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Abstract 30 

Human microbiome consists of trillions of microorganisms. Microbiota can modulate the host 31 
physiology through molecule and metabolite interactions. Integrating microbiome and metabolomics 32 
data have the potential to predict different diseases more accurately. Yet, most datasets only measure 33 
microbiome data but without paired metabolome data. Here, we propose a novel integrative modeling 34 
framework, Microbiome-based Supervised Contrastive Learning Framework (MB-SupCon). MB-35 
SupCon integrates microbiome and metabolome data to generate microbiome embeddings, which can 36 
be used to improve the prediction accuracy in datasets that only measure microbiome data. As a proof 37 
of concept, we applied MB-SupCon on 720 samples with paired 16S microbiome data and 38 
metabolomics data from patients with type 2 diabetes. MB-SupCon outperformed existing prediction 39 
methods and achieves high average prediction accuracies for insulin resistance status (84.62%), sex 40 
(78.98%), and race (80.04%). Moreover, the microbiome embeddings form separable clusters for 41 
different covariate groups in the lower-dimensional space, which enhances data visualization. We 42 
also applied MB-SupCon on a large inflammatory bowel disease study and observed similar 43 
advantages. Thus, MB-SupCon could be broadly applicable to improve microbiome prediction 44 
models in multi-omics disease studies.  45 

  46 
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1 Introduction 47 

The human microbiome is a collection of living microorganisms cohabitating in distinct body niches 48 
[1, 2]. The microbiome significantly impacts human health, including diseases and treatments [3]. 49 
Accordingly, it is possible to use microbiome measurements to predict host physiologic conditions 50 
non-invasively. Creating microbiome-based prediction models has great benefits for medical research 51 
[4].  52 

Earlier work on microbiome-based prediction models using microbiome abundances includes random 53 
forest, support vector machines models[5]. While identification and quantification of microbiome 54 
taxa using microbiome data alone lead to associative and correlative insights, multi-omics can offer 55 
mechanistic insights and potentially improve prediction accuracy over models based on microbiomes 56 
alone. For example, in colorectal cancer, specific bacterial species has been associated with increased 57 
disease risk [6]. Follow-up mechanistic studies further elucidated the functions of the pathogenic 58 
species through multi-omics data analysis [7, 8]. Similar multi-omics approaches, especially in 59 
microbiome and metabolomics, have been applied to other diseases [9, 10]. To leverage multi-omics 60 
data features and unleash the potential of non-invasive microbiome biomarkers, we aim to develop a 61 
general framework for phenotype prediction using microbiome data. 62 

Statistical learning and artificial intelligence research have advanced microbiome-based prediction 63 
models. Earlier work utilized taxonomic abundance data and linear or logistic regression models with 64 
penalties (e.g., LASSO model, and elastic net model) [11]. More recent approaches integrate multi-65 
omics data using partial least squares (PLS), partial least squares-discriminant analysis (PLS-DA), or 66 
canonical correlation analysis (CCA) [12]. These models rely on linear transformations of original 67 
features in supervised or unsupervised learning. Recently, contrastive learning has been introduced 68 
in the analysis of the multi-omics data [13] that can capture non-linear relationships between features. 69 
For example, a simple framework for unsupervised contrastive learning (simCLR) achieves state-of-70 
the-art prediction performance [14]. Supervised contrastive learning (SupCon) in computer vision 71 
tasks also demonstrated superior robustness and prediction accuracies [15], and these advantages have 72 
solid theoretical support [16]. Inspired by the success of these approaches, we propose a novel 73 
supervised-learning framework (MB-SupCon) based on non-linear transformations of multi-omics 74 
datasets, which achieve robust and accurate prediction performance.  Our method architecture is 75 
intuitive and requires only modest-sized multi-omics data. We demonstrate MB-SupCon’s utility 76 
using data from a published type 2 diabetes study where MB-SupCon-based model improves 77 
prediction accuracies by a large margin; Another independent application of MB-SupCon to an 78 
Inflammatory Bowel Disease (IBD) study also produced consistent improvements. Moreover, we 79 
demonstrated that the microbiome embeddings from MB-SupCon can better separate different 80 
phenotype groups and lead to more informative visualizations of the data. We posit that our 81 
microbiome-based prediction model can easily be applied to other disease types and used to integrate 82 
data from a variety of omics technologies. 83 

