1, 2, and 3. We present here the main results of this investigation; we
refer the reader to Methods for a more detailed analysis. With unpredictability-cost models
of Markov order m, there are non-vanishing sequential effects stemming from the n-to-last
stimulus only if the Markov order is greater than or equal to the distance from this stimulus
to the current trial, i.e. if m ≥ n. In this case, the sequential effects are attractive (Fig. 5).

With precision-cost models, the n-to-last stimuli yield non-vanishing sequential effects
regardless of the Markov order, m. With n = 1, the effect is attractive, i.e., p̄(1|1)− p̄(1|0) >
0. With n = 2 (second-to-last stimulus), the effect is also attractive, i.e., in the case of the
pair of sequences ‘11’ and ‘01’, p̄(1|11)− p̄(1|01) > 0 (Fig. 5a). By symmetry, the difference
is also positive for the other pair of relevant sequences, ‘10’ and ‘00’ (e.g., we note that
p̄(1|10) = 1 − p̄(0|10), and that p̄(0|10) when the probability of a 1 is p is equal to p̄(1|01)
when the probability of a 1 is 1− p).

As for the third-to-last stimulus (n = 3), it can be followed by four different sequences
of length two, but we only need to examine two of these four; the other two are obtained by
symmetry (as presented just above, the probabilities of predictions 1 conditional on two of
these sequences are functions of the probabilities of 1 conditional on the other two sequences).
We find that for the precision-cost models, with all the Markov orders we examine (from
0 to 3), the probability of predicting a 1 after observing the sequence ‘111’ is greater than
that after observing the sequence ‘011’, i.e., p̄(1|111) − p̄(1|011) > 0, that is, there is an
attractive sequential effect of the third-to-last stimulus if the sequence following it is ‘11’
(and, by symmetry, if it is ‘00’; Fig. 5b). So far, thus, we have found only attractive effects.
However, the results are less straightforward when the third-to-last stimulus is followed by
the sequence ‘01’ (or ‘10’). In this case, for a Bernoulli observer (m = 0), the effect is
also attractive: p̄(1|101) − p̄(1|001) > 0. With Markov observers (m ≥ 1), over a range of
stimulus generative probability p, the effect is repulsive: p̄(1|101)− p̄(1|001) < 0, that is, the
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Figure 5: Higher-order sequential effects: the precision-cost model of a Markov
observer predicts a repulsive effect of the third-to-last stimulus. Sequential effect
of the second-to-last (a) and third-to-last (b,c) stimuli, in the responses of the precision-
cost model of a Markov observer with m = 1 (points), and of the unpredictability-cost
model of a Markov observer with m = 3 (crosses). (a) For the two models, difference
between the proportion of prediction 1 conditional on observing ‘11’, and conditional on
observing ‘01’, i.e., p̄(1|11) − p̄(1|01), as a function of the stimulus generative probability.
With both models, this difference is positive, indicating an attractive sequential effect of the
second-to-last stimulus. (b) Difference between the proportion of prediction 1 conditional
on observing ‘111’, and conditional on observing ‘011’, i.e., p̄(1|111)− p̄(1|011). The positive
difference indicates an attractive sequential effect of the third-to-last stimulus in this case.
(c) Difference between the proportion of prediction 1 conditional on observing ‘101’, and
conditional on observing ‘001’, i.e., p̄(1|101)− p̄(1|001). With the precision-cost model of a
Markov observer, the negative difference when the stimulus generative probability is lower
than .8 indicates a repulsive sequential effect of the third-to-last stimulus in this case, while
when the probability is greater than .8, and with the unpredictability-cost model of a Markov
observer, the positive difference indicates an attractive sequential effect of the third-to-last
stimulus.

presentation of a 1 decreases the probability that the model subject predicts a 1 three trials
later, as compared to the presentation of a 0 (Fig. 5c). The occurrence of the repulsive effect
in this particular case is a distinctive trait of the precision-cost models of Markov observers
(m ≥ 1); we do not obtain any repulsive effect with any of the unpredictability-cost models,
nor with the precision-cost model of a Bernoulli observer (m = 0).

