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Figure S1: DISCERN workflow and method details. A: A standard scRNA-seq workflow

starts by aligning the sequencing reads to a reference transcriptome to obtain a cell-by-gene

count table, which is subsequently preprocessed, filtered and normalized. The normalized

count matrices are then used for downstream analyses, such as clustering, differential expres-

sion between clusters, and marker gene identification. When combining multiple datasets an

alignment or batch correction step is commonly performed to reduce differences between the

datasets. DISCERN is used after the preprocessing and normalization steps to integrate the

high quality and low quality datasets, reconstructing the gene counts of the low quality to

that of the high quality dataset (or vice versa). DISCERN is able to correct for batch effects,

provides a lower dimensional representation, and a corrected expression matrix. This cor-

rected expression matrix can directly be used for downstream analysis or used with clustering

algorithms. B: Overview of the DISCERN neural network architecture consisting of a random

encoder (yellow) and a deterministic decoder (green) which can be conditioned on the batch

information. DISCERN’s loss function contains a (1) count fitting reconstruction loss, (2) a

prior fitting MMD-penalty, (3) a sigma regulation term as to prevent the random encoder to

collapse to a deterministic one, and (4) a binary cross-entropy term for learning the probabil-

ity of a dropout event. The final output is generated by sampling from the estimated counts

with the estimated dropout probabilities using formula (5).
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Figure S2: t-SNE visualization of the pancreas dataset before reconstruction (Uncorrected)

and after reconstruction with DISCERN. The first row is colored by the origin of the dataset

(batch) and the second is colored by the cell type annotations. Both batch and cell type

annotations were taken from the published dataset. For DISCERN, two projections to the hq

smartseq2 batch (second column) and to the lq indrop batch (third column) are shown.
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Figure S3: Heatmap showing the Pearson correlation of the average gene expression per

celltype (rows) for the pancreas dataset. The starting datasets and target dataset for correction

are listed on the x-axis. The second entry, for instance, signifies that an indrop dataset was

projected to a smartseq2 dataset using DISCERN’s expression reconstruction. The correlation

is computed between the batch shown in the top row (light gray = indrop, dark gray =

smartseq2) and the expression-reconstructed data as listed on the x-axis.
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Figure S4: Average gene expression of the pancreas dataset. The figures are organized in three

columns extended over A and B indicating before DISCERN reconstruction (first column) and

after reconstruction using DISCERN (second and third column) stratified by cell type (color).

The average expression is compared to the average gene expression of only the indrop (upper

row) or the smartseq2 data (lower row). The dataset that is used for projection with DISCERN

is shown at the x-axis of each plot after “-”, e. g. “smartseq2 - indrop” means smartseq2

projected to indrop. Each colored dot represents one gene. The mean Pearson correlation with

one standard deviation over all cell types is displayed in the figure title. A: Reconstruction

of the indrop batch. B: Reconstruction of the smartseq2 batch.
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Figure S5: Number of expressed genes in the indrop (left panel) and the smartseq2 data (right

panel) of the pancreas dataset before (Uncorrected) and after projection using DISCERN

stratified by cell type (color). In the right panel, p-indrop displays the gene expression per cell

after smartseq2 data was projected to indrop data using DISCERN. Bar heights indicate the

average number of expressed genes per cell type and batch. Error bars indicate one standard

deviation of the mean over cells in the corresponding batch and cell type.
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Figure S6: Average gene expression of Insulin (INS), a ribosomal gene (RPS7), REG1A,

and Somatostatin (SST) by cell type (rows) and by batch (columns) in the pancreas dataset.

The first column shows the uncorrected datasets, while the second and third column show

projections using DISCERN to the smartseq2 and the indrop dataset, respectively. A: INS

was selected because it is a cell type-determining gene for beta cells and RPS7 is known to be

expressed in nearly all cells. While nearly all batches display exclusive INS expression in beta

cells in uncorrected data, the indrop data shows a more dispersed expression of INS in several

cell types. Projection to the smartseq2 batch results in a beta cell-specific expression in the

corrected indrop data (second column). Projection to the indrop batch results in dispersed INS

expression for all batches (third column). B: REG1A is a acinar cell specific gene, shown to be

involved in acinar cell carcinoma [1]. For most pancreatic datasets, it is exclusively expressed

in acinar cells in the uncorrected data. Only celseq shows a more dispersed expression across

several cell types. After reconstruction to indtop or smartseq2 data the expression of REG1A is

restricted to acinar cells and macrophages in the celseq batch. C: SST is known to be produced

by delta cells in the pancreas [2], which can be observed for instance in the smartseq2 batch.

After reconstruction to the smartseq2 batch delta cell-specific expression of SST is observed

for all datasets. D: RPS7 shows high expression in the indrop, celseq and the celseq2 batch,

whereas smartseq2 and fluidigmc1 show low to no expression, as described previously [3]. This

expression of RPS7 can be removed by projecting to smartseq2 or reconstructed by projection

to indrop data.

Figure S7: t-SNE visualization of the difftec dataset before reconstruction (Uncorrected) and

after reconstruction with DISCERN. The first row shows the dataset of origin (batch) and the

second row shows the cell type annotations which are available together with the dataset. For

DISCERN two projections, one to the hq chromium-v3 batch and one to the lq chromium-v2

batch is shown.
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Figure S8: Heatmap showing the Pearson correlation of the average gene expression per

celltype (rows) for the difftec dataset. The starting datasets and target dataset for correction

are listed on the x-axis. The second entry, for instance, signifies that a chromium-v2 dataset

was projected to a chromium-v3 batch using DISCERN’s expression reconstruction. The

correlation is computed between the batch shown in the top row (light gray = chromium-v2,

dark gray = chromium-v3) and the expression-reconstructed data as listed on the x-axis.
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Figure S9: Average gene expression of the difftec dataset. The figures are organized in three

columns extended over A and B indicating before DISCERN reconstruction (first column) and

after reconstruction using DISCERN (second and third column) stratified by cell type (color).