2 Results 84 

2.1 MB-SupCon: Microbiome-based prediction model via supervised contrastive 85 
learning  86 

The main goal of MB-SupCon is to improve the prediction of phenotype or clinical covariates via 87 
supervised contrastive learning. An overall workflow is shown in Figure 1. The model input includes 88 
gut microbiome and metabolome data, phenotype information and/or clinical covariates. We then 89 
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train a supervised contrastive learning model to obtain the weights of the encoder networks. Finally, 90 
we apply the predictive model to independent test datasets to assess its accuracy. The microbiome 91 
embedding is critically useful for downstream analysis tasks, including 1) predicting phenotypic 92 
outcomes and covariates and 2) visualizing the lower-dimensional representation. We show that 93 
approaches using microbiome embedding from MB-SupCon often have better performance than 94 
approaches using raw microbiome abundances.   95 

2.2 MB-SupCon improved categorical outcome prediction in type 2 diabetes study 96 

We trained MB-SupCon using real human gut microbiome and metabolome data obtained in a host-97 
microbe dynamics study by Zhou, Sailani [17]. The omics data were collected longitudinally from 98 
subjects with prediabetes over approximately four years. Gut microbiome data were obtained from 99 
stool samples, and host metabolome data was obtained from blood samples at each visit of subjects. 100 
We subset both datasets and retained 720 samples with both 16s gut microbiome and metabolome 101 
data. Microbiome data is encoded as a matrix of 720 x 96 dimension with entries having values 102 
between [0,1), (i.e., [0, 1)!"#×%&), and each of the 96 features represents the relative abundance of one 103 
microbial taxon from 5 taxonomic levels - phylum, class, order, family, and genus. Metabolome data 104 
is encoded as a matrix of dimension 720 x 724, with each entry taking values from non-negative real 105 
numbers, (i.e., ℝ'

!"#×!"(), and each of the 724 features represents the abundance of one metabolite. 106 
Standardization was applied to both datasets before model fitting so that each feature has a mean 107 
value of zero and unit variance. In addition, at each visit, demographic or clinical covariates (e.g., sex, 108 
age, insulin resistant/insulin sensitive, BMI, etc.) were also recorded for all subjects. We also 109 
attempted to predict the covariates using microbiome and metabolome data to evaluate different 110 
predictive models. To evaluate the predictive performance for each machine learning model, we 111 
applied 12 random splitting of training (70%), validation (15%), and testing (15%) to the data. For 112 
each split, the training and validation sets were used for model fitting and hyperparameter tuning 113 
(Supplementary texts: Training and tuning procedure), and the testing set was used for 114 
benchmarking.  115 

To illustrate the advantage of MB-SupCon, we used  116 

• a logistic regression with elastic net regularization (EN),  117 
• a multi-layer perceptron (MLP),  118 
• a support vector machine classifier (SVM),  119 
• a random forest classifier (RF)  120 

to analyze and compare their performance on  121 

• the original microbiome abundances,  122 
• the embedding of supervised contrastive learning (MB-SupCon).  123 

We also compared MB-SupCon with a method that uses a logistic regression model to analyze 124 
unsupervised embeddings (MB-simCLR).  125 

To distinguish analyses using original abundance and embeddings, we denote methods that analyze 126 
embeddings with prefix “MB-SupCon” e.g., MB-SupCon+MLP represents using MLP to analyze 127 
MB-SupCon embeddings.  128 