Subjects’ predictions exhibit higher-order repulsive effects

We now examine the sequential effects in subjects’ responses, beyond the attractive effect of
the preceding stimulus (n = 1; discussed above). With n = 2 (second-to-last stimulus), for
the majority of the 19 stimulus generative probabilities p, we find attractive sequential effects:
the difference p̄(1|11)−p̄(1|01) is significantly positive (Fig. 6a; p-values < .01 for 11 stimulus
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generative probabilities, < .05 for 13 probabilities). With n = 3 (third-to-last stimulus),
we also find significant attractive sequential effects in subjects’ responses for some of the
stimulus generative probabilities, when the third-to-last stimulus is followed by the sequence
‘11’ (Fig. 6b; p-values < .01 for four probabilities, < .05 for seven probabilities). When it is
instead followed by the sequence ‘01’, we find that for eight stimulus generative probabilities,
all between .25 and .75, there is a significant repulsive sequential effect: p̄(1|101)−p̄(1|001) <
0 (p-values < .01 for six probabilities, < .05 for eight probabilities). Thus, in these cases, the
occurrence of a 1 as the third-to-last stimulus increases (in comparison with the occurence
of a 0) the proportion of the opposite prediction, 0. For the remaining stimulus generative
probabilities, this difference is in most cases also negative although not significantly different
from zero (Fig. 6c).

The repulsive sequential effect of the third-to-last stimulus in subjects’ predictions only
occurs when the third-to-last stimulus is a 1 followed by the sequence ‘01’ (or a 0 followed
by ‘10’). It is also only in this case that the repulsive effect appears with the precision-
cost models of a Markov observer (while it never appears with the unpredictability-cost
models). This qualitative difference suggests that the precision-cost models offers a better
account of sequential effects in subjects. However, model-fitting onto the overall behavior
presented above showed that a fraction of the subjects is better fitted by the unpredictability-
cost models. We investigate, thus, the presence of a repulsive effect in the predictions
of the subjects best fitted by the precision-cost models, and of those best fitted by the
unpredictability-cost models. For the subjects best fitted by the precision-cost models, we
find (expectedly) that there is a significant repulsive sequential effect of the third-to-last
stimulus (p̄(1|101) − p̄(1|001) < 0; p-values < .01 for two probabilities, < .05 for four
probabilities; Fig. 6d, left panel). For the subjects best fitted by the unpredictability-cost
models (a family of model that does not predict any repulsive sequential effects), we also find,
perhaps surprisingly, a significant repulsive effect of the third-to-last stimulus (p-values < .01
for three probabilities, < .05 for five probabilities), which demonstrates the robustness of this
effect (Fig. 6d, right panel). Thus, in spite of the results of the model-selection procedure,
some sequential effects in subjects’ predictions support only one of the two families of model.
Regardless of the model that best fits their overall predictions, the behavior of the subjects
is consistent only with the precision-cost family of models with Markov order equal to or
greater than 1, i.e., with a model of inference of conditional probabilities hampered by a
cognitive cost weighing on the precision of belief distributions.

Discussion
We investigated the hypothesis that sequential effects in human predictions result from cog-
nitive constraints hindering the inference process carried out by the brain. We devised a
framework of constrained inference, in which the model subject bears a cognitive cost when
updating its belief distribution upon the arrival of new evidence: the larger the cost, the
more the subject’s posterior differs from the Bayesian posterior. The models we derive from
this framework make specific predictions. First, the proportion of forced-choice predictions
for a given stimulus should increase with the stimulus generative probability. Second, most
of those models predict sequential effects: predictions also depend on the recent stimulus
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Figure 6: Patterns of attractive and repulsive sequential effects in subjects’ re-
sponses. (a) Difference between the proportion of prediction 1 conditional on observing
‘11’, and conditional on observing ‘01’, i.e., p̄(1|11) − p̄(1|01), as a function of the stimulus
generative probability. With a majority of stimulus generative probabilities, this difference is
positive, indicating an attractive sequential effect of the second-to-last stimulus. (b) Differ-
ence between the proportion of prediction 1 conditional on observing ‘111’, and conditional
on observing ‘011’, i.e., p̄(1|111)− p̄(1|011). With a majority of stimulus generative probabil-
ities, this difference is positive, indicating an attractive sequential effect of the third-to-last
stimulus in this case. (c) Difference between the proportion of prediction 1 conditional on
observing ‘101’, and conditional on observing ‘001’, i.e., p̄(1|101) − p̄(1|001). With a ma-
jority of stimulus generative probabilities, this difference is negative, indicating a repulsive
sequential effect of the third-to-last stimulus in this case. (d) Same as (c), with subjects
split in two groups: the subjects best-fitted by precision-cost models (left) and the subjects
best-fitted by unpredictability-cost models (right). In all panels, filled points indicate that
the p-value of the Fisher exact test is below 0.05.

