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Abstract

Identifying the footprints of selection in coding sequences can inform about the importance
and function of individual sites. Analyses of the ratio of non-synonymous to synonymous sub-
stitutions (dN/dS) have been widely used to pinpoint changes in the intensity of selection, but
cannot distinguish them from changes in the direction of selection, i.e., changes in the fitness
of specific amino acids at a given position. A few methods that rely on amino acid profiles
to detect changes in directional selection have been designed, but their performance have not
been well characterized. In this paper, we investigate the performance of 6 of these methods.
We evaluate them on simulations along empirical phylogenies in which transition events have
been annotated, and compare their ability to detect sites that have undergone changes in the
direction or intensity of selection to that of a widely used dN/dS approach, codeml’s branch-site
model A. We show that all methods have reduced performance in the presence of biased gene
conversion but not CpG hypermutability. The best profile method, Pelican, a new implemen-
tation of [Tamuri et al., 2009], performs as well as codeml in a range of conditions except for
detecting relaxations of selection, and performs better when tree length increases, or in the
presence of persistent positive selection. It is fast, enabling genome-scale searches for site-wise
changes in the direction of selection associated with phenotypic changes.

1 Introduction

The genomes and phenotypes of extant species bear traces of past adaptations that occurred
in their ancestors. A lot of research in molecular evolution has been devoted to detecting and
interpreting these traces, both in non-coding and coding sequences (e.g., [Moretti et al., 2014,
Zhang et al., 2014, Merényi et al., 2020, Partha et al., 2019, Marcovitz et al., 2019]). In protein-
coding genes in particular, several approaches have been developed to study evolution at the level
of whole genes or at the level of single sites [Goldman and Yang, 1994, Yang and Nielsen, 2008].
Studies have found that amino acid changes at a single position could create an active site de
novo [Risso et al., 2017], that amino acid changes at a few positions could change the affinity of
an hormone receptor for its ligand [Bridgham et al., 2006], that convergent evolution could be
detected at single sites in proteins in mammals [Li et al., 2010], in grasses [Christin et al., 2007],
in insects [Zhen et al., 2012], and that amino acid changes at a single position could alter the
dynamic of a worldwide viral epidemic [Korber et al., 2020]. Identifying traces of past and
current adaptations at the level of single amino acid sites can thus be very insightful. In this
article, we investigate the performance of several methods aiming to do just that. These include
one commonly-used dN/dS method, but also methods that have been more recently developed,
based on amino acid fitness profiles.

In proteins, amino acids that are never or seldom encountered at a particular site in a group
of related species may have been selected against in the past. Those that are frequent may
have been favored by selection. One can study these differences in frequency to infer differ-
ences in fitness between amino acids. A fitness profile is then used to represent the relative
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fitness of each amino acid at a given site (fig. 1a: A, B, C and C’). When used within mod-
els of sequence evolution, a fitness profile determines the fixation probability of arising muta-
tions during the process of evolution through mutation and selection [Halpern and Bruno, 1998,
Yang and Nielsen, 2008, Rodrigue et al., 2010, Tamuri et al., 2012]. It also provides a direction
for selection, which pushes evolution at the site away from low-fitness amino acids and towards
high-fitness amino acids.

The shape of a fitness profile derives from selective pressures that operate at a particular site
of a protein. These pressures can be related to phenotypic traits or environmental constraints,
which could change over time. In such a case, the pressures would change, and so would the
fitness profile. Selection may vary in intensity, for instance as a trait becomes more or less
important for the global fitness of the organism; and in direction, when changing the value of
a trait leads to higher fitness. These different kinds of changes in selective pressure can be
captured by variations of the fitness profile: changes in intensity through the pointedness or
flatness of the profile (fig. 1a, transition from profile A to profile B), and changes in direction
through the variation of the overall shape of the profile (fig. 1a, transition from profile A to
profiles C and C’). In this manuscript we will focus on trait changes and the associated fitness
profile at a site that occur discretely, at once, but progressive, continuous changes certainly
occur in nature and would be important to consider.

Approaches to detect variations of selection on single sites of protein-coding sequences all
require an annotation of the branches of a phylogeny, whereby each branch is associated to a
phenotypic state or environmental condition. Given this annotation, either dN/dS or profile
methods can be used (fig. 2).

Approaches relying on the ω = dN/dS metric have been widely used to capture varia-
tions in selective pressure [Kosiol and Anisimova, 2019], including in the context of genome
screening (e.g. [Nielsen et al., 2005, Kosiol et al., 2008, Studer et al., 2008, Moretti et al., 2014,
Zhang et al., 2014]). These methods can show good reliability, either at the level of whole
gene sequences or of single sites, when the generating process matches the inference model
(e.g., [Zhang, 2005]). The ω metric is defined as the ratio of rates between non-synonymous
(dN ) and synonymous (dS) substitutions. The underlying assumption is that selection op-
erates at the amino acid level, so that synonymous codons provide the same fitness, while
non-synonymous substitutions induce a variation in fitness. Inference is typically performed
at the level of a gene by comparing the likelihood of a model with one set of dN/dS val-
ues per condition, against a model having one global set of dN/dS values through a likeli-
hood ratio test (LRT) [Yang, 2007]. At the site level, the gene-wise parameter estimates are
used to identify sites whose dN/dS has changed in a manner correlated with the annotation
of the phylogeny [Yang, 2005]. However, many other implementations have been proposed
(e.g., [Guindon et al., 2004, Kosakovsky Pond et al., 2011, Murrell et al., 2015]). dN/dS meth-
ods should be particularly effective at inferring changes in the intensity of negative selection:
weaker (respectively stronger) selection should result in higher (resp. lower) dN/dS values.
In that sense, dN/dS values have been used as a proxy of selection efficiency, even though in
some cases this can be misleading [Spielman and Wilke, 2015, Jones et al., 2019]. In addition,
dN/dS methods should have good power to detect cases of persistent positive selection (right-
most branch, fig. 1a), which should result in high dN/dS values. However, they might be less
effective at detecting changes in the direction of selection [Parto and Lartillot, 2018], as they
may fail to detect some sites that have undergone episodic changes in directional selection on
top of a background of strong purifying selection (see fig. 1 and [dos Reis, 2015]). Further, they
do not output estimates of the direction of selection, but only dN/dS values.

Profile methods have been developed more recently than dN/dS methods, and have yet to be
used at a genomic scale. They all rely on amino acid profiles to identify sites that correlate with a
phenotype along a phylogeny, but vary in the complexity of their underlying models. Some meth-
ods operate at the codon level and can explicitly use amino acid fitness profiles by distinguishing
between the mutation process, operating at the nucleotide level, and the selection process op-
erating at the amino acid level (e.g., [Murrell et al., 2012, Parto and Lartillot, 2018]). These
methods build on the mutsel framework [Halpern and Bruno, 1998, Yang and Nielsen, 2008,
Rodrigue et al., 2010, Tamuri et al., 2012, Bloom, 2014] that provides a better description of
coding sequence evolution than dN/dS approaches [Spielman and Wilke, 2016, Bloom, 2014].
Other methods operate at the amino acid level and thus cannot model the mutation process.
They use amino acid frequency profiles as a proxy to fitness profiles [Tamuri et al., 2009], and
may thus be less powerful than methods that operate at the codon level. In both cases, inference
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can be performed with a Likelihood Ratio Test (LRT) at the site level, comparing the likelihood
of a model with one profile per condition, against a model having one single profile that applies
on all branches of the phylogeny. However, Bayesian inference has also been used, notably for
a branch-heterogeneous mutsel model [Parto and Lartillot, 2018].