We listed the details in Supplementary texts: Calculation of the microbiome embedding on 129 
obtaining microbiome embeddings in unsupervised or supervised learning. To evaluate prediction 130 
accuracy, we compute the fraction of correctly predicted labels for each model. Since we create 131 
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multiple splits of the data for training, validation, and testing, the average prediction accuracy using 132 
different test folds are reported. 133 

MB-SupCon embeddings, compared with the original data, lead to improved prediction accuracies in 134 
logistic regression with an elastic net penalty, SVM, MB-simCLR. The methods using MB-SupCon 135 
embedding almost always outperform RF and MLP models using raw microbiome abundance, which 136 
are two of the most accurate methods (Table 1, Figure 3). For the prediction of insulin resistance, 137 
methods using MB-SupCon embeddings achieved 84.62% average accuracy (MB-SupCon+Logistic, 138 
MB-SupCon+SVM, MB-SupCon+RF, and MB-SupCon+MLP), which is better than methods that 139 
uses raw abundances, i.e., the elastic net logistic regression (76.69%), SVM (79.46%), MB-simCLR 140 
(65.67%), and similar to RF (83.93%) and MLP (83.73%). Similarly, for predicting sex, MB-SupCon 141 
also has good average prediction accuracy (78.98%). For predicting race, a four-category outcome, 142 
approaches using MB-SupCon embeddings reaches the lead average accuracy (80.04%), and their 143 
advantage is consistent over the other methods, including RF (77.90%) and MLP (75.60%). More 144 
importantly, MB-SupCon embedding leads to a near-best prediction accuracy regardless of the choice 145 
of machine learning algorithms, which demonstrated its utility and robustness.  146 

2.3 MB-SupCon better visualized embeddings in independent datasets   147 

In addition to improving prediction accuracy, MB-SupCon embeddings in the lower dimensional 148 
space can be useful for visualizations. In Figure 2A, we applied PCA on 1) raw abundance data, 2) 149 
embeddings from MB-simCLR, and 3) embeddings from MB-SupCon in an independent test data. 150 
We placed the samples of test datasets onto the principal component 2 (PC2) vs 1 (PC1) scatterplot 151 
using a random seed of 1. In addition, we also compared MB-SupCon to three other methods, i.e., 152 
Sparse Partial Least Squares Discriminant Analysis (sPLS-DA) [18], Sparse Partial Least Squares 153 
(sPLS)[19], and Data Integration Analysis for Biomarker discovery using Latent cOmponents 154 
(DIABLO) [20],  for their capability to distinguish different groups of covariates. sPLS-DA [18] 155 
predicts covariates using microbiome data only; the other two methods are based on integrative 156 
modeling of both microbiome and metabolome data. sPLS [19]  uses microbiome data as predictors 157 
and metabolome data as responses. DIABLO [20] uses multiple omics data from the same samples to 158 
be blocks and covariate values to be the outcome. All three methods can be implemented under the 159 
“mixOmics”  [12] framework. In Figure 2B, we compared the lower-dimensional scatterplots 160 
(Component 2 vs. Component 1) on the same testing data for each method to those of MB-SupCon 161 
in Figure 2A. Only the embedding from MB-SupCon leads to separable clusters from distinct 162 
covariate groups, whereas the other established methods failed to separate different categories of 163 
covariates. This result confirms that the improvements in prediction accuracy of MB-SupCon can be 164 
attributable to better feature embeddings. 165 