history. Models with different types of cognitive cost resulted in different patterns of attrac-
tive and repulsive effects of the past few stimuli on predictions. To compare the predictions
of constrained inference with human behavior, we asked subjects to predict each next out-
come in sequences of binary stimuli. We manipulated the stimulus generative probability in
blocks of trials, exploring exhaustively the probability range from .05 to .95 by increments of
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.05. We found that subjects’ predictions depend on both the stimulus generative probability
and the recent stimulus history. Sequential effects exhibited both attractive and repulsive
components which were modulated by the stimulus generative probability. This behavior
was qualitatively accounted for by a model of constrained inference in which the subject
infers the transition probabilities underlying the sequences of stimuli and bears a cost that
increases with the precision of the posterior distributions. Our study proposes a novel theo-
retical account of sequential effects in terms of optimal inference under cognitive constraints
and it uncovers the richness of human behavior over a wide range of stimulus generative
probabilities.

The notion that human decisions can be understood as resulting from a constrained opti-
mization has gained traction across several fields, including neuroscience, cognitive science,
and economics. In neuroscience, a voluminous literature that started with Attneave [33] and
Barlow [34] investigates the idea that perception maximizes the transmission of information,
under the constraint of costly and limited neural resources [35–37]; related theories of ‘ef-
ficient coding’ account for the bias and the variability of perception [38–41]. In cognitive
science and economics, ‘bounded rationality’ is a precursory concept introduced in the 1950s
by Herbert Simon, who defines it as “rational choice that takes into account the cognitive
limitations of the decision maker — limitations of both knowledge and computational capac-
ity” [42]. For Gigerenzer, these limitations promote the use of heuristics, which are “fast and
frugal” ways of reasoning, leading to biases and errors in humans and other animals [43, 44].
A range of more recent approaches can be understood as attempts to specify formally the
limitations in question, and the resulting trade-off. The ‘resource-rational analysis’ paradigm
aims at a unified theoretical account that reconciles principles of rationality with realistic
constraints about the resources available to the brain when it is carrying out computations
[45]. In this approach, biases result from the constraints on resources, rather than from
‘simple heuristics’ (see Ref. [46] for an extensive review). For instance, in economics, the-
ories of ‘rational inattention’ propose that economic agents optimally allocate resources (a
limited amount of attention) to make decisions, thereby proposing new accounts of empirical
findings in the economic literature [47–52].

Our study puts forward a ‘resource-rational’ account of sequential effects. Traditional
accounts since the 1960s attribute these effects to a belief in sequential dependencies be-
tween successive outcomes [14, 16] (potentially “acquired through life experience” [18]), and
more generally to the incorrect models that people assume about the processes generating
sequences of events (see Ref. [22] for a review). This traditional account was formalized, in
particular, by models in which subjects carry out a statistical inference about the sequence
of stimuli presented to them, and this inference assumes that the parameters underlying the
generating process are subject to changes [8, 9, 11, 12]. In these model, sequential effects
are thus understood as resulting from a rational adaptation to a changing world. Human
subjects indeed dynamically adapt their learning rate when the environment changes [53–55],
and they can even adapt their inference to the statistics of these changes [30, 56]. However,
in our task and in many previous studies in which sequential effects have been reported, the
underlying statistics are in fact not changing across trials. The models just mentioned thus
leave unexplained why subjects’ behavior, in these tasks, is not rationally adapted to the
unchanging statistics of the stimulus.

What underpins our main hypothesis is a different kind of rational adaptation: one,
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instead, to the “cognitive limitations of the decision maker”, which we assume hinder the
inference carried out by the brain. We show that rational models of inference under a cost
yield rich patterns of sequential effects. When the cost varies with the precision of the
posterior (measured here by the negative of its entropy, Eq. (5)), the resulting optimal
posterior is proportional to the product of the prior and the likelihood, each raised to an
exponent 1/(λ+1) (Eq. (6)). Many previous studies on biased belief updating have proposed
models that adopt the same form except for the different exponents applied to the prior and
to the likelihood [57–59]. Here, with the precision cost, both quantities are raised to the
same exponent and we note that in this case the inference of the subject amounts to an
exponentially-decaying count of the patterns observed in the sequence of stimuli, which is
sometimes called ‘leaky integration’ in the literature [8–10, 12]. The models mentioned above,
that posit a belief in changing statistics, indeed are well approximated by models of leaky
integration [8, 12], which shows that the exponential discount can have different origins.
Reference [12] shows that the precision-cost, Markov-observer model with m = 1 (named
‘local transition probability model’ in this study) accounts for a range of other findings, in
addition to sequential effects, such as biases in the perception of randomness and patterns
in the surprise signals recorded through EEG and fMRI. Here we reinterpret these effects
as resulting from an optimal inference subject to a cost, rather than from a suboptimal
erroneous belief in the dynamics of the stimulus’ statistics. In our modeling approach,
the minimization of a loss function (Eq. (1)) formalizes a trade-off between the distance
to optimality of the inference, and the cognitive constraints under which it is carried out.
We stress that our proposal is not that the brain actively solves this optimization problem
online, but instead that it is endowed with an inference algorithm (whose origin remains to
be elucidated) which is effectively a solution to the constrained optimization problem.