Both dN/dS and profile methods to detect changes in selective pressures could be misled by
non-adaptive processes, or by confounding between different selection regimes [Jones et al., 2019].
Non-adaptive processes notably include GC-biased gene conversion (gBGC) [Ratnakumar et al., 2010]
[Boĺıvar et al., 2019] and CpG hypermutability [Meunier et al., 2005]. gBGC occurs during re-
combination and mimics natural selection by favoring the fixation of G and C alleles. CpG
hypermutability increases the mutation rate of CG dinucleotides. These processes can gen-
erate patterns in the sequence data that could lead to false positives or false negatives, as
has been shown for dN/dS methods with respect to both gBGC [Ratnakumar et al., 2010,
Guéguen and Duret, 2018, Rousselle et al., 2019], and CpG hypermutability [Saunders and Green, 2007,
Suzuki et al., 2009]. Confounding between different selection regimes could happen if a test aim-
ing to find changes in the direction of selection detected sites under persistent positive selection.
It is unclear how sensitive profile methods would be to these problems.

Genome-scale detection of changes in selective pressure requires a fast method, especially
if a large number of species is used to increase the power of an analysis. In fact, it has been
suggested that the high computational cost of dN/dS methods may be a hurdle to their more
widespread use [Davydov et al., 2019]. It is unclear how efficient profile methods could be.

In this article, we evaluate several profile and dN/dS methods to detect changes in selective
pressures operating on individual positions of a protein-coding gene, on specific branches of
a phylogeny. We consider several profile methods that have been published or that we have
developed de novo, and compare them to a widely-used dN/dS method. In particular, we ask
whether profile methods can be as powerful as the dN/dS method, including in the presence
confounding factors, and pay particular attention to the computational costs of all methods.

Performance measurements are done on simulated datasets, allowing us to characterize the
behaviour of the methods on a range of tree shapes, branch lengths, and number of transitions
along the phylogeny. We also investigate whether the detection methods are sensitive to con-
founding signal generated by non-adaptive processes of molecular evolution [Ratnakumar et al., 2010,
Boĺıvar et al., 2019, Meunier et al., 2005], or by persistent positive selection [Tamuri and dos Reis, 2021].

2 New Approaches

In this article, we introduce Pelican, an improved implementation of the model from [Tamuri et al., 2009].
This implementation was found to have better sensitivity and specificity than the original, and
is also faster thanks to optimisations on linear algebra computation.

Multinomial is a fast non-phylogenetic profile method that is also evaluated in this paper.
It models observed amino acid frequency profiles as multinomial distributions, and compares
the likelihoods at a given site of a single frequency profile versus multiple profiles through a
likelihood ratio test.

Both of these methods are implemented as a single program, that is made available to detect
differential selection in protein sequence alignments. In this context, Multinomial can be used
as a fast filter on the alignment to reduce the amount of candidate sites to be evaluated through
Pelican.

3 Results

We evaluated the performance of detection methods using simulated datasets. The methods
that were considered are represented in fig. 2 and include :

• codeml, a widely used dN/dS method for detecting positive selection, provided in the
PAML toolkit [Yang, 2007]. codeml was configured to use the branch-site model A [Zhang, 2005,
Yang, 2005], and works at the codon level.

• Multinomial, the simplest and fastest profile method, does not rely on a model of sequence
evolution and works at the amino acid level. It uses a likelihood ratio test to compare two
models, one in which a single amino acid profile is used to describe amino acid frequencies
observed at a site across all tip sequences, and one where different amino acid profiles are
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Figure 1: Schematic representation of various evolution scenarii of a protein site involving profile
changes. Colored stars indicate transition events that trigger profile changes. The color gradient
along branches show the variation of dN/dS a.k.a ω values. The green sub-tree is a case of purifying
selection, with fixed profile (A) and ω < 1. The grey sub-tree illustrates relaxed pressure subsequent
to the transition in red, resulting in a flattened profile B and ω ≈ 1. Two cases of shifted selection
are represented, each one driven by a different fitness profile (C and C’). In both cases, there is a
transient increase in the value of ω, followed by a decrease towards ω < 1, as represented on the right
panel in 1b. Blue sub-tree is an example of persistent positive selection [Tamuri and dos Reis, 2021],
where the fitness profile rapidly changes along the branch, at intervals marked with red bars. In this
case, the value of dN/dS remains greater than 1 while positive selection continues.

B

A

A' C C'

purifying selection neutral selection shifted selection positive selection

(a) Cases of selection regime changes, with their representation as fitness profile changes, and their equiva-
lence with the dN/dS metric.

(b) dN/dS variations over time. The curve on the left represents the simulated value of dN/dS when transition
from purifying selection to relaxed selection occurs (transition between profiles A and B above). On the
right is the variation of dN/dS during a shift in selection direction (transition between profiles A and C or
C’ above).
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Figure 2: Methods evaluated in the manuscript. Methods have been positioned based on whether
they are based on dN/dS or amino acid profiles, whether they work at the codon or amino acid level,
and whether they rely on a model of sequence evolution running along a phylogeny or not.

used depending on the condition associated to the tip. Multinomial ignores the shape of
the phylogeny and could thus be misled by phylogenetic inertia.

• Gemma [Zhou and Stephens, 2012], based on a linear mixed model, was originally devel-
oped for genome-wide association studies (GWAS). It does not use a model of sequence
evolution, but can take into account the structure of the phylogeny, encoded as a correla-
tion matrix, which is introduced as a random effect in the mixed model. We used it at the
amino acid level, by encoding the protein alignment as an alignment of binary characters
(see section 6).

• TDG09 [Tamuri et al., 2009], a profile method that can be considered as a refinement
over the Multinomial method, in that it also works at the amino acid level but takes into
account the phylogeny by relying on a model of sequence evolution. It uses a LRT to
compare a model with one profile per condition and a model with one single global profile.

• Pelican, a new implementation of the model underlying TDG09 [Tamuri et al., 2009], orig-
inally motivated by the observed discrepancy reported between the performances of Diffsel
and TDG09.

• PCOC [Rey et al., 2018], a profile method working at the amino acid level. It is at its
base similar to TDG09 but works with a limited set of pre-existing profiles, and further
expects to observe substitutions at every transition between conditions in the phylogeny.

• Diffsel [Parto and Lartillot, 2018], a profile method working at the codon level and based
on a mutation-selection model in a Bayesian framework. Diffsel has performed significantly
better than the other methods in a previous benchmark [Rey et al., 2019].

All simulations were done under a codon-based, time-reversible, mutation-selection model
with site-specific amino acid fitness profiles. The model was run along a phylogeny whose
branches are annotated with two conditions that we refer to as background and foreground. A
simulation generates codon and corresponding amino acid alignments of arbitrary length. Sites
in the alignment may be either: (1) HA sites, that are the result of a simulation where changes
in the selection dynamic occur between background and foreground branches ; (2) H0 sites,
resulting from an evolutionary process where selection is constant. The number of sites of each
type was controlled in the simulation, allowing the comparison of predictions on the nature
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of each site (H0 or HA) with its known type, to estimate the performances of the prediction
method.