2.4 MB-SupCon analysis of an inflammatory bowel disease study 166 

To further evaluate the performance of MB-SupCon, we applied it to another independent multi-167 
omics Inflammatory Bowel Disease (IBD) study with both metagenomics and metabolomics data [9] 168 
(detailed in Supplementary texts: Network architecture and training of MB-SupCon model for 169 
IBD study). With “diagnosis” of IBD status as the covariate, we trained, validated and tested our 170 
model using 12 different random splits similar to the diabetes study. For each model, we evaluated 171 
the model performance on testing data. As shown in Table 2 and Figure 4, the results remained 172 
consistent with the T2D study. Approaches using MB-SupCon embeddings achieved significantly 173 
better average prediction accuracies (74.04%) compared to approaches using original data directly, 174 
including logistic regression (67.79%) and SVM (52.70%). When RF or MLP is used, predictions 175 
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based on MB-SupCon embedding was comparable to the predictions using original abundance 176 
information, although MB-SupCon+RF had a slightly smaller variance compared to RF and has a 177 
marginal advantage compared to MLP. This validated the reliability and extensive applicability of 178 
MB-SupCon. 179 

 180 

3 Discussion 181 

A reliable microbiome-based prediction model could have immediate values in disease diagnosis and 182 
treatment responses prediction [6, 21, 22]. Here, we propose a novel method, MB-SupCon, to improve 183 
those models by utilizing increasingly accessible multi-omics datasets. The method leverages the 184 
strengths of contrastive learning, which were first established in computer vision tasks [14-16, 23]. 185 
MB-SupCon performs the nonlinear transformation of microbiome abundance and produces useful 186 
embeddings, which lead to improved prediction accuracies and more informative visual 187 
representations. We demonstrate these advantages of MB-SupCon utilizing existing published data 188 
from a diabetes study and an inflammatory bowel disease study. We showed that the improved 189 
microbiome prediction model using MB-SupCon embeddings is more accurate than elastic net 190 
logistic regression, support vector machine, and unsupervised contrastive learning model, and can 191 
achieve comparable or better performance of random forest and multi-layer perceptron. 192 

Like all other deep learning models, MB-SupCon has limitations. One drawback is that it does not 193 
explicitly offer biological interpretations between the microbiome and metabolomics. This “black-194 
box” nature of the deep learning model often leads to criticisms. Developing more interpretable 195 
machine learning models can potentially address the emerging biological questions. Another 196 
limitation is that MB-SupCon does not explicitly model sample relatedness. Specifically, as paired 197 
longitudinal data is relatively infrequent, MB-SupCon does not incorporate features that could 198 
account for correlations among longitudinal samples. A better solution to explore in the future is to 199 
change the current MLP encoders to mixed effect neural networks [24, 25] so that variation within 200 
subjects for longitudinal data could be better modeled and explained.   201 

There are numerous future applications and extensions of MB-SupCon. MB-SupCon is not restricted 202 
to the microbiome and metabolomic data analysis. It can be applied to any omics technology (e.g., 203 
proteomics, host transcriptomics, host methylome, etc.). Moreover, MB-SupCon can be extended to 204 
integrate more than two types of omics data. This can be achieved by adding pair-wise supervised 205 
contrastive losses.  206 

In summary, we believe MB-SupCon and encoder-based on the neural network in general have 207 
advantage in approximating non-linear functions and modeling high-dimensional data. MB-SupCon 208 
framework can be applicable in broad multi-omics settings and improves microbiome-based 209 
prediction models. 210 

4 Methods 211 

Contrastive learning aims to maximize the similarities between microbiome embedding and 212 
metabolome embedding from a pair of samples. Let 𝑋) and 𝑋* be the standardized microbiome and 213 
metabolome data. Suppose there are 𝑛 samples in a minibatch. For a single sample 𝑖 (𝑖 = 1, 2, …	, 𝑛), 214 
we denote the associated microbial and metabolic data as 𝑥+

)  and 𝑥+* , respectively. Let the 215 
microbiome (or metabolome) encoder network be a multi-layer perceptron 𝑓)(⋅) (or 𝑓*(⋅)). The 216 
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encoded features (embeddings) of microbiome and metabolome for sample 𝑖 are 𝑧+
) = 𝑓)3𝑥+

)4 and 217 
𝑧+* = 𝑓*(𝑥+*), respectively. We define the similarity between the encoded vectors 𝑧+