By grounding the sequential effects in the optimal solution to a problem of constrained
optimization, our approach opens avenues for exploring the origins of sequential effects, in
the form of hypotheses about the nature of the constraint that hinders the inference carried
out by the brain. With the precision cost, more precise posterior distributions are assumed
to take a larger cognitive toll. The intuitive assumption that it is costly to be precise finds a
more concrete realization in neural models of inference with probabilistic population codes:
in these models, the precision of the posterior is proportional to the average activity of the
population of neurons and to the number of neurons [60, 61]. More neural activity and more
neurons arguably come with a metabolic cost, and thus more precise posteriors are more
costly in these models. Imprecisions in computations, moreover, was shown to successfully
account for decision variability and adaptive behavior in volatile environments [62, 63]. The
unpredictability cost, which we introduce, yields models that also exhibit sequential effects
(for Markov observers), and that fit several subjects better than the precision-cost models.
The unpredictability cost relies on a different hypothesis: that the brain prefers predictable
environments over unpredictable ones. Human subjects exhibit a preference for predictive
information indeed [64, 65], while unpredictable stimuli have been shown not only to increase
anxiety-like behavior [66], but also to induce more neural activity [66–68] — a presumably
costly increase, which may result from the encoding of larger prediction errors [66, 69]. We
note that both costs (precision and unpredictability) can predict sequential effects, even
though neither carries ex ante an explicit assumption that presupposes the existence of
sequential effects. They both reproduce the attractive recency effect of the last stimulus
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exhibited by the subjects. They make quantitatively different predictions (Fig. 4c); we also
find this diversity of behaviors in subjects.

The precision cost, as mentioned above, yields leaky-integration models which can be
summarized by a simple algorithm in which the observed patterns are counted with an expo-
nential decay. The psychology and neuroscience literature proposes many similar ‘leaky in-
tegrators’ or ‘leaky accumulators’ models [8, 12, 70–80]. In connectionist models of decision-
making, for instance, decision units in abstract network models have activity levels that
accumulate evidence received from input units, and which decay to zero in the absence of in-
put [71, 72, 74, 76, 79]. In other instances, perceptual evidence [77, 78, 80] or counts of events
[8, 12, 75] are accumulated through an exponential temporal filter. Although it is less clear
whether the unpredictability-cost models lend themselves to a similar algorithmic simplifi-
cation, they consist in a distortion of Bayesian inference, for which various neural-network
models have been proposed [81–84].

Turning to the experimental results, we note that in spite of the rich literature on se-
quential effects, the majority of studies have focused on equiprobable Bernoulli environments,
in which the two possible stimuli both had a probability equal to 0.5, as in tosses of a fair
coin [6–11, 18, 25]. In environments of this kind, the two stimuli play symmetric roles and
all sequences of a given length are equally probable. In contrast, in biased environments one
of the two possible stimuli is more probable than the other. Although much less studied,
this situation breaks the regularities of equiprobable environments and is arguably very fre-
quent in real life. In our experiment, we explore stimulus generative probabilities from .05
to .95, thus allowing to investigate the behavior of subjects in a wide spectrum of Bernoulli
environments: from these with “extreme” probabilities (e.g., p = .95) to these only slightly
different from the equiprobable case (e.g., p = .55) to the equiprobable case itself (p = .5).
The subjects are sensitive to the imbalance of the non-equiprobable cases: while they predict
1 in half the trials of the equiprobable case, a probability of just .55 suffices to prompt the
subjects to predict 1 in about in 60% of trials, a significant difference (p̄(1) = .602; sem:
.008; p-value of t-test of equality with .5: 1.7e-11).

The well-known ‘probability matching’ hypothesis [85–87] suggests that the proportion of
predictions 1 matches the stimulus generative probability: p̄(1) = p. This hypothesis is not
supported by our data. We find that in the non-equiprobable conditions these two quantities
are significantly different (all p-values < 1e-11, when p ̸= .5). More precisely, we find that
the proportion of prediction 1 is more extreme than the stimulus generative probability (i.e.,
p̄(1) > p when p > .5, and p̄(1) < p when p < .5; Fig. 2a). This result is consistent with
the observations made by W. Edwards [14, 88] and with the conclusions of a more recent
review [86].