Performance estimates in all the benchmarks were done using two metrics : precision and
recall. Precision is the proportion of true positive sites among all sites identified as positive.
Recall, also known as sensitivity, is the proportion of HA sites that are identified as positive.
These metrics were summarized by computing the area under the precision-recall curve (PR
AUC). Confidence intervals for the PR AUC were computed according to [Boyd et al., 2013].

In this section we compared the detection methods using our simulation model in several
contexts : (1) synthetic trees with variable branch lengths and numbers of transitions; (2)
empirical trees in the presence or absence of confounding factors in the simulation. In the
following, all branch length values are given in expected numbers of codon substitutions.

3.1 Detection performances on synthetic trees

3.1.1 Detection performances increase with the number of transitions

We investigated whether the number of transitions from background to foreground conditions
had an effect on detection performances. We generated a balanced tree of 128 tips in which all
branch lengths equal 0.01, and generated a variable number of transitions on terminal branches
(tree topology shown in sup. fig. S1). In this setting, both the number of foreground leaves
and the total time in the foreground condition increase with the number of transitions. Results
shown in fig. 3a show that all methods take advantage from such increases.

3.1.2 The amount of time spent in a condition has a large effect on detection
performance for phylogenetic methods

We next evaluated the relative importance of the number of transitions and the amount of time
spent in the foreground condition on the phylogeny. We used a different set of trees with the
same general features (128 tips, branch lengths equal 0.01), varied the numbers of transitions,
but kept the number of foreground leaves and total foreground length constant across trees. This
was done by normalizing the branch lengths to achieve equal total times between foreground
and background conditions, and across trees. As a result the number of tips in each foreground
sub-tree is variable, depending on the depth of the transition event. For a given number of
transitions, all transitions occur at the same depth in the tree (sup. fig. S2).

Figure 3b shows that the performances of Gemma and Multinomial increase with the num-
ber of transitions, even when the amount of time spent in the foreground condition is kept
constant. They become the best performing methods at 64 transitions. However, the phyloge-
netic methods codeml and Pelican seem to be less sensitive to this parameter in this experiment,
suggesting that the determining factors for their performances in the previous experiment were
the total foreground time and/or the number of foreground leaves, which are kept constant in
this experiment.

3.1.3 Profile methods improve as branch lengths increase

In order to assess the effect of branch lengths and of the distance between transition events and
foreground leaves on method accuracy, while keeping the number of transitions constant, we
evaluated each method on a balanced tree with 4 transition events where a scaling factor was
applied to the branch lengths (sup. fig. S3). As a side-effect, this scaling factor also applies to
the total foreground tree length.

Results in figure 3c highlight two opposite trends between profile methods and the dN/dS
method codeml, in relation with the branch length scaling. Profile methods tend to be more
accurate in detecting selection shifts when the branch lengths increase, while the performance
of codeml decreases. We suspect that as branch lengths increase, the number of synonymous
substitutions increases, which reduces dN/dS and makes it harder to detect HA sites (see fig. 1b,
right).

Among profile methods, the performance gap tends to decrease with longer branches.
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Figure 3: Detection performances evaluated on synthetic trees. 95% confidence intervals accounting
for the variability of the PR AUC estimates are shown. (a) Performance increases with the number
of transitions on terminal branches. (b) The number of transitions is not the determining factor for
the performance of the phylogenetic methods but has a strong effect on the performance of Gemma
and Multinomial. (c) Performances of the profile methods are positively correlated to the branch
lengths, while the performance of codeml decreases on longer branches.
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3.2 Detection performances on empirical phylogenies

To benchmark the methods in a more realistic context, we evaluated their performances on
empirical phylogenies that differ in their size, depth and number of transitions (Table 1). The
corresponding phylogenetic trees are shown as supplementary material (supplementary figures
S4, S5, S6, S7, S8, S9).

Alignments were simulated as in the previous experiments, using the simulation model run-
ning along the empirical phylogenies. These alignments were used to measure the statistical
calibration and the throughput of each method, and to evaluate each method as in the previous
section.

Dataset Depth Size Transitions
Avg branch length Avg sub-tree length

Global Foreground Foreground

Rodents
[Rey et al., 2019]

11 32 10 0.0192 0.0252 0.0353

Cyperaceae
[Besnard et al., 2009]

25 79 5 0.0207 0.0239 0.196

Echolocation
[Scornavacca et al., 2019]

18 116 3 0.0081 0.0061 0.0828

Amaranthaceae
[Kapralov et al., 2012]

22 179 15 0.0045 0.0035 0.0356

HIV RTi
[Murrell et al., 2012]

34 476 238 0.0063 0.0051 0.0051

Influenza H1 segment
[Tamuri et al., 2009]

61 434 1 0.0603 0.0608 49.0709

Table 1: Summary statistics on empirical trees. Tree depth is defined here as the highest number
of branches between a leaf and the root. Size is the number of leaves in the tree. Transitions are
defined as changes from the background to the foreground condition.

3.2.1 Pelican performs well on empirical phylogenies

We assessed whether the methods were well calibrated, i.e., how accurate was their reported
false positive rate under the null (H0) model. To this end, we simulated 9,000 sites under H0,
and counted the number of false positives for each method, at the 0.05 p-value threshold. Under
this setting, a well calibrated method should produce on average a number of false positives equal
to 5% of the total number of sites. Results shown in sup. table S1 indicate that most methods
are overly conservative, i.e., their observed false positive rate is lower than their advertised
(5% here) false positive rate. Multinomial is the only method that can yield a higher rate of
false positives, particularly on the Influenza phylogeny. To further assess how conservative the
methods were, we computed the observed false positive rate on non-constant sites only, given
that constant sites cannot be classified as positive. Sup. table S2 indicates that even on this
subset of sites, most methods still have low rates of false negatives. This indicates that all
methods except Multinomial are overly conservative.

We then assessed the performance of the methods to detect HA sites by simulating 1000 HA

sites and 9000 H0 sites. Pelican, codeml and Diffsel consistently show the best performances
on all datasets (fig. 4), with the exception of the Influenza H1 dataset. It is worth noting that
Diffsel is one of the best performing methods, even though it estimates branch lengths and does
not get them as input, like most other methods.

We note that, while Pelican is essentially a reimplementation of TDG09, it shows significantly
better performances on every dataset. codeml and Pelican have similar performances in general.
However, on the Influenza H1 dataset, which has the highest average foreground sub-tree length
(d̄ = 49.0709), codeml incurs a large drop in its performances. These observations are consistent
with the results obtained on synthetic trees (fig. 3c).

Even though the HIV dataset has the lowest average foreground sub-tree length (d = 0.0051),
Pelican performs better than codeml on this dataset. Performances are strongly increased for
all methods on this dataset, compared to the other empirical phylogenies. Our explanation for
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Figure 4: Precision-Recall area under the curve (AUC) estimates on simulated datasets using 6
empirical phylogenies, under changes in the direction of selection. Performances of TDG09 on the
Influenza H1 dataset were not successfully measured. Diffsel was not evaluated on the HIV and
Influenza dataset due to the large computation times involved. PCOC had an underflow error on
the HIV data set.

the results on the HIV dataset involves multiple effects : (1) the large number of transitions
(n = 238) on terminal branches yields a strong signal for all methods, which benefits profile
methods the most (see fig. 3a) ; (2) figure 3c seems to indicate that there is an optimal branch
length for codeml: the signal for dN/dS falls off on longer branches, but branches can also be too
short to allow reliable dN and dS estimations because of the insufficient number of substitutions
occurring in such a short time span.