), 𝑧,*  for 𝑖, 𝑗 ∈218 
S = {1,2, … , 𝑛}	 in the latent space by the cosine similarity, 219 

𝑠𝑖𝑚3𝑧+
), 𝑧,*4 =

-!
"⋅-#

$

/-!
"/0-#

$0
  for  𝑖, 𝑗 ∈ S = {1,2, … , 𝑛}  220 

where ⋅ denotes the dot product of two vectors and ||	|| denotes the Euclidean norm of a vector. 221 

We first introduce MB-SimCLR, an unsupervised contrastive learning approach: if a pair of 222 
microbiome and metabolome samples are from the same sample, we define the corresponding data 223 
{𝑥+

), 𝑥+*} as a “positive pair”. Otherwise, we define the pair of data {𝑥+
), 𝑥,*}	(𝑖 ≠ 𝑗) as a “negative 224 

pair”. Given 𝑛 pairs of microbiome and metabolome samples, if we set the embedding vector of 225 
microbiome 𝑧+

)	as an anchor, the loss of unsupervised contrastive learning is 226 

𝐿𝑜𝑠𝑠12314
),* 	= −𝐸+∈7 B𝑙𝑜𝑔

𝑒𝑥𝑝{𝑠𝑖𝑚3𝑧+
), 𝑧+*4/τ}

∑ 𝑒𝑥𝑝{𝑠𝑖𝑚3𝑧+
), 𝑧,*4/τ}2

,89
J 227 

where 𝑖 ∈ 𝑆 = {1,2, … , 𝑛}, τ ∈ ℝ' is the temperature parameter. 228 

Symmetrically, by anchoring the embedding of the metabolome we can get loss 𝐿𝑜𝑠𝑠12314
*,) . The total 229 

loss will be the sum of these two parts: 𝐿𝑜𝑠𝑠12314 = 𝐿𝑜𝑠𝑠12314
),* +	𝐿𝑜𝑠𝑠12314

*,)  230 

Improved upon MB-SimCLR, we describe a supervised contrastive learning method, MB-SupCon, 231 
where we incorporate labels in calculating the loss function. Given a specific categorical label	𝑦+ from 232 
sample 𝑖 , 𝑃(𝑦+ 	)  denotes the index set of samples with label 𝑦+ 	 . Any pairs of microbiome and 233 
metabolome vectors {𝑥:

), 𝑥;*}	with 𝑘, 𝑙 ∈ 𝑃(𝑦+ 	) are treated as “positive pairs”. Otherwise, they are 234 
“negative pairs”. Suppose we set microbiome embedding 𝑧+

) for 𝑖 ∈ 𝑆 with label 𝑦+ 	 as an anchor. 235 
Then supervised contrastive loss [15] is defined as 236 

𝐿𝑜𝑠𝑠),* = −𝐸+∈7 P
1

|𝑃(𝑦+ 	)|
Q 𝑙𝑜𝑔

𝑒𝑥𝑝{𝑠𝑖𝑚3𝑧+
), 𝑧;*4/τ}

∑ 𝑒𝑥𝑝{𝑠𝑖𝑚3𝑧+
), 𝑧,*4/τ}2

,89;∈<(>!	)

R 237 

where |𝑃(𝑦+ 	)| is the cardinality of index set 𝑃(𝑦+ 	), τ ∈ ℝ' is the temperature parameter.  238 

By anchoring metabolome embedding, we can get 𝐿𝑜𝑠𝑠*,). The total loss is still the sum of 𝐿𝑜𝑠𝑠),* 239 
and 	𝐿𝑜𝑠𝑠*,).  240 

In all, the difference between supervised contrastive learning and unsupervised contrastive learning 241 
is the definition of positive and negative sample pairs. Once the loss is determined, we can update the 242 
weights of encoder networks using the stochastic gradient descent (SGD) method. Embedding can be 243 
calculated as the network outputs. Details are provided in the Supplemental Texts: Network 244 
Architecture and Training. 245 