In addition to varying with the stimulus generative probability, the subjects’ predictions
depend on the recent history of stimuli. Recency effects are common in the psychology
literature; they were reported from memory [89] to causal learning [90] to inference [59,
91, 92]. In prediction tasks, both attractive recency effects, also called ‘hot-hand fallacy’,
and repulsive recency effects, also called ‘gambler’s fallacy’, have been reported [13, 14, 18–
20, 22]. The observation of both effects within the same experiment has been reported in
a visual identification task [93] and in risky choices (‘wavy recency effect’ [23, 24]). As to
the heterogeneity of these results, several explanations have been proposed; two important
factors seem to be the perceived degree of randomness of the predicted variable and whether
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it relates to human performance [18–20, 22]. In any event, most studies focus exclusively on
the influence of ‘runs’ of identical outcomes on the upcoming prediction, e.g., in our task,
on whether three 1s in a row increases the proportion of predictions 1. With this analysis,
Edwards [14] in a task similar to ours concluded to an attractive recency effect (which he
called ‘probability following’). Although our results are consistent with this observation (in
our data three 1s in a row do increase the proportion of predictions 1), we provide a more
detailed picture of the influence of each stimulus preceding the prediction, whether it is in a
‘run’ of identical stimuli or not, which allows us to exhibit the non-trivial finer structure of
the recency effects that is often overlooked.

Up to two stimuli in the past, the recency effect is attractive: observing a 1 at trial t− 2
or at trial t − 1 induces, all else being equal, a higher proportion of predictions 1 at trial t
(in comparison to observing a 0; Figs. 2, 6a). The influence of the third-to-last stimulus
is more intricate: it can yield either an attractive or a repulsive effect, depending on the
second-to-last and the last stimuli. For a majority of probability parameters, p, while a 1
followed by the sequence ‘11’ has an attractive effect (i.e., p(1|111) > p(1|011)), a 1 followed
by the sequence ‘01’ has a repulsive effect (i.e., p(1|101) < p(1|001); Fig. 6b, c). How can
this reversal be intuited? Only one of our models, the precision-cost model with a Markov
order 1 (m = 1), reproduces this behavior; we show how it provides an interpretation for this
result. From the update equation of this model (Eq. (6)), it is straightforward to show that
the posterior of the model subject (a Dirichlet distribution of order 4) is determined by four
quantities, which are exponentially-decaying counts of the four two-long patterns observed
in the sequence of stimuli: ‘00’, ‘01’, ‘01’, and ‘11’. The higher the count of a pattern, the
more likely the model subject deems this pattern to happen again. In the equiprobable case
(p = 0.5), after observing the sequence ‘111’, the count of ‘11’ is higher than after observing
‘011’, thus the model subject believes that ‘11’ is more probable, and accordingly predicts 1
more frequently, i.e., p(1|111) > p(1|011). As for the sequences ‘101’ and ‘001’, both result
in the same count of ‘11’, but the former results in a higher count of ‘10’ — in other words,
the short sequence ‘101’ suggests that a 1 is usually followed by a 0, but the sequence ‘001’
does not — and thus the model subject predicts more frequently a 0, i.e., less frequently a 1
(p(1|101) < p(1|001)).

In short, the ability of the precision-cost model of a Markov observer to capture the
repulsive effect found in behavioral data suggests that human subjects extrapolate the local
statistical properties of the presented sequence of stimuli in order to make predictions, and
that they pay attention not only to the ‘base rate’ — the marginal probability of observing
a 1, unconditional on the recent history — as a Bernoulli observer would do, but also to
the statistics of more complex patterns, including the repetitions and the alternations, thus
capturing the transition probabilities between consecutive observations. References [9, 10, 12]
similarly argue that sequential effects result from an imperfect inference of the base rate and
of the frequency of repetitions and alternations. Reference [94] argues that the knowledge of
transition probabilities is a central mechanism in the brain’s processing of sequences (e.g.,
in language comprehension), and infants as young as five months were shown to be able to
track both base rates and transition probabilities (see Ref. [95] for a review). Learning of
transition probabilities has also been observed in rhesus monkeys [96].

Finally, the deviations from perfect inference, in the precision-cost model, originate in the
constraints faced by the brain when performing computation with probability distributions.
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In spite of the success of the Bayesian framework, we note that human performance in
various inference tasks is often suboptimal [30, 55, 97, 98]. Our approach suggests that the
deviations from optimality in these tasks may be explained by the cognitive constraints at
play in the inference carried out by humans.