The average expression is compared to the average gene expression of only the chromium-v2

(upper row) or the chromium-v3 data (lower row). The dataset that is used for projection

with DISCERN is shown at the x-axis of each plot after “-”, e. g. “chromium-v2 - chromium-

v3” signifies chromium-v2 data was projected to the chromium-v3 batch. Each colored dot

represents one gene. Colors indicate the cell type identity. The mean Pearson correlation with

one standard deviation over all cell types is displayed in the figure title. A: Reconstruction

of the chromium-v2 batch. B: Reconstruction of the chromium-v3 batch.
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Figure S10: Comparison of the average gene expression reconstruction performance for sev-

eral methods for the difftec dataset. Three imputation (DCA, Magic, scImpute), two batch

correction methods (Seurat, scGEN), and DISCERN are compared. The dataset is based on

the difftec dataset where the chromium-v3 batch was split into chromium-v3-lq and chromium-

v3-hq and selected genes were removed (in silico gene drop out) from chromium-v3-lq. The

corrected average gene expression (y-axis) is based on the reconstructed or imputed chromium-

v3-lq data. For DISCERN and scGEN the projection onto the chromium-v3-hq reference is

depicted. The expected average gene expression (x-axis) is based on the unmodified chromium-

v3-lq batch. Mean Pearson correlation with one standard deviation over all cell types is dis-

played in parentheses of the figure title. Colors indicate the cell type identity.
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Figure S11: Pearson correlation of DEG t-statistics for a one-vs-rest cell type comparison and

in silico gene removal. The dataset is based on the difftec dataset where the chromium-v3

batch was split into chromium-v3-lq and chromium-v3-hq and selected genes were removed

from chromium-v3-lq data. The corrected average gene expression is based on reconstructed

or imputed chromium-v3-lq only, while the expected average gene expression is based on the

unmodified chromium-v3-lq batch. For DISCERN and scGEN the projection to chromium-

v3-hq is shown. Boxplots represent median, quantiles, minimum, maximum, and potential

outliers. Colors indicate the cell type identity.
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Figure S12: Pearson correlation of KEGG gene set enrichment scores for a one-vs-rest cell

type comparison and in silico gene removal. The dataset is based on the difftec dataset where

the chromium-v3 batch was split into chromium-v3-lq and chromium-v3-hq and selected genes

were removed from chromium-v3-lq data. Instead of directly measuring DEG correlation as

in Figure S11 a gene set enrichment analysis was performed for DEGs and correlated to

the ground-truth ‘expected’ information. The corrected average gene expression is based on

reconstructed or imputed chromium-v3-lq only, while the expected average gene expression is

based on the unmodified chromium-v3-lq batch. For DISCERN and scGEN the projection to

chromium-v3-hq is shown. Boxplots represent median, quantiles, minimum, maximum, and

potential outliers. Colors indicate the cell type identity.
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Figure S13: Pearson correlation of the log2 fold-change (FC) per cell type for the

reconstructed-hq and smartseq-hq pancreas data. For each cell type, DEG and FC were cal-

culated against all other cell types. For DISCERN and scGEN the projection of indrop-lq to

smartseq2-hq data is shown, resulting in reconstructed-hq data. Boxplots represent median,

quantiles, minimum, maximum, and potential outliers. Colors indicate the cell type identity.

Figure S14: Pearson correlation of the log2 fold-change (FC) per cell type for the

reconstructed-hq and chromium-v3-hq difftec data. For each cell type, DEG and fold-change

were calculated against all other cell types. For DISCERN and scGEN the projection of

chromium-v2-lq to chromium-v3-hq data is shown, resulting in reconstructed-hq data. Box-

plots represent median, quantiles, minimum, maximum, and potential outliers. Colors indicate

the cell type identity.
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Figure S15: Pearson correlation of the mean gene expression for the pancreas reconstructed-

hq and smartseq2-hq data for different ratios of lq to hq training data. The plot shows the

dependency of the mean gene expression reconstruction on the ratio of lq to hq training data,

showing increased performance for lower ratios and a marked decrease in performance for

higher ratios, especially for scGen, while DISCERN remains relatively stable for all ratios

tested. For DISCERN and scGEN the projection to smartseq2-hq is shown. Colors indicate

different methods.

Figure S16: Pearson correlation of DEG t-statistics for a one-vs-rest cell type comparison and

in silico gene removal. The dataset is based on the pancreas dataset where the smartseq2 batch

was split into smartseq2-lq and smartseq2-hq and selected genes were removed from smartseq2-

lq. The t-statistic is computed on removed genes after reconstruction of the smartseq2-lq batch

to reconstructed-hq data and compared to the t-statistic of the unmodified smartseq2-lq batch.

For DISCERN and scGEN the projection to smartseq2-hq is shown. Uncorrected and MAGIC

corrected data have close to zero gene expression in the smartseq2-lq for the selected genes

and thus cannot be shown. Colors indicate different methods.