We showed that some characteristics of the phylogenies had a major effect on method per-
formance, particularly the time spent in the foreground condition, as well as the number of
transitions in the phylogeny. It is likely that variations in the detection performances are the
results of interactions between the features of the phylogeny, possibly including more than the
two we identified, as well as the sensitivity of the detection method to these features.

On a side note, we remark that Multinomial shows some surprisingly good performances
despite its simplicity. As it does not take any information from the phylogeny, it is the simplest
profile method, and also the fastest (table 2).

3.2.2 Performances in the detection of changes in the intensity of selection

Profile methods are in principle particularly appropriate for detecting changes in the direction
of selection, and in practice perform as well as codeml and better on long branches (see above).
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We evaluated how they perform in the presence of a change in the intensity of selection, by
simulating a scenario of relaxation of selection. In this scenario, HA sites are simulated such
that all amino acids have equal fitness on foreground branches. This corresponds to a complete
relaxation of selection.

Rodents Rubisco Amaranthaceae Rubisco Cyperaceae
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Figure 5: Precision-Recall area under the curve (AUC) estimates on simulated datasets using 6
empirical phylogenies, under relaxation of selection. Performances of TDG09 on the Influenza H1
dataset were not successfully measured. Diffsel was not evaluated on the HIV and Influenza dataset
due to the large computation times involved. PCOC had an underflow error on the HIV data set.

Fig. 5 indicates that profile methods, and Pelican in particular, can also detect relaxations
of selection, but that their performance depends on the phylogeny. In particular, we find that
in some cases the detection is unreliable (fig. 5, Influenza panel). We suspected that this
lower performance was due to a lack of sensitivity, and tested this hypothesis by changing
the computation of degrees of freedom in the Likelihood Ratio test performed in Pelican (sup.
section S5). Sup. fig. S13 shows that much better performances can be obtained on the Influenza
data set, but with some cost on the performance of the method on other data sets (notably
Mammals echolocation). Future work on the LRT may result in an improved performance of
Pelican across data sets, in settings of changes in both the direction and the intensity of selection.

3.2.3 Performances in the presence of confounding factors

In order to assess the robustness of the detection to other evolutionary processes, we executed
a benchmark on simulations including confounding factors: (1) CpG hypermutability, which
induces a higher mutation rate on methylated CpG dinucleotides; (2) GC-biased gene conversion
(gBGC), a non-adaptive process that increases the overall GC content in the genome and may be
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mistaken as a selective force [Ratnakumar et al., 2010]; (3) persistent positive selection (PPS),
as modeled by [Tamuri and dos Reis, 2021], which favors non-synonymous substitutions over
synonymous ones on the branches where it occurs. We used strong but realistic intensities for
each of these processes, with two intensities for gBGC, and two intensities for PPS. In simulations
of CpG hypermutability and GC-biased gene conversion (gBGC), the processes were applied on
foreground branches for both H0 and HA sites. In the simulation of PPS, the process was applied
on all branches, but only on H0 sites, to assess the propensity of each method to generate false
positives. Results are shown in figure 6 for the Echolocation phylogeny, and are available as
supplementary material for the other phylogenies.
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Figure 6: Effects of GC-biased gene conversion (gBGC), CpG hypermutability and persistent positive
selection (PPS) on precision-recall AUC on the Echolocation dataset.

We find that the presence of CpG hypermutability has no influence on the detection perfor-
mance in most cases.

In contrast, on simulations including gBGC, we notice a strong decrease of the performance
for every method. While gBGC happens at the nucleotide level, it generates selection-like signal
at the codon (or amino acid) level, that is not the result of an adaptive process. This signal was
strong enough to directly interfere with the signal for selection on genomic sites.

At a fixed effective population size Ne, an increase in PPS results in a decrease in the
performance of all methods. Under conditions of strong PPS and large Ne, the performance of
codeml is strongly reduced, but the performance of profile methods can be improved. Overall,
profile methods seem less prone to generating false positives in the presence of PPS, the effect
of which is largely compensated by an increased value of Ne.

3.2.4 Throughput varies greatly between methods

We measured execution time for each method on six simulated datasets. Simulations were made
using our simulation model on each empirical tree to generate an alignment of 100 H0 and 100
HA sites. Execution times were measured as the elapsed time at completion of a run for each
method using a single CPU, and are presented in table 2. The throughput of phylogenetic
methods can vary by a large factor depending on the size of the phylogeny.

Multinomial and Gemma are the fastest methods by a large factor. None of these two meth-
ods require parameter estimations for a model of sequence evolution, allowing faster execution.
At the other end, the two codon-level methods codeml and Diffsel are the slowest. Pelican is
the fastest of the phylogenetic methods by a non negligible factor on all datasets.
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Method
Execution time (s)

Cyperaceae Amaranthaceae Rodents Echolocation HIV Influenza
Multinomial 0.01 0.02 0.01 0.02 0.04 0.03
Gemma 1.79 1.90 1.72 1.81 1.96 2.03
Pelican 10.93 19.42 2.58 6.72 87.72 266.84
TDG09 22.21 40.56 6.84 12.56 369.87
codeml 60.60 172.50 27.37 100.76 443.66 614.33
PCOC 65.56 129.01 27.80 76.48 346.25 436.84
Diffsel 1253.00 1497.84 946.79 1083.48 2659.78 3982.00

Table 2: Execution times for one alignment containing 100 H0 and 100 HA sites generated using
our collection of empirical phylogenies. Result for TDG09 on the Influenza dataset is not available
due to the program not terminating within a reasonable amount of time.

4 Discussion

In this paper, we used simulations to compare the performance of methods that detect changes
in the direction and intensity of selection, given an annotation of a phylogeny. These simulations
rely on mutation-selection models of codon sequence evolution running along phylogenies.

4.1 Mutation-selection models for simulating coding sequences

Our choice to rely on mutation-selection models stems from the fact that these models have been
shown to be more realistic for coding sequences than dN/dS methods [Spielman and Wilke, 2016,
Bloom, 2014]. They distinguish between processes occurring at the mutation level, and processes
occurring at the selection level among codons. This flexibility allowed us to implement in our
simulations CpG hypermutability and gBGC. In addition, we have made the choice to use
site-heterogeneous amino acid fitness profiles to emulate the heterogeneity among positions in
protein sequences. For improved realism, the profiles we used come from [Rey et al., 2019], and
are based on laboratory mutagenesis experiments [Bloom, 2017]. However, we assumed no fitness
difference between synonymous codons, even though this can be implemented in the mutation-
selection framework [Yang and Nielsen, 2008, Pouyet et al., 2016]. Despite this, and given the
fact that we simulated along empirical phylogenies, we expect our results are representative of
the performance of the methods on empirical data sets.