Methods

Task and subjects

The computer-based task was programmed using the Python library PsychoPy [99]. The
experiment comprised ten blocks of trials, which differed by the stimulus generative proba-
bility, p, used in all the trials of each block. The probability p was chosen randomly among
the ten values ranging from .50 to .95 by increments of .05, excluding the values already
chosen; and with probability 1/2 the stimulus generative probability 1− p was used instead.
Each block started with 200 passive trials, in which the subject was only asked to look at the
200 stimuli sampled with the block’s probability and successively presented. No action from
the subject was required for these passive trials. The subject was then asked to predict, in
each of 200 trials, the next location of the stimulus. Subjects provided their responses by
keypress. The task was presented as a game to the subjects: the stimulus was a lightning
symbol, and predicting correctly whether the lightning would strike the left or the right rod
resulted in the electrical energy of the lightning being collected in a battery (Fig. 1). Twenty
subjects participated in the experiment. All subjects completed the ten blocks of trials, ex-
cept one subject who did not finish the experiment and was excluded from the analysis.
Written consent was obtained from the participants before the experiment.

Sequential effects of the models

We run simulations of the eight models and look at the predictions they yield. To reproduce
the conditions faced by the subjects, which included 200 passive trials, we start each stim-
ulation by showing to the model subject 200 randomly sampled stimuli (without collecting
predictions at this stage). We then show an additional 200 samples, and obtain a prediction
from the model subject after each sample. The sequential effects of the most recent stimulus,
with the different models, are shown in Fig. 7. With the precision-cost models, the posterior
distribution of the model subject does not converge, but fluctuates instead with the recent
history of the stimulus. This results in attractive sequential effects (Fig. 7a), including for
the Bernoulli observer, who assumes that the probability of a 1 does not depend on the most
recent stimulus. With the unpredictability-cost models, the posterior of the model subject
does converge. With Markov observers, it converges toward a parameter vector q that im-
plies that the probability of observing a 1 depends on the most recent stimulus, resulting in
the presence of sequential effects of the most recent stimulus (Fig. 7b, second to fourth row).
With a Bernoulli observer, the posterior of the model subject converges toward a value of
the stimulus generative probability that does not depend on the stimulus history. As more
evidence is accumulated, the posterior narrows around this value but not without some
fluctuations that depend on the sequence of stimuli presented. In consequence the model
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Figure 7: Sequential effects of the most recent stimulus in precision-cost and
unpredictability-cost models. (a) Precision-cost models. (b) Unpredictability-cost mod-
els. First row : Bernoulli observers (m = 0). Second to fourth rows : Markov observers
(m = 1, 2, and 3). First column (each panel): proportion of predictions 1 in the models’
responses as a function of the stimulus generative probability, conditional on the preceding
observation being a 1 (blue line) or a 0 (orange line), and unconditional (grey line). Second
column (each panel): difference between the proportion of predictions 1 conditional on the
preceding observation being a 1, and the same proportion conditional on a 0. A positive
difference indicates an attractive sequential effect of the most recent stimulus.

subject’s estimate of the stimulus generative probability is also subject to fluctuations, and
depends on the history of stimuli (including the most recent stimulus), although the width
of the fluctuations tend to zero as more stimuli are observed. After the 200 stimuli of the
passive trials, the sequential effects of the most recent stimulus resulting from this transient
regime appear small in comparison to the sequential effects obtained with the other models
(Fig. 7b, first row).

Turning to higher-order sequential effects, we look at the influence on predictions of the
second- and third-to-last stimulus (Fig. 8). As mentioned, only precision-cost models of
Markov observers yield repulsive sequential effects, and these occur only when the third-to-
last-stimulus is followed by ‘01’ (or, symmetrically, by ‘10’). They do not occur with the
second-to-last stimulus, nor with the third-to-last-stimulus when it is followed by ‘11’ (or,
symmetrically, by ‘00’; Fig. 8a); and they do not occur in any case with the unpredictability-
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Figure 8: Sequential effects of the second- and third-to-last stimuli in
precision-cost and unpredictability-cost models. (a) Precision-cost models. (b)
Unpredictability-cost models. First row : Bernoulli observers (m = 0). Second to fourth
rows : Markov observers (m = 1, 2, and 3). First column (each panel): difference between
the proportion of predictions 1 in the model subject’s responses, conditional on the two
preceding observations being the sequence ‘11’, and the same proportion conditional on the
sequence ‘01’. A positive difference indicates an attractive sequential effect of the second-to-
last stimulus. Second column (each panel): difference between the proportion of predictions
1 in the model subject’s responses, conditional on the three preceding observations being
the sequence ‘111’, and the same proportion conditional on the sequence ‘011’. Third col-
umn (each panel): difference between the proportion of predictions 1 in the model subject’s
responses, conditional on the three preceding observations being the sequence ‘101’, and the
same proportion conditional on the sequence ‘001’. The precision-cost models of Markov
observers are the only models that yield a negative difference, i.e., a repulsive sequential
effect of the third-to-last stimulus, in this case.

cost models (Fig. 8b).