 246 
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Figure and table legend 247 

 248 

Figure 1. Overview of the MB-SupCon framework. Step 1 - Data Collection:  Microbiome, 249 
metabolome, phenotype/covariates are collected; Step 2 – Contrastive Learning – MB-SupCon is 250 
applied, and two encoder networks are trained; Step 3 – Predictive Model – microbiome encoder 251 
network can be applied to new microbiome data to obtain microbiome embeddings. The embeddings 252 
lead to an improved microbiome-based prediction model and lower-dimensional representation.  253 

 254 

Figure 2. Scatter plots of test data on lower-dimensional space (T2D study). 255 

Panel A: Scatter plots of test data (random seed 1) on a 2-dimensional space by PCA. 1st row: 256 
the first two principal components for the embeddings learned from MB-SupCon; 2nd row: the first 257 
two principal components for the original data; 3rd row: the first two principal components for the 258 
embeddings learned from MB-simCLR.  259 

Acronyms: PCA - Principal component analysis. 260 

Panel B: Scatter plots of test data (random seed 1) on 2-dimensional space by other methods. 261 
1st row: the first two components learned from sPLSDA on original data; 2nd row: the first two 262 
components learned from sPLS on original data; 3rd row: the first two principal components 263 
learned from DIABLO on original data.  264 

Acronyms: PCA - Principal component analysis. sPLS-DA - Sparse Partial Least Squares 265 
Discriminant Analysis; sPLS - Sparse Partial Least Squares; DIABLO - Data Integration Analysis 266 
for Biomarker discovery using Latent cOmponents. 267 

 268 

Figure 3. Scatter plot of average prediction accuracies on test data from 12 random training-269 
validation-testing splits, by using different methods for categorical covariates (T2D study). 270 
Green triangles and red points represent predictions based on MB-SupCon embeddings. Orange 271 
squares and blue points represent predictions based on original microbiome data. Panel A: Insulin 272 
resistant/sensitive; Panel B: Sex; Panel C: Race.  273 

Acronyms: LOGISTIC - logistic regression with elastic net penalty; SVM - support vector machine 274 
classifier; RF - random forest classifier; MLP - multi-layer perceptron.  275 

 276 

Figure 4. Scatter plots of average prediction accuracies for diagnosis on testing data from 12 277 
random training-validation-testing splits, by using different methods for categorical 278 
covariates (IBD study). Green triangles and red points represent predictions based on MB-SupCon 279 
embeddings. Orange squares and blue points represent predictions based on original microbiome 280 
data. 281 

Acronyms: LOGISTIC - logistic regression with elastic net penalty; SVM - support vector machine 282 
classifier; RF - random forest classifier; MLP - multi-layer perceptron. 283 
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Table 1. Average prediction accuracies on testing data from 12 random training-validation-284 
testing splits, by using different methods for categorical covariates (T2D study).  285 

Acronyms: Logistic - logistic regression with elastic net penalty using original data; SVM - support 286 
vector machine classifier using original data; RF - random forest classifier using original data; MLP  287 
multi-layer perceptron using original data; MB-simCLR - logistic regression model with elastic net 288 
penalty using microbiome embeddings learned from unsupervised contrastive learning; MB-289 
SupCon + Logistic - logistic regression model with elastic net penalty using microbiome 290 
embeddings learned from supervised contrastive learning. MB-SupCon + SVM: support vector 291 
machine classifier using microbiome embeddings learned from supervised contrastive learning; 292 
MB-SupCon + RF: random forest classifier using microbiome embeddings learned from supervised 293 
contrastive learning; MB-SupCon + MLP: multi-layer perceptron using microbiome embeddings 294 
learned from supervised contrastive learning; Avg. Acc. based on MB-SupCon: average accuracies 295 
among MB-SupCon + Logistic, MB-SupCon + SVM, MB-SupCon + RF and MB-SupCon + MLP. 296 