4.2 Methods working at the amino acid level perform as well as
codon-based methods

Some of the methods in the benchmark rely on models that are similar to our simulation model.
In particular, Diffsel is also based on a mutation-selection model, and codeml works at the
codon level. Expectedly, these two methods perform well on our simulations. In agreement
with previous results [Spielman and Wilke, 2015], codeml, which relies on dN/dS and does not
use amino acid fitness profiles, is very effective except on long branches and trees (fig. 3c and
fig. 4 the Influenza H1 phylogeny). All the other methods work at the amino acid level. Among
those, the models based on a phylogenetic model (Pelican, TDG09, PCOC) vary in their per-
formance, with Pelican standing out as the best performer. The lower performance of PCOC
is likely due to two of its characteristics. Firstly, its reliance on a predefined set of amino acid
frequency vectors, which may prevent it from accurately fitting the sites under study. Secondly,
its “One-Change” component, which requires an amino acid change at each transition between
background and foreground branches. This second limitation by design reduces the number of
positive sites it can detect. TDG09 has lower performance than its reimplementation Pelican.
The two implementations agree in the majority of cases, but disagree on some sites, likely due
to optimization problems on boundary cases, which penalize TDG09. The fact that Pelican’s
performance is similar to the performance of codon-based models suggests that its reliance on
a WAG exchangeability matrix, not used in the simulation model, is not harmful. Further, it
suggests that no information present only at the codon level is of much use to codeml or Diffsel,
even when sequences are simulated with a model of CpG hypermutability (fig. 6). This may
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seem surprising, but probably relates to how we specified the detection problem we addressed.
It is entirely centered around the amino acid profiles, so the codon level does not provide much
useful information. Finally, the non-phylogenetic methods perform quite well despite their sim-
plicity. Multinomial, the simplest of our methods, performs better than Gemma, which has
the ability to include the shape of the phylogeny as a covariate. This may be because Gemma
was designed to handle binary characters, and we had to transform the amino acid data before
feeding it into Gemma (see methods).

Beyond detection efficacy, the dN/dS and profile methods that we discuss in this manuscript
vary in their execution speed. Methods that rely on models of sequence evolution typically
have large computational footprints due to the use of the pruning or sum-product algorithm
[Felsenstein, 1981], and the need for frequent matrix exponentiations. The computational foot-
prints of these operations become larger as the state space grows: methods that work at the
codon level (61 states) are more demanding than methods that work at the amino acid level (20
states) (fig. 2). Therefore, the profile methods that work at the amino acid level benefit from a
computational advantage compared to codon-level profile methods or dN/dS methods. Diffsel
is the slowest method despite a thoroughly optimized code base, for several reasons. Firstly,
it works at the codon level. Secondly, it attempts to estimate more parameters than the other
methods, and notably branch lengths. Thirdly, it is the only Bayesian method here, and as such
is the only one providing a credible interval for each parameter, at each position, where the
other methods only provide point estimates. Pelican’s speed is better than TDG09’s, due to the
reliance on high performance computing libraries (see methods). It also uses diagonalization
for matrix exponentiations, or the contraction of sparse substitution matrices to matrices of
lower sizes as in the original method [Tamuri et al., 2009]. It has thus already been extensively
optimized, but further improvements might be obtained by using substitution mapping and
summary statistics as in Diffsel [Parto and Lartillot, 2018].

4.3 Features of a data set that affect performances

Results obtained in this benchmark highlight that profile and dN/dS methods perform differ-
ently in detecting changes in directional selection, depending on the features of a dataset. We
identified a set of tree features that appear to have an effect on the performances: the number of
transitions from background to foreground condition, the total time in the foreground condition,
the number of foreground leaves, and the average length of foreground sub-trees. The variations
in the detection performances observed on empirical phylogenies (fig. 4) likely are the result of
interactions between these features, and possibly others that have yet to be identified.

Both Pelican and codeml benefit from an increased number of leaves in the foreground
condition (fig. 3a), but not from an increased number of transitions (fig. 3b). However, non-
phylogenetic methods (Multinomial, Gemma) benefit from increasing any of these features,
including the number of transitions.

codeml tends to perform better than profile methods on phylogenies with shorter foreground
sub-trees on average. This conforms to our understanding of the two types of methods, and the
kind of signal they rely on, as presented in section 1. In the case of a change in the direction
of selection, the resulting burst of the dN/dS ratio occurs over a short time period, and quickly
decreases back to a purifying selection regime (dN/dS < 1, fig. 1b). This implies that on longer
branches more time is spent in a purifying selection regime, reducing the signal for high dN/dS
as the rate of non-synonymous substitutions decreases.

In contrast, profile methods rely on amino-acid frequencies to detect positive selection. In
this case, the signal is strongest when the amino-acid frequencies have reached an equilibrium
and differ the most from the ancestral frequency distribution. As reaching the foreground equi-
librium distribution through substitutions takes time, detection performances tend to increase
on longer branches (fig. 3c).

Profile methods that do not take into account the phylogenetic information have a reduced
performance on short branches. In that case observations at the leaves of the phylogenetic tree
are more strongly correlated and this may mislead methods that assume independent observa-
tions (like Multinomial) or rely on a less accurate model (like Gemma). On longer branches,
observations at the leaves of the tree tend to become more independent, and non phylogenetic
methods exhibit performances similar to their more complex counterparts.
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4.4 GC-biased gene conversion is an important confounding fac-
tor for both dN/dS and profile methods

In an effort to make our simulations more realistic, we introduced two non-adaptive confound-
ing factors in our model: CpG hypermutability, which affects the mutation component, and
GC-biased conversion (gBGC), which affects the selection component. We have found that in-
troducing gBGC on foreground branches induces a significant drop in performances for all the
evaluated methods, with higher values of gBGC resulting in larger decreases (fig. 6). gBGC
mimics selection, independently of the underlying fitness profiles, and scrambles the signal used
to detect changes in the selection regime. This corroborates previous studies on the role of
gBGC in disrupting the detection of selection in genome sequences [Ratnakumar et al., 2010,
Rousselle et al., 2019, Guéguen and Duret, 2018]. Mechanistic codon-level models such as Diff-
sel could be extended to account for this effect, and untangle it from directional selection.

On the other hand, strong CpG hypermutability was not found to induce changes in the
performance in most cases. It is possible that codons that contain CG dinucleotides are not
frequent enough in our simulations based on the mutsel framework to reduce the AUC metric.

4.5 Persistent positive selection is an important confounding fac-
tor for dN/dS methods, less so for profile methods

Protein sites may be subject to a variety of selection regimes (fig. 1a). It may be difficult to
distinguish sites undergoing changes in the direction of selection from sites evolving under a
different selection regime, in particular persistent positive selection. In our simulations under
the model of [Tamuri and dos Reis, 2021], we found that codeml had difficulty distinguishing
the two processes, in agreement with [Parto and Lartillot, 2018]. PPS results in elevated (> 1)
dN/dS values throughout the phylogeny, which is not well modelled by codeml’s branch-site
model A, which assumes that positive selection only occurs on foreground branches. codeml

has to choose between two alternatives, none of which fits the data very well: either consider
that the PPS sites never have dN/dS > 1, or consider that the PPS sites have dN/dS > 1 only
on foreground branches. The second alternative is closer to the truth, and therefore is chosen
in a large number of cases, resulting in many false positives, and a low AUC. On the other
hand, profile methods seem to suffer less from PPS, the effect of which can be compensated by
increasing the effective population size Ne. Effective population size Ne acts a scaling factor for
the intensity of selection: as a result, observed amino acid frequencies are more representative
of the actual fitness profile with higher values of Ne, and constitute a stronger signal for profile
methods.