Bayesian Model Selection

We implement the Bayesian model selection (BMS) procedure described in Ref. [32]. Given
M models, this procedure aims at deriving a probabilistic belief on the distribution of these
models among the general population. This unknown distribution is a categorical distri-
bution, parameterized by the probabilities of the M models, denoted by r = (r1, . . . , rM),
with

∑
rm = 1. With a finite sample of data, one cannot determine with infinite preci-

24

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2022. ; https://doi.org/10.1101/2022.06.20.496900doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.20.496900
http://creativecommons.org/licenses/by-nc-nd/4.0/


sion the values of the probabilities rm. The BMS, thus, computes an approximation of the
Bayesian posterior over the vector r, as a Dirichlet distribution parameterized by the vector
α = (α1, . . . , αM), i.e., the posterior distribution

p(r|α) = 1

Z(α)

M∏
m=1

rαm−1
m . (7)

Computing the parameters αk of this posterior makes use of the log-evidence of each model
for each subject, i.e., the logarithm of the joint probability, p(y|m), of a given subject’s
responses, y, under the assumption that a given model, m, generated the responses. We use
the model’s maximum likelihood to obtain an approximation of the model’s log-evidence, as
[100]

ln p(y|m) ≃ max
θ

[ln p(y|m, θ)]− d

2
lnN, (8)

where θ denotes the parameters of the model, p(y|m, θ) is the likelihood of the model when
parameterized with θ, d is the dimension of θ, and N is the size of the data, i.e., the
number of responses. (The well-known Bayesian Information Criterion [101] is equal to this
approximation of the model’s log-evidence, multiplied by −1/2.)

In our case, there are M = 8 models, each with d = 2 parameters: θ = (λ, κ). The
posterior distribution over the parameters of the categorical distribution of models in the
general population, p(r|α), allows for the derivation of several quantities of interest; following
Ref. [32], we derive two types of quantities. First, given a family of models, i.e., a set
M = {mi} of different models (for instance, the prediction-cost models, or the Bernoulli-
observer models), the expected probability of this class of model, i.e., the expected probability
that the behavior of a subject randomly chosen in the general population follows a model
belonging to this class, is the ratio ∑

m∈M αm∑K
m=1 αm

. (9)

We compute the expected probability of the precision-cost models (and the complemen-
tary probability of the unpredictability-cost models), and the expected probability of the
Bernoulli-observer models (and the complementary probability of the Markov-observer mod-
els; see Results).

Second, we estimate, for each family of models M, the probability that it is the most
likely, i.e., the probability of the inequality∑

m∈M

rm > 1/2, (10)

which is called the ‘exceedance probability’. We compute an estimate of this probability
by sampling one million times the Dirichlet belief distribution (Eq. (7)), and counting
the number of samples in which the inequality is verified. We estimate in this way the
exceedance probability of the precision-cost models (and the complementary probability of
the unpredictability-cost models), and the exceedance probability of the Bernoulli-observer
models (and the complementary probability of the Markov-observer models; see Results).
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Figure 9: Model-fitting confusion matrix. (a) For each row models (‘true model’),
percentage of simulated datasets of 200 responses that were best fitted by column models
(‘best-fitting model’). Example: when fitting data generated by the precision-cost model
with m = 3, the best-fitting model was the correct model on 98% of the fits, and the
precision-cost model with m = 2 on 2% of the fits. (b) Same as a, with 10% of responses
(randomly chosen in each simulated dataset) replaced by the opposite responses.

Robustness of the model fitting

To evaluate the ability of the model-fitting procedure to correctly identify the model that
generated a given set of responses, we compute a confusion matrix of the eight models.
For each model, we simulate 200 runs of the task (each with 200 passive trials followed
by 200 trials in which a prediction is obtained), with values of λ and κ close to values
typically obtained when fitting the subjects’ responses (for prediction-cost models, λ ∈
{0.03, 0.7, 2, 15} ; for unpredictability-cost models, λ ∈ {0.7, 2}; and κ ∈ {0.7, 1.5, 2} for both
families of models). We then fit each of the eight models to each of these simulated datasets,
and count how many times each model best fit each dataset (Fig. 9a). To further test the
robustness of the model-fitting procedure, we randomly introduce errors in the simulated
responses: for 10% of the responses, randomly chosen in each dataset, we substitute the
response by its opposite (i.e., 0 for 1, and 1 for 0), and compute a confusion matrix using
these new responses (Fig. 9b). In both cases, the model-fitting procedure identifies the
correct model a majority of times (i.e., the best-fitting model is the model that generated
the data; Fig. 9).