15



Figure S17: Spearman correlation of the log2 fold-change (FC) of alpha cells that were recon-

structed and ground-truth alpha cells that were excluded from training using pancreas data.

Different fractions of cell type overlap in the indrop-lq and smartseq2-hq training data were

used to estimate the reconstruction performance when datasets become dissimilar. Alpha cells

were only present in the indrop-lq data and smartseq2-hq alpha cells were extracted as ground

truth information. X-axis shows fractions of cell types, which are non-alpha cells and overlap

between lq and hq batches. Confidence intervals indicate the standard deviations from five

independently trained models. The turquoise line for MAGIC is not visible as the correlation

is the same as achieved for uncorrected data. Best performance is observed for DISCERN and

Seurat.
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Figure S18: t-SNE visualization of the pancreas dataset where alpha cells are removed from

the smartseq2-hq batch and all cell types except alpha cells are removed from all other batches.

This means that there is no cell type overlap between the smartseq2 and the other batches. The

first column shows the data before reconstruction (Uncorrected) and the other columns show

the corrected dataset using Seurat (second column), scGEN (third column) and DISCERN

(last column). The cells are colored by batch (upper row) or by cell type (lower row). The

Seurat corrected dataset shows over integration, e.g. alpha and delta cells are mixed, whereas

scGEN and DISCERN bring similar cells closer in t-SNE, but do not fully integrate alpha

cells. For DISCERN the dataset was projected to the smartseq2 batch.
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Figure S19: t-SNE visualization of scRNA-seq and snRNA-seq data before (Uncorrected, first

column), after reconstruction with DISCERN (second column) and Seurat (third column).

In this dataset the same sample from a metastatic liver biopsy was sequenced using scRNA-

seq and snRNA-seq technology, yielding the sc-hq and sn-lq datasets. The sn-lq data was

reconstructed using the sc-hq reference. The first row shows the color annotation by batch

and the second row is colored by the different cell types found in the dataset. Annotation of

the cell types was provided with the original data.
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Figure S20: Average gene expression of scRNA-seq and snRNA-seq data before (Uncorrected)

and after reconstruction with DISCERN and Seurat. In this dataset the same sample from

a metastatic liver biopsy was sequenced using scRNA-seq and snRNA-seq technology. The

sn-lq data was reconstructed using the sc-hq reference to yield reconstructed-hq data. Each

colored dot represents one gene. Colors indicate the cell type identity. The mean Pearson

correlation with one standard deviation over all cell types is displayed in the figure title.
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Figure S21: Average gene expression of T cell receptor signaling genes in T cells (A) and

Macrophages (B). The columns show the data in the snRNA-seq (before reconstruction, sn-lq)

and snRNA-seq dataset after reconstruction with DISCERN (reconstructed-hq), after recon-

struction with Seurat (seurat-hq) and in the scRNA-seq data (sc-hq). The average expression

was min-max scaled with adding a pseudocount of 1 × 10−3. The reconstructed-hq shows high

similarity with the expression in the sc-hq dataset. Only genes with a maximum expression

greater than 0.2 are shown.
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Figure S22: Average gene expression of antigen presentation and processing genes in

Macrophages (A) and T cells (B). The columns show the data in the snRNA-seq (before recon-

struction, sn-lq) and snRNA-seq dataset after reconstruction with DISCERN (reconstructed-

hq), after reconstruction with Seurat (seurat-hq) and in the scRNA-seq data (sc-hq). The aver-

age expression was min-max scaled with adding a pseudocount of 1 × 10−3. reconstructed-hq

shows high similarity with the expression in the sc-hq dataset. Only genes with a maximum

expression greater than 0.2 are shown. CD4 and CD8A genes are part of the antigen presenta-

tion and processing pathway (https://www.genome.jp/pathway/hsa04612) but are naturally

not expressed in Macrophages, thus no expression of these genes is expected in A.
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Figure S23: T cell detection and sub-clustering in Kidney snRNA-seq (kidney-lq) and scRNA-

seq (kidney-hq) data of patients with acute kidney injury. A: tSNE representation of T cells

found in Seurat (left) and DISCERN (right) reconstructed snRNA-seq and scRNA-seq data.

B: tSNE representation of T cells found in Seurat (left) and DISCERN (right) reconstructed

snRNA-seq and scRNA-seq data colored by CD3D expression as marker for T cells. C: tSNE

representation of T cell subtypes found in Seurat (left) and DISCERN (right) reconstructed

kidney-lq and kidney-hq data. A high number of cells in Seurat reconstruction could not be

further classified due to absent or low expression of marker genes.
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Figure S24: Schematic representation of the experiments conducted with blood-based citeseq

dataset. To improve cite-lq data we reconstructed it with bulk-hq data to obtain reconstructed-

hq data, which enabled improved clustering and CD4+ T cell subtype detection. Additionally

trajectory analysis and transcription factor analysis was performed on the CD4+ T cell subset.

Results were verified using protein abundance (CITE-seq) and literature information.
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Figure S25: t-SNE representation of the gene expression and corresponding protein expres-

sion for the citeseq dataset before and after reconstruction. A & B: Gene expression levels

before reconstruction of the cite-lq data (first and second column) and after reconstruction to

reconstructed-hq data using a bulk-hq reference (third column). Protein abundance measured

using CITE-seq information is shown in the fourth column and the corresponding cell type in

the fifth column. The first column shows tSNE representation computed on the uncorrected

cite-lq data, while the others are computed on the reconstructed-hq data. Gene and protein

expression levels are displayed in blue for low to red for high expression.
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Figure S26: t-SNE representation of the gene expression of genes without CITE-seq infor-

mation for the citeseq dataset before and after reconstruction. A & B: Gene expression levels

before reconstruction of the cite-lq data (first and second column) and after reconstruction to

reconstructed-hq data using a bulk-hq reference (third column). The corresponding cell type

is displayed in the fourth column. The first column shows tSNE representation computed

on the uncorrected cite-lq data, while the others are computed on the reconstructed-hq data.