4.6 Interpreting screens for changes in directional selection

The methods we discussed in this paper can be used to detect sites in alignments whose selection
regime has changed coincidentally to a punctual transition event. Such transitions are typically
changes in the environment, for example when a virus switches between hosts, and might also
induce cases of convergent evolution (e.g the multiple transitions of mammals to the marine
environment [Chikina et al., 2016]). In this context, these models can be used to give insights
on the relation between the genotype and a given binary phenotype (e.g ancestral vs convergent,
marine vs terrestrial, ...). The fact that all methods except Multinomial are conservative, i.e.,
have low rates of false positives, indicates that the positives they output are likely to be worthy
of further study.

The dN/dS and profile methods that we discuss in this manuscript all make similar assump-
tions. Firstly, they can only handle a single phenotype or environmental condition at a time.
This implicitly assumes that other phenotypes or conditions are unimportant for the evolution
of the site under consideration. Such a strong assumption is likely to be incorrect in many
cases: for instance a site may be important for several phenotypes, or its evolution may be more
strongly associated to another phenotype or condition that has not been tested. Secondly, they
assume that the evolution of the phenotype is known without uncertainty. dN/dS approaches
that can handle uncertainty in the evolution of the phenotype when reconstructing the evo-
lution of gene sequences have recently been proposed, but remain to be extended to the site
level [Halabi et al., 2021]. Thirdly, they rely on the comparison of two scenarios, one of which
assumes homogeneity of the process across the phylogeny. In the dN/dS method we consider,
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this means that the same dN/dS parameter applies to the site throughout the phylogeny. In
the profile methods we consider, this means that the same profile applies to the site throughout
the phylogeny. This is likely to be incorrect: the site may be evolving inhomogeneously because
of non-adaptive processes (e.g., CpG hypermutability or gBGC), or because it is correlated to
unaccounted-for phenotypes or conditions. The use of homogeneous null scenarios can result in
model confounding whereby an incorrect model is chosen in the absence of the true generating
model [Jones et al., 2019]. This is what occurred in the gBGC simulations where the gBGC
model generated data that was better fitted under our Ha model than under our homogeneous
H0 model. However, our simulations of persistent positive selection show that profile methods
are robust to this particular confounding process.

Our results show that a site found as positive with a profile method could result from a
change in the direction (fig. 4) or intensity (fig. 5) of selection, as well as from a change in
gBGC or PPS (fig. 6). At this stage, distinguishing between these processes requires looking at
the profiles estimated by the method at the site. These profiles have been shown to be inferred
accurately by several mutsel models [Spielman and Wilke, 2016]. Since codon-based methods
do not perform better than amino acid-based methods in our hands, we suspect that the latter
should also infer accurate profiles, although this will have to be verified in a future study. Given
accurate profiles, one could distinguish between the different processes. Relaxation (respectively
intensification) of selection should result in a flatter (resp. more heterogeneous) profile (fig. 1),
which could be detected by computing its entropy and comparing it to the entropy of the other
profiles at the site. gBGC should result in a shift towards GC-rich amino acids. PPS should
result in a high amino acid diversity (large number of amino acids with non-zero frequencies).

4.7 Looking forward

The profile methods presented here have all been evaluated in the same setting, where the
evolution of a site depends on two conditions that have been assigned to branches of a phylogeny.
Not all phenotypes or conditions of interest can be known without uncertainty along a phylogeny,
or can be accurately described by such a binary classification. Pelican can handle more than
two conditions, but does not handle continuous annotations along a phylogeny, or uncertainty in
the extant or ancestral states. Such extensions would be very useful. Similarly, the results show
that accounting for gBGC in profile methods could be important. This could be done in codon
models by following the approach that [Guéguen and Duret, 2018] used in dN/dS models.

[Tamuri et al., 2014] and [Spielman and Wilke, 2016] showed that a penalized version of mut-
sel models performed better than the unpenalized version. We suspect that Pelican might also
perform better with similar penalties. However, the use of penalized likelihoods would prevent
us from relying on likelihood ratio tests to compute pvalues and detect positive sites. Instead,
[Tamuri and dos Reis, 2021] relied on simulations to compute p-values, which is more ressource
intensive and would compromise Pelican’s scalability. More work is needed to investigate the
benefits of using penalization in Pelican, and, if any, come up with a fast method to compute
p-values or scores. Such a method might also improve on the LRT that we have used here, as
we saw that tinkering with its degrees of freedom improved the performance of the method in
some cases (sup. fig. S13).

Overall, the results show that profile methods constitute a solid alternative to dN/dS methods
to screen for substitutions associated to changes in a phenotype or condition of interest. This
opens new possibilities to better understand the link between a substitution, the structure of the
protein where it occurs, and the phenotype or condition to which it is correlated. The amino acid
profiles inferred by a profile method at a site can be used to investigate the effect that having
a high fitness or a low fitness amino acid has on a protein structure, in a particular condition.
Profile methods could thus pair very well with the recent improvements in protein structure
prediction [Jumper et al., 2021] to yield new insights into the molecular basis of adaptation.

5 Conclusion

In this paper we evaluated on simulations a series of methods aiming to detect changes in
selective pressures in coding sequences along a phylogeny. We found that some profile methods
compare favourably to a commonly used dN/dS method, both in terms of power and in terms
of speed, including in the presence of confounding factors. In particular, profile methods can
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readily distinguish changes in directional selection from persistent positive selection, something
that the dN/dS method we tested cannot do. Among profile methods, we found that Pelican,
a method operating at the amino acid level, can be used to detect selective pressure changes
efficiently. This makes genome-wide searches for sites correlating with a phenotype or condition
of interest doable on a single computer within a few days.

Further extensions of Pelican are envisioned, for example to handle continuous phenotypes.
Integrating the effect of gBGC in the model would also be a major improvement, as we have
found that it has a strong confounding effect on the detection of selection.

6 Methods

6.1 Detection of ω variations using codeml

We used the codeml tool from the PAML package to detect variations of dN/dS as a proxy
for variations of selective pressure, as was done in [Thiltgen et al., 2017]. Branch lengths were
re-estimated by codeml. codeml was configured to use the branch-site model A [Zhang, 2005,
Yang, 2005]. This model assumes there are three categories of sites in the alignment, whose
proportions are estimated. Categories 0 and 1 have a homogeneous ω value throughout the phy-
logeny. Category 2 has one ω value estimated per branch condition: on background branches,
the ω is between 0 and 1 (subcategory 2a), characteristic of purifying selection, or at 1 (sub-
category 2b), characteristic of neutral evolution. On foreground branches, ω ≥ 1, characteristic
of neutral or positive selection. A site is declared ”positive” if it belongs to this category 2.
The probability for each site to be positive as inferred by the method was computed from the
Bayes empirical Bayes probabilities, resulting from running codeml with parameter fix omega

= 0 and summing up the probabilities to belong to categories 2a and 2b in the model.

6.2 Multinomial method

The multinomial method models each site of an alignment as a collection of independent cat-
egorical variables, thus completely ignoring the phylogeny. It compares two models using a
likelihood ratio test (LRT), the first one assumes a single probability vector of length 20 (one
frequency per each amino acid), the second a pair of vectors, one for each condition. Computing
a p-value is however difficult in our setting, as at a given site, most of the amino acids are not
observed and as a consequence their frequency estimated by maximum likelihood is zero, and
thus lies at the boundary of the parameter space. In that case the usual convergence of the
likelihood log-ratio to a χ2 distribution known as Wilks theorem does not hold. While there
exists literature on the subject (see [Mitchell et al., 2019] for a recent result), existing results are
difficult to apply. We reused a heuristic we found in [Tamuri et al., 2009], consisting in approx-
imating the likelihood log-ratio distribution under the null by a χ2 distribution with number of
degrees of freedom equal to the number of amino acids observed at the leaves of the tree minus
one.