Finally, to examine the robustness of the weight of the cost, λ, we consider for each subject
its best-fitting model in each family (the precision-cost family and the unpredictability-cost
family), and we fit separately each model to the subject’s responses obtained in trials in
which the stimulus generative probability was medium (p ∈ {.3, .35, .4, .45, .5, .55, .6, .65, .7})
and those in which it was extreme (p ∈ {.05, .1, .15, .2, .25, .75, .8, .85, .9, .95}). The Figure 10
shows the correlation between the best-fitting parameters obtained in these two cases.
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Figure 10: Stability of the cost-weight parameter across medium and extreme
values of the stimulus generative probability. Log-log plot of the best-fitting param-
eters of the subjects when fitting the data obtained in trials with extreme values of the
stimulus generative probability (i.e., p or 1 − p in {.75, .8, .85, .9, .95}), as a function of the
best-fitting parameters of the subjects when fitting the data obtained in trials with medium
values of the stimulus generative probability (i.e., p or 1 − p in {.5, .55, .6, .65, .7}), with
(a) precision-cost models, and (b) unpredictability-cost models. Purple dots: subjects best-
fitted by prediction-cost models. Green dots: subjects best-fitted by unpredictability-cost
models. For the precision-cost models, we plot the characteristic decay time, τ = 1/ ln(1+λ).

Unpredictability cost for Markov observers

Here we derive the expression of the unpredictability cost for Markov observers as a function
of the elements of the parameter vector q. For an observer of Markov order 1 (m = 1),
the vector q has two elements, which are the probability of observing a 1 at a given trial
conditional on the preceding outcome being a 0, and the probability of observing a 1 at a
given trial conditional on the preceding outcome being a 1, which we denote by q0 and q1,
respectively. The Shannon entropy, H(X; q), implied by the vector q, is the average of the
conditional entropies implied by each conditional probability, i.e.,

H(X; q) = p0H(X; q0) + p1H(X; q1), (11)

where p0 and p1 are the unconditional probabilities of observing a 0 and a 1, respectively,
and

H(X; qi) = −qi ln qi − (1− qi) ln(1− qi), (12)
where i is 0 or 1. The unconditional probabilities p0 and p1 are functions of the conditional
probabilities q0 and q1. We find:

p0 =
1− q1

1 + q0 − q1
and p1 =

q0
1 + q0 − q1

. (13)
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The entropy H(X; q) implied by the vector q is obtained by substituting these quantities in
Eq. (11).

Similarly, for m = 2 and 3, the 2m elements of the vector q are the parameters qij and
qijk, respectively, where i, j, k ∈ {0, 1}, and where qij is the probability of observing a 1 at
a given trial conditional on the two preceding outcomes being the sequence ‘ij’, and qijk is
the probability of observing a 1 at a given trial conditional on the three preceding outcomes
being the sequence ‘ijk’. The Shannon entropy, H(X; q), implied by the vector q, is here
also the average of the conditional entropies implied by each conditional probability, as

H(X; q) =
∑
ij

pijH(X; qij), for m = 2, (14)

and H(X; q) =
∑
ijk

pijkH(X; qijk), for m = 3, (15)

where pij and pijk are the unconditional probabilities of observing the sequence ‘ij’, and of
observing the sequence ‘ijk’, respectively. These unconditional probabilities are functions of
the conditional probabilities. We find, for m = 2:

p00 =

(
1 +

2q00
1− q10

+
q01

1− q11

q00
1− q10

)−1

,

p01 =
q00

1− q10
p00,

p10 = p01,

and p11 =
q01

1− q11

q00
1− q10

p00.

For m = 3, we find the relations:

p001 = p000
q000

1− q100
,

p010 = p000
q000

1− q100

1− q001(1− q110)− q101q110
1− q010(1− q101)− q101q110

,

p011 = p010
q101q010

1− q101q110
+ p001

q001
1− q101q110

,

p100 = p001,

p101 = p010 + p011 − p001,

p110 = p011,

and p111 = p011
q011

1− q111
.

Together with the normalization constraint
∑

ijk pijk = 1, these relations allow determining
the eight unconditional probabilities pijk, and thus the expression of the Shannon entropy.
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