Gene expression levels are displayed in blue for low to red for high expression.
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Figure S27: Violin plots of cell type determining genes of CD4+ T helper cell subtypes in

the citeseq dataset. The expression is normalized by the mean over all cell types and log2-

scaled. Colors indicate whether they are shown for the uncorrected cite-lq data (blue) and

the reconstructed-hq data (orange). The horizontal bars indicate median expression in the

total citeseq dataset. The reconstructed gene expression is in many cases consistent with

literature information. TH17 cells, for instance, are characterized by a high expression of

RORC [4], TH2 cells express the transcriptional regulator GATA3 [5], and TH1 cells the

transcriptional regulator TBX21 (T-bet) (fig. S28) [6]. IL10 is produced by Foxp3 positive

Treg cells (Active TREG) [7]. SELL and CCR7 are expressed in the CD4+ T cell subtypes

CD4 naive, CD4 EM, CD4 CM, but with a significantly lower expression of CCR7 in CD4 EM

cells [8], while CD4 naive cells show the highest expression of SELL/CD62L (fig. S29) [9].
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Figure S28: Bar plot showing the proportions of CD4+ T helper cell subtypes (TH1, TH2,

TH17, and Treg) identified in the reconstructed-hq data, bulk-hq training data, and published

ground-truth cell fractions in the citeseq data. The proportions are calculated with respect

to the total number of PBMCs. To compare the proportions in the reconstructed data with

existing literature, five studies were considered (see also table S3). These studies estimate one

or more of these subtypes using FACS and subsequent cell activation. For these references,

bars represent means while error bars represent standard deviation. Missing bars indicate

that the corresponding cell-type is not quantified in the referenced study.
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Figure S29: Heatmap of log2 fold-change (FC) for the top CD4+ T helper cell subtype marker

genes in the citeseq dataset after reconstruction with DISCERN. The cite-lq data was recon-

structed with bulk-hq data to obtain reconstructed-hq data, which is displayed in the figure.

Genes were filtered for an adjusted p-value ≤ 0.05 and a log2 FC ≥ 2. The top five genes with

the lowest adjusted p-value were selected from the genes passing the threshold and duplicate

gene entries were removed. For display reasons, the negative log2 FC was clipped at −10.

The first column indicates cell type-specific expression according to the DEG analysis. FC

magnitude is depicted with blue - low to red - high changes.
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Figure S30: t-SNE representation of the gene expression of several established T cell marker

genes in citeseq CD4+ T cells before and after correction with DISCERN. A & B: Gene

expression levels before reconstruction of the cite-lq data (third and fourth column, t-SNE

calculated on cite-lq data) and after reconstruction to reconstructed-hq data using a bulk-hq

reference (first and third column, t-SNE calculated on reconstructed-lq data). Gene expression

levels are displayed in blue for low to red for high expression. MYC, NFKBID, BCL2A1,

CYB5D1, CSRNP1, IL2, and PSAT1 are used as activation markers, IL10, TBX21, ANXA1,

IFNG characterize TH1 cells, TIGIT and PASK TFH cells, IKZF2 TREG, CCR7 central

memory T cells and SELL is a marker for naive T cells. In general, the cell type-specific

expression of published marker genes in the reconstructed-hq data show good correspondence

with the identified cell types.
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Figure S31: tSNE representation of CD4+ T cells in the citeseq dataset after annotation of

the cell types found after expression reconstruction with DISCERN. A: Uncorrected citeseq-lq

CD4+ T cells show some clustering of IFN regulated, Active TREG, CD4 CM and CD4 naive

cells. B: Seurat reconstruction results in strong cluster and cell type mixing, a potential sign of

overintegration. C: Multigrate imputed data shows strong mixing and splitting of clusters and

cell types, for instance CD4+ T cells are split into two clusters. D: DISCERN reconstructed

cite-hq data provides a clear separation of functionally distinct cell types.
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Figure S32: t-SNE representation of a SCENIC transcriptional regulation analysis of citeseq

T helper cells before and after correction with DISCERN and Seurat. Gene expression levels

before reconstruction of the cite-lq data (first row) and after reconstruction to reconstructed-

hq data using a bulk-hq reference with DISCERN (second row) and Seurat (third row). The

first column displays cells that express the RORC(+) regulon. The second column displays

cells that express the RORA(+) regulon. Red color in the first two columns depends on

the binarized AUCell score of the SCENIC discovered regulons. The third column displays

the detected cell types in reconstructed-hq data. RORA(+) and RORC(+) regulons are

expected to be specific for TH17 cells. The tSNE representation is calculated on DISCERN

reconstructed data.
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Figure S33: Expression of differentially regulated genes of the CD4 naive to TH1 lineage

(Lineage1) defined by a Slingshot trajectory analysis. The top 150 genes by p-value are shown.