Table 2. Average prediction accuracies on testing data from 12 random training-validation-297 
testing splits, by using different methods for categorical covariates (IBD study). Acronyms are 298 
defined the same as those from Table 1. 299 

Supplementary Figure 1. Structure of the microbiome and metabolome encoder network. Only 300 
dense layers are visualized where numbers represent neuron counts. Batch normalized layer, 301 
Activation layer, Dropout layer are appended after each dense layer but not shown. 302 

Supplementary Figure 2. Hyperparameter tuning for MB-SupCon on T2D study. Panel A1 – 303 
A3: hyperparameter tuning result for covariate Insulin resistant/sensitive by logistic regression with 304 
an elastic net penalty, SVM, and RF; Panel B1 - B3: hyperparameter tuning results for covariate 305 
Sex by logistic regression with an elastic net penalty, SVM, and RF; Panel C1 – C3: 306 
hyperparameter tuning result for covariate Race by logistic regression with an elastic net penalty, 307 
SVM and RF.  308 

Acronyms: Dropout Rate: dropout rate of the encoders from MB-SupCon; weight_decay: weight 309 
decay value (l2 regularization) of the stochastic gradient descent (SGD) optimizer; temperature: 310 
temperature hyperparameter when calculating contrastive losses. 311 

 312 
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Table 1. Average prediction accuracies on testing data from 12 random training-validation-
testing splits, by using different methods for categorical covariates (T2D study).  
 
Acronyms: Logistic - logistic regression with elastic net penalty using original data; SVM - 
support vector machine classifier using original data; RF - random forest classifier using original 
data; MLP  multi-layer perceptron using original data; MB-simCLR - logistic regression model 
with elastic net penalty using microbiome embeddings learned from unsupervised contrastive 
learning; MB-SupCon + Logistic - logistic regression model with elastic net penalty using 
microbiome embeddings learned from supervised contrastive learning. MB-SupCon + SVM: 
support vector machine classifier using microbiome embeddings learned from supervised 
contrastive learning; MB-SupCon + RF: random forest classifier using microbiome embeddings 
learned from supervised contrastive learning; MB-SupCon + MLP: multi-layer perceptron using 
microbiome embeddings learned from supervised contrastive learning; Avg. Acc. based on MB-
SupCon: average accuracies among MB-SupCon + Logistic, MB-SupCon + SVM, MB-SupCon 
+ RF and MB-SupCon + MLP. 
 
 

Prediction  
Task Logistic  SVM RF MLP MB-simCLR 

Insulin resistance 76.69% 79.46% 83.93% 83.73% 65.67% 
Sex 65.61% 69.02% 80.38% 78.94% 59.85% 
Race 72.99% 72.17% 77.90% 75.60% 68.38% 

 

Prediction  
Task 

MB-SupCon 
+ Logistic 

MB-SupCon 
+ SVM 

MB-SupCon 
+ RF 

MB-SupCon 
+ MLP 

Avg. Acc. 
based on 
MB-SupCon 

Insulin resistance 84.42% 85.12% 84.62% 84.33% 84.62% 
Sex 78.94% 79.02% 79.24% 78.71% 78.98% 
Race 80.73% 80.36% 79.91% 79.17% 80.04% 

 
 



Table 2. Average prediction accuracies on testing data from 12 random training-validation-
testing splits, by using different methods for categorical covariates (IBD study). Acronyms 
are defined the same as those from Table 1. 
 

Prediction  
Task Logistic  SVM RF MLP 

diagnosis 67.79% 52.70% 74.32% 73.20% 
 

Prediction  
Task 

MB-SupCon 
+ Logistic 

MB-SupCon 
+ SVM 

MB-SupCon 
+ RF 

MB-SupCon 
+ MLP 

Avg. Acc. 
based on 
MB-SupCon 

diagnosis 74.21% 74.21% 73.99% 73.76% 74.04% 
 
 
 