6.3 Pelican : improvements on TDG09

Pelican is a reimplementation of the TDG09 method, originally published by [Tamuri et al., 2009].
TDG09 relies on a site-independent model of amino acid sequence evolution and the WAG ex-
changeability matrix. The model involves two kinds of parameters : stationary distributions of
amino acids and branch scale.

Inference of selective pressure shifts is based on the postulate that stationary distributions
of amino acids reflect the fitness profile in a condition (e.g. foreground or background). In a
similar way to the multinomial method, the likelihoods of two models are compared using the
LRT procedure, where one model assumes a single stationary distribution of amino acids shared
between both conditions, and the other model assumes a specific stationary distribution per
condition.

Parameters of the model, such as stationary distributions and branch scale, are optimized
to maximum likelihood using the Nelder-Mead algorithm [Nelder and Mead, 1965]. We imple-
mented an alternative approach using automatic differentiation, made available through the
PyTorch library [Paszke et al., 2019], that converges to the same optima as the Nelder-Mead
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implementation. This alternative optimisation algorithm is currently not used, but might be
useful in future extensions of the method.

Pelican is implemented in the OCaml language [Leroy et al., 2021]. The underlying mutation-
selection model implementation takes advantage of LAPACK [Anderson et al., 1999] bindings
for fast linear algebra computation, and optimisations for transition matrices exponentiation
through diagonalisation [Yang, 2006]. Pelican is available at https://gitlab.in2p3.fr/phoogle/
pelican.

6.4 Simulations

In all our experiments, simulations were used to generate amino-acid or codon alignments with
a constant number of sites N = 10 000. The simulator was configured to generate 90% of H0

sites (no changes in selective pressure) and 10% of HA sites (different selective pressure between
background and foreground condition). Simulations were done using a general time-reversible
(GTR) mutation-selection model at the codon level. The model allows for two different regimes
: one modeling selection in the background condition, and the other in the foreground condition.
Selective pressure changes on HA sites are simulated using either the foreground or background
regime, depending on the condition of each branch in the phylogenetic tree. H0 sites are gener-
ated using only the background regime, indicating no change in the selective pressure through
the tree for these sites. Each regime is represented as a matrix of substitution rates between
codons, which can be run along the phylogeny using Gillespie’s algorithm [Gillespie, 1976].

The substitution rates are the result of a mutation probability and a relative fixation prob-
ability, which depends on a selection coefficient associated with the transition to the mutated
state. Mutation probabilities for the GTR model of nucleotide substitutions are based on ex-
changeabilities drawn from a Gamma(1, 1) distribution, and equilibrium frequencies from a
Dirichlet(10, 10, 10, 10) distribution, and are shared across sites. The selection coefficient S
(eq. 1) is defined as the difference in fitness between the ancestral state X and the mutated
state Y in a condition c.

The relative fixation probability u(S) for a mutation is computed from the selection coeffi-
cient S as per [Kimura, 1983]:

Sc
X→Y = fitness(X, c)− fitness(Y, c) (1)

u(S) =
Sc
X→Y

1− e−Sc
X→Y

(2)

Fitness values are determined from amino acid frequency profiles, which are randomly picked
at each site from a set of 263 preset profiles [Rey et al., 2019] for each condition. These frequency
profiles are transformed into fitness profiles by multiplying them by a factor Ne = 4. As a result,
values Sc

X→Y are between −4 and 4.
Codon substitution rates σ are the product of mutation rates µ and the relative probability

of fixation :
σc
X→Y = µX→Y × u(S) (3)

6.5 gBGC simulation

GC-biased gene conversion (gBGC) acts as a fixed increase in fixation probability for mutations
from either A or C nucleotides to G or C; conversely it is modeled as a probability decrease when
mutating the other way around. We included GC-biased conversion in our simulation model as
a bias term in the selection coefficient S:

Sc
X→Y = BGC(X,Y ) + fitness(X, c)− fitness(Y, c) (4)

Based on [Glémin et al., 2015], we chose an intensity of BGC = 10, that is applied on fore-
ground branches, which is a strong effect for this process. Transition rates were not affected
on background branches. This way, in HA sites, the change in selective pressure between back-
ground and foreground branches that has to be detected is driven both by the shifted fitness
profile, and the effect of gBGC. In H0 sites, gBGC affects foreground branches.
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6.6 CpG simulation

CpG hypermutability is introduced in the simulation model as a scaling factor ρ for the mutation
probability:

σc
WXZ→WY Z = µX→Y × ρ(W,X, Y, Z)× u(S) (5)

where W and Z are the states at the surrounding sites. This context is necessary because
CpG dinucleotides can occur across two codons. As a consequence, the evolution of a whole
sequence is not site-independent anymore, which led us to develop a dedicated Gillespie sim-
ulator. CpG hypermutability only occurs on methylated CpG dinucleotides, and induces an
increased probability of mutation from C to T in this context (or G to A on the reverse strand).
We assume that any CpG dinucleotide in our simulation is methylated. If the conditions for
hypermutability are not verified when comparing changes from X to Y , or the current branch
is background, ρ(W,X, Y, Z) = 1 and has no effect. Otherwise, on foreground branches, we set
ρ(W,X, Y, Z) = 10 based on [Meunier et al., 2005], both on HA and H0 sites.

6.7 Simulation of persistent positive selection

PPS is introduced in the simulation model as a constant increasing the fitness of all other
amino acids except the current one [Tamuri and dos Reis, 2021]. This is achieved by modifying
equation 1 as:

Sc
X→Y = fitness(X, c)− fitness(Y, c) + PPS (6)

where PPS ≥ 0 is a constant and describes the strength of positive selection. To simulate data,
we relied on two parameter settings. In the first setting, we simulate sequences under a mild
selection strength, setting Ne = 4 and PPS = 2. This setting ensures that differences in amino
acid fitnesses are between −4 and 4, as in the rest of the manuscript. In the second setting, we
simulate under a strong selection regime, with Ne = 10 (i.e., differences in amino acid fitnesses
between −10 and 10), and PPS = 10. This second setting resembles parameter values observed
on the sites showing the strongest positive selection in [Tamuri and dos Reis, 2021], and is also
similar to their own simulation settings. HA sites were simulated with different profiles for
background and foreground branches, and H0 sites were simulated with PPS running both on
background and foreground branches.

7 Code and data availability

Source code to reproduce the results in this paper is publicly available at

https://gitlab.in2p3.fr/phoogle/spcd-benchmark.

The implementation of Pelican is also made available at

https://gitlab.in2p3.fr/phoogle/pelican.

Plots were produced in R [R Core Team, 2021] using the packages ggplot2 [Wickham, 2016] and
ggtree [Yu, 2020].

8 Acknowledgements
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O., Tunyasuvunakool, K., Bates, R., Ž́ıdek, A., Potapenko, A., Bridgland, A., Meyer, C.,
Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler,
J., Back, T., Petersen, S., Reiman, D., Clancy, E., Zielinski, M., Steinegger, M., Pacholska,
M., Berghammer, T., Bodenstein, S., Silver, D., Vinyals, O., Senior, A. W., Kavukcuoglu,
K., Kohli, P., and Hassabis, D. (2021). Highly accurate protein structure prediction with
AlphaFold. Nature, 596(7873):583–589.