Only a selection of T cell marker genes is shown by name. The cell types are color-coded and

cells are sorted by pseudotime. A: Expression using the cite-lq data before reconstruction. B:

Expression using the reconstructed-hq data that was reconstructed with DISCERN using a

bulk-hq reference. In the reconstructed-hq data, Lineage1 shows a trajectory from TMIGD2,
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EDAR and CBX5 expressing CD4 naive cells [10, 11] to TH1 cells expressing cytotoxicity-

related genes like EOMES, CST7, GZMA, IL7R, CCL5 and PRF1 [12, 13, 14, 15, 16, 17, 18].

The cells develop through CD4 EM cells to a (pre-) effector state (Effector cells) to the final

TH1 subtype (fig. S34B). Effector and CD4 EM cells show higher expression of IER2 [19],

AHNAK [20] and TOX [21], as reported in the literature. In general, reconstructed data show

cell trajectories that are biologically reasonable, while uncorrected data shows little structure.

C: Expression using the Seurat to reconstruct the data (seurat-hq). While the heatmap shows

a small trajectory line, most of the marker genes are not found along the trajectory.
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Figure S34: Expression of differentially regulated genes of the CD4 naive to TH17 lineage

(Lineage2) defined by a Slingshot trajectory analysis. The top 150 genes by p-value are shown.

Only a selection of T cell marker genes is shown by name. The cell types are color-coded and

cells are sorted by pseudotime. A: Expression using the cite-lq data before reconstruction.

B: Expression using the reconstructed-hq data that was reconstructed with DISCERN using

a bulk-hq reference. In the reconstructed-hq data, the CD4 naive cells show the expected
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BTAF1 and CERS6 expression [11, 22], whereas effector cells express activation markers as

MIAT [23], HLA-DRA [24], IER5 [25] and KLRB1 [26]. Finally the trajectory terminates in

TH17 cells, expressing ANXA5 [11], RORC [4], IL4I1 [27] and PTGDS [28], showing that

the found trajectory (Fig. 3C) is in line with known expression patterns. C: Expression using

the Seurat to reconstruct the data (seurat-hq). While the heatmap shows a small trajectory

line, most of the marker genes are not found along the trajectory.

Figure S35: Schematic representation of the experiments conducted with the covid-blood and

covid-blood-severity datasets. To improve covid-blood-lq and covid-blood-severity-lq data we

reconstructed it using bulk-hq data to obtain covid-blood-hq and covid-blood-severity-hq data,

respectively. We then performed cell type detection using the reconstructed data. We investi-

gated T helper cell subtypes in great detail in the covid-blood-hq data and compared them to

the ones found in the covid-blood-severity-hq data. Finally, we used the covid-blood-severity

dataset and its disease severity information for COVID-19 patients to classify mild and severe

cases using a GBM. TH17 cell subtypes could be detected in the covid-blood-hq data and

linked to cells found in the covid–lung dataset using T cell receptor clonal information.
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Figure S36: t-SNE representation of cell types found in the covid-blood-hq data. The covid-

blood-lq data was reconstructed using bulk-hq data to obtain covid-blood-hq data. Colors

indicate the annotated cell types. Especially T cell subtypes could not be annotated before

reconstruction with DISCERN. It is especially interesting that TH17 subtypes can be detected,

which are usually observed in FACS PBMC data only after stimulation.
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Figure S37: t-SNE representation of the gene expression of several established marker genes in

covid-blood-hq data. A & B: The covid-blood-lq dataset after reconstruction with DISCERN

using bulk-hq data to obtain covid-blood-hq data. The t-SNE representation was computed

on the covid-blood-hq data. Gene expression levels are displayed in blue for low to red for

high expression. In general, the cell type-specific expression of published marker genes in the

covid-blood-hq data show good correspondence with the identified cell types.
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Figure S38: t-SNE representation of the gene expression of several established marker genes in

covid-blood-lq data. A & B: The t-SNE representation was computed on the covid-blood-lq

data without reconstruction. Gene expression levels are displayed in blue for low to red for

high expression. In general, the cell type-specific expression of published marker genes in the

covid-blood-lq data shows worse correspondence with the identified cell types as compared to

the covid-blood-hq data in fig. S37.
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Figure S39: t-SNE representation of TH17 marker genes in two TH17 subtypes detected

in COVID-19 patient blood. t-SNEs were calculated for CD4+ T cells on covid-blood-hq

data. The first row shows the expression of marker genes for uncorrected covid-blood-lq data.

The second row displays the expression of the same marker genes for reconstructed covid-

blood-hq data. The covid-blood-lq data was reconstructed using the bulk-hq reference to

obtain covid-blood-hq data. The TH17 cell subclusters were found by louvain clustering after

reconstruction. Colors represent the expression levels of genes as mentioned in the plot titles

(IL17A, IL17F, RORC ; from left to right). Expression levels of TH17 marker gene expression

is barely visible for IL17A/F before reconstruction but can be detected after reconstruction

with DISCERN. RORC, as transcription factor for TH17 cells, confirms the correct annotation

of TH17 cells.
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Figure S40: Fraction of TH17 cells sharing the T cell receptor clonotype in covid-blood-hq

and covid-lung data. Cell type annotations of lung data were used as provided in the original

publication. Cell types with an overlap < 1 % in both TH17 clusters were labeled as other.

TH17 cluster1, detected in covid-blood-hq data, shares T cell receptor clones with CD4 TCM

cells in the covid-lung data. TH17 cluster2, detected in covid-blood-hq data, shares most T

cell receptor clones with TEM17 cells in covid-lung data. This corroborates the definition of

the two TH17 subtypes detected in covid-blood-hq data and raises the question if these cells

stay peripheral or re-enter tissues to promote inflammation.
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Figure S41: Mean expression of RORC and IL17-A of covid-lung cells sharing a clonotype

with TH17 cells of the covid-blood-hq data. TH17 cluster1 and TH17 cluster2 are determined

using the TCR clonotype information of reconstructed covid-blood-hq data and CD4 TCM

or TEM17 covid-lung cells were annotated as in the original publication (see also fig. S40). A

single cell can contribute to more than one bar, e.g. by being annotated as TEM and having a

shared clonotype with TH17 cluster2 cell in covid-blood. Cell types sharing a clonotype with

TH17 cluster1 and TH17 cluster2 cells from covid-blood have on average a higher or similar

expression of the TH17 marker genes (RORC and IL17A) than cells in CD4 TCM or TEM17

cells in lung. This shows that CD4 TCM and TEM17 can most likely be further subdivided

into clusters matching TH17 cluster1 and TH17 cluster2 in covid-blood and thus giving more

evidence that these cell subtypes have a biological role in blood and lung.
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Figure S42: t-SNE representation of CD4+ T cells found in the covid-blood-severity-hq data.

The t-SNE representation and clustering was computed on DISCERN reconstructed expres-

sion, using covid-blood-severity-lq and covid-blood-lq data as input and bulk-hq as reference.

Cell types are labeled by color. It is interesting to observe that the detected cell types largely

overlap for the two studies.
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Figure S43: t-SNE representation of the marker protein abundance in the covid-blood-severity

dataset for TREG, TH17 and TFH cells provided by CITE-seq information. The t-SNE

representation and clustering was computed on DISCERN reconstructed expression, using

covid-blood-severity-lq and covid-blood-lq data as input and bulk-hq as reference. The CITE-

seq protein abundance of the covid-blood-severity data for seven marker proteins is displayed

in color (blue - low to yellow - high abundance). The region we identified as regulatory T cells

is positive for CD25 and CD45RO+ and activated TREGs are high in ICOS as described for

highly suppressive TREG [29]. TFH cells are PDCD1 and ICOS surface protein positive cells

[30] and DPP-IV is markedly increased in activated TH17 cells expressing IL17A, a TH17-

specific signal as previously described [31]. ITGAE abundance was described for resident

T Helper cells in the skin reentering circulation [32]. In general, the CITE-seq information

confirms the cell type identification of DISCERN reconstructed covid-blood-severity-hq data.
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Figure S44: t-SNE representation of three T helper cell clusters found in reconstructed covid-

blood-hq and covid-blood-severity-hq data. The t-SNE representation and clustering was com-

puted on DISCERN reconstructed expression, using covid-blood-severity-lq and covid-blood-

lq data as input and bulk-hq as reference. Cell type annotations for covid-blood-hq data

are shown in the first column and covid-blood-severity-hq data in the second column. Cell

densities are represented using white - low to red - high cell type density.
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Figure S45: tSNE representation of three T helper cell clusters of the reconstructed covid-blood

and covid-blood-severity datasets. The t-SNE representation and clustering was computed on

DISCERN reconstructed expression, using covid-blood-severity-lq and covid-blood-lq data as

input and bulk-hq as reference. Cell types are color-coded according to the covid-blood-

severity-hq dataset. TFH cells from the original publication (CD4.Tfh) show significant over-

lap with naive CD4+ T cells and CD4+ IL22+ cells (CD4.IL22) show marked overlap with

TREG cells (compared with fig. S42).

Figure S46: Proportion of T cell subtypes in the covid-blood-severity-hq data grouped by dis-

ease severity. The disease severity per patient is determined as the worst clinical status during

hospitalization. Colors indicate disease severity, from light blue - asymptomatic to dark blue

- critical. Boxplots represent median, quantiles, minimum, maximum, and potential outliers.
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Figure S47: Proportion of ‘unexpected’ CD4 cytotoxic and CD8 Tc2 cell subtypes in the

covid-blood-severity-hq data grouped by disease severity. The disease severity per patient is

determined as the worst clinical status during hospitalization. Colors indicate disease severity,

from light blue - asymptomatic to dark blue - critical. Boxplots represent median, quantiles,

minimum, maximum, and potential outliers.

Figure S48: Proportion of ‘unexpected’ CD4 cytotoxic and CD8 Tc2 cell subtypes in the

covid-blood-severity-hq data grouped by disease etiology. Colors indicate disease etiology,

from light blue - COVID-19 to dark blue - non COVID-19. Boxplots represent median,

quantiles, minimum, maximum, and potential outliers.
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Figure S49: Disease-severity prediction using GBM classifiers trained on fractions of five T cell

types of the covid-blood-severity-hq data. The five T cell types (CD8 EM, CD8 Tc2, TFH,

TH17 cluster1, Treg active) were selected using forward feature selection of the reconstructed

covid-blood-severity-hq data. Confidence intervals were calculated using 25 runs of LOOCV.

The disease category “critical” was combined with “severe” and “asymptomatic” with “mild”.

A: Confusion matrix for the worst run of LOOCV. B: Confusion matrix for the best run of

LOOCV. C: ROC curve for the prediction of mild - blue, moderate - yellow, severe - green,

and all categories (overall) - gray. Confidence intervals indicate one standard deviation.
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Table S1: Overview of all single cell and bulk sequencing datasets used in this study. The

table shows the dataset name, size of the dataset, the sequencing technology, cell types as

annotated in the original study and a hyperlink to the publication.