[Kapralov et al., 2012] Kapralov, M. V., Smith, J. A. C., and Filatov, D. A. (2012). Ru-
bisco Evolution in C4 Eudicots: An Analysis of Amaranthaceae Sensu Lato. PLoS ONE,
7(12):e52974.

[Kimura, 1983] Kimura, M. (1983). The Neutral Theory of Molecular Evolution. Cambridge
University Press, Cambridge.

[Korber et al., 2020] Korber, B., Fischer, W. M., Gnanakaran, S., Yoon, H., Theiler, J., Abfal-
terer, W., Hengartner, N., Giorgi, E. E., Bhattacharya, T., Foley, B., Hastie, K. M., Parker,
M. D., Partridge, D. G., Evans, C. M., Freeman, T. M., de Silva, T. I., Angyal, A., Brown,
R. L., Carrilero, L., Green, L. R., Groves, D. C., Johnson, K. J., Keeley, A. J., Lindsey, B. B.,
Parsons, P. J., Raza, M., Rowland-Jones, S., Smith, N., Tucker, R. M., Wang, D., Wyles,
M. D., McDanal, C., Perez, L. G., Tang, H., Moon-Walker, A., Whelan, S. P., LaBranche,
C. C., Saphire, E. O., and Montefiori, D. C. (2020). Tracking Changes in SARS-CoV-2 Spike:
Evidence that D614G Increases Infectivity of the COVID-19 Virus. Cell, 182(4):812–827.e19.

[Kosakovsky Pond et al., 2011] Kosakovsky Pond, S. L., Murrell, B., Fourment, M., Frost, S.
D. W., Delport, W., and Scheffler, K. (2011). A random effects branch-site model for detecting
episodic diversifying selection. Molecular Biology and Evolution, 28(11):3033–3043.

[Kosiol and Anisimova, 2019] Kosiol, C. and Anisimova, M. (2019). Selection Acting on
Genomes. In Anisimova, M., editor, Evolutionary Genomics: Statistical and Computational
Methods, pages 373–397. Springer New York, New York, NY.

[Kosiol et al., 2008] Kosiol, C., Vinar, T., da Fonseca, R. R., Hubisz, M. J., Bustamante, C. D.,
Nielsen, R., and Siepel, A. (2008). Patterns of positive selection in six Mammalian genomes.
PLoS genetics, 4(8):e1000144.

[Leroy et al., 2021] Leroy, X., Doligez, D., Frisch, A., Garrigue, J., Rémy, D., and Vouillon, J.
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[Rousselle et al., 2019] Rousselle, M., Laverré, A., Figuet, E., Nabholz, B., and Galtier, N.
(2019). Influence of Recombination and GC-biased Gene Conversion on the Adaptive and

21

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 22, 2022. ; https://doi.org/10.1101/2022.06.22.497174doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.22.497174
http://creativecommons.org/licenses/by-nc-nd/4.0/


Nonadaptive Substitution Rate in Mammals versus Birds. Molecular Biology and Evolution,
36(3):458–471.

[Saunders and Green, 2007] Saunders, C. T. and Green, P. (2007). Insights from Modeling
Protein Evolution with Context-Dependent Mutation and Asymmetric Amino Acid Selection.
Molecular Biology and Evolution, 24(12):2632–2647.

[Scornavacca et al., 2019] Scornavacca, C., Belkhir, K., Lopez, J., Dernat, R., Delsuc, F.,
Douzery, E. J. P., and Ranwez, V. (2019). OrthoMaM v10: Scaling-Up Orthologous Cod-
ing Sequence and Exon Alignments with More than One Hundred Mammalian Genomes.
Molecular Biology and Evolution, 36(4):861–862.

[Spielman and Wilke, 2015] Spielman, S. J. and Wilke, C. O. (2015). The Relationship between
dN/dS and Scaled Selection Coefficients. Molecular Biology and Evolution, 32(4):1097–1108.
Publisher: Oxford Academic.

[Spielman and Wilke, 2016] Spielman, S. J. and Wilke, C. O. (2016). Extensively Parameterized
Mutation–Selection Models Reliably Capture Site-Specific Selective Constraint. Molecular
Biology and Evolution, 33(11):2990–3002.

[Studer et al., 2008] Studer, R. A., Penel, S., Duret, L., and Robinson-Rechavi, M. (2008).
Pervasive positive selection on duplicated and nonduplicated vertebrate protein coding genes.
Genome Research, 18(9):1393–1402.

[Suzuki et al., 2009] Suzuki, Y., Gojobori, T., and Kumar, S. (2009). Methods for Incorporating
the Hypermutability of CpG Dinucleotides in Detecting Natural Selection Operating at the
Amino Acid Sequence Level. Molecular Biology and Evolution, 26(10):2275–2284.

[Tamuri and dos Reis, 2021] Tamuri, A. U. and dos Reis, M. (2021). A mutation-selection model
of protein evolution under persistent positive selection. preprint, Evolutionary Biology.

[Tamuri et al., 2012] Tamuri, A. U., dos Reis, M., and Goldstein, R. A. (2012). Estimating the
distribution of selection coefficients from phylogenetic data using sitewise mutation-selection
models. Genetics, 190(3):1101–1115.

[Tamuri et al., 2009] Tamuri, A. U., dos Reis, M., Hay, A. J., and Goldstein, R. A. (2009).
Identifying changes in selective constraints: Host shifts in influenza. PLoS Computational
Biology, 5(11):e1000564.

[Tamuri et al., 2014] Tamuri, A. U., Goldman, N., and Reis, M. d. (2014). A Penalized Like-
lihood Method for Estimating the Distribution of Selection Coefficients from Phylogenetic
Data. Genetics, page genetics.114.162263.

[Thiltgen et al., 2017] Thiltgen, G., dos Reis, M., and Goldstein, R. A. (2017). Finding Direc-
tion in the Search for Selection. Journal of Molecular Evolution, 84(1):39–50.

[Wickham, 2016] Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-
Verlag New York.

[Yang, 2005] Yang, Z. (2005). Bayes Empirical Bayes Inference of Amino Acid Sites Under
Positive Selection. Molecular Biology and Evolution, 22(4):1107–1118.

[Yang, 2006] Yang, Z. (2006). Computational Molecular Evolution, pages 78–79. Oxford Uni-
versity Press. DOI: 10.1093/acprof:oso/9780198567028.001.0001.

[Yang, 2007] Yang, Z. (2007). PAML 4: Phylogenetic Analysis by Maximum Likelihood. Molec-
ular Biology and Evolution, 24(8):1586–1591.

[Yang and Nielsen, 2008] Yang, Z. and Nielsen, R. (2008). Mutation-Selection Models of Codon
Substitution and Their Use to Estimate Selective Strengths on Codon Usage. Molecular
Biology and Evolution, 25(3):568–579.

[Yu, 2020] Yu, G. (2020). Using ggtree to visualize data on tree-like structures. Current Proto-
cols in Bioinformatics, 69(1):e96.

[Zhang et al., 2014] Zhang, G., Li, C., Li, Q., Li, B., Larkin, D. M., Lee, C., Storz, J. F.,
Antunes, A., Greenwold, M. J., Meredith, R. W., Ödeen, A., Cui, J., Zhou, Q., Xu, L., Pan,
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