Dataset Method Cell Types Publication

or Download

link

pancreas

(8569 cells)
SMARTSeq2, Flu-

idigm C1, CelSeq,

CelSeq2, inDrops

alpha, beta, ductal,

acinar, delta, gamma, ac-

tivated stellate, endothe-

lial, quiescent stellate,

macrophage, mast,

epsilon, schwann

[33]

difftec

(31 021 cells)
10x Chromium

v2, 10x Chromium

v3, SMARTSeq2,

Seq-Well, inDrops,

Drop-seq, CelSeq2

Cytotoxic T cell, CD4+

T cell, CD14+ monocyte,

B cell, Natural killer cell,

Megakaryocyte, CD16+

monocyte, Dendritic cell,

Plasmacytoid dendritic

cell, Unassigned

[34]

snRNA-seq

& scRNA-seq

(12 423 cells)

snRNA-seq and

scRNA-seq us-

ing Chromium

single-cell 3’ v3

Epithelial cells,

Macrophages, Hepato-

cytes, T cells, Endothelial

cell, Fibroblasts, B cells,

NK cells

https:

//www.ncbi.

nlm.nih.gov/

geo/query/

acc.cgi?acc=

GSM4186980

https:

//www.ncbi.

nlm.nih.gov/

geo/query/

acc.cgi?acc=

GSM4186974
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Table S1: Overview of all single cell and bulk sequencing datasets used in this study contin-

ued.

Dataset Method Cell Types Publication

or Download

link

covid-lung

(56 645 cells)
10X Genomics

Chromium Single

Cell 5’v1.1

CD8 T, TREG,

CD4 CD8 proliferat-

ing, B cell, CD4 TCM,

TRM1, TR1, CD8 TCM,

T senescent, CD8 TEM,

TEM17, T antiviral,

alveolar MΦ, TRM17,

M1, CD4 CD8 stressed

TCM, CD4 TSCM,

MAIT, Innate like,

Neutrophils, doublets,

CD4 CD8 lnc rich, aged

Neutrophils, M1 HSP+,

Mast, DC, M1 Mono-

derived, M2 profibrotic,

Epithelial, Neutrophil,

Macrophage

[35]

covid-blood

(83 709 cells)
10X Genomics

Chromium Single

Cell 5’v1.1

CD3+ cells [35]
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Table S1: Overview of all single cell and bulk sequencing datasets used in this study contin-

ued.

Dataset Method Cell Types Publication

or Download

link

citeseq

(6592 cells)
10x Genomics Sin-

gle Cell and CITE-

seq

B cells, CD4 T cells,

NK cells, CD14+ Mono-

cytes, FCGR3A+ Mono-

cytes, CD8 T cells

https:

//www.ncbi.

nlm.nih.gov/

geo/query/

acc.cgi?acc=

GSE100866

https:

//github.

com/YosefLab/

scVI-data/

raw/master/

pbmc_

metadata.

pickle

bulk

(9852 cells)
SMART-seq v4 Naive CD4, Memory

CD4, TH1, TH2, TH17,

Tfh, Fr. I nTreg, Fr. II

eTreg, Fr. III T, Naive

CD8, Memory CD8, CM

CD8, EM CD8, TEMRA

CD8, NK, Naive B, USM

B, SM B, Plasmablast,

DN B, CL Monocytes,

Int Monocytes, NC

Monocytes, mDC, pDC,

Neutrophils, LDG

[36]
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Table S1: Overview of all single cell and bulk sequencing datasets used in this study contin-

ued.

Dataset Method Cell Types Publication

or Download

link

covid-blood-severity

(636 836 cells)
10X Genomics

Chromium Single

Cell 5’v1.1

ASDC, B exhausted,

B immature,

B malignant, B naive,

B non-switched memory,

B switched memory,

C1 CD16 mono,

CD4.CM, CD4.EM,

CD4.IL22, CD4.Naive,

CD4.Prolif, CD4.Tfh,

CD4.Th1, CD4.Th2’,

CD4.Th17, CD8.EM,

CD8.Naive, CD8.Prolif,

CD8.TE, CD14 mono,

CD16 mono,

CD83 CD14 mono, DC1,

DC2, DC3, DC prolif,

HSC CD38neg,

HSC CD38pos,

HSC MK,

HSC erythroid,

HSC myeloid,

HSC prolif, ILC1 3,

ILC2, MAIT,

Mono prolif,

NKT, NK 16hi,

NK 56hi, NK prolif,

Plasma cell IgA,

Plasma cell IgG,

Plasma cell IgM, Plas-

mablast, Platelets, RBC,

Treg, gdT, pDC

[37]
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Table S1: Overview of all single cell and bulk sequencing datasets used in this study contin-

ued.

Dataset Method Cell Types Publication

or Download

link

Kidney snRNA-seq

& scRNA-seq

(82 701 cells)

10x Genomics

Chromium

None (not annotated) https:

//atlas.

kpmp.org/

repository/

?facetTab=

participants

Patients:

3010018,

3010034,

3210003,

3210034,

3310005,

3310006,

3410050,

3410184,

3410187

Table S2: Detailed quality and batch information for all single cell and bulk sequencing

datasets used in this study. For each batch, the number of cells, the mean number of

counts per cell, and the mean number of expressed genes per cell are listed. For the

difftec dataset, the batch names were slightly adjusted. Their published batch names

are written in brackets.

Batch

Num-

ber of

cells

Mean

number

of counts

per cell

Mean

number

of genes

Dataset

pancreas

smartseq2 2394 451021.4 6214.0

fluidigmc1 638 1580155.4 8127.4

celseq 2285 11161.1 3466.8
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Table S2: Detailed quality and batch information for all single cell and bulk sequencing

datasets used in this study continued.

Batch

Num-

ber of

cells

Mean

number

of counts

per cell

Mean

number

of genes

Dataset

celseq2 1004 23394.2 5274.9

indrop 8569 5828.2 1887.2

difftec

dropseq

(pbmc1 Drop-seq)

3222 1282.0 676.0

indrops

(pbmc1 inDrops)

3222 566.3 362.4

seqwell

(pmbc1 Seq-Well)

3222 1035.3 567.2

chromium-v3

(pbmc1 10x

Chromium (v3))

3222 4891.3 1514.1

chromium-v2

(pbmc1 10x

Chromium (v2)

A)

3222 2120.0 795.4

chromium-v2B

(pmbc1 10x

Chromium (v2)

B)

3222 2512.4 870.8

smartseq2

(pbmc1 Smart-

seq2)

253 385914.3 2434.6

celseq2

(pbmc1 CEL-Seq2)

253 6057.3 2585.4

dropseq-2

(pbmc2 Drop-seq)

3362 2141.0 977.7

seqwell-2

(pbmc2 Seq-Well)

551 692.6 421.8
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Table S2: Detailed quality and batch information for all single cell and bulk sequencing

datasets used in this study continued.

Batch

Num-

ber of

cells

Mean

number

of counts

per cell

Mean

number

of genes

Dataset

smartseq2-2

(pbmc2 Smart-

seq2)

273 292924.3 2795.4

celseq2-2

(pbmc2 CEL-Seq2)

273 5949.3 2556.6

chromium-v2-2

(pbmc2 10x

Chromium (v2))

3362 2860.7 1131.4

indrops-2

(pbmc2 inDrops)

3362 1249.5 619.5

snRNA-seq sn-lq 7260 2206.6 1308.7

& scRNA-seq sc-hq 5163 4634.5 1214.6

covid-lung
Bacterial 14591 9627.2 1617.4

SARS-CoV-2 42054 10284.4 1719.5

covid-blood
Bacterial 22199 5861.6 1703.0

SARS-CoV-2 61510 5388.6 1700.7

citeseq citeseq 6592 1391.8 797.8

bulk bulk 9852 881440.6 13103.8

covid-blood-severity

cambridge 130637 4798.9 1485.9

ncl 431733 3520.0 1276.1

sanger 74466 3640.2 1445.1

Kidney snRNA-

seq

kidney-lq (snRNA-

seq)

52934 6532.8 2462.7

& scRNA-seq kidney-hq (snRNA-

seq)

29767 4449.6 1546.0
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Table S3: Antibodies used in the CITE-seq experiments of the citeseq dataset (see table S1

& table S2).

Antibody Clone Supplier Target Protein Target Gene

CD3e UCHT1 BioLegend, USA CD3 CD3E, CD3D

CD19 HIB19 BioLegend, USA CD19 CD19

CD4 RPA-T4 BioLegend, USA CD4 CD4

CD8a RPA-T8 BioLegend, USA CD8 CD8A

CD56 MEM-188 BioLegend, USA NCAM1 NCAM1

CD16 B73.1 BioLegend, USA FCG3A FCGR3A

CD11c B-ly6 BD Pharmingen, USA CD11c ITGAX

CCR7 150603 RD Systems, USA CCR7 CCR7

CCR5 J418F1 BioLegend, USA CCR5 CCR5

CD34 581 BioLegend, USA CD34 CD34

CD14 M5E2 BioLegend, USA CD14 CD14

CD10 HI10a BioLegend, USA NEP MME, CD10

CD45RA HI100 BioLegend, USA PTPRC, CD45RA PTPRC

CD2 RPA-2.10 BioLegend, USA CD2 CD2

CD57 H-NK1 BioLegend, USA B3GA1, CD57 B3GAT1

Table S4: Disease-severity prediction performance using GBM classifiers trained on T cell frac-

tions. Column one (3 - classes) and column two (2 - classes) displays the classification per-

formance using cell type fractions obtained with reconstructed covid-blood-severity-hq data for

three classes (mild, moderate, and severe) and two classes (mild and severe), respectively. The

third column (2 - classes published) shows the classification performance for the fractions based

on the originally published T cell annotations. All classifications were conducted with a GBM us-

ing 25 runs of LOOCV (confidence intervals) and forward feature selection. The T cell subtypes

used by the GBM for column one are CD8 EM, CD8 Tc2, TFH, TH17 cluster1, Treg active.

For column two the features are CD4 CM, CD4 cytotoxic, CD4 naive, CD8 EM, CD8 effector.

For column three CD4.CM, CD4.Tfh, CD8.EM, NKT, and Treg cells were used. It is striking to

observe the strong increase in performance in the 2 class case between reconstructed cell type

(column 2) and originally published (column 3) cell type information.

3 - classes

(mild, moderate, severe)

2 - classes

(mild, severe)

2 - classes published

(mild, severe)

F1-Score (Micro) 0.46 ± 0.01 0.82 ± 0.01 0.61 ± 0.01

F1-Score (Macro) 0.47 ± 0.01 0.82 ± 0.01 0.58 ± 0.01
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AUROC 0.63 ± 0.00 0.81 ± 0.00 0.55 ± 0.01

Accuracy 0.46 ± 0.01 0.82 ± 0.01 0.61 ± 0.01
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